71 research outputs found

    Intelligent systems for efficiency and security

    Get PDF
    As computing becomes ubiquitous and personalized, resources like energy, storage and time are becoming increasingly scarce and, at the same time, computing systems must deliver in multiple dimensions, such as high performance, quality of service, reliability, security and low power. Building such computers is hard, particularly when the operating environment is becoming more dynamic, and systems are becoming heterogeneous and distributed. Unfortunately, computers today manage resources with many ad hoc heuristics that are suboptimal, unsafe, and cannot be composed across the computer’s subsystems. Continuing this approach has severe consequences: underperforming systems, resource waste, information loss, and even life endangerment. This dissertation research develops computing systems which, through intelligent adaptation, deliver efficiency along multiple dimensions. The key idea is to manage computers with principled methods from formal control. It is with these methods that the multiple subsystems of a computer sense their environment and configure themselves to meet system-wide goals. To achieve the goal of intelligent systems, this dissertation makes a series of contributions, each building on the previous. First, it introduces the use of formal MIMO (Multiple Input Multiple Output) control for processors, to simultaneously optimize many goals like performance, power, and temperature. Second, it develops the Yukta control system, which uses coordinated formal controllers in different layers of the stack (hardware and operating system). Third, it uses robust control to develop a fast, globally coordinated and decentralized control framework called Tangram, for heterogeneous computers. Finally, it presents Maya, a defense against power side-channel attacks that uses formal control to reshape the power dissipated by a computer, confusing the attacker. The ideas in the dissertation have been demonstrated successfully with several prototypes, including one built along with AMD (Advanced Micro Devices, Inc.) engineers. These designs significantly outperformed the state of the art. The research in this dissertation brought formal control closer to computer architecture and has been well-received in both domains. It has the first application of full-fledged MIMO control for processors, the first use of robust control in computer systems, and the first application of formal control for side-channel defense. It makes a significant stride towards intelligent systems that are efficient, secure and reliable

    Automated decision making and problem solving. Volume 2: Conference presentations

    Get PDF
    Related topics in artificial intelligence, operations research, and control theory are explored. Existing techniques are assessed and trends of development are determined

    Approximate Computing for Energy Efficiency

    Get PDF

    Mobiles Robots - Past Present and Future

    Get PDF

    Activity Report: Automatic Control 1998

    Get PDF

    NOCH: A framework for biologically plausible models of neural motor control

    Get PDF
    This thesis examines the neurobiological components of the motor control system and relates it to current control theory in order to develop a novel framework for models of motor control in the brain. The presented framework is called the Neural Optimal Control Hierarchy (NOCH). A method of accounting for low level system dynamics with a Linear Bellman Controller (LBC) on top of a hierarchy is presented, as well as a dynamic scaling technique for LBCs that drastically reduces the computational power and storage requirements of the system. These contributions to LBC theory allow for low cost, high-precision control of movements in large environments without exceeding the biological constraints of the motor control system

    Combining reinforcement learning and optimal control for the control of nonlinear dynamical systems

    No full text
    This thesis presents a novel hierarchical learning framework, Reinforcement Learning Optimal Control, for controlling nonlinear dynamical systems with continuous states and actions. The adapted approach mimics the neural computations that allow our brain to bridge across the divide between symbolic action-selection and low-level actuation control by operating at two levels of abstraction. First, current findings demonstrate that at the level of limb coordination human behaviour is explained by linear optimal feedback control theory, where cost functions match energy and timing constraints of tasks. Second, humans learn cognitive tasks involving learning symbolic level action selection, in terms of both model-free and model-based reinforcement learning algorithms. We postulate that the ease with which humans learn complex nonlinear tasks arises from combining these two levels of abstraction. The Reinforcement Learning Optimal Control framework learns the local task dynamics from naive experience using an expectation maximization algorithm for estimation of linear dynamical systems and forms locally optimal Linear Quadratic Regulators, producing continuous low-level control. A high-level reinforcement learning agent uses these available controllers as actions and learns how to combine them in state space, while maximizing a long term reward. The optimal control costs form training signals for high-level symbolic learner. The algorithm demonstrates that a small number of locally optimal linear controllers can be combined in a smart way to solve global nonlinear control problems and forms a proof-of-principle to how the brain may bridge the divide between low-level continuous control and high-level symbolic action selection. It competes in terms of computational cost and solution quality with state-of-the-art control, which is illustrated with solutions to benchmark problems.Open Acces
    • …
    corecore