36 research outputs found

    Self-navigation in crowds: An invariant set-based approach

    Full text link
    Self-navigation in non-coordinating crowded environments is formidably challenging within multi-agent systems consisting of non-holonomic robots operating through local sensing. Our primary objective is the development of a novel, rapid, sensor-driven, self-navigation controller that directly computes control commands to enable safe maneuvering while coexisting with other agents. We propose an input-constrained feedback controller meticulously crafted for non-holonomic mobile robots and the characterization of associated invariant sets. The invariant sets are the key to maintaining stability and safety amidst the non-cooperating agents. We then propose a planning strategy that strategically guides the generation of invariant sets toward the agent's intended target. This enables the agents to directly compute theoretically safe control inputs without explicitly requiring pre-planned paths/trajectories to reliably navigate through crowded multi-agent environments. The practicality of our technique is demonstrated through hardware experiments, and the ability to parallelize computations to shorten computational durations for synthesizing safe control commands. The proposed approach finds potential applications in crowded multi-agent scenarios that require rapid control computations based on perceived safety bounds during run-time

    Perception Based Navigation for Underactuated Robots.

    Full text link
    Robot autonomous navigation is a very active field of robotics. In this thesis we propose a hierarchical approach to a class of underactuated robots by composing a collection of local controllers with well understood domains of attraction. We start by addressing the problem of robot navigation with nonholonomic motion constraints and perceptual cues arising from onboard visual servoing in partially engineered environments. We propose a general hybrid procedure that adapts to the constrained motion setting the standard feedback controller arising from a navigation function in the fully actuated case. This is accomplished by switching back and forth between moving "down" and "across" the associated gradient field toward the stable manifold it induces in the constrained dynamics. Guaranteed to avoid obstacles in all cases, we provide conditions under which the new procedure brings initial configurations to within an arbitrarily small neighborhood of the goal. We summarize with simulation results on a sample of visual servoing problems with a few different perceptual models. We document the empirical effectiveness of the proposed algorithm by reporting the results of its application to outdoor autonomous visual registration experiments with the robot RHex guided by engineered beacons. Next we explore the possibility of adapting the resulting first order hybrid feedback controller to its dynamical counterpart by introducing tunable damping terms in the control law. Just as gradient controllers for standard quasi-static mechanical systems give rise to generalized "PD-style" controllers for dynamical versions of those standard systems, we show that it is possible to construct similar "lifts" in the presence of non-holonomic constraints notwithstanding the necessary absence of point attractors. Simulation results corroborate the proposed lift. Finally we present an implementation of a fully autonomous navigation application for a legged robot. The robot adapts its leg trajectory parameters by recourse to a discrete gradient descent algorithm, while managing its experiments and outcome measurements autonomously via the navigation visual servoing algorithms proposed in this thesis.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/58412/1/glopes_1.pd

    Locomotion system for ground mobile robots in uneven and unstructured environments

    Get PDF
    One of the technology domains with the greatest growth rates nowadays is service robots. The extensive use of ground mobile robots in environments that are unstructured or structured for humans is a promising challenge for the coming years, even though Automated Guided Vehicles (AGV) moving on flat and compact grounds are already commercially available and widely utilized to move components and products inside indoor industrial buildings. Agriculture, planetary exploration, military operations, demining, intervention in case of terrorist attacks, surveillance, and reconnaissance in hazardous conditions are important application domains. Due to the fact that it integrates the disciplines of locomotion, vision, cognition, and navigation, the design of a ground mobile robot is extremely interdisciplinary. In terms of mechanics, ground mobile robots, with the exception of those designed for particular surroundings and surfaces (such as slithering or sticky robots), can move on wheels (W), legs (L), tracks (T), or hybrids of these concepts (LW, LT, WT, LWT). In terms of maximum speed, obstacle crossing ability, step/stair climbing ability, slope climbing ability, walking capability on soft terrain, walking capability on uneven terrain, energy efficiency, mechanical complexity, control complexity, and technology readiness, a systematic comparison of these locomotion systems is provided in [1]. Based on the above-mentioned classification, in this thesis, we first introduce a small-scale hybrid locomotion robot for surveillance and inspection, WheTLHLoc, with two tracks, two revolving legs, two active wheels, and two passive omni wheels. The robot can move in several different ways, including using wheels on the flat, compact ground,[1] tracks on soft, yielding terrain, and a combination of tracks, legs, and wheels to navigate obstacles. In particular, static stability and non-slipping characteristics are considered while analyzing the process of climbing steps and stairs. The experimental test on the first prototype has proven the planned climbing maneuver’s efficacy and the WheTLHLoc robot's operational flexibility. Later we present another development of WheTLHLoc and introduce WheTLHLoc 2.0 with newly designed legs, enabling the robot to deal with bigger obstacles. Subsequently, a single-track bio-inspired ground mobile robot's conceptual and embodiment designs are presented. This robot is called SnakeTrack. It is designed for surveillance and inspection activities in unstructured environments with constrained areas. The vertebral column has two end modules and a variable number of vertebrae linked by compliant joints, and the surrounding track is its essential component. Four motors drive the robot: two control the track motion and two regulate the lateral flexion of the vertebral column for steering. The compliant joints enable limited passive torsion and retroflection of the vertebral column, which the robot can use to adapt to uneven terrain and increase traction. Eventually, the new version of SnakeTrack, called 'Porcospino', is introduced with the aim of allowing the robot to move in a wider variety of terrains. The novelty of this thesis lies in the development and presentation of three novel designs of small-scale mobile robots for surveillance and inspection in unstructured environments, and they employ hybrid locomotion systems that allow them to traverse a variety of terrains, including soft, yielding terrain and high obstacles. This thesis contributes to the field of mobile robotics by introducing new design concepts for hybrid locomotion systems that enable robots to navigate challenging environments. The robots presented in this thesis employ modular designs that allow their lengths to be adapted to suit specific tasks, and they are capable of restoring their correct position after falling over, making them highly adaptable and versatile. Furthermore, this thesis presents a detailed analysis of the robots' capabilities, including their step-climbing and motion planning abilities. In this thesis we also discuss possible refinements for the robots' designs to improve their performance and reliability. Overall, this thesis's contributions lie in the design and development of innovative mobile robots that address the challenges of surveillance and inspection in unstructured environments, and the analysis and evaluation of these robots' capabilities. The research presented in this thesis provides a foundation for further work in this field, and it may be of interest to researchers and practitioners in the areas of robotics, automation, and inspection. As a general note, the first robot, WheTLHLoc, is a hybrid locomotion robot capable of combining tracked locomotion on soft terrains, wheeled locomotion on flat and compact grounds, and high obstacle crossing capability. The second robot, SnakeTrack, is a small-size mono-track robot with a modular structure composed of a vertebral column and a single peripherical track revolving around it. The third robot, Porcospino, is an evolution of SnakeTrack and includes flexible spines on the track modules for improved traction on uneven but firm terrains, and refinements of the shape of the track guidance system. This thesis provides detailed descriptions of the design and prototyping of these robots and presents analytical and experimental results to verify their capabilities

    Reactive Planning With Legged Robots In Unknown Environments

    Get PDF
    Unlike the problem of safe task and motion planning in a completely known environment, the setting where the obstacles in a robot\u27s workspace are not initially known and are incrementally revealed online has so far received little theoretical interest, with existing algorithms usually demanding constant deliberative replanning in the presence of unanticipated conditions. Moreover, even though recent advances show that legged platforms are becoming better at traversing rough terrains and environments, legged robots are still mostly used as locomotion research platforms, with applications restricted to domains where interaction with the environment is usually not needed and actively avoided. In order to accomplish challenging tasks with such highly dynamic robots in unexplored environments, this research suggests with formal arguments and empirical demonstration the effectiveness of a hierarchical control structure, that we believe is the first provably correct deliberative/reactive planner to engage an unmodified general purpose mobile manipulator in physical rearrangements of its environment. To this end, we develop the mobile manipulation maneuvers to accomplish each task at hand, successfully anchor the useful kinematic unicycle template to control our legged platforms, and integrate perceptual feedback with low-level control to coordinate each robot\u27s movement. At the same time, this research builds toward a useful abstraction for task planning in unknown environments, and provides an avenue for incorporating partial prior knowledge within a deterministic framework well suited to existing vector field planning methods, by exploiting recent developments in semantic SLAM and object pose and triangular mesh extraction using convolutional neural net architectures. Under specific sufficient conditions, formal results guarantee collision avoidance and convergence to designated (fixed or slowly moving) targets, for both a single robot and a robot gripping and manipulating objects, in previously unexplored workspaces cluttered with non-convex obstacles. We encourage the application of our methods by providing accompanying software with open-source implementations of our algorithms

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    Graceful Navigation for Mobile Robots in Dynamic and Uncertain Environments.

    Full text link
    The ability to navigate in everyday environments is a fundamental and necessary skill for any autonomous mobile agent that is intended to work with human users. The presence of pedestrians and other dynamic objects, however, makes the environment inherently dynamic and uncertain. To navigate in such environments, an agent must reason about the near future and make an optimal decision at each time step so that it can move safely toward the goal. Furthermore, for any application intended to carry passengers, it also must be able to move smoothly and comfortably, and the robot behavior needs to be customizable to match the preference of the individual users. Despite decades of progress in the field of motion planning and control, this remains a difficult challenge with existing methods. In this dissertation, we show that safe, comfortable, and customizable mobile robot navigation in dynamic and uncertain environments can be achieved via stochastic model predictive control. We view the problem of navigation in dynamic and uncertain environments as a continuous decision making process, where an agent with short-term predictive capability reasons about its situation and makes an informed decision at each time step. The problem of robot navigation in dynamic and uncertain environments is formulated as an on-line, finite-horizon policy and trajectory optimization problem under uncertainty. With our formulation, planning and control becomes fully integrated, which allows direct optimization of the performance measure. Furthermore, with our approach the problem becomes easy to solve, which allows our algorithm to run in real time on a single core of a typical laptop with off-the-shelf optimization packages. The work presented in this thesis extends the state-of-the-art in analytic control of mobile robots, sampling-based optimal path planning, and stochastic model predictive control. We believe that our work is a significant step toward safe and reliable autonomous navigation that is acceptable to human users.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120760/1/jongjinp_1.pd

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Hazard avoidance for high-speed rough-terrain unmanned ground vehicles

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005."June 2005."Includes bibliographical references (p. 111-116).High-speed unmanned ground vehicles have important applications in rough-terrain. In these applications unexpected and dangerous situations can occur that require rapid hazard avoidance maneuvers. At high speeds, there is limited time to perform navigation and hazard avoidance calculations based on detailed vehicle and terrain models. Furthermore, detailed models often do not accurately predict the robot's performance due to model parameter and sensor uncertainty. This thesis presents the development and analysis of a novel method for high speed navigation and hazard avoidance. The method is based on the two dimensional "trajectory space," which is a compact model-based representation of a robot's dynamic performance limits on natural terrain. This method allows a vehicle to perform dynamically feasible hazard avoidance maneuvers in a computationally efficient manner. This thesis also presents a novel method for trajectory replanning, based on a "curvature matching" technique. This method quickly generates a path connects the end of the path generated by a hazard avoidance maneuver to the nominal desired path. Simulation and experimental results with a small gasoline-powered high-speed unmanned ground vehicle verify the effectiveness of these algorithms. The experimental results demonstrate the ability of the algorithm to account for multiple hazards, varying terrain inclination, and terrain roughness. The experimental vehicle attained speeds of 8 m/s (18 mph) on flat and sloped terrain and 7 m/s (16 mph) on rough terrain.by Matthew J. Spenko.Ph.D
    corecore