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ABSTRACT

REACTIVE PLANNING WITH LEGGED ROBOTS

IN UNKNOWN ENVIRONMENTS

Vasileios Vasilopoulos

Daniel E. Koditschek

Unlike the problem of safe task and motion planning in a completely known environ-

ment, the setting where the obstacles in a robot’s workspace are not initially known and are

incrementally revealed online has so far received little theoretical interest, with existing algo-

rithms usually demanding constant deliberative replanning in the presence of unanticipated

conditions. Moreover, even though recent advances show that legged platforms are becom-

ing better at traversing rough terrains and environments, legged robots are still mostly used

as locomotion research platforms, with applications restricted to domains where interaction

with the environment is usually not needed and actively avoided.

In order to accomplish challenging tasks with such highly dynamic robots in unexplored

environments, this research suggests with formal arguments and empirical demonstration the

effectiveness of a hierarchical control structure, that we believe is the first provably correct

deliberative/reactive planner to engage an unmodified general purpose mobile manipulator in

physical rearrangements of its environment. To this end, we develop the mobile manipulation

maneuvers to accomplish each task at hand, successfully anchor the useful kinematic unicycle

template to control our legged platforms, and integrate perceptual feedback with low-level

control to coordinate each robot’s movement.

At the same time, this research builds toward a useful abstraction for task planning in

unknown environments, and provides an avenue for incorporating partial prior knowledge

within a deterministic framework well suited to existing vector field planning methods, by

exploiting recent developments in semantic SLAM and object pose and triangular mesh ex-

traction using convolutional neural net architectures. Under specific sufficient conditions,

formal results guarantee collision avoidance and convergence to designated (fixed or slowly

moving) targets, for both a single robot and a robot gripping and manipulating objects, in
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previously unexplored workspaces cluttered with non-convex obstacles. We encourage the

application of our methods by providing accompanying software with open-source imple-

mentations of our algorithms.

viii



Contents

Acknowledgments iv

Abstract vii

Contents ix

List of Tables xv

List of Figures xvi

I Introduction, Related Work & Preliminaries 1

1 Introduction 2
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Overview of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions Mapped to Thesis Organization . . . . . . . . . . . . . . . . . . 7

2 Overview of Related Work 12
2.1 Mobile Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Task and Motion Planning for Mobile Manipulation Tasks . . . . . . . 13
2.1.2 Mobile Manipulation with Legged Robots . . . . . . . . . . . . . . . . 15

2.2 Reactive and Sensor-Based Planning . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Reactive Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Realtime Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Topologically Informed Navigation . . . . . . . . . . . . . . . . . . . . 17

3 Preliminaries on Reactive Navigation with Legged Robots 19
3.1 Empirical Unicycle Anchoring on the Minitaur Robot . . . . . . . . . . . . . . 20

3.1.1 Minitaur Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Bounding Gait as a Kinematic Unicycle . . . . . . . . . . . . . . . . . 21
3.1.3 Walking Trot Gait as a Kinematic Unicycle . . . . . . . . . . . . . . . 24

3.2 Reactive Navigation in Unknown Convex Environments . . . . . . . . . . . . 26
3.2.1 Reactive Navigation Using Local but “Bird’s Eye” Information . . . . . 27
3.2.2 Sensor-Based Reactive Navigation . . . . . . . . . . . . . . . . . . . . 30

3.3 Body Frame Target Localization . . . . . . . . . . . . . . . . . . . . . . . . . 31

ix



3.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1 Bounding Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.2 Sensor-Based Walking Experiments . . . . . . . . . . . . . . . . . . . . 40

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

II Mobile Manipulation in Partially Known Environments 42

4 Reactive Symbolic Planning Using a Hierarchical Control Structure 43
4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Deliberative Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Reactive Planning for Single Robots . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Doubly-Reactive Planner for Holonomic Robots . . . . . . . . . . . . . 48
4.3.2 Reactive Path Following . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.3 Reactive Wall Following . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.4 Extension to Nonholonomic Robots . . . . . . . . . . . . . . . . . . . . 54

4.4 Reactive Planning for Gripping Contact . . . . . . . . . . . . . . . . . . . . . 55
4.4.1 Gripping Contact Kinematics . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.2 Generating Virtual Commands . . . . . . . . . . . . . . . . . . . . . . 58
4.4.3 LIDAR Range Transformation . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Low-Level Implementation of Symbolic Language . . . . . . . . . . . . . . . . 59
4.5.1 Action MoveToObject . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.2 Action PositionObject . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.3 Action Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6.1 Environment Packed Circular Obstacles . . . . . . . . . . . . . . . . . 63
4.6.2 Cluttered Environment with Walls . . . . . . . . . . . . . . . . . . . . 63

5 Reactive Execution of Symbolic Rearrangement Plans with Minitaur 66
5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Deliberative Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.2 Reactive Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.3 Gait Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Extension of Reactive Layer to Non-Convex Obstacles . . . . . . . . . . . . . 76
5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.2 Task #1 - Single Object Positioning . . . . . . . . . . . . . . . . . . . 80
5.4.3 Task #2 - Swapping Object Positions . . . . . . . . . . . . . . . . . . 84
5.4.4 Task #3 - Object Blocking the Position of Another Object . . . . . . . 84

x



III Reactive Navigation in Unfamiliar Semantic Environments 85

6 Reactive Navigation in Partially Known Non-Convex Environments Clut-
tered with Star-Shaped Obstacles 86
6.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Multi-layer Representation of the Environment and Its Associated Transfor-

mations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2.1 Description of Planning Layers . . . . . . . . . . . . . . . . . . . . . . 89
6.2.2 Description of the C∞ Switches . . . . . . . . . . . . . . . . . . . . . . 91
6.2.3 Description of the Star Deforming Factors . . . . . . . . . . . . . . . . 92
6.2.4 The Map Between the Mapped and the Model Layer . . . . . . . . . . 93

6.3 Reactive Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.1 Reactive Controller for Fully Actuated Robots . . . . . . . . . . . . . . 94
6.3.2 Reactive Controller for Differential Drive Robots . . . . . . . . . . . . 96

6.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.4.1 Comparison with Original Doubly Reactive Algorithm . . . . . . . . . 100
6.4.2 Navigation in a Cluttered Non-Convex Environment . . . . . . . . . . 100
6.4.3 Navigation Among Mixed Star-Shaped and Convex Obstacles . . . . . 102

7 Reactive Navigation in Partially Familiar Planar Environments Using Se-
mantic Perceptual Feedback 103
7.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 Navigational Representation of the Environment . . . . . . . . . . . . . . . . 109

7.2.1 Physical Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2.2 Semantic Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2.3 Mapped Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2.4 Model Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2.5 Implicit Representation of Obstacles . . . . . . . . . . . . . . . . . . . 113

7.3 The Diffeomorphism Construction Between the Mapped and Model Spaces . . 113
7.3.1 Obstacle Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3.2 Intermediate Spaces Related by Leaf Purging Transformations . . . . . 116
7.3.3 Purging of Root Triangles . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.3.4 The Map Between the Mapped Space and the Model Space . . . . . . 125

7.4 Reactive Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.4.1 Hybrid Systems Description of Navigation Framework . . . . . . . . . 128
7.4.2 Reactive Controller in Each Hybrid Mode . . . . . . . . . . . . . . . . 131
7.4.3 Qualitative Properties of the Hybrid Controller . . . . . . . . . . . . . 138
7.4.4 Generating Bounded Inputs . . . . . . . . . . . . . . . . . . . . . . . . 140

7.5 Online Reactive Planning Algorithms . . . . . . . . . . . . . . . . . . . . . . . 142
7.5.1 Mapped Space Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.5.2 Reactive Planning Component . . . . . . . . . . . . . . . . . . . . . . 144

7.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.6.1 Comparison with Original Doubly Reactive Algorithm . . . . . . . . . 147
7.6.2 Navigation in a Cluttered Environment with Obstacle Merging . . . . 148
7.6.3 Navigation Among Mixed Known and Unknown Obstacles . . . . . . . 149

7.7 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

xi



7.7.1 Object Detection and Keypoint Localization . . . . . . . . . . . . . . . 153
7.7.2 Semantic Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.8 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.8.1 Experiments with Turtlebot and Offboard Perception . . . . . . . . . . 160
7.8.2 Experiments with Turtlebot and Onboard Perception . . . . . . . . . . 161
7.8.3 Experiments with Minitaur . . . . . . . . . . . . . . . . . . . . . . . . 162

8 Reactive Semantic Planning in Unexplored Semantic Environments Using
Deep Perceptual Feedback 164
8.1 Problem Formulation and Approach . . . . . . . . . . . . . . . . . . . . . . . 165

8.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.1.2 Environment Representation and Technical Notation . . . . . . . . . . 167

8.2 Diffeomorphism Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.2.1 Obstacle Representation and Convex Decomposition . . . . . . . . . . 168
8.2.2 The Map Between the Mapped and the Model Space . . . . . . . . . . 168

8.3 Reactive Planning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.4 Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.4.1 Illustrations of the Navigation Framework . . . . . . . . . . . . . . . . 174
8.4.2 Comparison with RRTX [143] . . . . . . . . . . . . . . . . . . . . . . . 174

8.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.5.2 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

IV Reactive Semantic Planning for Mobile Manipulation 181

9 Reactive Planning for Mobile Manipulation Tasks in Unexplored Semantic
Environments 182
9.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.1.1 Model of the Robot and the Environment . . . . . . . . . . . . . . . . 184
9.1.2 Specifying Complex Manipulation Tasks . . . . . . . . . . . . . . . . . 185
9.1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.2 Symbolic Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
9.2.1 Construction of the Symbolic Controller . . . . . . . . . . . . . . . . . 188
9.2.2 Distance Metric Over the NBA . . . . . . . . . . . . . . . . . . . . . . 189
9.2.3 Online Symbolic Controller . . . . . . . . . . . . . . . . . . . . . . . . 193
9.2.4 Completeness of the Symbolic Controller . . . . . . . . . . . . . . . . . 194

9.3 Interface Layer Between the Symbolic and the Reactive Controller . . . . . . 195
9.4 Symbolic Action Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 196

9.4.1 Reactive Controller Overview . . . . . . . . . . . . . . . . . . . . . . . 197
9.4.2 Topology Checking Algorithm . . . . . . . . . . . . . . . . . . . . . . . 198
9.4.3 Action Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

9.5 Illustrative Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
9.5.1 Demonstration of Local LTL Plan Fixing . . . . . . . . . . . . . . . . 202
9.5.2 Executing More Complex LTL Tasks . . . . . . . . . . . . . . . . . . . 203

xii



9.5.3 Execution of Rearrangement Tasks . . . . . . . . . . . . . . . . . . . . 204

10 Conclusion and Ideas for Future Work 205
10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
10.2 Proposed Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

10.2.1 Deliberative Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
10.2.2 Interface Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
10.2.3 Reactive Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
10.2.4 Gait Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Appendices 213

A Computational Geometry Methods 214
A.1 Implicit Representation of Obstacles with R-functions . . . . . . . . . . . . . 214

A.1.1 Preliminary Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 215
A.1.2 Description of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . 216
A.1.3 R-functions as Approximations of the Distance Function . . . . . . . . 217

A.2 Construction of Polygonal Collars . . . . . . . . . . . . . . . . . . . . . . . . . 217

B Derivations 220
B.1 Calculation of Dxξ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
B.2 Inductive Computation of the Diffeomorphism at Execution Time . . . . . . . 222

C Proofs 225
C.1 Proofs of Results in Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
C.2 Proofs of Results in Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
C.3 Proofs of Results in Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
C.4 Proofs of Results in Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

C.4.1 Proofs of Results in Section 6.2 . . . . . . . . . . . . . . . . . . . . . . 230
C.4.2 Proofs of Results in Section 6.3 . . . . . . . . . . . . . . . . . . . . . . 232

C.5 Proofs of Results in Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
C.5.1 Proofs of Results in Section 7.3 . . . . . . . . . . . . . . . . . . . . . . 238
C.5.2 Proofs of Results in Section 7.4 . . . . . . . . . . . . . . . . . . . . . . 247

C.6 Proofs of Results in Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
C.7 Proofs of Results in Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

D Accompanying Software 262
D.1 Software Package doubly_reactive_matlab . . . . . . . . . . . . . . . . . . . 262

D.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
D.1.2 Tuning and Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

D.2 Software Package semnav . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
D.2.1 Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
D.2.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
D.2.3 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
D.2.4 Semantic SLAM Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 265
D.2.5 Types of Files and Libraries . . . . . . . . . . . . . . . . . . . . . . . . 266

D.3 Software Package semnav_matlab . . . . . . . . . . . . . . . . . . . . . . . . . 267

xiii



D.3.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
D.3.2 Running the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Bibliography 270

xiv



List of Tables

1.1 Thesis Contributions, mapped to specific sections and accompanying publi-
cations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

7.1 Key symbols used throughout Chapter 7, associated with the Problem For-
mulation in Section 7.1. See also Table 7.2 for notation associated with the
environment representation in Section 7.2, Table 7.3 for notation associated
with the diffeomorphism construction in Section 7.3, and Table 7.4 for nota-
tion associated with our reactive controller in Section 7.4. . . . . . . . . . . . 106

7.2 Key symbols related to the environment representation in Section 7.2. . . . . 110
7.3 Key symbols related to the diffeomorphism construction from FImap to FImodel,

described in Section 7.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.4 Key symbols related to the hybrid systems formulation (top - Section 7.4.1)

and the reactive controller construction in each mode of the hybrid system
(bottom - Section 7.4.2) for both a fully actuated robot and a differential
drive robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xv



List of Figures

1.1 The proposed hierarchical control structure. In the deliberative layer, an
offline high-level planner outputs a sequence of symbolic actions, that are
executed online using a reactive controller that incorporates perception to
account for unanticipated obstacles and issues abstract velocity and gripper
commands. The communication between the deliberative and the reactive
layer is facilitated by an interface layer that translates each symbolic action
to appropriate navigation commands and locally repairs any infeasible actions.
The low-level gait layer uses the commands from the reactive layer to call out
appropriately parameterized joint-level feedback controllers for the robotic
platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 The Ghost Minitaur [65] experimental platform. . . . . . . . . . . . . . . . . . 21
3.2 Frequency domain characterization of Minitaur’s bounding response to smooth

input signals vd, ωd (3.1): raw speed v and yaw response ω (blue), with a 3Hz
cutoff filter (red), and the reference signals vd, ωd (black dashed). . . . . . . . 23

3.3 Minitaur’s response to step signals in yaw rate, ω (blue), and the reference
signal, ωd (dashed black). For these trials, vd = 0. . . . . . . . . . . . . . . . . 24

3.4 Minitaur’s response to step signals in fore-aft speed v, given by the motion
capture system (blue), and its proprioceptive speed estimate (red). The ref-
erence signal vd is shown dashed black. For these trials, ωd = 0. . . . . . . . . 25

3.5 Frequency domain characterization of Minitaur’s walking trot response to
smooth input signals vd, ωd (3.1): time-domain plots of raw speed v and yaw
response ω (blue), with a 3Hz cutoff filter (red), and the reference signals
vd, ωd (black dashed). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Minitaur’s walking trot response to step signals in both fore-aft speed v (top),
and yaw rate ω (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Reactive navigation with local but “bird’s eye” information: A depiction of
the “local workspace” LW (yellow polygon) and “local freespace” LF (green
polygon) concepts that illustrates the local nature of the control strategy
[6]. The goal position is shown as a solid red disk, and the local goal as a
dot on one edge of the local freespace. The dark disks correspond to the
physical obstacles, while the grey regions delimits the free space (for the
robot’s centroid) boundary. The trajectory corresponds to an experimental
trial also shown in Fig. 3.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

xvi



3.8 Sensor-Based Reactive Navigation: A depiction of the “local workspace” LW
(yellow polygon) and “local freespace” LF (orange polygon) constructed from
a LIDAR footprint (green) [7]. The estimated goal position (dark green dot)
is calculated using range-only information and a particle filter. Notice how
the particles spread on the circle with radius equal to the current range mea-
surement. The local goal is computed from the projection of the estimated
goal position onto LF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.9 Minitaur navigating through an artificial forest towards a target. . . . . . . . 32
3.10 Range-only target localization in the robot’s body frame (purple). . . . . . . . 32
3.11 A schematic demonstrating the system structure of the experimental setup.

Minitaur’s Raspberry Pi, the central element of this configuration, acts as
the ROS Master and forwards any LIDAR and range readings. The external
computer runs the high level controller which gives the desired linear and
angular velocities vd, ωd, while Minitaur’s mainboard runs the low level con-
troller by calculating the actual commands vc, ωc using (3.1), and provides
proprioceptive speed and yaw rate feedback v, ω, forwarded to the desktop
computer by the Raspberry Pi. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.12 Trajectories extracted from simulations and bounding experiments in a small
and dense with obstacles environment. The goal position (shown as a solid
red disk) is fixed but initial robot configurations vary. . . . . . . . . . . . . . 37

3.13 Trajectories extracted from simulations and bounding experiments in a large
and less dense with obstacles environment. The goal position (shown as a
solid red disk) is fixed but initial robot configurations vary. . . . . . . . . . . 38

3.14 Minitaur’s response (blue) to speed and yaw reference signals (black) during
a bounding experimental trial. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.15 A suggestive path reconstructed from Minitaur’s proprioceptive data in the
environment shown in Fig. 3.9. The black dot corresponds to the (converged)
estimated goal location at the end of the trial. The brown points consist
the corresponding pointcloud of observed obstacle points; in the absence of
ground-truth their exact location cannot be precisely determined. . . . . . . . 39

3.16 The distance to the goal position as a function of time for several initial
conditions with the walking trot gait. In every case, the robot was commanded
to stop as soon as it got within a distance of 0.8m from the target position. . 40

3.17 Minitaur’s response (blue) to speed and yaw reference signals (black) during
a walking trot experimental trial. . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 A depiction of an intermediate stage of an assembly process. The robot
is tasked to move two objects from their start to their final configuration
using a gripper and a LIDAR. The deliberative planner outputs a reference
path (purple) which the reactive planner has to follow, while avoiding the
unexpected obstacles (grey) in the (potentially) non-convex workspace. The
resulting piecewise differentiable object trajectory for one object is shown in
red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 A depiction of a disk-shaped robot with radius r (grey) moving a disk-shaped
object with radius ρi (yellow). . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xvii



4.3 An outline of the control approach followed in order to position the objects.
A high-level, deliberative planner outputs a sequence of symbolic actions that
are realized and executed sequentially in low-level using a reactive controller.
The architecture follows Fig. 1.1 without including the interface layer, since it
is assumed that each provided symbolic action from the high-level planner is
always feasible, and the (platform-specific) gait layer, since the presentation
in this Chapter is limited to differential drive robots equipped with a gripper. 47

4.4 An example of computing the wall following local free space LFw(x) (cyan)
as the intersection of the local free space LFL(x) (green) and the offset disk
Dw (magenta) for a robot with radius r positioned at x, encountering an
obstacle within its LIDAR footprint Lft(x) (red). . . . . . . . . . . . . . . . . 51

4.5 A depiction of a packed two stage assembly process with a fixed timestep,
with the separation value just above the minimum allowed value. . . . . . . . 64

4.6 An illustration of the assembly process described in Section 4.6.2, with a
fixed timestep. The walls and boundaries of the workspace, known to the
deliberative planner, are shown in black and the unexpected obstacles handled
by the reactive planner are shown in grey. . . . . . . . . . . . . . . . . . . . . 65

5.1 LIDAR-equipped Minitaur [65] mobipulating [130] two stools using gaits [49]
called out by a deliberative/reactive motion planner (Chapter 4). . . . . . . . 67

5.2 A coarse block diagram of the planning and control architecture, following
Fig. 1.1 without including the interface layer, since it is assumed that each
provided high-level action is always feasible. In the deliberative layer, a high-
level planner [210] outputs a sequence of symbolic actions that are realized and
executed sequentially using a reactive controller that issues unicycle velocity
(uku) (see Chapter 4), and abstract gripper (g) commands (see Section 5.2.2).
The low-level gait layer uses the commands instructed by the reactive planner
to call out appropriately parametrized joint-level feedback controllers (see [49]
and Section 5.2.3) for Minitaur. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Consecutive snapshots of a successful “Mount” onto an object. . . . . . . . . . 74
5.4 Intuition underlying how intermittent contact (yaw push-walk) provides larger

moments on the system than the moments produced in a triple stance (fore-
aft push-walk). In (1), the presence of both toes on the stool kinematically
constrains it so that any reaction forces generated by those toes are internal
forces of the Minitaur-Stool system, where as in (2a) and (2b), the stool is free
to rotate, allowing the single front toe to generate a moment on the Minitaur
body. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Intuitive description of prox-regularity, following Proposition 5.1: (a) An
example of a non-convex body that fails to be r-prox-regular; since 0 <
||x1 − x0|| < 2r, the existence of a tangent closed ball of radius r to both x0

and x1 violates the r-oval-segment criterion, (b) An example of an r-prox-
regular non-convex body in R2, satisfying Proposition 5.1. . . . . . . . . . . . 78

5.6 The system architecture, based on ROS, used for the experiments. . . . . . . 81

xviii



5.7 Task #1 - No Obstacles (Section 5.4.2): Vicon data showing the robot success-
fully following paths provided by the deliberative layer (dotted line segments):
the robot has to approach (and then mount) the object (action MoveToOb-
ject), push the object inside a desired landing area (action PositionOb-
ject) and (first dismount) then retire to move to a predefined position (action
Move), while following the reference paths (dotted lines). . . . . . . . . . . . 81

5.8 Task #1 - Unanticipated Obstacle (Section 5.4.2): The reactive layer allows
for successful task completions even in the presence of non-convex obstacles,
that have not been accounted for by the deliberative layer. The red dashed line
represents the original (blocked by the obstacle) path given by the deliberative
planner, associated with the action MoveToObject. . . . . . . . . . . . . . 82

5.9 Task #2 (Section 5.4.3): Vicon data showing Minitaur swapping the positions
of two objects. The dashed lines represent the reference paths for the robot
or for the objects, provided by the deliberative layer. Non-filled and filled
circles depict the start and end positions for each action execution. Any
discrepancies of the final trajectories with the reference paths are caused by
the controller’s reactive nature and do not affect task completion. . . . . . . . 83

5.10 Task #3 (Section 5.4.4): Consecutive snapshots from a successful completion
of a task where the robot must move an object that blocks the desired location
of another object, highlighting the robustness of the approach. Apart from
the presence of a convex obstacle (depicted in black) and terrain irregularities
in the form of a 4cm-tall platform (depicted by a solid black line), the robot
loses track of its pose estimation due to unfortunate network delays while exe-
cuting MoveToObject(1). However, with the successful coordination of the
reactive and the gait layer, it manages to find the reference path again once it
reconnects. Also, as shown in the accompanying video3 (and discernible from
the relatively large oscillations of the robot’s path in frame 4), although the
wheels of the stool get caught by the platform during PositionObject(1),
the persistence of the reactive layer allows for successful task completion while
avoiding unexpected obstacles. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xix



6.1 Snapshot Illustration of Key Ideas in Chapter 6. The robot in the physical
layer (left frame, depicting in blue the robot’s placement in the workspace
along with the prior trajectory of its centroid) containing both familiar ob-
jects of known geometry but unknown location (dark grey) and unknown
obstacles (light grey), moves towards a goal and discovers obstacles (black)
with an onboard sensor of limited range (orange disk). These obstacles are
localized and stored permanently in the mapped layer (middle frame, depict-
ing in blue the robot’s placement as a point in freespace rather than its body
in the workspace) if they have familiar geometry or temporarily, with just the
corresponding sensed fragments, if they are unknown. An online map h(x) is
then constructed (Section 6.2), from the mapped layer to a geometrically sim-
ple model layer (right frame, now depicting the robot’s placement and prior
tractory amongst the h-deformed convex images of the mapped obstacles). A
doubly reactive control scheme for convex environments [7] (Section 3.2) de-
fines a vector field on the model layer which is pulled back in realtime through
the diffeomorphism to generate the input in the physical layer (Section 6.3). . 90

6.2 Navigation around a U-shaped obstacle: 1) Fully actuated particle: (a) Orig-
inal doubly reactive algorithm [7], (b) Our algorithm, 2) Differential drive
robot: (a) Original doubly reactive algorithm [7], (b) Our algorithm. . . . . . 100

6.3 Navigation in a cluttered environment with U-shaped obstacles. Top - Tra-
jectories in the physical, mapped and model layers from a particular initial
condition. Bottom - Convergence to the goal from several initial conditions:
left - fully actuated robot, right - differential drive robot. . . . . . . . . . . . . 101

6.4 Navigating a room cluttered with known star-shaped and unknown convex
obstacles. Top - Trajectories in the physical, mapped and model layers from
a particular initial condition. Bottom - Convergence to the goal from sev-
eral initial conditions: left - fully actuated robot, right - differential drive
robot. Mapped obstacles are shown in black, known obstacles in dark grey
and unknown obstacles in light grey. . . . . . . . . . . . . . . . . . . . . . . . 101

xx



7.1 Snapshot Illustration of Key Realtime Computation and Associated Mod-
els related to Chapter 7: The robot moves in the physical space (a - Sec-
tion 7.2.1), depicted as the blue trace of its centroid, toward a goal (pink)
discovering along the way (black) both familiar objects of known geometry
but unknown location (dark grey) and unknown obstacles (light grey), with
an onboard sensor of limited range (orange disk). These obstacles are local-
ized, dilated and stored permanently in the semantic space (b - Section 7.2.2)
if they have familiar geometry, or temporarily, with just the corresponding
sensed fragments, if they are unknown. The consolidated obstacles (resolved
in real time from the unions of overlapping localized familiar obstacles), along
with the sensed fragments of the unknown obstacles, are then stored in the
mapped space (c - Section 7.2.3). A nonlinear change of coordinates, h(x),
into a topologically equivalent but geometrically simplified model space (e -
Section 7.2.4, depicting the robot’s placement and prior trajectory amongst
the h-deformed convex images of the mapped obstacles) is computed instan-
taneously each time a new perceptual event instantiates more obstacles to
be localized in the semantic space, thus redefining the mapped space. The
map, h, is a diffeomorphism, computed via composition of “purging” trans-
formations between intermediate spaces (d - Section 7.3.2) that abstract the
consolidated localized polygonal obstacles by successively pruning away their
geometric details to yield topologically equivalent disks. A doubly reactive
control scheme for convex environments [7] (Section 3.2) defines a vector field
on the model space which is transformed in realtime through the diffeomor-
phism to generate the input in the physical space (Section 7.4). . . . . . . . . 104

7.2 A summary of the online reactive planning architecture used in Chapter 7.
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ured in serial and run either onboard at 2.5Hz, or offboard at 10Hz) (a) detect
familiar obstacles [158] (Section 7.7.1) and (b) localize corresponding seman-
tic keypoints [148] (Section 7.7.1). (c) The keypoint locations on the image
and an egomotion estimate provided by visual inertial odometry are used by
the semantic mapping module [30] (Section 7.7.2) to provide updated robot
(x) and obstacle poses (P̃I) on the plane. (d) The mapped space tracking
algorithm (Section 7.5.1 - Algorithm 7.1), run onboard at 2.5Hz, uses P̃I to
generate the list of obstacles in the mapped space DImap,BImap. (e) The reac-
tive planning module (Section 7.5.2 - Algorithm 7.2), run onboard at 10Hz,
uses DImap,BImap, along with LIDAR data for unknown obstacles, to provide
the robot inputs and close the control loop. . . . . . . . . . . . . . . . . . . . 105

7.3 Triangulation of a non-convex obstacle using the Ear Clipping Method. The
original polygon is guaranteed to have at least two ears (red dots) by the Two
Ears Theorem, which induce triangles that can be removed from the polygon.
By repeating this process, we get the final triangulation and its dual graph,
which is guaranteed to be a tree. This tree can be restructured by setting the
root to be the triangle of maximal surface area, to yield the order of purging
transformations in descending depth; in this particular example this order is
1→ 2→ 6→ 3→ 5→ 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
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7.4 Illustration of features used in the transformation of - Top: (1a) a leaf triangle
ji onto its parent p(ji), and (1b) a root triangle ri onto a disk centered at x∗i
with radius ρi for an obstacle in DImap, Bottom: (2a) a leaf triangle ji onto
its parent p(ji), and (2b) a root triangle ri onto ∂Fe for an obstacle in BImap. 117

7.5 Values of det(Dxh
I) for a single polygon in logarithmic scale, showing the

local nature of the diffeomorphism (hI becomes equal to the identity trans-
form away from the polygon) and the fact that hI is smooth away from sharp
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7.16 Illustration of the empirically implemented complete navigation scheme (akin
to the numerical simulation depicted in Fig. 7.8) in a physical setting where
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evident in the column showing the corresponding model space). (e) Using
the information in the semantic space and now being in the terminal (Defi-
nition 7.8) mode I = {1, 2, 3}, wherein it has encountered and localized all
the environment’s familiar obstacles, the robot is driven by the mapped space
transformation (Section 7.3) of the model space vector field [7] to avoid the
obstacles, until (f) it converges to the designated goal as guaranteed by the
results of Section 7.4. The right column shows how the robot experiences
transitions in the (previously unknown) hybrid system (modes that are never
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stacles (light grey - groundtruth locations recorded using Vicon), along with
groundtruth trajectories from the physical experiments and overlaid numeri-
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tion. Top: snapshots of the physical workspace, Bottom: illustrations of the
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converge to the goal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
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8.1 Ghost Spirit [67] following a human, while avoiding some familiar and some
novel obstacles in a previously unexplored environment. Familiar obstacles
are recognized and localized using visually detected semantic keypoints (bot-
tom left inset) [148], combined with geometric features (top left inset) [30]
and avoided by a local deformation of space (Fig. 8.3) that brings them within
the scope of a doubly reactive navigation algorithm [9]. Novel obstacles are
detected by LIDAR and assumed to be convex, thus falling within the scope
of [9]. Formal guarantees are summarized in Theorems 8.1 and 8.2 of Sec-
tion 8.3, and experimental settings are summarized in Fig. 8.7. . . . . . . . . 165

8.2 Snapshot Illustration of Key Ideas in Chapter 8, following Chapter 7: The
robot moves in the physical space, in an environment with known exterior
boundaries (walls), toward a goal (pink) discovering along the way (black)
both familiar objects of known geometry but unknown location (dark grey)
and unknown obstacles (light grey), with an onboard sensor of limited range
(orange disk). As in Chapter 7, these obstacles are processed by the percep-
tual pipeline (Fig. 8.4) and stored permanently in the semantic space if they
have familiar geometry, or temporarily, with just the corresponding sensed
fragments, if they are unknown. The consolidated obstacles (formed by over-
lapping catalogued obstacles from the semantic space), along with the per-
ceptually encountered components of the unknown obstacles, are again stored
in the mapped space. A change of coordinates, h, entailing an online com-
putation greatly streamlined relative to its counterpart in Chapter 7 deforms
the mapped space to yield a geometrically simple but topologically equiva-
lent model space. This new change of coordinates defines a vector field on the
model space, which is transformed in realtime through the diffeomorphism to
generate the input in the physical space. . . . . . . . . . . . . . . . . . . . . . 166

8.3 Diffeomorphism construction via direct convex decomposition: Any arbitrary
convex decomposition (e.g., [68]) defines a tree TPi := (VPi , EPi) (left), which
induces the sequence of purging transformations that map the polygon’s
boundary and exterior to the boundary and exterior of an equivalent disk.
The purging transformation for each convex piece ji ∈ VPi is defined by a
pair of convex polygons Qji ,Qji that limit the effect of the diffeomorphism
to a neighborhood of ji. The final map is guaranteed to be smooth, as shown
by a visualization of its determinant in logarithmic scale (right). . . . . . . . . 167
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8.4 The online reactive planning architecture used in Chapter 8: Advancing be-
yond Chapter 7, camera output is run through a perceptual pipeline incorpo-
rating three separate neural networks (run onboard at 4Hz) whose function
is to: (a) detect familiar obstacles and humans [158]; (b) localize correspond-
ing semantic keypoints [148]; and (c) perform a 3D human mesh estimation
[105]. Keypoint locations on the image, other detected geometric features,
and an egomotion estimate provided by visual inertial odometry are used by
the semantic mapping module [30] to give updated robot (x) and obstacle
poses (P̃I). The reactive planner, now streamlined to run onboard at 3x the
rate of the corresponding module in Chapter 7, merges consolidated obsta-
cles in DImap,BImap (recovered from P̃I), along with LIDAR data for unknown
obstacles, to provide the robot inputs and close the control loop. In this new
architecture, the estimated human meshes are used to update the target’s
position in the reported human tracking experiments, detect a specific hu-
man gesture or pose related to the experiment’s semantics, or (optionally)
introduce additional obstacles in the semantic mapping module for some out-
of-scope experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8.5 Top: Navigation in an indoor layout cluttered with multiple familiar obstacles
and previously unknown pose. - Bottom: Navigation in a room cluttered with
known non-convex (dark grey) and unknown convex (light grey) obstacles.
Simulations are run from different initial conditions. . . . . . . . . . . . . . . 174

8.6 (a) Minimum number of (offline computed) samples needed for successful on-
line implementation of RRTX [143] in an unexplored environment with two
familiar obstacles forming a narrow passage. The number becomes increas-
ingly large as the gap becomes smaller. The robot diameter is 50cm. (b) Illus-
tration of a graceful failure of our proposed algorithm. The sole non-convex
but unknown encountered obstacle creates a spurious attracting equilibrium
state that traps a subset of initial conditions. However, collision avoidance is
always guaranteed by the onboard sensor. . . . . . . . . . . . . . . . . . . . . 176
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9.1 An example of a task considered in this Chapter, whose execution is depicted
in Fig. 9.7. A differential drive robot, equipped with a gripper (red) and a
limited range onboard sensor for localizing obstacles (orange), needs to ac-
complish a mobile manipulation task specified by a Linear Temporal Logic
(LTL) formula, in a partially known environment (black), cluttered with both
unanticipated (dark grey) and completely unknown (light grey) fixed obsta-
cles. Here the task is to rearrange the movable objects counterclockwise, in
the presence of the fixed obstacles. Objects’ abstract locations (relative to ab-
stract, named regions of the workspace) are known by the symbolic controller
both à-priori and during the entire task sequence. Geometrically complicated
obstacles are assumed to be familiar but unanticipated in the sense that nei-
ther their number nor placement are known in advance. Completely unknown
obstacles are presumed to be convex. All obstacles and disconnected configu-
rations caused by the movable objects are handled by the reactive vector field
motion planner (Fig. 9.2) and never reported to the symbolic controller. . . . 183

9.2 System architecture, following Fig. 1.1, without the (platform-specific) gait
layer. The task is encoded in an LTL formula, translated offline to a Büchi
automaton (symbolic controller - Section 9.2). Then, during execution time
in a previously unexplored semantic environment, each individual sub-task
provided by the Büchi automaton is translated to a point navigation task
toward a target xd and a gripper command g, through an interface layer
(Section 9.3). This task is executed online by realizing each symbolic action
(Section 9.4.3) using a reactive, vector field motion planner (continuous-time
controller, Chapter 8) implementing closed-loop navigation using sensor feed-
back and working closely with a topology checking module (Section 9.4.2),
responsible for detecting freespace disconnections. The reactive controller
guarantees collision avoidance and target convergence when both the initial
and the target configuration lie in the same freespace component. On the
other hand, if the topology checking module determines that the target is not
reachable, the reactive controller either attempts to connect the disconnected
configuration space by switching to a Fix mode and interacting with the envi-
ronment in order to rearrange blocking movable objects, or the interface layer
reports failure to the symbolic controller when this is impossible and requests
an alternative action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
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9.3 Graphical illustration of the NBA corresponding to the LTL formula φ =
�♦(π1) ∧ �♦(π2) where for simplicity of notation π1 = πa1(∅,`1) and π2 =
πa1(∅,`2). The automaton has been generated using the tool in [64]. In words,
this LTL formula requires the robot to visit infinitely often and in any order
the regions `1 and `2. The initial state of the automaton is denoted by q0

B

while the final state is denoted by qF . When the robot is in an NBA state
and the Boolean formula associated with an outgoing transition from this
NBA state is satisfied, then this transition can be enabled. For instance,
when the robot is in the initial state q0

B and satisfies the atomic predicate
π1, the transition from q0

B to qB can be enabled, i.e., qB ∈ δB(q0
B, π1). The

LTL formula is satisfied if starting from q0
B, the robot generates an infinite

sequence of observations (i.e., atomic predicates that become true) that yields
an infinite sequence of transitions so that the final state qF is visited infinitely
often. The red dashed lines correspond to infeasible NBA transitions as they
are enabled only if the Boolean formula π1 ∧ π2 is satisfied, i.e., only if the
robot is in more than one region simultaneously; such edges are removed
yielding the pruned NBA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.4 Graphical illustration of the graph G construction for the NBA shown in
Fig. 9.3. The left figure corresponds to the pruned automaton after augment-
ing its state space with the state qaux

B , where π0 corresponds to the atomic
predicate that the robot satisfies initially at t = 0. If no atomic predicates
are satisfied initially, then π0 corresponds to the empty symbol [17]. Observe
in the left figure that Dqaux

B
= {qaux

B , q0
B, qB}. The right figure illustrates the

graph G corresponding to this automaton. The red dashed line corresponds
to an accepting edge. Also, we have that VF = {qB}, dF (qaux

B ,VF ) = 2,
dF (q0

B,VF ) = 1, and dF (qB,VF ) = 0. For instance, every time the robot
reaches the state q0

B with dF (q0
B,VF ) = 1, it generates a symbol to reach the

state qB since reaching this state decreases the distance to the set of accept-
ing edges (since dF (qB,VF ) = 0). The symbol that can enable this transition
is the symbol that satisfies the Boolean formula bq0B ,qB = π1; this formula is
trivially satisfied by the symbol π1 = πa1(∅,`1). As a result the command send
to the continuous time controller is ‘Move to Region `1’. . . . . . . . . . . . . 189

9.5 Demonstration of local LTL plan fixing, where the task is to navigate to region
1, captured by the LTL formula φ = ♦πa1(∅,`1) where `1 refers to region 1
in the figure. (a) The robot starts navigating to its target, until it localizes
the two rectangular obstacles and recognizes that the only path to the goal
is blocked by a movable object. (b) The robot switches to the Fix mode,
grips the object, and (c) moves it away from the blocking region, until the
separation assumptions outlined in Section 9.4.3 are satisfied. (d) It then
proceeds to complete the task. . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

9.6 Executing the LTL formula φ = ♦(πa1(∅,`1) ∧ ♦(πa1(∅,`2) ∧ ♦(πa2(M1,∅) ∧
♦πa3(M1,`3)))) in an environment cluttered with known walls (black) and un-
known convex obstacles (grey). . . . . . . . . . . . . . . . . . . . . . . . . . . 202
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9.7 An illustrative execution of the problem depicted in Fig. 9.1. The task is spec-
ified by the LTL formula (9.1) requires the counterclockwise rearrangement
of 3 objects in an environment cluttered with some unanticipated familiar
(initially dark grey and then black upon localization) and some completely
unknown (light grey) fixed obstacles. . . . . . . . . . . . . . . . . . . . . . . . 203

10.1 Simulation example in Gazebo, with Minitaur successfully manipulating and
exploiting its environment with dynamic jumping and other pedipulation ma-
neuvers [191] to reach its target. . . . . . . . . . . . . . . . . . . . . . . . . . . 208

10.2 Navigation toward a semantic target with Turtlebot. The robot is initially
tasked with moving to a predefined location, unless it detects and localizes a
cart; in that case it has to approach and face the cart. The last column (Top:
snapshot of the physical workspace, Bottom: illustration of the recorded tra-
jectory in RViz) shows that the robot successfully executes the task. . . . . . 209

10.3 Using reactive navigation with mobile manipulation primitives on Minitaur.
Similarly to Fig. 10.2, the robot is tasked with moving to a predefined location,
unless it detects and localizes a cart; in that case it has to approach and jump
to mount the cart, using a maneuver from [191]. Top: Recorded snapshots of
the physical workspace, Middle: First-person view with semantic keypoints
of familiar obstacles shown as red dots, Bottom: RViz illustration of the
recorded semantic map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

A.1 Top: (a) An example of a polygonal obstacle and the corresponding ωj func-
tions, (b) Level curves of the corresponding implicit function β for p = 2, (c)
Level curves of the corresponding implicit function β for p = 20, Bottom: The
AND-OR tree, constructed by the algorithm described in Appendix A.1.2 to
represent this polygon. The polygon is split at the vertices of the convex
hull to generate five subchains at depth 1. Each of these subchains is then
split into two subchains at depth 2. The subchains at depth 2 (1) are com-
bined via disjunction (conjunction), since they meet at non-convex (convex)
vertices of the original polygon. In this way, we get our implicit function
β = ¬ ((ω1 ∨ ω2) ∧ (ω3 ∨ ω4) ∧ (ω5 ∨ ω6) ∧ (ω7 ∨ ω8) ∧ (ω9 ∨ ω10)). . . . . . . . 214
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Chapter 1

Introduction

1.1 Motivation

Task and Motion Planning is a quite popular subject in the field of Robotics, as robotic

platforms usually need to simultaneously reason about both the task sequence that achieves a

desired end goal (e.g., determining the sequence of objects to be manipulated in an assembly

task, or the sequence of locations to be visited in a patrolling scenario) and a motion plan that

realizes a specific sub-task (e.g., determining the trajectories the robot’s joints need to follow

in order to grab an object, or the path that reaches a specific location). Existing methods [89,

181] can find a particular (often optimal [208]) solution to a task at hand, but require good

prior knowledge [132], and do not generalize well in the presence of unanticipated conditions.

Similarly, recent developments in Deep Reinforcement Learning [172] have yielded impressive

results [141, 186], but are tied to a specific platform for which an abundance of data is

needed. Overall, existing algorithms from the task planning literature are either task-specific,

environment-specific or platform-specific, and are typically not accompanied by any formal

proofs of correctness.

At the same time, even though recent advances in the field of legged robotics [26, 81, 101,

157, 217], including several demonstrations from companies [3, 29, 66, 195], show that legged

machines are becoming better at traversing rough terrains and environments, legged robots

are still mostly used as locomotion research platforms [186], and their limited commercial
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Figure 1.1: The proposed hierarchical control structure. In the deliberative layer, an offline high-level
planner outputs a sequence of symbolic actions, that are executed online using a reactive controller
that incorporates perception to account for unanticipated obstacles and issues abstract velocity and
gripper commands. The communication between the deliberative and the reactive layer is facilitated
by an interface layer that translates each symbolic action to appropriate navigation commands and
locally repairs any infeasible actions. The low-level gait layer uses the commands from the reactive
layer to call out appropriately parameterized joint-level feedback controllers for the robotic platform.

applications are restricted to inspection [4], security, and “last-meter” delivery [5], where

interaction with the environment is not needed and rather avoided. Given the inherent ability

of legged robots to use their limbs as general-purpose manipulators, this research seeks to

demonstrate ways of accomplishing tasks with legged robots that require interaction with

their à-priori unexplored surroundings, such as rearrangement planning [80], or navigation

among movable obstacles [171] to escape a dangerous situation or help trapped people in

search-and-rescue missions.

To this end, the present thesis proposes a modular, and task and platform independent

architecture (inherently unavailable in end-to-end deep learning schemes), with formal cor-

rectness conclusions based on some underlying assumptions about the environment1. In
1In practice, these assumptions represent sufficient conditions for our formal correctness results. However,

as demonstrated in the numerical results of Sections 4.6 and 9.5, and the experimental results of Sections 7.8
and 8.5, our reactive planning algorithms anecdotally work in way out of scope environments.
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this architecture, an offline deliberative layer for task planning works closely with an online

reactive layer, that uses exteroception and handles environment uncertainties. This inter-

action is facilitated by an interface layer, that translates each provided symbolic action to

an appropriate navigation command (e.g., a path to be followed or a point to be reached)

and locally repairs an infeasible action by rearranging the surrounding workspace when the

underlying topological assumptions are violated. Finally, a platform-specific gait layer, com-

prised of a set of simple dynamical primitives, realizes the commands from the reactive layer

in a way that is meaningful for the robot.

Each of these independent layers comes with provable guarantees of either probabilistic

optimality [210] or completeness [92] (for the deliberative layer), collision avoidance and

convergence (for the reactive layer), and low-level performance, expressed as “symbols” of

energy landscapes composed either in parallel [48, 191] or sequentially [35, 126, 191] (for the

gait layer), offering the chance of generalization across multiple mobile manipulators (legged

or wheeled). The hope is that the adaptation, formalization and then coordination of these

layers to communicate with each other in a meaningful way would generate a more powerful

hierarchical structure, shown in Fig. 1.1, and would allow any robot in general (and any

legged robot in particular) to interact with its environment and react to sudden changes in

a predictable manner. Moreover, since the abstract commands from the reactive layer are

given in a dynamically appropriate form (i.e., velocity or acceleration), the overall approach

becomes better suited to the highly dynamic capabilities of legged robots compared to

traditional AI planners, which provide position (e.g., paths) or merely symbolic commands

and need to be accompanied by a separate kinodynamic planner to realize such commands.

Building toward these goals, Table 1.1 provides a summary of the (next outlined) thesis’

contributions, along with a list of specific accompanying sections and publications.

1.2 Overview of Contributions

After a brief presentation of the empirical anchoring [61] of the unicycle template on the dy-

namic quadrupedal Minitaur robot and the reactive planning algorithm for unknown convex

4



Conceptual Content Thesis
Section

Published
Literature

Preliminaries (Part I)

Empirical anchoring of the kinematic unicycle template to
control legged robots for motion planning tasks

3.1 [201]

Extension of motion planning algorithm with guarantees of
collision avoidance and target convergence, to workspaces
cluttered with well-separated but completely unknown con-
vex obstacles [6, 7], using range-only target localization

3.2, 3.3 [201]

Mobile Manipulation in Partially Known Environments (Part II)

First provably correct deliberative/reactive planner to engage
an unmodified general purpose mobile manipulator in physi-
cal rearrangements of its environment

4.2, 4.3,
5.2.1,
5.2.2

[202, 203]

Development of steady-state and transitional maneuvers to
accomplish tasks with Minitaur, and integration of percep-
tion with low-level feedback to control the robot’s limbs

5.2.3 [202]

Development of reactive motion planning algorithm for
workspaces cluttered with well-separated but completely un-
known non-convex obstacles that obey specific “length-scale”
geometric assumptions

5.3 [202]

Reactive Navigation in Unfamiliar Semantic Environments (Part III)

Development of motion planning algorithms with simultane-
ous guarantees of collision avoidance and convergence to the
designated goal, employing tools from the hybrid dynamical
systems literature [87], in workspaces cluttered with:
(i) well-separated unknown convex, and well-separated “fa-

miliar” star-shaped obstacles
(ii) well-separated unknown convex, and “familiar” polygo-

nal obstacles, with fixed or slowly moving targets

(i) 6.3,
(ii) 7.4,
8.3

(i) [200],
(ii) [204, 205]

Integration of developed motion planning algorithms with
state-of-the-art perception and semantic mapping techniques
on the Turtlebot, Minitaur and Spirit robots

7.7, 8.5 [204, 205]

Reactive Semantic Planning for Mobile Manipulation (Part IV)

First planning and control architecture to provide a formal
interface between an abstract temporal logic engine and a
physically grounded mobile manipulation vector field planner

9.3 [206]

Description of conditions under which the symbolic controller
is complete, and development of a new heuristic vector field
controller for greedy physical rearrangement of the workspace
when these conditions are violated

9.2, 9.4 [206]

Table 1.1: Thesis Contributions, mapped to specific sections and accompanying publications.
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environments [6, 7] which will serve as the “backbone” of the thesis’ main results in Part I

(Chapter 3), Part II (Chapters 4 - 5) addresses a very specific instance of the Warehouse-

man’s Problem [80] as a challenging setting in which to advance the formal integration of

deliberative and reactive modes of robot assembly planning and control. We posit a planar

disk-shaped robot with velocity controlled unicycle kinematics placed in an indoor environ-

ment with known floor-plan, cluttered with obstacles of unknown number and placement.

The robot’s task is to bring a collection of known disk-shaped objects from their initial

placement to their prescribed destination by approaching, attaching and then pushing it

into place, making sure to avoid any collisions with the known walls, other objects and

unanticipated obstacles along the way. We show that this is the first provably correct de-

liberative/reactive planner to engage an unmodified general purpose mobile manipulator in

physical rearrangements of its environment, by switching between a path following phase,

where the robot follows a nominal path provided by an external deliberative planner, and a

wall following phase with specific formal properties, where the robot avoids previously unan-

ticipated obstacles in the environment. We also develop the steady-state and transitional

maneuvers to accomplish such tasks with Minitaur, and integrate perceptual feedback with

low-level limb control to coordinate the robot’s movement.

Motivated by the need for robust reactive controllers that enhance the capabilities of de-

liberative task planners by handling unanticipated conditions during execution time, Part III

of the thesis (Chapters 6 - 8) considers the navigation problem in a 2D workspace cluttered

with unknown convex obstacles, along with “familiar” non-convex obstacles that belong to

classes of known geometries, but whose number and placement are à-priori unknown. We

assume a limited-range onboard sensor and a catalogue of known obstacles, along with a

“mapping oracle” for their online identification and localization in the physical workspace.

This framework allows the robot to explore the geometry and topology of its workspace

in real time as it navigates toward its goal, by recognizing and incorporating in its stored

semantic map “familiar” obstacles, whose number and placement are otherwise unknown,

awaiting discovery at execution time. Based on the aforementioned description, we propose
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a representation of the environment taking the form of a “multi-layer” collection of topolog-

ical spaces whose realtime interaction can be exploited to integrate the geometrically naive

sensor driven methods of [7] (briefly presented in Chapter 3) with the offline geometrically

sensitive methods of [165], and show that our framework guarantees both obstacle avoid-

ance and convergence to fixed or slowly moving targets, by relying on tools from the hybrid

dynamical systems literature [87].

Finally, seeking to combine the mobile manipulation capabilities introduced in Part II

with the reactive planning architectures from Part III, Part IV of this thesis revisits the

Warehouseman’s problem, abandons the path following phase of offline-computed paths,

characterized by computationally expensive, offline deliberative search, and replaces the

probabilistically optimal deliberative layer with a formal interface between an abstract tem-

poral logic engine and a mobile manipulation vector field planner for the rearrangement of

movable objects in semantically unexplored environments. We describe the conditions under

which our architecture is complete, and introduce a new heuristic vector field controller for

greedy rearrangement of the physical environment when these conditions are violated.

1.3 Contributions Mapped to Thesis Organization

In Chapter 3, our main advance is to use the emerging understanding of Minitaur’s bounding

[48] and walking trot gaits to improve its horizontal plane behavior to the point of exhibiting

the dynamics of a horizontal plane unicycle, which we can then adopt as the navigation

template [61] assumed by the reactive navigation algorithms [6, 7] it must execute. A

second contribution is to realize this algorithm in a GPS-denied environment by recourse to

a body-frame, range-only target localization scheme. More specifically, the robot is assumed

to possess only an RF sensor providing range measurements from the desired goal. In

addition to the LIDAR signals used to avoid the unknown obstacles, our algorithm uses

only this one-dimensional information to extract the (two-dimensional) position of the goal,

and the reformulation of the navigation algorithm in [6] in the robot’s body frame allows

for successful homing while guaranteeing obstacle avoidance along the way.
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In Chapter 4, we present a provably correct architecture for planning and executing a

successful solution to the Warehouseman’s problem [80] by decomposition into an offline

“deliberative” planning module and an online “reactive” execution module. The deliberative

planner [210], adapted from the probabilistically complete (and optimal) algorithm of [128],

is assigned the job of finding an assembly plan, while the reactive planner accepts each next

step of that planned sequence, and uses online (LIDAR-style) sensory measurements to avoid

the unanticipated obstacles (as well as the known walls and objects) by switching between

following the deliberative planner’s specified path or instead following a sensed wall. The

wall following algorithm is guaranteed to maintain the robot distance from the wall within

some specified bounds, while making progress along the wall boundary. After imposing

specific constraints on how tightly packed the unknown obstacles and the known objects’

initial and final configurations can be, we prove that the hybrid control scheme generated

by this reactive planner must succeed in achieving any specified step of the deliberative

sequence with no collisions along the way. Moreover, the reactive module serves as a useful

tool to abstract away the geometric details of the environments and relieve the computa-

tional burden of the deliberative layer, by handling unanticipated obstacles online, during

execution time. In turn, this significantly reduces the overall planning time, by letting the

deliberative layer focus just on the high-level task planning problem solution — taking the

form of a sequence of robot traversals, grasps, pushes and releases that would rearrange the

environment as specified — were the known objects (along with the walls of the floor plan)

the only obstacles to be dealt with.

In Chapter 5, we recruit the Minitaur quadruped [65] as a legged “mobipulator” [130] —

a mobile robot that uses only its native, general purpose mechanical appendages to effect

work on itself and the surrounding environment — in order to re-arrange according to a

user’s command the location of objects in a known environment that is sparsely obstructed

by unanticipated, immovable obstacles of unknown general placement and shape. The in-

tegration of deliberative and reactive layers as described above guarantees that a unicycle

capable of pushing or releasing such objects at will must always accomplish its task so long
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as the unanticipated objects are all convex and sufficiently sparsely placed relative to the

known floor plan. Seeking to bring a greater degree of realism to that framework, we also

relax the geometric restriction to convex obstacles and prove that the idealized unicycle

will still succeed even when confronted with non-convex unanticipated objects at run-time,

so long as they are “moderately curved” and “sufficiently sparse”. We relax the mechanical

assumption of an idealized gripper by adding an entirely new “gait layer” that translates the

erstwhile unicycle’s velocity and gripper commands into a Minitaur joint-level architecture

taking the form that we conjecture meets the requirements of a simple hybrid dynamical

manipulation and self-manipulation system2 [87].

In Chapter 6, we adapt the construction of [164] to generate a realtime smooth change

of coordinates (a diffeomorphism) of the mapped space of the environment into a (locally)

topologically equivalent but geometrically more favorable model space, relative to which the

sensor-based reactive methods of [7] can be directly applied. We prove that the conjugate

vector field defined by appropriately transforming the reactive model space back through

this diffeomorphism induces a vector field on the robot’s physical configuration space that

inherits the same formal guarantees of obstacle avoidance and convergence.

Since the robot’s knowledge about the geometry and topology of its workspace at exe-

cution time is constantly updated, in Chapter 7 we extend the formal construction of our

navigation framework by adopting a hybrid dynamical systems description and show that

the resulting hybrid system both inherits the consistency properties outlined in [87] and

safely drives the robot to the goal without violating given command limits. In both Chap-

ters 6 and 7, we extend the construction to the case of a differential drive robot, by pulling

back the extended field over planar rigid transformations introduced for this purpose in [7]

through a suitable polar coordinate transformation of the tangent lift of our original planar
2Although this would insure at least that the hybrid system is guaranteed to be live and non-blocking [87],

the formal relationships of the legged dynamics to the abstracted unicycle reference remain to be examined.
Later work [191] presents empirical evidence that the delicate grasping tasks for mounting and dismounting
objects, comprising the key pedipulation competences required for robust success of this approach beyond
mere mobility, can be specified and executed by recourse to further abstraction that anchors a lexicon of
low degree of freedom closed loop dynamical templates [61], in the high degree of freedom Minitaur robot
[65], whose systematic parallel and sequential compositions [48] yield the full range of necessary grasping
behaviors in a rational, robust, highly repeatable and reliable manner.
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diffeomorphism and demonstrate, once again, that the physical differential drive robot in-

herits the same obstacle avoidance and convergence properties as those guaranteed for the

geometrically simple model robot [7].

We believe that this is the first doubly-reactive controller (i.e., a navigation framework

wherein not only the robot’s trajectory but also the control vector field that generates it

are computed online at execution time) that can handle arbitrary polygonal shapes in real

time without the need for specific separation assumptions between the familiar obstacles,

by combining perception and object recognition for the familiar obstacles with local range

measurements (e.g., LIDAR) for the unknown obstacles, to yield provably correct navigation

in geometrically complicated environments. Furthermore, unlike RRT-based [119] or PRM-

based [97] algorithms, and similarly to other vector-field based approaches, our framework

is capable of solving the overall “kinodynamic” problem online, instead of executing separate

trajectory and motion planning, for both a fully actuated particle and a differential drive

robot. Finally, by coupling the semantic SLAM framework of [30] and the object detection

pipeline of [148] with our reactive planning architecture, we are able to localize against

isolated semantic cues while navigating, instead of localizing against entire scenes [71] or

visual geometric features [77]. Therefore, by training just on data from the objects the robot

is expected to encounter, we introduce modularity and robustness in our approach, while

simultaneously performing online planning that does not rely on specific features of a deep

network architecture (e.g., number or type of layers), [19, 71, 113].

In Chapter 8, we introduce a new change of coordinates, replacing the (potentially com-

binatorially growing) triangulation on the fly from Chapter 7 with a fixed convex decompo-

sition [68] for each catalogued obstacle and revisit the prior hybrid dynamics convergence re-

sult to once again guarantee obstacle free geometric convergence. These new formal advances

streamline the reactive computation, enabling robust online and onboard implementation

(perceptual updates at 4Hz; reactive planning updates at 30Hz), affording tight realtime

integration of the Semantic SLAM engine [30], that integrates observations and semantic

labels over time. Second, we incorporate a separate deep neural net that captures a wire
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mesh representation of encountered humans [105], enabling our reactive module to track

and respond in realtime to semantically labeled human motions and gestures in unexplored

environments. In turn, realtime semantics combined with human recognition capability mo-

tivates the proof of new rigorous guarantees for the robots to track suitably non-adversarial

moving targets, while maintaining collision avoidance guarantees. We suggest the utility of

the proposed architecture with a numerical study including comparisons with a state-of-the-

art dynamic replanning algorithm [143], and physical implementation on both a wheeled

and legged platform in highly varied environments (cluttered outdoor and indoor spaces in-

cluding sunlight-flooded floors as well as featureless hallways). Targets are robustly followed

up to speeds amenable to the perceptual pipeline’s tracking rate. Importantly, the semantic

capabilities of our pipeline are exploited to introduce more complex task logic (e.g., track a

given target unless encountering a specific human gesture). This motivates the integration of

this reactive planning architecture in the overall hierarchical control architecture for mobile

manipulation tasks, shown in Fig. 1.1, which is the main focus of Chapter 9.

In Chapter 9, we combine the reactive planning algorithm of Chapter 8 with the mobile

manipulation capabilities of Chapter 4, to introduce the first planning and control archi-

tecture that provides a formal interface between an abstract temporal logic engine and a

physically grounded mobile manipulation vector field planner for the rearrangement of mov-

able objects in partially known workspaces cluttered with unknown obstacles. We provide

conditions under which the temporal logic controller is complete, while exploiting the for-

mal results presented in Chapter 8 to guarantee safe physical achievement of the symbolic

controller’s sub-tasks when they are feasible, and introduce a new heuristic vector field con-

troller for greedy physical rearrangement of the workspace when they are not. We provide

a variety of simulation examples that illustrate the efficacy of the proposed algorithm for

accomplishing complex manipulation tasks in unknown environments.
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Chapter 2

Overview of Related Work

2.1 Mobile Manipulation

Mobile manipulation has been heavily investigated in the field of Robotics, with the hope

that mobile autonomous platforms interacting with and manipulating their surroundings

could assist in a variety of applications, such as search and rescue missions, planetary explo-

ration and home healthcare. As a particular example, existing literature has focused on the

problem of navigation among movable obstacles (NAMO) [184], where the robot needs to

grasp and move obstacles in order to connect disconnected components of the configuration

space and reach its goal, with more recent extensions focusing on efficient heuristics for

manipulation planning in unknown environments, using either modified versions of the A*

algorithm [72] or Monte Carlo simulations [120].

Mobile manipulation was also a central theme of the DARPA Robotics Challenge (DRC)

[45], with several robots engaging in complex manipulation tasks while navigating challeng-

ing terrains. A variety of robot designs and control approaches were presented at the contest,

including the quasistatic quadruped RoboSimian [75], the humanoid Valkyrie [156] or DRC-

HUBO [218], a humanoid with wheels on its knees, allowing the robot to simply drive on flat

terrain and use its legs and limbs for more complex tasks. Although the DRC was a useful

test for autonomous robots in the physical world, the (sometimes spectacular) robot failures

at the contest [82] demonstrated the need for robust behaviors and assured autonomy [15],
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which is the main focus of this thesis.

2.1.1 Task and Motion Planning for Mobile Manipulation Tasks

Task and motion planning for complex manipulation tasks, such as rearrangement planning

of multiple objects, has recently received increasing attention [63, 112, 208]. However, ex-

isting algorithms are typically combinatorially hard and do not scale well, while they also

focus mostly on known environments [74, 181]. As a result, such methods cannot be applied

to scenarios where the environment is initially unknown or needs to be reconfigured to ac-

complish the assigned mission and, therefore, online replanning may be required, resulting

in limited applicability. Instead, this work proposes an architecture (Fig. 1.1) for address-

ing complex mobile manipulation task planning problems, which can handle unanticipated

conditions in unknown environments.

Planning the rearrangement of movable objects has long been known to be algorith-

mically hard (e.g., PSPACE hardness was established in [80]) and a lively contemporary

literature [51, 211] continues to explore conditions under which the additional complexity of

planning the grasps results in a deterministically undecidable problem. While that interface

has been understood to be crucial for decades [38], the literature on reactive approaches to

this problem has been far more sparse. For example, past work on reactive rearrangement

using vector field planners such as navigation functions [165] assumes either that each object

is actuated [95, 215] or that there are no other obstacles in the environment [10, 31, 94].

On the contrary, when considering more complicated workspaces, most approaches focus

either on sampling-based methods that empirically work well [198], motivated by the typi-

cally high dimensional configuration spaces arising from combined task and motion planning

[63, 112], or learning a symbolic language on the fly [107]. However, such methods require

constant deliberative replanning in the presence of unanticipated conditions, come with no

guarantee of task completion under partial prior knowledge, and their search time grows

exponentially with the number of movable pieces [209].

Other approaches focus on the use of reactive temporal logic planning algorithms, that

can account for environmental uncertainty in terms of incomplete environment models [1,
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69, 70, 111, 117, 124, 125, 127]. Particularly, [69, 70] model the environment as a transition

system which is partially known. Then, discrete controllers are designed by applying graph

search methods on a product automaton. As the environment, i.e., the transition system, is

updated, the product automaton is locally updated as well, and new paths are re-designed

by applying graph search approaches on the revised automaton. A conceptually similar

approach is proposed in [117, 127] as well. The works in [124, 125] propose methods to

locally patch paths, as the transition system (modeling the environment) changes so that

GR(1) (General Reactivity of Rank 1) specifications [149] are satisfied. Reactive to LTL

specifications planning algorithms are also proposed in [1, 111], allowing the robot to react

to the environment by using the task specification to capture this reactivity. Correctness

of these algorithms is guaranteed if the robot operates in an environment that satisfies the

assumptions that were explicitly modeled in the task specification. All these works rely

on discrete abstractions of the robot dynamics [21, 151] while active interaction with the

environment to satisfy the logic specification is neglected.

It should be noted that the problem of using a higher-level planner to inform subgoals

of a lower-level planner for mobile manipulation tasks, as outlined in Fig. 1.1 and described

in Chapters 4, 5 and 9, has been examined previously, and we build on prior work in hybrid

systems and task planning. However, most work has focused on ad hoc abstractions that

perform well empirically. For example, Wolfe et al. [216] use a task hierarchy to guide the

search for a low-level plan by expanding high-level plans in a best-first way. This approach

guarantees hierarchical optimality: it will generate the best plan which can be represented

in a given task hierarchy. Ensuring optimality has always been difficult to achieve due

to computational complexity. Berenson et al. [22] and Konidaris et al. [108] use specific

formulations of hierarchy without guaranteeing optimality. Kaelbling and Lozano-Perez [89]

avoid the computational cost by committing to decisions at a high level of abstraction, before

a full low-level plan is available. Vega-Brown and Roy [208] provided a further step towards

tractable planning with complex kinematic constraints, but no dynamically appropriate

approach exists for the complex legged robot dynamics considered in Chapter 5.
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2.1.2 Mobile Manipulation with Legged Robots

Specifically focusing on manipulation with legged robots, a large, longstanding [110] and still

very active [52, 159] literature concerns the design and control of legged robots equipped

with additional arms (and, not infrequently, wheeled legs [173]) for purposes of mobile ma-

nipulation, typically focusing on quasi-statically formed grasps and movements. The smaller

but similarly longstanding [129] literature on dynamical pedipulation appears to focus even

in recent years on impulsive interaction with the movable objects [40] including, seemingly

most close to our work, a recent simulation study on repeated, constrained, impulsive pushes

for controlled ball rolling [185]. In contrast, we seek dynamically formed force closure grasps

for purposes of pushed or dragged rearrangement, as shown in Chapter 5.

2.2 Reactive and Sensor-Based Planning

Even as legged [83, 86, 217] and aerial [2, 62, 135, 187] robots engage increasingly real-

istic, unstructured environments, intuition suggests that prior experience ought to yield

deterministic navigation guarantees, postponing statistical predictions of performance to es-

timated [192], learned [76] or simulated [96] characterizations of truly bewilderingly dense or

moving environments. Similarly, sampling-based methods, motivated by the typically high

dimensional configuration spaces arising from combined task and motion planning [63], can

achieve asymptotic optimality [210], but no guarantee of convergence (or task completion)

under partial prior knowledge or limited sampling. Moreover, their probabilistic complete-

ness guarantees can be slow to be realized in practice, especially when confronting settings

with narrow passages [138], as we later report in Chapter 8.

It should be also noted that, unlike the problem of safe navigation in a completely known

environment, the setting where the obstacles are not initially known and are incrementally

revealed online has so far received little theoretical interest. Some few notable exceptions

include considerations of optimality in unknown spaces [84], online modifications to temporal

logic specifications [117] or deep learning algorithms [18] that assure safety against obstacles,

or the use of trajectory optimization along with offline computed reachable sets [109] for
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online policy adaptations. However, none of these advances has achieved simultaneous

guarantees of obstacle avoidance and convergence. In contrast, our compositional use of

semantically tagged, learned-object recognizers, outlined in Chapters 6-8, affords systematic

re-use across many different environments and achieves formal deterministic guarantees as

well — at least up to their (admittedly still far from formally justifiable) idealization as

perfect realtime perceptual oracles — even when faced with moving targets.

2.2.1 Reactive Navigation

Heretofore, deterministically safe, convergent reactive methods have required substantial

prior knowledge of a static environment, whether encoded using navigation functions [59,

123, 165], harmonic potential functions [42, 213] or pre-computed sequences of “funnels”

[126]. In contrast, sensor-driven planners in this general tradition [27, 28, 33, 60, 86, 102,

146, 180, 197, 199] have guaranteed collision avoidance but have offered no assurance of

convergence to a designated goal.

Recent advances in the theory of sensor-based navigation [6–8] relying on the properties

of metric projections on convex sets [115] (and other parallel approaches [13, 37, 83, 147])

add the key feature of guaranteed convergence to a designated goal, by trading away prior

knowledge for the presumption of simplicity: unknown obstacles can be successfully negoti-

ated in real time without losing global convergence guarantees if they are “round” (i.e., very

strongly convex in a sense made precise in [9]).

However, this presumption, along with the additional requirement for enough separation

between the obstacles in the workspace, limit the domain of application for such methods to

geometrically simple environments and might prohibit successful navigation in complicated,

unstructured environments with non-convex geometry. Hence, other reactive approaches

either seek to appropriately modify the input reference signal to account for unanticipated

(potentially non-convex) disturbances [162], or rely on stochastic frameworks that are em-

pirically shown to improve performance with non-convex obstacles [160], with no guarantees

of convergence.
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2.2.2 Realtime Perception

In Chapters 7 and 8, we address these shortcomings by appeal to an agent’s memory evoked

by execution-time perceptual cues. Recent advances in semantic SLAM [14, 30] and object

pose extraction using convolutional neural net architectures [93, 106, 148] now provide an

avenue for systematically composing partial prior knowledge about the robot’s workspace

within a deterministic framework well suited to the vector field planning methods reviewed

above.

Contrasting recent work has recruited end-to-end learning to achieve obstacle avoiding

reactions within metric [71] or topological [169] representations of familiar semantic envi-

ronments, or supplemented such deep-learned representations with reference paths [113], or

optimally generated waypoint sequences [19] that guide the robot to its destination. Al-

though such approaches cannot guarantee safe convergence to the robot’s destination, they

promote the importance of landmark-based navigation, already highlighted by parallel work

in biology [85]. However, characteristically, the input to such architectures is raw visual data

thereby generating egocentric reactions that are hostage to the experience of one particular

environment.

More modular data driven methods that separate the recruitment of learned visual rep-

resentation to support learned control policies achieve greater generalization [178], but even

carefully modularized approaches that handcraft the interaction of learned topological plans

with learned reactive motor control in a physically informed framework [134] cannot bake

into their architectures properties that afford the guaranteed policies of convergence and

obstacle avoidance outlined in Chapters 6 - 8.

2.2.3 Topologically Informed Navigation

Work on the topology of motion planning [57, 58] has overtaken earlier investigation of

reactive (i.e., vector field) navigation planners [163, 164] to the point that, comparatively,

only preliminary results on their intrinsic limitations have been reported [20]. It seems

clear that our success in achieving such strong results for a broad class of partially known
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environments is due to the simplicity of the problem class (punctured two dimensional

manifolds have the homotopy type of a bouquet of circles), but we are not in a position to

opine firmly on the likely limitations of this approach in higher dimensional settings.

Recently, several contributions have focused on either finding invariants for homology

classes to facilitate optimal path search in known environments [23], exploiting data to

enforce topological constraints [150], or conceptualizing sensor measurements related to the

shape of an object in a topologically meaningful way using persistent homology [136]. In

contrast, we extract geometric and topological information about the robot’s workspace at

execution time in order to construct a map between a geometrically complicated mapped

space and a (topologically equivalent but geometrically simple) model space that can be

used for planning purposes. To this end, we employ methods from the field of computational

geometry for (online constructed) implicit description of geometric shape using R-functions

[176], convex decomposition [98] and logic operations with polygons [41, 53, 54], as discussed

in Chapters 6 - 8.
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Chapter 3

Preliminaries on Reactive Navigation

with Legged Robots

In this Chapter, we demonstrate a fully sensor-based reactive homing behavior on a physical

quadrupedal robot, using onboard sensors, in simple (convex obstacle-cluttered) unknown,

GPS-denied environments. Its implementation is enabled by our empirical success in con-

trolling the legged machine to approximate the (abstract) unicycle mechanics assumed by

the navigation algorithm, and our proposed method of range-only target localization using

particle filters. Both the empirical unicycle anchoring and the reactive control principles,

originally presented in [6] and later extended in [7] and [9], will serve as “building blocks”

for the mobile manipulation algorithms presented in Chapters 4 - 5, as well as the reactive

navigation algorithms for unexplored semantic environments presented in Chapters 6 - 8.

The Chapter is organized as follows. Section 3.1 gives a description of the Minitaur robot

and the control strategy that empirically anchors a kinematic unicycle on Minitaur while

it is executing a bounding or a walking trot gait. Section 3.2 summarizes the ideas behind

both the locally sensed and the sensor-based motion planning strategy. Section 3.3 describes

the proposed body-frame, range-only target localization algorithm that allows for successful

homing. Section 3.4 continues with a description of our experimental setup. Section 3.5

begins by demonstrating the effectiveness and robustness of the doubly reactive motion
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planning scheme in different experimental environments (Section 3.5.1) using the bounding

gait and only offboard sensing, and continues with more experiments using the full sensor-

based version of the algorithm and the target localization scheme (Section 3.5.2). Finally,

Section 3.6 discusses a summary of our results.

3.1 Empirical Unicycle Anchoring on the Minitaur Robot

This Section describes the experimental platform mainly used for our physical experiments,

the Minitaur quadruped [101], focusing on the empirical anchoring [61] of a first order

unicycle model [12] in its bounding and walking gait. This anchoring becomes essential as it

provides an “interface” between the more abstract differential drive model in the horizontal

plane (assumed in the development of our reactive controllers) and the physical platform.

3.1.1 Minitaur Hardware

Minitaur (Fig. 3.1 [65, 101]) is a 6kg direct drive quadruped that has already demonstrated

a variety of interesting behaviors, including a 48 cm vertical leap [101], bounding at a

continuum of speeds up to 2 m/s, pronking, trotting, etc. [48]. From the already developed

palette of behaviors, we mainly use the “bounding” [48] and “walking trot” gaits [49] (for

moving with a desired fore-aft and angular velocity), and “standing” (employed before the

beginning and after the end of any motion for safely starting and terminating experiments)

behaviors.

The bounding gait can achieve higher speeds, but it induces a strong body pitching

motion which makes the application of onboard, sensor-based navigation techniques quite

hard. For this reason, we use the bounding gait in the context of a navigation algorithm

using only local but “bird’s eye” information about the surrounding obstacles from the motion

capture arena, and the walking trot gait for fully sensor-based experiments with a LIDAR

(for obstacle avoidance - see Section 3.2, and Chapters 5, 7 and 8), a range RF sensor (for

target localization in the body frame - see Section 3.3), or an onboard stereo camera (for

robot localization and object recognition - see Chapters 7 and 8).

As shown in Fig. 3.1, Minitaur consists of a symmetric body with four 2DOF (Degree-of-

20



Figure 3.1: The Ghost Minitaur [65] experimental platform.

Freedom) legs. Each leg consists of 2 symmetric RR chains closing at the toe, and is actuated

by 2 direct-drive, brushless DC motors (T-Motor U8) mounted at the hip. The forward and

inverse kinematics of this 5-bar mechanism1, which allows for augmented available workspace

for each leg, are presented in [100]. More details about the physical parameters of Minitaur

can be found in [101]. Control and phase commutation of the motors is handled by a

(custom) controller board, and the leg actions in order to generate a desired behavior are

synchronized by a (custom) “mainboard” equipped with an ARM microcontroller, which is

pre-programmed beforehand. A LiPo battery provides power to the system.

3.1.2 Bounding Gait as a Kinematic Unicycle

Bounding is a virtual bipedal gait, wherein the front pair and rear pair of legs are phase-

locked to each other, and the steady state stepping pattern is an alternation of front and

rear stance periods, typically with substantial aerial phases in between. Minitaur’s bounding

is implemented using compositional principles [47] yielding a controller which requires few

parameters, and exerts no feedback phase coordination between the front and rear hips [48].

The bounding controller exposes two commands: horizontal plane translational speed
1The fifth bar between the 2 motors is considered to have zero length.
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vc and yaw rate ωc. Heretofore, these parameters have been set by a human operator,

but in this work, for the first time, we supply these parameters from a higher-level con-

troller. It is worth noting here that BigDog was able to generate such control commands

autonomously for following a leader [217], but here we focus on the autonomous navigation

problem. Though we don’t make any formal claims of anchoring [61], we present an empirical

characterization of bounding Minitaur as a kinematic unicycle, and use this working model

as a trial navigation template for our legged platform. Our ultimate goal is to abstract away

the complicated bounding dynamics of Minitaur and allow the robot to be controlled by a

high-level motion planner as a differential drive robot.

However, bounding Minitaur is very much a dynamic system, and requires a non-trivial

amount of time to accelerate between different speeds and yaw rates. In fact, the stride rate

(3Hz) limits the control authority available, since the body cannot be actuated in flight. We

hypothesize that a dynamic unicycle model [140, 145] with limits on acceleration [83] would

be the most appropriate horizontal template for Minitaur, but here, we instead smooth the

inputs with an auto-regressive filter to reduce the magnitude of the acceleration.

Given as inputs a desired speed vd ∈ R, and yaw rate ωd ∈ R, let vc and ωc be the

commands sent to Minitaur. Then, we set

v̇c = −σv(vc − vd), ω̇c = −σω(ωc − ωd), (3.1)

for some σv, σω ∈ R+. Note that smaller σ∗ results in a smoother output, and vice versa.

For the empirical characterization of our strategy, we send Minitaur time-varying sig-

nals, and plot its response. Fig. 3.2 shows the time trajectories of the observed speed and

yaw (measured by the motion capture system described in Section 3.4) for a commanded

sinusoidal signal of a fixed frequency. The 3Hz cutoff filter removes periodicities caused by

Minitaur’s 3Hz stride rate.

Minitaur’s response to smooth commands is very accurate in yaw, and more lagged in

speed. We believe that this is due to the very small σv that had to be used in (3.1) in order

to limit acceleration, since lower speeds are necessitated in the case of vector fields with high
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Figure 3.2: Frequency domain characterization of Minitaur’s bounding response to smooth input
signals vd, ωd (3.1): raw speed v and yaw response ω (blue), with a 3Hz cutoff filter (red), and the
reference signals vd, ωd (black dashed).
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Figure 3.3: Minitaur’s response to step signals in yaw rate, ω (blue), and the reference signal, ωd

(dashed black). For these trials, vd = 0.

curvature. The robot’s response to speed and yaw commands in typical experiment runs is

shown in Fig. 3.14.

Response to Step Signals

Due to step signals having unbounded acceleration demands, Minitaur’s performance in

response to them is not as good as to smooth signals (especially in the heavily filtered speed

command). In Fig. 3.3 we plot Minitaur’s response to step signals in yaw (two trials), and

in Fig. 3.4 we plot the response to speed signals (four trials). In the latter, we also include

the robot’s proprioceptive speed estimate (using the leg kinematics and joint velocities),

which resemble the motion capture measurements closely. This confirms that the laggy

speed tracking is not due to the robot’s onboard speed estimate, but rather due to the

heavy-handed smoothing (3.1) required to limit acceleration. For the experiments in these

figures, the other input is set to zero.

3.1.3 Walking Trot Gait as a Kinematic Unicycle

The walking trot gait is also a virtual bipedal gait, wherein the diagonal pairs of legs are

phase-locked to each other and the steady state stepping pattern is an alternation of diagonal

stance periods with rapid flight phases in between. Although the formal analysis of this gait

is still work in progress, we attempt an empirical characterization of the walking Minitaur

as a kinematic unicycle, in an effort to use this model as the navigation template for sensor-

based navigation and range-only target localization, since its negligible pitching motion
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Figure 3.4: Minitaur’s response to step signals in fore-aft speed v, given by the motion capture
system (blue), and its proprioceptive speed estimate (red). The reference signal vd is shown dashed
black. For these trials, ωd = 0.

allows for the straightforward use of onboard sensors.

Similarly to the bounding gait, the walking trot controller exposes two commands: hor-

izontal plane translational speed vc and yaw rate ωc, set by a higher-level controller. For

the generation of smooth commands vc and ωc from the desired inputs vd and ωd we em-

ploy a first-order filter similar to (3.1) with lower gains σv, σω, since we noticed that rapid

changes in the inputs vd, ωd resulted in easier loss of traction and more falls compared to the

bounding gait. We suspect that this occurs due to the more complicated stance kinematics

of walking that make turning harder, but further investigation is currently underway.

As in the bounding gait trials, for the empirical characterization of our strategy, we send

Minitaur time-varying signals and plot its response. Fig 3.5 shows the time trajectories

of the observed speed and yaw (measured by a Vicon motion capture system [212]) for a

commanded sinusoidal signal of a fixed frequency. We use a 3Hz cutoff filter to remove

periodicities and numerical noise from the differentiation of the position signals.

Similarly to the bounding gait trials, we observe lagged response in speed and better
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Figure 3.5: Frequency domain characterization of Minitaur’s walking trot response to smooth input
signals vd, ωd (3.1): time-domain plots of raw speed v and yaw response ω (blue), with a 3Hz cutoff
filter (red), and the reference signals vd, ωd (black dashed).

frequency tracking in yaw. Small magnitudes in both speed and yaw can be attributed to

the low gains σv, σω we used, as well as physical limitations of the gait, which was developed

for easier navigation over rough, uncluttered terrain rather than high-speed, energetically

efficient motion.

Response to Step Signals

Finally, in Fig. 3.6 we show Minitaur’s response to random step inputs in both fore-aft speed

and yaw rate, supplied at the same time. Again, due to step signals having unbounded ac-

celeration demands, Minitaur’s performance is not as good as in the smooth case (especially

in the heavily filtered speed command).

3.2 Reactive Navigation in Unknown Convex Environments

In this Section, we give an overview of the reactive navigation schemes that guarantee almost

global navigation in convex workspaces using only local knowledge of the environment. We
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Figure 3.6: Minitaur’s walking trot response to step signals in both fore-aft speed v (top), and yaw
rate ω (bottom).

find it important to distinguish between the reactive navigation algorithm using local but

“bird’s eye” information, implemented on top of the bounding gait, and the fully sensor-

based reactive navigation algorithm, implemented on top of the walking trot gait along with

a LIDAR and a RF sensor, as described below and in later Chapters of the thesis.

In every case, it is assumed that the robot’s motion is described by unicycle kinematics

ẋ = v

cosψ

sinψ

 , (3.2)

ψ̇ = ω, (3.3)

3.2.1 Reactive Navigation Using Local but “Bird’s Eye” Information

We use the algorithm in [6] as an example of a high-level strategy, capable of solving the

navigation problem for a differential drive robot, in order to test the limits of the kine-

matic unicycle navigation template for bounding legged robots (as empirically validated in
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LF

LW

Figure 3.7: Reactive navigation with local but “bird’s eye” information: A depiction of the “local
workspace” LW (yellow polygon) and “local freespace” LF (green polygon) concepts that illustrates
the local nature of the control strategy [6]. The goal position is shown as a solid red disk, and the
local goal as a dot on one edge of the local freespace. The dark disks correspond to the physical
obstacles, while the grey regions delimits the free space (for the robot’s centroid) boundary. The
trajectory corresponds to an experimental trial also shown in Fig. 3.12.

Section 3.1.2) in a real-world setting.

In brief, its construction utilizes power diagrams—generalized Voronoi diagrams with

additive weights [16]—to identify a local workspace LW and a collision-free local freespace

LF ⊂ LW of a disk-shaped robot in a sphere world, and continuous motion towards the

closest point in the robot’s local safe neighborhood to a designated goal location is proven

to asymptotically drive almost all robot configurations to the destination location with no

collisions along the way, as in the example shown in Fig. 3.7.

Namely, the local workspace LW(x) for a robot with radius r at position x, navigating

a convex workspace W cluttered with N disk-shaped obstacles centered at xi with radius ri

for i ∈ {1, . . . , N}, is defined as the Voronoi cell

LW(x) := {q ∈ W | ||q− x||2 − r2 ≤ ||q− xi||2 − r2
i , ∀i} (3.4)

In turn, in order to determine a collision-free neighborhood of the robot, the local freespace

LF(x) is defined by eroding LW(x), removing the volume swept along its boundary ∂LW(x)
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by the robot radius r, as

LF(x) :=
{
q ∈ W |B (q, r) ⊆ LW(x)

}
(3.5)

with B (q, r) denoting the closure of the ball centered at q with radius r. For fully actuated

particles with first-order dynamics defined as ẋ = u navigating toward a goal x∗, the control

law u : R2 → TR2 can then simply be defined as

u(x) := −k
(
x−ΠLF(x)(x

∗)
)

(3.6)

with ΠA : R2 → A denoting the projection function onto a convex subset A ⊆ R2, i.e.,

ΠA(q) := argmin
a∈A

‖a− q‖ (3.7)

It is also shown in [6] that this construction can be further adapted to a nonholonomically

constrained “unicycle” robot, whose model is given in (3.2)-(3.3), while maintaining the

stability and collision avoidance properties. In this case, the control inputs are given as

v = −k

cosψ

sinψ


> (

x−ΠLFv(x)(x
∗)
)

(3.8)

ω = k atan



− sinψ

cosψ


> (

x− ΠLFω(x)(x
∗)+ΠLF(x)(x

∗)

2

)
cosψ

sinψ


> (

x− ΠLFω(x)(x
∗)+ΠLF(x)(x

∗)

2

)


(3.9)

with

LFv(x) := LF(x) ∩H‖ (3.10)

LFω(x) := LF(x) ∩HG (3.11)
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and H‖ and HG the lines defined as

H‖ =

z ∈ W
∣∣∣
− sinψ

cosψ


>

(z− x) = 0

 (3.12)

HG = {αx + (1− α)x∗ ∈ W |α ∈ R} (3.13)

3.2.2 Sensor-Based Reactive Navigation

The algorithm in [6] was extended in [7], by replacing the Voronoi power diagrams with

separating hyperplanes to account for a broader than spheres class of convex bodies and

to accommodate a realistic 2D LIDAR sensor model for obstacle detection. As shown in

Fig. 3.8, the algorithm relies again on the construction of a local workspace LW and a

collision-free local freespace LF ⊂ LW and continuous motion towards the closest point in

the local freespace brings the robot to a designated goal location. However, as shown in

[7] and in Fig. 3.8, the construction of these cells is now based on the intersection of the

(local) LIDAR footprint with appropriately defined hyperplanes, one for each local minimum

observed within this footprint.

More specifically, the LIDAR sensor is modeled by a polar curve ρx : (−π, π]→ [0, R] as

follows

ρx(θ) := min


R

min {‖p− x‖ |p ∈ ∂W, atan2(p− x) = θ}

min
i
{‖p− x‖ |p ∈ Oi, atan2(p− x) = θ}

 (3.14)

where R denotes the LIDAR sensor range, and Oi the i-th obstacle. Assuming that ρi :

(θli , θui) → [0, R] is a convex curve segment of the LIDAR scan ρx at a location x ∈ W,

then the associated “line-of-sight obstacle” [7] is defined as the open epigraph of ρi with its

pole located at x as Li := {x} ⊕ {(ρ cos θ, ρ sin θ)|θ ∈ (θli , θui), ρ > ρi(θ)}. Assuming, then,

the availability of a sensor model LR(x) := {L1, L2, . . . , Lt} that returns the list of convex

line-of-sight obstacles2 detected by the LIDAR scanner at location x, the local workspace is
2Here t denotes the number of detected obstacles and changes as a function of robot location.
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Figure 3.8: Sensor-Based Reactive Navigation: A depiction of the “local workspace” LW (yellow
polygon) and “local freespace” LF (orange polygon) constructed from a LIDAR footprint (green)
[7]. The estimated goal position (dark green dot) is calculated using range-only information and a
particle filter. Notice how the particles spread on the circle with radius equal to the current range
measurement. The local goal is computed from the projection of the estimated goal position onto
LF .

defined as [7]

LW(x) :=

{
q ∈ Lft(x) ∩ B

(
x, r+R2

) ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣q− x + r

x−ΠLi
(x)

||x−ΠLi
(x)||

∣∣∣∣∣
∣∣∣∣∣ ≤ ||q−ΠLi

(x)||,∀i
}

(3.15)

where Lft(x) denoting the LIDAR sensory footprint at x, given by the hypograph of the

LIDAR scan ρx at x (see (3.14)), defined as Lft(x) := {x}⊕{(ρ cos θ, ρ sin θ)|θ ∈ (−π, π], 0 ≤

ρ ≤ ρx(θ)}. Given the local workspace LW(x), the local freespace LF(x) is defined as

in (3.5).

3.3 Body Frame Target Localization

In the sensor-based framework of Section 3.2.2, the problem of homing on a beacon using

range-only measurements can become quite challenging (see e.g [196]). In the absence of

global information, both the target localization and the navigation control strategy must
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Figure 3.10: Range-only target localization in the robot’s body frame (purple).

be appropriately modified for the robot’s body frame [46, 88]. Thankfully, as we will see

next, the algorithm in Section 3.2.2 can be reformulated in the robot’s body frame, provided

successful target localization. To facilitate our analysis, we refer to Fig. 3.10.

Localization Model

We assume that the robot is located at x with an orientation ψ, which are both unknown.

The goal is to navigate to point G, whose position in the global frame x∗ := (x∗, y∗) ∈ R2 is

also unknown to the robot. The robot can only measure (with some accuracy) its distance

d := ||x∗ − x|| from G. Let x∗BF := (x∗BF , y
∗
BF ) ∈ R2 denote the target position in the
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robot’s body frame.

Lemma 3.1. For the unicycle dynamics described in (3.2)-(3.3), if x∗ = const., then

ẋ∗BF =− v + ω y∗BF (3.16)

ẏ∗BF =− ω x∗BF (3.17)

Proof. Included in Appendix C.1.

Measurement and Estimation

We use the localization model laid out in (3.16)-(3.17) to perform state estimation for x∗BF

using a particle filter [189] implemented in the ParticleFilter class of the MATLAB Robotics

toolbox [43]. We assume that the only measurement provided for the propagation of the

particle filter is the distance of the robot to the target d =
√

(x∗BF )2 + (y∗BF )2 and use a

measurement model of the form

y(t) = d(t) + ε(t) (3.18)

with ε(t) representing the measurement noise. We note here that various statistical distri-

butions have been considered for ε(t) in the RF literature, but, consistent with other work

[116], a Gaussian distribution with mean zero and a specified standard deviation according

to the range sensor’s characteristics was determined to be sufficient for our purposes.

By supplying an initial estimate for x∗BF , an initial estimate covariance Σ0, suitable

process noise estimates for the proprioceptive linear speed and yaw rate provided by the

robot, a suitable measurement noise standard deviation and a proper number of particles

(please refer to Section 3.4 for more details), the particle filter provides an estimate of the

goal location x∗BF , which is constantly updated and gets better as the robot moves. Some

tuning on the number of particles is required to balance between the needs for fast filter

updates and the achievement of good convergence properties. It must be noted that the

problem of beacon homing using RF sensors is worthy of independent study due to issues

related to multipath interference etc., which go beyond the scope of this work.
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Body Frame Navigation Algorithm

With the localization algorithm supplying an estimate of x∗BF = (x∗BF , y
∗
BF ) at every control

iteration already in place, we construct the homing behavior by writing the control law

in (3.8) - (3.9) in the body frame and setting the inputs

vd =k x̄∗v,BF (3.19)

ωd =k atan(ȳ∗ω,BF /x̄
∗
ω,BF ) (3.20)

with

x̄∗v,BF = (x̄∗v,BF , 0) :=


cosψ

sinψ


>

ΠLFv(x)(x
∗
BF ), 0


x̄∗ω,BF = (x̄∗ω,BF , ȳ

∗
ω,BF ) :=

cosψ

sinψ


>(

ΠLFω(x)(x
∗
BF ) + ΠLF(x)(x

∗
BF )

2

)
,

− sinψ

cosψ


>(

ΠLFω(x)(x
∗
BF ) + ΠLF(x)(x

∗
BF )

2

)
the linear and angular projected goals respectively, and the local freespace LF as described

in (3.5), computed from the local workspace LW in (3.15) and demonstrated in Fig. 3.8. In

this way, we have constructed a minimalistic sensory-driven approach to the homing problem,

that uses a LIDAR for obstacle avoidance and an RF sensor, providing only one-dimensional

information (range), for the target location.

3.4 Experimental Setup

Here, we detail the ROS networked environment, in which Minitaur operates, that generates

its high level (“unicycle-like”) control inputs by implementing the reactive navigation algo-

rithm summarized in either Section 3.2.1 (bounding) or Section 3.2.2 (walking). As shown
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Figure 3.11: A schematic demonstrating the system structure of the experimental setup. Minitaur’s
Raspberry Pi, the central element of this configuration, acts as the ROS Master and forwards any
LIDAR and range readings. The external computer runs the high level controller which gives the
desired linear and angular velocities vd, ωd, while Minitaur’s mainboard runs the low level controller
by calculating the actual commands vc, ωc using (3.1), and provides proprioceptive speed and yaw
rate feedback v, ω, forwarded to the desktop computer by the Raspberry Pi.

in Fig. 3.11, this environment consists of a computer implementing the high-level controller

and of Minitaur’s ROS infrastructure, exchanging messages over a Wi-Fi network.

In order to provide a hardware abstraction commensurate with the behavioral abstraction

of Section 3.1.2, Minitaur’s computational subsystem is enhanced with a Raspberry Pi Model

3, which is able to both run ROS and connect to a Wi-Fi access point. A custom ROS node

on the Raspberry Pi receives (vd, ωd) and the desired mode of operation (bounding, walking,

standing) as ROS messages (from the desktop computer) and forwards them to the Minitaur

mainboard (microcontroller implementing the functionalities shown in (3.1) to produce the

actual commands vc, ωc) at 100Hz over a 115.2 Kbps USART connection. The Raspberry Pi

acts as the ROS Master that resolves networking for the rest of the ROS nodes: a dedicated

ROS node is activated as soon as the system boots and automatically subscribes to the

(vd, ωd) ROS topics, as well as an additional one capable of defining the desired behavior.

Bounding-Specific Infrastructure Components

In the case of bounding and in the absence of any onboard sensor, the odometry information

consisting of the linear speed v and the yaw rate ω is extracted from a Qualisys Motion

Capture System [154] (QMCS) at 100 Hz, using a set of motion capture cameras positioned

around a 20m × 6m arena. The desktop computer receives the online data from QMCS
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using the ROS package mocap_qualisys [114] and outputs specific desired linear and angular

velocity values (vd, ωd) for Minitaur as described in Section 3.2.1. The high level control

loop runs at approximately 100Hz, which is more than enough for the robot to recover if any

obstacle is detected, and the low-level (bounding or walking trot) controller runs at 1KHz.

Walking-Specific Infrastructure Components

For the walking trot experiments, the setup is enhanced with two Pulson P-440 RF modules

[190] (one beacon for the goal and one receiver for the robot), along with a Hokuyo UTM-

30LX LIDAR [79].

Since the fully sensor-based navigation approach described in Sections 3.2.2 and 3.3 is

used, a second ROS node reads the proprioceptive odometry feedback3 from the mainboard

and forwards it to the desktop computer for use in the particle filter propagation [189].

Also, a third node, adapted from the ROS library in [177], is responsible of sending the

range measurements from the RF sensor to the desktop computer. A final ROS node, taken

from [166], forwards the LIDAR measurements to the desktop computer.

The desktop computer is responsible for running the high-level control algorithm outlined

in Section 3.2.2, along with the particle filter propagation for target localization, as described

in Section 3.3. For the particle filter, we use a process noise of 0.2m/s for the linear speed

and 0.4rad/s for the angular speed. Also, a range measurement noise (standard deviation) of

10cm is used, consistent with the Pulson P-440 RF module datasheet. We use 2000 particles,

systematic resampling and an effective particle ratio of 0.8.

As we show in Section 3.5 and the accompanying video of [201]4, this infrastructure

works robustly and without any discernible network-induced latency. The high level control

loop here is slower and runs at approximately 50Hz, since several sensor readings have to

be sent and processed, but this frequency is still more than enough for the robot to recover

if any obstacle is detected.
3Here the forward speed v is estimated with the use of leg kinematics as shown in [100] and ω is provided

by a VN-100 IMU [207].
4https://youtu.be/kJM0fSxxL9k
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Simulation
Experiment

Figure 3.12: Trajectories extracted from simulations and bounding experiments in a small and dense
with obstacles environment. The goal position (shown as a solid red disk) is fixed but initial robot
configurations vary.

3.5 Experimental Results

We illustrate the qualitative features and performance of the navigation algorithm by pre-

senting empirical results for both the bounding and the walking trot gait. Section 3.5.1

reports on experiments run using the bounding gait and local but “bird’s eye” information

as described in Section 3.2.1 in environments cluttered with disk-shaped obstacles, and Sec-

tion 3.5.2 describes the results in a similar workspace with the walking gait, the use of the

sensor-based navigation algorithm described in Section 3.2.2 and the range-only target local-

ization scheme presented in Section 3.3. In all of our experiments, Minitaur is approximated

as a disk-shaped robot with radius5 0.4 m, and a margin of 0.1 m is added to the robot’s

radius for safety reasons.

3.5.1 Bounding Experiments

Fig. 3.12 depicts our results in a small and obstacle-dense environment, and Fig. 3.13 depicts

our results in a less dense with obstacles but larger arena. The obstacles have common radius

ρ = 0.1 m and are randomly placed throughout the environment. The goal position is near
5Minitaur’s length (hip-to-hip) is 0.4 m and an extra length of 0.4 m due to fore and hind leg extensions

in the sagittal plane (typically about 0.2 m) has to be accounted for.
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Experiment

Figure 3.13: Trajectories extracted from simulations and bounding experiments in a large and less
dense with obstacles environment. The goal position (shown as a solid red disk) is fixed but initial
robot configurations vary.
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Figure 3.14: Minitaur’s response (blue) to speed and yaw reference signals (black) during a bounding
experimental trial.

the top right corner of the workspace behind several obstacles.

As it is evident from Fig. 3.12 and Fig. 3.13, Minitaur manages to converge to the desired

location from a variety of initial configurations. In a total of over 50 trials, Minitaur reaches

the goal and avoids all the obstacles each time. In both cases, we also overlay trajectories

from MATLAB simulations of a differential-drive robot with the same initial conditions and

similar control gains. The simulation and physical platform follow similar trajectories in

most of the considered cases. It is important, though, that even when the trajectory is quite

different, the robot always safely navigates to the goal location.

This is the most clear demonstration of the benefits provided by memoryless reactive

planners; although slight perturbations and modeling errors6 result in large perturbations
6Minitaur is only an imperfect kinematic unicycle, as discussed in Section 3.1.
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Figure 3.15: A suggestive path reconstructed from Minitaur’s proprioceptive data in the environment
shown in Fig. 3.9. The black dot corresponds to the (converged) estimated goal location at the end
of the trial. The brown points consist the corresponding pointcloud of observed obstacle points; in
the absence of ground-truth their exact location cannot be precisely determined.

to the final trajectory, the generated vector field guarantees global navigation to the goal

without collisions. The navigation trajectory is neither known nor required a priori for

guaranteed safety and task completion.

Finally, to illustrate Minitaur’s bounding performance as a kinematic unicycle (Sec-

tion 3.1.2), we plot in Fig. 3.14 Minitaur’s response to the commanded fore-aft and yaw

speeds during an experimental trial. Similarly to Section 3.1, we use a 3Hz cutoff filter to

remove periodicities caused by Minitaur’s bounding. As can be seen, the yaw response is

quite good, but the speed tracking (while yawing) is less accurate. However, as demon-

strated in Fig. 3.12, perfect speed tracking is not crucial for the reactive scheme presented

here. The “zero yaw” trials of Fig. 3.4 reveal partly the reasons for this (the large amount of

lag induced by smoothing in (3.1)). We also believe that the laggy speed response is partly

responsible for the differences between the actual and simulated trajectories in our trials.
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Figure 3.16: The distance to the goal position as a function of time for several initial conditions
with the walking trot gait. In every case, the robot was commanded to stop as soon as it got within
a distance of 0.8m from the target position.

3.5.2 Sensor-Based Walking Experiments

As mentioned in Section 3.1, the change from bounding to walking allows for the use of the

fully sensor-based algorithm described in Sections 3.2.2 and 3.3. Fig. 3.15 depicts our results

in a workspace cluttered with obstacles of common radius ρ = 0.1 m and randomly placed

throughout the environment. Because of the lack of a portable ground-truth mechanism, the

path shown in Fig. 3.15 was obtained by numerically integrating all the saved proprioceptive

linear speed v and yaw rate ω estimates, and is thus suggestive but not exact. This also

explains the non-convex shape of the observed “obstacles” in the workspace, reconstructed

from the union of all the LIDAR readings. From this figure, it is evident that the robot

managed to successfully localize the target, navigate there and stop within a predefined

distance from it. In the absence of ground-truth, we plot in Fig. 3.16 the range measurements

obtained by the RF sensor for several trials, showing convergence to the target. Finally, to

illustrate Minitaur’s walking performance as a kinematic unicycle (Section 3.1.3), we plot in

Fig. 3.17 its response to commanded fore-aft and yaw speeds during an experimental trial.

It must be emphasized that we never experienced a failure to achieve the goal nor any
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Figure 3.17: Minitaur’s response (blue) to speed and yaw reference signals (black) during a walking
trot experimental trial.

collisions along the way in any of the experiments conducted for this work. In the accom-

panying video4, we demonstrate several of the numerous successful experimental trials for

both bounding and walking, with the robot indefatigably seeking the goal.

3.6 Discussion

This Chapter demonstrates the empirical anchoring of a kinematic unicycle model on the

dynamically complicated bounding and walking trot gaits of a quadrupedal robot and the

robustness and efficiency of a sensor-based doubly reactive homing scheme, as an example of

a high level motion planning strategy for legged robots. The realization of this algorithm in

a GPS-denied environment is largely enabled by a proposed body-frame, range-only target

localization algorithm which uses one-dimensional, range information to estimate the goal

position in the body frame. The empirical results to date are very promising: the robot

is driven to the desired goal location from any initial position and configuration in the

workspace, while avoiding obstacles.
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Part II

Mobile Manipulation in Partially

Known Environments
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Chapter 4

Reactive Symbolic Planning Using a

Hierarchical Control Structure

This Chapter considers the problem of completing assemblies of passive objects in non-

convex environments, cluttered with convex obstacles of unknown position, shape and size

that satisfy a specific separation assumption. A differential drive robot equipped with a

gripper and a LIDAR sensor, capable of perceiving its environment only locally, is used to

position the passive objects in a desired configuration. The method combines the virtues of a

deliberative planner generating high-level, symbolic commands, with the formal guarantees

of convergence and obstacle avoidance of a reactive planner that requires little onboard

computation and is used online. The validity of the proposed method is verified both with

formal proofs and numerical simulations.

The Chapter is organized as follows. Section 4.1 describes the problem and summarizes

our approach. Section 4.2 gives a brief outline of the high-level deliberative planner that

generates the sequence of appropriate symbolic commands to accomplish the task at hand,

without any information about the internal obstacles. Section 4.3 describes the fundamental

idea of reactively switching between a path following and a wall following mode, for both

a holonomic and a nonholonomic robot, while Section 4.4 extends our reactive ideas to the

navigation problem of a nonholonomic robot grasping a passive object and using its sensor
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Reference Path

Goal 1

Goal 2

Robot
Object 1

Object 2

LIDAR

Unexpected 
Obstacles

Figure 4.1: A depiction of an intermediate stage of an assembly process. The robot is tasked to
move two objects from their start to their final configuration using a gripper and a LIDAR. The
deliberative planner outputs a reference path (purple) which the reactive planner has to follow, while
avoiding the unexpected obstacles (grey) in the (potentially) non-convex workspace. The resulting
piecewise differentiable object trajectory for one object is shown in red.

to position it at a desired location. Section 4.5 combines the ideas from the previous two

sections and describes the low-level, online implementation of the symbolic action command

set. Finally, Section 4.6 presents illustrative numerical examples for the ideas presented.

4.1 Problem Formulation

We consider a first-order, nonholonomically-constrained, disk-shaped robot, centered at x ∈

R2 with radius r ∈ R>0 and orientation ψ ∈ S1, using a gripper to move circular objects in

a closed, compact, not necessarily convex workspace W ⊂ R2 as shown in Fig. 4.1, whose

boundary ∂W is assumed to be known. The robot dynamics are described by

(ẋ, ψ̇) = B(ψ)uku (4.1)
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with B(ψ) =

cosψ sinψ 0

0 0 1


T

the differential constraint matrix and uku = (v, ω) the

input vector1 consisting of a linear and an angular command. The robot is assumed to

possess a LIDAR, positioned at x, with a 360◦ angular scanning range and a fixed sensing

range R ∈ R>0 and is tasked with moving each of the n ∈ N movable disk-shaped objects,

centered at p := (p1,p2, . . . ,pn) ∈ Wn with a vector of radii (ρ1, ρ2, . . . , ρn) ∈ (R>0)n, from

its initial configuration to a user-specified goal configuration p∗ := (p∗1,p
∗
2, . . . ,p

∗
n) ∈ Wn.

We assume that both the initial configuration and the target configuration of the objects are

known. In addition to the known boundary of the workspace ∂W, the workspace is cluttered

by an unknown number of fixed, disjoint, convex obstacles of unknown position and size,

denoted by O := (O1, O2, . . .). To simplify the notation, also define Ow := O ∪ ∂W.

We adopt the following assumptions to guarantee that any robot-object pair can go

around any obstacle in the workspace along any possible direction, introduced only to fa-

cilitate the proofs of our formal results, without being necessary for the existence of some

solution to the problem.

Assumption 4.1 (Obstacle separation). The obstacles O in the workspace are separated

from each other by clearance2 of at least d(Oi, Oj) > 2(r + maxk ρk), i 6= j, with k an

index spanning the set of movable objects. They are also separated from the boundary of the

(potentially non-convex) workspace W by at least d(Oi, ∂W) > 2(r + maxk ρk) for all i.

Assumption 4.1 means that there exists η ∈ R>0 such that

η = min

min
i,j
i 6=j

d(Oi, Oj),min
i
d(Oi, ∂W)

 (4.2)

and η > 2(r + maxk ρk).

Also, in order to ensure successful positioning of all the objects to their target configu-

ration using reactive control schemes, it is convenient to impose a further constraint on how
1Throughout this work, we will use the ordered set notation (∗, ∗, . . .) and the matrix notation[
∗ ∗ . . .

]T for vectors interchangeably.
2Here the clearance between two sets A and B is defined as d(A,B) := inf{‖a− b‖ |a ∈ A,b ∈ B}
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Figure 4.2: A depiction of a disk-shaped robot with radius r (grey) moving a disk-shaped object
with radius ρi (yellow).

tightly packed the desired goal configuration can be.

Assumption 4.2 (Admissible object goals). For any object i ∈ {1, . . . , n}, d(p∗i ,Ow) >

ρi + 2r.

The robot’s gripper can either be engaged or disengaged; we will write g = 1 when the

gripper is engaged and g = 0 when it is disengaged.

In order to accomplish the task of bringing every object to its designated goal position,

we endow the deliberative planner with a set of three symbolic output action commands:

• MoveToObject(i,P) instructing the robot to move and grasp the object i along

the piecewise continuously differentiable path P : [0, 1]→W such that P(0) = x and

P(1) = pi.

• PositionObject(i,P) instructing the robot to push the (assumed already grasped)

object i toward its designated goal position, p∗i , along the piecewise continuously

differentiable path P : [0, 1]→W such that P(0) = pi and P(1) = p∗i .

• Move(P) instructing the robot to move along the piecewise continuously differentiable

path P : [0, 1]→W such that P(0) = x.

This symbolic command set, comprising the interface between the deliberative and reactive

components of our planner enforces the following problem decomposition into the comple-

mentary pair:
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High-level Planner

Deliberative Search
Offline

Symbolic Action 
sequence

Low-level Planner

Reactive, Closed-Loop Control
Robot

uku, g x

{

{Online

Figure 4.3: An outline of the control approach followed in order to position the objects. A high-level,
deliberative planner outputs a sequence of symbolic actions that are realized and executed sequen-
tially in low-level using a reactive controller. The architecture follows Fig. 1.1 without including the
interface layer, since it is assumed that each provided symbolic action from the high-level planner
is always feasible, and the (platform-specific) gait layer, since the presentation in this Chapter is
limited to differential drive robots equipped with a gripper.

1. Find a symbolic plan, i.e., a sequence of symbolic actions whose successful implemen-

tation is guaranteed to complete the task.

2. Implement each of the symbolic actions using the appropriate commands uku accord-

ing to the robot’s equations of motion shown in (4.1), while avoiding the perceived

unanticipated by the deliberative planner obstacles.

Fig. 4.3 depicts this problem decomposition and the associated interface between the

deliberative and reactive components of our architecture.

4.2 Deliberative Planner

In order to obtain plans suitable for the reactive planner to track, we use a high-level

planner that combines the factored orbital random geometric graph (FORGG) construction

[208] with the approximate angelic A* (AAA*) search algorithm [210]. FORGG extends the

asymptotic optimality guarantees of the PRM* algorithm to problems involving discontin-

uous differential constraints like contact and object manipulation. Searching this planning

graph using conventional methods like A* is computationally expensive, due to the size of

search space. To facilitate efficient search, we employ the angelic semantics developed by

Marthi et al. [128] to encode bounds on the possible cost of sets of possible plans. AAA*
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uses these bounds to guide the search, allowing large parts of the search space to be pruned

away and accelerating the search for a near-optimal high-level plan.

With this construction, the deliberative planner is supplied with the initial position and

size of the robot and the objects to be placed, along with any information assumed to be

known (boundary of the workspace, walls, interior obstacles etc.) and outputs a series of

symbolic action commands (MoveToObject, PositionObject, Move) each associated

with a collision-free path P in order to accomplish the task at hand.

4.3 Reactive Planning for Single Robots

In this Chapter we describe the (low-level) reactive algorithms which guarantee collision

avoidance and (almost) global convergence3 to the plan provided by the (high-level) deliber-

ative planner, described in Section 4.2. First, we focus on the navigation problem of a single

(fully actuated or nonholonomically-constrained) robot, using tools from [6] and [7], and we

will show in Section 4.4 how to extend these principles for the case of gripping contact.

4.3.1 Doubly-Reactive Planner for Holonomic Robots

First we consider a fully actuated disk-shaped robot centered at x ∈ R2 with radius r > 0,

moving in a closed-convex environment (denoted by W ⊂ R2) towards a goal location

x∗ ∈ R2. Although we use a differential drive robot for our assembly problem here, we find

it useful to present the basic algorithm for fully actuated robots, especially since it will be

used in Section 4.4. The robot dynamics are assumed to be described by

ẋ = u(x) (4.3)
3It is well-known that the basin of a point attractor in a non-contractible space must exclude a set of

measure zero [104].
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with u ∈ R2 the input. The sensory measurement of the LIDAR at x ∈ W is modeled as in

[7] by a polar curve ρx : (−π, π]→ [0, R] as follows4 (see (3.14) in Chapter 3)

ρx(θ) := min


R

min {‖p− x‖ |p ∈ ∂W, atan2(p− x) = θ}

min
i
{‖p− x‖ |p ∈ Oi, atan2(p− x) = θ}

 (4.4)

We will also use the definitions of free space F , line-of-sight local workspace LWL(x) and

line-of-sight local free space LFL(x) at x from [7] (given in (3.15) and (3.5) in Chapter 3).

Under the preceding definitions, it is shown in [7] that the control law

u(x) = −k
(
x−ΠLFL(x)(x

∗)
)
, k ∈ R (4.5)

asymptotically drives almost all configurations in F to the goal x∗ while avoiding obstacles

and not increasing the Euclidean distance to the goal along the way.

4.3.2 Reactive Path Following

For a fixed goal x∗, the reactive control law in (4.5) guarantees convergence only for convex

workspaces (punctured by obstacles).

Therefore, inspired by [8], we apply the idea from Section 4.3.1 to the problem of a robot

following a navigation path P : [0, 1]→
◦
F , that joins a pair of initial and final configurations

x0,x1 ∈
◦
F in a potentially non-convex workspace and lies in the interior of the free space,

i.e., P(0) = x0,P(1) = x1 and P(α) ∈
◦
F ,∀α ∈ [0, 1].

As demonstrated in [8], the projected-path goal P(α∗) with α∗ determined as5

α∗ = max{α ∈ [0, 1] | P(α) ∈ B (x, d(x, ∂F))} (4.6)

replaces x∗ in (4.5) as the target goal position and is constantly updated as the agent moves

along the path. Note that in the LIDAR-based setting presented here, the distance of the
4See [7] for a discussion on the choice of LIDAR range R to avoid obstacle occlusions.
5Here B (q, t) := {p ∈ W | ||p− q|| ≤ t}, i.e., the ball of radius t centered at q.
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agent from the boundary of the free space d(x, ∂F) can easily be determined as

d(x, ∂F) = min
θ
ρx(θ)− r (4.7)

4.3.3 Reactive Wall Following

As described in Section 4.1 and shown in Fig. 4.1, the path P might not lie in the free space

since the deliberative planner is only aware of the boundary of the workspace and not of the

position or size of the internal obstacles. For this reason, we present here a novel control

law for reactive wall following, inspired from the “bug algorithm” [39], that exhibits desired

formal guarantees.

The wall following law is triggered by saving the current index α∗s of the path P when

the distance of the agent from the boundary of its free space, given in (4.7), drops below

a small critical value ε, i.e., when d(x, ∂F) < ε. This would imply that the robot enters

a “danger zone” within the vicinity of an unexpected obstacle. The goal now would be to

follow the boundary of that obstacle without losing it, in order to find the path again.

Therefore, the robot first needs to select a specific direction to consistently follow the

boundary of the obstacle along that direction. Since our problem is planar, there are only

two possible direction choices: clockwise (CW) or counterclockwise (CCW). Also, since the

robot has only local information about the obstacle based on the current LIDAR readings,

a greedy selection of the wall following direction is necessary.

Let θm ∈ (−π, π] be the LIDAR angle such that ρx(θm) = min
θ
ρx(θ) corresponds to

the minimum distance from the blocking obstacle. Let nw(x) := −(cos θm, sin θm) denote

the normal vector to the boundary of the obstacle at the point of minimum distance and

tw(x) = Jnw(x), with J :=

0 −1

1 0

, the corresponding tangent vector.

Our proposed method uses the inner product tw,0 ·tP(α∗s), with tw,0 denoting the tangent

vector to the boundary of the obstacle at the beginning of the wall following phase and tP(α∗s)

the tangent vector of the path P at α∗s. Then, the value of a variable a is set to 1 for CCW
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Figure 4.4: An example of computing the wall following local free space LFw(x) (cyan) as the
intersection of the local free space LFL(x) (green) and the offset disk Dw (magenta) for a robot
with radius r positioned at x, encountering an obstacle within its LIDAR footprint Lft(x) (red).

motion and to -1 for CW motion (fixed for all future time) according to

a =

 1, if tw,0 · tP(α∗s) ≥ 0

−1, if tw,0 · tP(α∗s) < 0
(4.8)

since tw(x) has counterclockwise direction around the obstacle by construction.

Define the offset disk at x

Dw(x) := {p ∈ W | ||p− xoffset(x)|| ≤ ε} (4.9)

with ε selected according to Assumption 4.1 to satisfy

0 < ε <
1

2

[
η − 2(r + max

j
ρj)

]
(4.10)

with η given in (4.2) and

xoffset(x) := x− (ρx(θm)− r)nw(x) (4.11)
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Then define the wall following local free space LFw(x) as at x

LFw(x) := LFL(x) ∩ Dw(x) (4.12)

Since LFL(x) is convex [7],LFw(x) is convex as the intersection of convex sets.

The wall following law is then given as

u(x) = −k (x− xp(x)) (4.13)

with

xp(x) := xoffset(x) +
ε

2
nw(x) + a

ε
√

3

2
tw(x) (4.14)

Lemma 4.1. If x ∈ F and d(x, ∂F) < ε with ε chosen according to (4.10):

(i) The wall following free space LFw(x) contains x in its interior.

(ii) LFw(x) = Dw(x) ∩Hnw(x) with Hnw(x) the half space

Hnw(x) = {p ∈ W | (p− xh(x)) · nw ≥ 0}

and xh(x) = x− 1
2(ρx(θm)− r).

(iii) The point xp(x) lies on the boundary of LFw(x).

Proof. Included in Appendix C.2.

Proposition 4.1. With the choice of ε in (4.10), the wall following law in (4.13) has the

following properties:

(i) It is piecewise continuously differentiable.

(ii) It generates a unique continuously differentiable flow, defined for all future time.

(iii) It has no stationary points.

(iv) The free space F is positively invariant under its flow.
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(v) Moreover, the set
{
p ∈ W

∣∣∣ ε2 < d(p, ∂F) < ε
}

is positively invariant under its flow.

Proof. Included in Appendix C.2.

We find it useful to include the following definition

Definition 4.1. The rate of progress along the boundary of the observed obstacle at x is

defined as

σ(x) :=
u(x) · tw(x)

||u(x)|| (4.15)

By combining all these results, we arrive at the following Theorem.

Theorem 4.1. With a selection of ε as in (4.10), the wall following law in (4.13) has

no stationary points, leaves the robot’s free space F positively invariant under its unique

continuously differentiable flow, and steers the robot along the boundary of a unique obstacle

in O in a clockwise or counterclockwise fashion (according to the selection of a in (4.8)) with

a nonzero rate of progress σ, while maintaining a distance of at most (r + ε) and no less

than
(
r + ε

2

)
from it.

In order to prove the theorem, we will make use of the following Proposition.

Proposition 4.2. Let xt denote the robot position at time t, with t = 0 corresponding

to the beginning of the wall following phase. Suppose that the flow xt is continuous, k =

arg min
i
d(x0, Oi) with Oi ∈ O and ε satisfies (4.10). Then d(xt, ∂F) < ε implies k =

arg min
i
d(xt, Oi) for all t > 0.

Proof. Included in Appendix C.2.

Proof of Theorem 4.1. Included in Appendix C.2.

The robot exits the wall following mode and returns to the path following mode once it

encounters the path again, i.e., when α∗ = max{α ∈ [0, 1] | P(α) ∈ B (x, d(x, ∂F))} > α∗s.

An immediate Corollary of Theorem 4.1, along with path continuity of P and Assump-

tions 4.1 and 4.2 is the following:
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Corollary 4.1. If the robot enters the wall following mode, it will exit it in finite time and

return to the path following mode.

Finally, since both the path following law [8] and the wall following law generate con-

tinuously differentiable flows, we find it useful to explicitly state the following result, in the

sense of sequential composition [35].

Theorem 4.2. In a workspace where Assumption 4.1 is satisfied, any composition of path

following and wall following phases generates a unique piecewise continuously differentiable

flow for x, defined for all future time.

4.3.4 Extension to Nonholonomic Robots

As shown in [7] and Section 3.2, the preceding results can easily be extended for the case

of a differential-drive robot driving towards a goal x∗, whose dynamics are given in (4.1).

Here, we will use a slightly different control law since the robot possesses a gripper and must

only move in the forward direction to grasp objects. The following inputs are used

v = max

−k
cosψ

sinψ


T (

x−ΠLFv(x)(x
∗)
)
, 0

 (4.16)

ω = −k atan2 (β2, β1) (4.17)

with

β1 =

cosψ

sinψ


T (

x−
ΠLFω(x)(x

∗) + ΠLFL(x)(x
∗)

2

)
(4.18)

β2 =

− sinψ

cosψ


T (

x−
ΠLFω(x)(x

∗) + ΠLFL(x)(x
∗)

2

)
(4.19)

in order to constrain the robot motion to forward only and align with the desired target

respectively. Here LFv(x),LFω(x) are used as in [7] (see (3.10) and (3.11)).

Based on the preceding analysis, for a differential drive robot, we will use x∗ = P(α∗)
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(with α∗ shown in (4.6)) in the path following mode and x∗ = xp(x) in the wall following

mode. The following Theorem summarizes the qualitative properties of the wall following

law for differential drive robots.

Theorem 4.3. With a selection of ε as in (4.10), the unicycle wall following law in (4.16),

(4.17) with x∗ = xp(x) as in (4.14) leaves the robot’s free space F positively invariant under

its unique continuously differentiable flow, aligns the robot with a tw(x) (according to the

selection of a in (4.8)) in finite time and steers the robot along the boundary of a unique

obstacle in O in a clockwise or counterclockwise fashion (depending on a) with a nonzero

rate of progress σ afterwards, while maintaining a distance of at most (r + ε) from it.

Proof sketch. Included in Appendix C.2.

We summarize the proposed method for switching between a path following and a wall

following phase and generating velocity commands for a differential drive robot following

a reference path P in Algorithm 4.1, with the definition of an auxiliary symbolic action

NavigateRobot(P, r, ε, δ).

4.4 Reactive Planning for Gripping Contact

In this Section, we describe a method for generating suitable motion commands online for

two objects in contact, of which one is a differential drive robot and uses a gripper to

push the other, passive object on the plane. Our method consists of generating “virtual”

commands for different points of interest in the robot-object pair and translating them to

“actual” commands for the robot using simple kinematic maps.

4.4.1 Gripping Contact Kinematics

Consider the robot gripping an object i, as shown in Fig. 4.2. We can find the position of

the object center of mass xi ∈ W from the position of the robot center of mass x as

xi := x + (ρi + r) e‖ (4.20)
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Algorithm 4.1 Generating velocity commands for a nonholonomic robot with radius r
following a reference path P.
function NavigateRobot(P, r, ε, δ)

mode← PathFollowing . Initialize mode
do

x← Read Robot State
ψ ← Read Robot Orientation
ρx ← Read LIDAR
d← min

θ
ρx(θ)− r

α∗ ← Find maximum path index . (4.6)
if mode = PathFollowing then
LFL(x)← Find local free space . (3.5)
x∗ ← P(α∗)
if d < ε then

mode← WallFollowing
α∗s ← α∗

a← Find wall following direction . (4.8)
end if

else if mode = WallFollowing then
θm ← arg min

θ
ρx(θ)

nw ← −(cos θm, sin θm)
tw ← (sin θm,− cos θm)
xoffset ← x− (ρx(θm)− r)nw
xp ← xoffset + ε

2nw + a ε
√

3
2 tw

x∗ ← xp
if α∗ > α∗s then

mode← PathFollowing
end if

end if
v ← Find Linear Velocity command . (4.16)
ω ← Find Angular Velocity command . (4.17)
uku ← (v, ω)
COMMAND uku

while ||x− P(1)|| > δ
return

end function
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where φi = atan2(xi − x) and e‖ = (cosφi, sinφi) ∈ R2 is the unit vector along the line

connecting the two bodies. Since, the velocity of the object center of mass will be ẋi =

ẋ + (ρi + r) φ̇i e⊥ with e⊥ = (− sinφi, cosφi) ⊥ e‖, and since the robot has a grip on the

object along its line of motion, so that the orientation of the robot ψ is always equal to the

robot-object bearing angle φi, we can use (4.1) to write

ẋi = Ti uku (4.21)

with the Jacobian Ti given by

Ti =

cosψ −(ρi + r) sinψ

sinψ (ρi + r) cosψ

 (4.22)

and uku = (v, ω) the input vector as defined above.

Similarly, consider the circumscribed circle enclosing the robot and the object with radius

(ρi + r), as shown in Fig. 4.2. Its center point is located at

xi,c = x + ρi e‖ (4.23)

Following a similar procedure as above, we can show that

ẋi,c = Ti,c uku (4.24)

with the Jacobian Ti,c given by

Ti,c =

cosψ −ρi sinψ

sinψ ρi cosψ

 (4.25)

57



4.4.2 Generating Virtual Commands

For the planning process, the fact that both Ti and Ti,c are always non-singular implies

that we can describe the robot-object pair as either a dynamical system of the form

ẋi = ui(xi) (4.26)

or a dynamical system of the form

ẋi,c = ui,c(xi,c) (4.27)

since we can always prescribe (virtual) arbitrary velocity commands ui or ui,c for either

the object itself or for the center point and then translate them to (actual) inputs uku

through (4.21) or (4.24) respectively (uku = T−1
i ui or uku = T−1

i,c ui,c).

Since the circumscribed circle centered at xi,c is the smallest circle enclosing both the

robot and the object and since Assumption 4.1 guarantees only that η > 2(r + maxk ρk),

we conclude that it is beneficial to consider the dynamical system (4.27) (and generate

virtual commands for the center point xi,c) when following the path P that the high-level

planner provides. However, this will eventually position xi,c to p∗i , instead of the object xi

(which is desired). Therefore, once the center point is placed to p∗i , we have to switch to

the system (4.26) and generate virtual commands for the object xi to carefully position it

to p∗i . Assumption 4.2 guarantees that this is always possible. We can think of generating

commands ui and ui,c as a trade-off between careful object positioning and agility in avoiding

obstacles respectively.

4.4.3 LIDAR Range Transformation

As described above, the robot-object pair is treated as a single holonomic agent with radius

ρi + r centered at xi,c when following the reference path P. However, we know that the

LIDAR is positioned on the robot and its range measurements are given with respect to x.

Therefore, we need a mechanism for translating these measurements from x to xi,c. To this
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end, we describe the observed points from the LIDAR using the function xLIDAR : (−π, π]→

W

xLIDAR(θ) = x + ρx(θ) (cos θ, sin θ) (4.28)

and find the equivalent ranges from xi,c as

ρxi,c(θ) = min{R− ρi, ||xLIDAR(θ)− xi,c||} (4.29)

since R− ρi is the minimum distance that can be observed from xi,c when no obstacles are

present and corresponds to the ray along the orientation ψ of the robot towards the object.

We summarize the proposed algorithm for switching between a path following and a

wall following phase and generating velocity commands for a robot-object pair following

a reference path P in Algorithm 4.2, with the definition of an auxiliary symbolic action

NavigateRobotObject(P, r, ρi, ε, δ).

4.5 Low-Level Implementation of Symbolic Language

In this Section, we describe the low-level implementation and realization of the three sym-

bolic actions introduced in Section 4.1, used to solve our assembly problem.

4.5.1 Action MoveToObject

The low-level implementation of this symbolic action is quite straightforward, since the

robot just needs to follow the plan provided by the high-level planner and navigate to a

specific object using the auxiliary action NavigateRobot. The only caveat is that the

robot needs to be aligned with the object it needs to pick up in order to engage the gripper.

Since, no continuous law can guarantee both position and orientation convergence for a

nonholonomically-constrained, differential drive robot [34] and a discontinuous law needs to

be introduced, we compute

α̃ := min{α ∈ [0, 1] | P(α) ∈ B (pi, ρi + r)} (4.30)
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Algorithm 4.2 Generating velocity commands for a nonholonomic robot with radius r
moving an object of radius ρi along a reference path P.
function NavigateRobotObject(P, r, ρi, ε, δ)

mode← PathFollowing . Initialize mode
do

x← Read Robot State
ψ ← Read Robot Orientation
ρx ← Read LIDAR
xi,c ← Find center of circumscribed circle . (4.23)
ρxi,c ← Transform LIDAR readings . (4.29)
d← min

θ
ρxi,c(θ)− (r + ρi)

α∗ ← Find maximum path index . (4.6)
if mode = PathFollowing then
LFL(xi,c)← Find local free space . (3.5)
x∗i,c ← ΠLFL(xi,c)(P(α∗))
if d < ε then

mode← WallFollowing
α∗s ← α∗

a← Find wall following direction . (4.8)
end if

else if mode = WallFollowing then
θm ← arg min

θ
ρxi,c(θ)

nw ← −(cos θm, sin θm)
tw ← (sin θm,− cos θm)
xoffset ← xi,c −

(
ρxi,c(θm)− r − ρi

)
nw

xp ← xoffset + ε
2nw + a ε

√
3

2 tw
x∗i,c ← xp
if α∗ > α∗s then

mode← PathFollowing
end if

end if
ui,c ← −k(xi,c − x∗i,c) . Virtual commands
uku ← T−1

i,c ui,c . Actual commands
COMMAND uku

while ||xi,c − P(1)|| > r + δ
return

end function
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and “truncate” the path to P([0, α̃]). In this way, the robot will navigate to P(α̃) (within

a δ tolerance) which satisfies ||P(α̃) − pi|| = ρi + r as desired. Then, in order to align the

robot with the object, the linear command v is set to zero and the angular command is set

to

ω = −k(φi − ψ) (4.31)

until φi = ψ. The low-level implementation is shown in Algorithm 4.3.

4.5.2 Action PositionObject

From the preceding analysis in Section 4.4, we can construct the PositionObject algorithm

as shown in Algorithm 4.4. Since the task of NavigateRobotObject is to bring the

object close enough to the destination in order to allow careful positioning (allowed by

Assumption 4.2), a final positioning step is required. To this end, instead of generating

virtual commands for the center of the circumscribed circle of the robot-object pair as

shown in (4.27), we generate commands for the center of the object itself, as shown in (4.26),

according to the following law

ui = −k(xi − p∗i ) (4.32)

These virtual commands are then translated to actual robot commands according to (4.21).

Algorithm 4.3 Robot navigation to object pi along path P
1: function MoveToObject(i,P)
2: ε← Set Wall Following Tolerance . ε < η
3: δ ← Set Placement Tolerance
4: α̃← min{α ∈ [0, 1] | P(α) ∈ B (pi, ρi + r)}
5: NavigateRobot(P([0, α̃]), r, ε, δ)
6: while |φi − ψ| > δ do
7: uku ← (0,−k(φi − ψ)) . Align with object
8: COMMAND uku
9: end while

10: g ← 1 . Engage gripper
11: return
12: end function
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Algorithm 4.4 Position object i to p∗i along path P
1: function PositionObject(i,P)
2: ε← Set Wall Following Tolerance . ε < η
3: δ ← Set Placement Tolerance
4: NavigateRobotObject(P, r, ρi, ε, δ)
5: do
6: x← Read Robot State
7: ψ ← Read Robot Orientation
8: xi ← Find object position . (4.20)
9: ui ← −k(xi − p∗i ) . Virtual commands

10: uku ← T−1
i ui . Actual commands

11: COMMAND uku
12: while ||xi − p∗i || > δ
13: g ← 0 . Disengage gripper
14: return
15: end function

Algorithm 4.5 Free robot navigation along path P
1: function Move(P)
2: ε← Set Wall Following Tolerance . ε < η
3: δ ← Set Placement Tolerance
4: NavigateRobot(P, r, ε, δ)
5: return
6: end function
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4.5.3 Action Move

This action is similar to MoveToObject, but there is no final orientation requirement. Its

low-level implementation is shown in Algorithm 4.5.

Note here that the formal results accompanying both the path following phase [8] and

the wall following phase (Theorems 4.1 and 4.3) along with Theorem 4.2 guarantee that

every symbolic action command will be successfully executed.

4.6 Numerical Examples

In this Section, we provide numerical examples6 of assembly processes in various environ-

ments using the symbolic action commands described above.

4.6.1 Environment Packed Circular Obstacles

First, we test our algorithm in a rectangular, 20x20m workspace, packed with circular ob-

stacles, whose position and size are unknown to the deliberative planner. The minimum

separation η between the obstacles is chosen to be only slightly above (e.g 5cm) the mini-

mum allowed value prescribed by Assumption 4.1, in order to demonstrate the validity of our

approach, deriving from the formal guarantees of Theorem 4.1. The goal is to place an object

to a desired position, shown in Fig. 4.5. The deliberative planner outputs a plan compris-

ing of two actions: MoveToObject(1,P1) → PositionObject(1,P2), whose sequential

execution and the corresponding reference paths P1,P2 are depicted in Fig. 4.5.

4.6.2 Cluttered Environment with Walls

Here we demonstrate the execution of a more challenging task. The robot should position the

two obstacles depicted in Fig. 4.6 to their predefined positions within a polygonal workspace

with walls, whose locations are provided a-priori to the deliberative planner, and then re-

turn to a “nest” location. The workspace is packed with several convex, not-necessarily

circular obstacles. As shown in Fig. 4.6, the deliberative planner outputs a high-level

plan comprising of five actions: MoveToObject(1,P1) → PositionObject(1,P2) →
6All simulations were run in MATLAB using ode45 and a gain k = 2.
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Figure 4.5: A depiction of a packed two stage assembly process with a fixed timestep, with the
separation value just above the minimum allowed value.

MoveToObject(2,P3) → PositionObject(2,P4) → Move(P5), which is successfully

executed by the reactive planner. An example for an object trajectory during this execution

is shown in Fig. 4.1. Notice that, in contrast with several reactive wall following schemes

that require an estimate of the wall curvature, our scheme can easily handle obstacles with

corners. It is also worth noting that the deliberative planner hit the maximum number of

expansions allowed and had difficulties extracting a feasible plan when it was provided the

exact position and size of every obstacle, due to the highly packed construction. This high-

lights another benefit of our approach; we can significantly reduce the computational load of

high-level planners by tasking them only with the extraction of the action sequence required,

and using the reactive planner for local obstacle avoidance and convergence online. This

happens because the computational load of the reactive planner remains the same regardless

of the number of obstacles.

Finally, it is worth noting that the proposed scheme is capable of executing a sequence

of symbolic commands provided by the deliberative planner, even when Assumptions 4.1

or 4.2 or the obstacle convexity are not satisfied. In the accompanying video submission of

[203]7, we provide examples of successful assemblies even in the absence of both obstacle

convexity and enough separation.

7https://youtu.be/_07_q-edjmM
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Figure 4.6: An illustration of the assembly process described in Section 4.6.2, with a fixed timestep.
The walls and boundaries of the workspace, known to the deliberative planner, are shown in black
and the unexpected obstacles handled by the reactive planner are shown in grey.
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Chapter 5

Reactive Execution of Symbolic

Rearrangement Plans with Minitaur

In this Chapter, we expand the architecture presented in Chapter 4 and demonstrate the

physical rearrangement of wheeled stools in a moderately cluttered indoor environment, by

a quadrupedal robot that autonomously achieves a user’s desired configuration. The robot’s

behaviors are planned and executed by a three layer hierarchical architecture consisting

of: an offline symbolic task and motion planner; a reactive layer that tracks the reference

output of the deliberative layer and avoids unanticipated obstacles sensed online; and a

gait layer that realizes the abstract unicycle commands from the reactive module through

appropriately coordinated joint level torque feedback loops. This Chapter also extends prior

formal results about the reactive layer to a broad class of non-convex obstacles. Our design

is verified both by formal proofs as well as empirical demonstration of various assembly

tasks.

The Chapter is organized as follows. Section 5.1 describes the problem and summarizes

our approach. Section 5.2 describes each component of the hierarchical control structure

(deliberative, reactive and gait controller) separately, and Section 5.3 presents our formal

results on reactive wall following for non-convex obstacles. Finally, Section 5.4 begins with

the description of our hardware infrastructure based on ROS and continues with the pre-
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Figure 5.1: LIDAR-equipped Minitaur [65] mobipulating [130] two stools using gaits [49] called out
by a deliberative/reactive motion planner (Chapter 4).

sentation of our empirical results for different classes of experiments.

5.1 Problem Formulation

As in Chapter 4, Minitaur is assumed to operate in a closed and compact workspaceW ⊂ R2

whose boundary ∂W is assumed to be known, and is tasked to move each of n ∈ N mov-

able disk-shaped objects, centered at p := (p1,p2, . . . ,pn) ∈ Wn with a vector of radii

(r1, r2, . . . , rn) ∈ (R>0)n, from their initial configuration to a user-specified goal configura-

tion p∗ := (p∗1,p
∗
2, . . . ,p

∗
n) ∈ Wn. For our hardware implementation, the movable objects

are stools with five caster wheels. We assume that both the initial configuration and the

target configuration of the objects are known. In addition to the known boundary of the

workspace ∂W, the workspace is cluttered by an unknown number of fixed, disjoint, poten-

tially non-convex obstacles of unknown position and size, denoted by O := (O1, O2, . . .). To

simplify the notation, we also define Ow := O ∪ ∂W.

As discussed in Section 3.1, for (reactive) planning purposes, Minitaur is modeled as a

first-order, nonholonomically-constrained, disk-shaped robot, centered at x ∈ R2 with radius

r ∈ R>0 and orientation ψ ∈ S1. The model dynamics are described by

(ẋ, ψ̇) = B(ψ)uku (5.1)
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with B(ψ) :=

cosψ sinψ 0

0 0 1


T

the differential constraint matrix and uku := (v, ω) the

input vector consisting of a linear and an angular command. Similarly to Chapter 4, we

adopt Assumptions 4.1 and 4.2 to facilitate the proofs of our formal results, which are not

necessary for the existence of some solution to the problem.

The robot is assumed to have access to its state1 (x, ψ) and to possess a LIDAR for

local obstacle avoidance, positioned at x, with a 360◦ angular scanning range and a fixed

sensing range R ∈ R>0. It is also assumed to use a gripper for moving objects, which can be

engaged or disengaged; we will write g = 1 when the gripper is engaged and g = 0 when it is

disengaged. Of course, Minitaur is only an imperfect unicycle (as discussed in Section 3.1)

and does not actually possess a gripper; it has to successfully coordinate its limbs and walk

while following a path, avoid an obstacle or lock an object in place and move it to a desired

location. Hence, the reactive planner’s commands (uku, g) must in turn be translated to

appropriate low-level commands on the robot’s joint level.

The aforementioned description imposes a hierarchical structure, as shown in Fig. 5.2.

The deliberative planner is endowed with a symbolic command set comprised of three ac-

tions: MoveToObject(i,P), PositionObject(i,P) and Move(P). Here i is the desired

object and P is a piecewise continuously differentiable path P : [0, 1] → W connecting an

initial and a final position, which can be seen as a “geometric suggester” in the sense of [89].

This command set suggests the following problem decomposition into the complementary

sub-problems:

1. In the deliberative layer, find a symbolic plan, i.e., a sequence of symbolic actions whose

successful implementation is guaranteed to complete the task.

2. In the reactive layer, implement each of the symbolic actions by finding appropriate

commands (uku, g) according to the robot’s equations of motion shown in (5.1), while

avoiding the perceived obstacles (unanticipated by the deliberative planner) encoun-
1Since legged state estimation falls beyond the scope of this work, localization is performed using a Vicon

motion capture system [212].

68



Deliberative layer

Deliberative Search
Offline

Symbolic action sequence

Reactive layer

Reactive, Closed-Loop Control

Gait layer

Force/Torque control

uku, g

x

{

{Online

Robot

Motor
commands

Feedback from IMU/joints

Feedback from 
Vicon/LIDAR

Figure 5.2: A coarse block diagram of the planning and control architecture, following Fig. 1.1
without including the interface layer, since it is assumed that each provided high-level action is
always feasible. In the deliberative layer, a high-level planner [210] outputs a sequence of symbolic
actions that are realized and executed sequentially using a reactive controller that issues unicycle
velocity (uku) (see Chapter 4), and abstract gripper (g) commands (see Section 5.2.2). The low-
level gait layer uses the commands instructed by the reactive planner to call out appropriately
parametrized joint-level feedback controllers (see [49] and Section 5.2.3) for Minitaur.

tered along the way.

3. In the gait layer, use a hybrid dynamical systems framework with simple guard condi-

tions to choose between constituent gaits, providing a unicycle interface to the reactive

layer, controllable by (uku, g), regardless of the state of the agent and objects.

5.2 System Architecture

In this Section, we describe the three-layer architecture used to accomplish the task at hand,

shown in Fig. 5.2. After a description of the offline deliberative planner, we proceed with

the features of the online reactive module and the new, low-level layer of control (the “gait”

layer), used to achieve on Minitaur the commands instructed by the reactive layer.

5.2.1 Deliberative Layer

Similarly to Section 4.2, the deliberative layer finds a feasible path through the joint configu-

ration space of the robot and anticipated environment. It takes as input a metric description
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of the world, including object and obstacle geometry, and proceeds in two stages. First, it

discretizes the environment by constructing a factored random geometric graph [208]. The

factored graph is the product of n+ 1 probabilistic roadmaps, one for each object and one

for the robot. Each edge in the factored graph represents a feasible motion; these motions

are either paths of the robot while the other objects do not move, or paths of the robot

carrying a single object. Paths through this graph then represent continuous paths through

configuration space.

This graph construction is asymptotically optimal; as the number of vertices in each

factor increases, the cost of the best path through the graph approaches the cost of the

optimal path. In addition, the factored representation allows us to quickly construct graphs

with an exponential number of vertices. However, the number of graph vertices is exponential

in n. We can search for a near-optimal path through the graph in a reasonable amount of

time using the angelic hierarchical A* algorithm [128, 210]. This algorithm interleaves the

search over high-level decision, like which objects to grasp and in which order, and over

lower-level details, like where objects should be placed, by using a hierarchy of abstract

operators, which are implicitly-defined sets of plans that achieve a specified effect. For

example, the operator MoveToObject(i, ·) represents any plan that eventually reaches

object i.

We can derive bounds on the cost of any primitive plan contained in an abstract operator.

For example, the cost of any plan in MoveToObject(i, ·) starting from a position x is

greater than the Euclidean distance from x to object i. If we find some path from x to

object i, its cost is an upper bound on the cost of the best plan from x to object i. Using

these bounds, we can estimate the cost of plans composed of sequences of abstract operators,

allowing us to prune bad plans early and refine promising plans first. More importantly,

these bounds allow us to prove that a symbolic plan is feasible before providing it to the

reactive layer.
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5.2.2 Reactive Layer

As shown in Fig. 5.2, the reactive layer is responsible for executing the symbolic action

sequence, i.e., the output of the deliberative planner, using Algorithms 4.3, 4.4 and 4.5.

As described in Section 4.3, we decompose the reactive behavior into two separate modes

determined by the absence or presence of unanticipated obstacles:

Anticipated Environment

In the absence of unanticipated obstacles, the robot is in path following mode. Based on

the results of [7, 8], this mode is responsible for steering the robot along a reference path

P given by the deliberative planner. This is achieved by following the projected-path goal

P(α∗) with α∗ determined as

α∗ := max{α ∈ [0, 1] | P(α) ∈ B (x, d(x, ∂F))} (5.2)

constantly updated as the agent moves along the path. Here d(x, ∂F) denotes the distance

of the agent from the boundary of the free space F , determined as

d(x, ∂F) = min
θ
ρx(θ)− r (5.3)

with ρx(θ) denoting the polar curve describing the LIDAR measurements [7] (see (4.4)).

Unanticipated Obstacles

In the presence of unanticipated obstacles, i.e., when d(x, ∂F) < ε with ε a desired tolerance,

the robot switches to wall following mode. In this mode, described in Section 4.3.3, the robot

follows the wall-following goal xp(x) defined as

xp(x) := xoffset(x) +
ε

2
nw(x) + a

ε
√

3

2
tw(x) (5.4)

with xoffset(x) := x− (ρx(θm)− r)nw(x) an offset point from the obstacle boundary, θm :=

arg min
θ
ρx(θ) the LIDAR angle corresponding to the minimum distance from the obstacle,
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nw(x) := −(cos θm, sin θm) the normal vector to the boundary of the obstacle at the point

of minimum distance and tw(x) := (sin θm,− cos θm) the corresponding tangent vector.

Finally, a ∈ {−1, 1} denotes the wall following direction (1 for CCW motion and -1 for CW

motion). The robot exits the wall following mode and returns to the path following mode

once it encounters the path again, i.e., when α∗ = max{α ∈ [0, 1] | P(α) ∈ B (x, d(x, ∂F)} >

α∗s, with α∗s the saved path index at the beginning of the wall following mode. As outlined

in Theorem 4.1, the wall following law

u(x) = −k(x− xp) (5.5)

provides an easy formula for wall following within specified bounds, even in the absence of

obstacle curvature information. This allows for fast computation, which is critical in our

legged robot setting. The reader is again referred to (4.8) for the choice of wall following

direction and to Theorem 4.3 for an extension to differential drive robots.

5.2.3 Gait Layer

Hybrid Dynamical System Structure

The gait layer’s primary function is to interpret simple unicycle commands uku = (v, ω), as

well as simple gripper commands by mapping them into physical joint level robot behaviors

and transitions between them that realize the reactive layer’s abstracted gripping/releasing

unicycle model in the physical world. This structure naturally lends itself to the hybrid

dynamical systems framework and we conjecture that the following architecture meets the

requirements of a formal simple hybrid dynamical manipulation and self-manipulation sys-

tem [87].

Let xM ∈ XM be the robot pose and joint state and let g := (gs, gv, ga) ∈ {0, 1}3

be a vector representing gripper state, where gs ∈ {0, 1} representing “open” and “closed”

respectively, gv ∈ {0, 1}, representing zero and non-zero gripper transition velocity, and

ga ∈ {0, 1} representing zero and non-zero gripper command from the reactive layer, with g

arranged as yet another component of the gait layer’s state. Thus, taking xM+ = (xM ,g) ∈
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XM × {0, 1}3 as the hybrid state, our hybrid system modes arise from the disjoint union of

the geometric placement indexed by the 4 mutually exclusive gripper conditions as follows:

xM+ ∈



MW = {xM+ | gs = 0, gv = 0} “Walk”

MM = {xM+ | gs = 0, gv = 1} “Mount”

MP = {xM+ | gs = 1, gv = 0} “Push Walk”

MD = {xM+ | gs = 1, gv = 1} “Dismount”

where the guard condition, ga = 1, triggers appropriate resets so that the hybrid mode

system changes in the recurring sequence: MW →MM →MP →MD →MW ...

Mode Dynamics

A formal representation of the legged controllers and resulting closed loop dynamics used

to realize the abstracted unicycle grip/release behaviors lies beyond the scope of this work.

Instead, we now provide a brief, informal account of each mode as follows.

Walk: Incorporated here as reported in Section 3.1, this behavior is adapted from the still

developing insights of [49]. While the kinematic model of the Minitaur platform prevents it

from literal unicycle behavior in quasi-static operation, the underlying family of controllers

overcomes this deficiency by dynamically exploiting higher-order effects, such as bending of

the limbs and frame, as well as toe-slipping.

Mount: The mounting behavior, a physical realization of the abstract (gs, gv) = (0, 1)

state, comprises a sequential composition that we conjecture can be placed within the formal

framework of [35]. Informally, the behavior begins by leaping with the front legs, while

maintaining ground contact with the rear, as shown in Fig. 5.3-2. During this “flight” phase,

an attempt to servo to the desired yaw is made by generating a difference in ground reaction
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Figure 5.3: Consecutive snapshots of a successful “Mount” onto an object.

forces in the stance legs according to the control law:

FLH = −1

2
(kp(ψdes − ψ)− kdψ̇)

FRH =
1

2
kp(ψdes − ψ)− kdψ̇

where FLH is the ground reaction force on the body generated by the left hip, and FRH is the

analogous force generated by the right hip. Note that this method does not use Minitaur’s

kinematic configuration as a means of measuring ψ, and as such is able to continue to servo

to the desired heading even in the presence of toe slipping or bending in the body. However,

as contact modes are not assured and Vicon data is not available to the gait layer, the

measurement of ψ is obtained by integrating gyroscope data, which for this short behavior

(less than a second) is reasonably accurate. In this Chapter, we implicitly assume that

the mounting behavior is always successful. Since failures might occur, we intend to relax

this assumption in the future by introducing feedback in the hybrid mode system presented

above.

Push-Walk: This behavior attempts to mask the underlying dynamics of the system

consisting of the Minitaur platform with the front two limbs in various contact modes with

a holonomic (albeit not friction-less) stool, and the rear two in varying contact modes with

the ground. In Section 4.4.2, we introduced a method for generating “virtual” commands

for different points of interest in the holonomic robot-object pair when a gripper is utilized,

and translating them to “actual” commands for the differential drive robot using simple
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Figure 5.4: Intuition underlying how intermittent contact (yaw push-walk) provides larger moments
on the system than the moments produced in a triple stance (fore-aft push-walk). In (1), the presence
of both toes on the stool kinematically constrains it so that any reaction forces generated by those
toes are internal forces of the Minitaur-Stool system, where as in (2a) and (2b), the stool is free to
rotate, allowing the single front toe to generate a moment on the Minitaur body.

kinematic maps. The goal of this behavior is to exploit this result and use Minitaur’s front

legs as a virtual gripper.

The behavior is divided into two components; the fore-aft push-walk, and the yaw push-

walk. The fore-aft push-walk is simply the previously described walking gait [49], modified

such that the front limbs cannot retract to break contact with the stool. The yaw push-walk

is a bit more dynamic, as the empirical application of the fore-aft walk in turning situations

proved to have prohibitively small radius of curvature. To improve upon this, the front legs

are allowed to retract as they would during walking, breaking and re-establishing contact

with the stool on each step. The result is that the Minitaur is “freed” from the kinematic

constraint of being unable to turn sharply enough in a manner described intuitively in

Fig. 5.4, avoiding triple stance (Fig. 5.4.1) in favor of the more strongly yawing torques

arising from double stance (Fig. 5.4.2a,b).

Dismount: Finally, the (gs, gv) = (1, 1) state is encoded by employing the walking be-

havior with controller parameters set as - 1) the height of the walk, or the nominal length

of a stance leg is made nearly maximum, and 2) a simple open-loop fore-aft trajectory is

programmed to linearly ramp up the speed to a pre-determined backward rate and then

back down to zero.
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5.3 Extension of Reactive Layer to Non-Convex Obstacles

In this Section, we extend the result of Theorem 4.1 regarding the wall following law (5.5)

to a class of non-convex obstacles satisfying specific criteria. We begin with some notation

and basic definitions for non-convex obstacles.

Definition 5.1 ([44]). Let X be a Hilbert space and S a closed set of X . For x ∈ X we

denote by ProjS(x) the (possibly empty) set of nearest points of x in S. When ProjS(x)

is a singleton, its single point is called the metric projection and denoted by ΠS(x), i.e.,

ProjS(x) = {ΠS(x)}.

Definition 5.2 ([44]). A vector v ∈ X is said to be a proximal normal vector of S at x ∈ S

whenever there exists t > 0 such that x ∈ ProjS(x + tv). The set of such vectors is the

proximal normal cone of S at x, denoted by NP (S;x).

Definition 5.3 ([44]). Given an extended real r ∈ [0,+∞] and a real α > 0, we say that a

closed set S of X is (r, α)-prox-regular at x0 ∈ S if for every x ∈ S ∩ B (x0, α) and every

direction ζ ∈ NP (S;x) ∩ B (0, 1), we have that x ∈ ProjS(x + tζ) for every real t ∈ [0, r].

We say that S is r-prox-regular at x0 ∈ S if it is (r, α)-prox-regular at x0 for some α > 0

and we simply say that S is prox-regular at x0 if there exists r ∈ [0,+∞] such that S is

r-prox-regular at x0. Finally, S is prox-regular (resp. r-prox-regular) if it is prox-regular

(resp. r-prox-regular) at every point x ∈ S. It is known [44] that S is prox-regular if and

only if there exists a continuous function ρ : S → [0,∞], called the prox-regularity function,

such that for every x ∈ S and every ζ ∈ NP (S;x) ∩ B (0, 1) one has x ∈ ProjS(x + tζ) for

every real t ∈ [0, ρ(x)]. The definition of prox-regularity itself is relatively abstract, but we

attempt to ground it in the following paragraphs and Fig. 5.5.

It is also useful to include the definitions of the following enlargements of the set S,
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according to [44]

RS(x0, r, α) :={x + tv : x ∈ S ∩ B (x0, α) , t ∈ [0, r],

v ∈ NP (S;x) ∩ B (0, 1)}

Uρ(·)(S) :={x ∈ X : ∃y ∈ ProjS(x)with dS(x) < ρ(y)}

With these definitions, we are led to the following lemma.

Lemma 5.1. If S is ρ(·)-prox-regular, then the collection of sets {RS(x, ρ(x), α) : x ∈ S}

with α > 0 corresponding to the prox-regularity condition forms an open cover of Uρ(·)(S).

Proof. Included in Appendix C.3.

In [44, Theorem 2.3], it is also shown that if S is (r, α)-prox-regular at a point x0, then

ΠS is well-defined and locally Lipschitz continuous on the set RS(x0, r, α). Hence, using

Lemma 5.1, we arrive at the following result.

Lemma 5.2. If S is ρ(·)-prox-regular, then ΠS is well-defined and locally Lipschitz contin-

uous on Uρ(·)(S).

In this way, we can formulate the following theorem, that extends the guarantees of our

wall-following control law to ρ(·)-prox-regular, non-convex obstacles.

Theorem 5.1. In the presence of ρ(·)-prox-regular, convex2 or non-convex isolated obstacles

O := (O1, O2, . . .) in the workspace satisfying Assumption 4.1 with min ρOi > r + ε for

each Oi and ε chosen as in (4.10), the wall following law (5.5) has no stationary points,

leaves the robot’s free space F positively invariant under its unique continuously differentiable

flow, and steers the robot along the boundary of a unique obstacle in O in a clockwise or

counterclockwise fashion (according to the selection of a) with a nonzero rate of progress,

while maintaining a distance of at most (r + ε) and no less than
(
r + ε

2

)
from it.

Proof. Included in Appendix C.3.
2Convex bodies are ρ(·)-prox-regular by construction [44].
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(a) (b)

Figure 5.5: Intuitive description of prox-regularity, following Proposition 5.1: (a) An example of a
non-convex body that fails to be r-prox-regular; since 0 < ||x1−x0|| < 2r, the existence of a tangent
closed ball of radius r to both x0 and x1 violates the r-oval-segment criterion, (b) An example of
an r-prox-regular non-convex body in R2, satisfying Proposition 5.1.

We include the following definition to provide some intuition on the abstract definition

of prox-regularity and its relation to real obstacles in the physical world.

Definition 5.4 ([152]). For any r > 0 and x0,x1 ∈ X with ||x1 − x0|| < 2r, the r-oval

segment ∆r(x0,x1) in X with endpoints x0,x1 is defined as the intersection of all closed

balls with radius r containing x0,x1.

Then it can be shown that a closed set S of X is r-prox regular if and only if for

any pair of points x0,x1 ∈ S with 0 < ||x1 − x0|| < 2r, the r-oval segment ∆r(x0,x1)

contains a point of S different from x0,x1, or equivalently S ∩∆r(x0,x1) 6= {x0,x1}. Prox-

regularity can, therefore, be seen as a means of defining an appropriate “length-scale” for

the “nonconvexities” (e.g. valleys or traps) of the obstacle that do not result in a controller

failure. Fig. 5.5 provides one example of non-convex body for which this prox-regularity

criterion fails and one example for which it succeeds. As a guide, we provide the following

sufficient condition, based on curvature, for prox-regularity in R2 without proof.

Proposition 5.1. A closed, compact, simply-connected body S ⊂ R2 is r-prox-regular if any

tangent closed ball of radius r at its boundary ∂S has only one common point with S.

In the future, we would like to use the formal guarantees of Theorem 5.1, whose assump-

tions are mere sufficient conditions, to extend the application of doubly-reactive planners

[7] to non-convex obstacles in Hilbert spaces.
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5.4 Experimental Results

In this Section, we begin with a brief description of the hardware and software setup and

continue with a description of the experiments run and our empirical results.

5.4.1 Setup

ROS Infrastructure

For the hardware and software experimental setup, we use a system structure similar to

that presented in Section 3.4, shown in Fig. 5.6. A custom ROS node on the Raspberry Pi

receives uku and the desired mode of operation (“Walk”, “Mount”, “Push-Walk”, “Dismount”)

as ROS messages from the desktop computer and forwards them to the Minitaur mainboard

(microcontroller implementing the gait layer functionalities) at 100Hz over a 115.2 Kbps

USART connection. The Raspberry Pi acts as the ROS Master that resolves networking for

the rest of the ROS nodes: a dedicated ROS node is activated as soon as the system boots

and subscribes to the uku ROS topic (using the Twist message type), as well as an additional

one capable of defining the desired behavior. A final ROS node running on the Raspberry

Pi, taken from [166], forwards LIDAR measurements (using the LaserScan message type)

to the desktop computer.

The pose information, consisting of the horizontal plane coordinates of the robot and

all the objects and the orientation of the robot, is extracted from a Vicon Motion Capture

System [212] at 100 Hz, using a set of motion capture cameras positioned around a 20m

× 6m arena. The desktop computer receives the online data from Vicon using the ROS

package mocap_vicon [114] and forwards it to the desktop computer running ROS. The

reactive layer runs at approximately 30Hz, which is more than enough for the robot to

recover if any obstacle is detected, and the gait controller runs at 1KHz.

LIDAR Measurement Handling

The LIDAR measurements are pre-processed by the desktop computer before being used

by the reactive planner. First of all, following the requirements of [7], range measurements
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greater than the limit R are set to R. All measurements are projected on the horizon-

tal plane using the robot pitch angle measurement provided by the motion capture sys-

tem. Finally, when the reactive layer executes a symbolic action MoveToObject(i,P)

or PositionObject(i,P), it is critical to recognize the points of the LIDAR pointcloud

associated with the object i and not use them for the calculation of the local freespace,

since i should not be an obstacle. Hence, we look for points of the LIDAR pointcloud that

are “close-enough” (within a δobject tolerance) of the object i position and set the associated

ranges to infinity. Unfortunately, this results in the object blocking the robot’s line of sight

during PositionObject(i,P), meaning part of the workspace (that may or may not con-

tain an obstacle) is completely invisible to the robot. However, as shown in the following

experimental datasets and in the accompanying video of [202], this was not an important

issue that prohibited experimental success.

Experimental Parameters

For the experiments reported in this Section, we use a wall following offset ε = 65cm, an

object detection threshold δobject = 60cm, an angular precision of 12◦ for successful alignment

with each of the objects, a linear gain kl = 0.8, an angular gain ka = 0.01 and a maximum

allowable LIDAR range of R = 3m. The stool-objects and the robot are treated as disks of

radius r = ri = 0.2m and we discretize the paths provided by the deliberative layer with

a resolution of 1cm. Finally, the δ values (precision tolerances for landing zones) used for

the MoveToObject, PositionObject and Move symbolic actions are 20cm, 40cm and

45cm respectively.

5.4.2 Task #1 - Single Object Positioning

In Fig. 5.7, we document the ability of the reactive layer’s abstract unicycle control outputs

(Section 5.2.2) to drive the gait layer’s hybrid self-manipulation dynamics (Section 5.2.3) to

follow the paths and manipulation directives given by the deliberative layer (Section 5.2.1).

Starting from an initial position, the robot has to move to an object, mount it, push it

to a desired location, dismount from it and then move to a predefined location. In order
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<latexit sha1_base64="4pL5DABFT70Joz31p1pTTmIES1w=">AAAB+3icdVDLSgMxFM3UV62v0S7dBItQQcqkiG13RTcuKzi20A5DJs20oZkHSUYYhvFX3LhQceuPuPNvzLQVVPRA4HDOvdyT48WcSWVZH0ZpZXVtfaO8Wdna3tndM/cPbmWUCEJtEvFIDDwsKWchtRVTnA5iQXHgcdr3ZpeF37+jQrIovFFpTJ0AT0LmM4KVllyzWh8FWE09P0tyN5sl+enkxDVrVsOyLIQQLAhqnVuadDrtJmpDVFgaNbBEzzXfR+OIJAENFeFYyiGyYuVkWChGOM0ro0TSGJMZntChpiEOqHSyefgcHmtlDP1I6BcqOFe/b2Q4kDINPD1ZJJW/vUL8yxsmym87GQvjRNGQLA75CYcqgkUTcMwEJYqnmmAimM4KyRQLTJTuq6JL+Pop/J/YzUanga7Pat2LZRtlcAiOQB0g0AJdcAV6wAYEpOABPIFn4954NF6M18VoyVjuVMEPGG+fV3mUyQ==</latexit><latexit sha1_base64="4pL5DABFT70Joz31p1pTTmIES1w=">AAAB+3icdVDLSgMxFM3UV62v0S7dBItQQcqkiG13RTcuKzi20A5DJs20oZkHSUYYhvFX3LhQceuPuPNvzLQVVPRA4HDOvdyT48WcSWVZH0ZpZXVtfaO8Wdna3tndM/cPbmWUCEJtEvFIDDwsKWchtRVTnA5iQXHgcdr3ZpeF37+jQrIovFFpTJ0AT0LmM4KVllyzWh8FWE09P0tyN5sl+enkxDVrVsOyLIQQLAhqnVuadDrtJmpDVFgaNbBEzzXfR+OIJAENFeFYyiGyYuVkWChGOM0ro0TSGJMZntChpiEOqHSyefgcHmtlDP1I6BcqOFe/b2Q4kDINPD1ZJJW/vUL8yxsmym87GQvjRNGQLA75CYcqgkUTcMwEJYqnmmAimM4KyRQLTJTuq6JL+Pop/J/YzUanga7Pat2LZRtlcAiOQB0g0AJdcAV6wAYEpOABPIFn4954NF6M18VoyVjuVMEPGG+fV3mUyQ==</latexit><latexit sha1_base64="4pL5DABFT70Joz31p1pTTmIES1w=">AAAB+3icdVDLSgMxFM3UV62v0S7dBItQQcqkiG13RTcuKzi20A5DJs20oZkHSUYYhvFX3LhQceuPuPNvzLQVVPRA4HDOvdyT48WcSWVZH0ZpZXVtfaO8Wdna3tndM/cPbmWUCEJtEvFIDDwsKWchtRVTnA5iQXHgcdr3ZpeF37+jQrIovFFpTJ0AT0LmM4KVllyzWh8FWE09P0tyN5sl+enkxDVrVsOyLIQQLAhqnVuadDrtJmpDVFgaNbBEzzXfR+OIJAENFeFYyiGyYuVkWChGOM0ro0TSGJMZntChpiEOqHSyefgcHmtlDP1I6BcqOFe/b2Q4kDINPD1ZJJW/vUL8yxsmym87GQvjRNGQLA75CYcqgkUTcMwEJYqnmmAimM4KyRQLTJTuq6JL+Pop/J/YzUanga7Pat2LZRtlcAiOQB0g0AJdcAV6wAYEpOABPIFn4954NF6M18VoyVjuVMEPGG+fV3mUyQ==</latexit><latexit sha1_base64="4pL5DABFT70Joz31p1pTTmIES1w=">AAAB+3icdVDLSgMxFM3UV62v0S7dBItQQcqkiG13RTcuKzi20A5DJs20oZkHSUYYhvFX3LhQceuPuPNvzLQVVPRA4HDOvdyT48WcSWVZH0ZpZXVtfaO8Wdna3tndM/cPbmWUCEJtEvFIDDwsKWchtRVTnA5iQXHgcdr3ZpeF37+jQrIovFFpTJ0AT0LmM4KVllyzWh8FWE09P0tyN5sl+enkxDVrVsOyLIQQLAhqnVuadDrtJmpDVFgaNbBEzzXfR+OIJAENFeFYyiGyYuVkWChGOM0ro0TSGJMZntChpiEOqHSyefgcHmtlDP1I6BcqOFe/b2Q4kDINPD1ZJJW/vUL8yxsmym87GQvjRNGQLA75CYcqgkUTcMwEJYqnmmAimM4KyRQLTJTuq6JL+Pop/J/YzUanga7Pat2LZRtlcAiOQB0g0AJdcAV6wAYEpOABPIFn4954NF6M18VoyVjuVMEPGG+fV3mUyQ==</latexit>

High Level Control
(30Hz)

Figure 5.6: The system architecture, based on ROS, used for the experiments.
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<latexit sha1_base64="aedSMGz+FYmzHDgjeHAo6pVLVC8=">AAACKHicbVA9T8MwFHT4JnwVGFksKiSmKmEBtgoWBgaQKK3UVJXjvASDY0e2g6ii/B0W/goLSIC68ktw2yAB5U2nu3f2uwszzrTxvKEzMzs3v7C4tOyurK6tb9Q2t661zBWFFpVcqk5INHAmoGWY4dDJFJA05NAO705HevselGZSXJlBBr2UJILFjBJjqX6tGYSQMFFQEAZUGRh4MMU5ERETCSb2pdJ1J2QsFZbhLVBTBiCib0e/Vvca3njwNPArUEfVXPRrr0EkaZ5aO+VE667vZaZXEGUY5VC6Qa4hI/SOJNC1UJAUdK8YJy3xnmUiPDollsLgMfvTUZBU60Ea2s2UmBv9VxuR/2nd3MRHvYKJLDcg6OSjOOfYSDyqDUdM2eR8YAGhitlbMb0hilDbgXZtCf7fyNOgddA4bviXB/XmSdXGEtpBu2gf+egQNdEZukAtRNEjekZv6N15cl6cD2c4WZ1xKs82+jXO5xfv0Kh9</latexit><latexit sha1_base64="aedSMGz+FYmzHDgjeHAo6pVLVC8=">AAACKHicbVA9T8MwFHT4JnwVGFksKiSmKmEBtgoWBgaQKK3UVJXjvASDY0e2g6ii/B0W/goLSIC68ktw2yAB5U2nu3f2uwszzrTxvKEzMzs3v7C4tOyurK6tb9Q2t661zBWFFpVcqk5INHAmoGWY4dDJFJA05NAO705HevselGZSXJlBBr2UJILFjBJjqX6tGYSQMFFQEAZUGRh4MMU5ERETCSb2pdJ1J2QsFZbhLVBTBiCib0e/Vvca3njwNPArUEfVXPRrr0EkaZ5aO+VE667vZaZXEGUY5VC6Qa4hI/SOJNC1UJAUdK8YJy3xnmUiPDollsLgMfvTUZBU60Ea2s2UmBv9VxuR/2nd3MRHvYKJLDcg6OSjOOfYSDyqDUdM2eR8YAGhitlbMb0hilDbgXZtCf7fyNOgddA4bviXB/XmSdXGEtpBu2gf+egQNdEZukAtRNEjekZv6N15cl6cD2c4WZ1xKs82+jXO5xfv0Kh9</latexit><latexit sha1_base64="aedSMGz+FYmzHDgjeHAo6pVLVC8=">AAACKHicbVA9T8MwFHT4JnwVGFksKiSmKmEBtgoWBgaQKK3UVJXjvASDY0e2g6ii/B0W/goLSIC68ktw2yAB5U2nu3f2uwszzrTxvKEzMzs3v7C4tOyurK6tb9Q2t661zBWFFpVcqk5INHAmoGWY4dDJFJA05NAO705HevselGZSXJlBBr2UJILFjBJjqX6tGYSQMFFQEAZUGRh4MMU5ERETCSb2pdJ1J2QsFZbhLVBTBiCib0e/Vvca3njwNPArUEfVXPRrr0EkaZ5aO+VE667vZaZXEGUY5VC6Qa4hI/SOJNC1UJAUdK8YJy3xnmUiPDollsLgMfvTUZBU60Ea2s2UmBv9VxuR/2nd3MRHvYKJLDcg6OSjOOfYSDyqDUdM2eR8YAGhitlbMb0hilDbgXZtCf7fyNOgddA4bviXB/XmSdXGEtpBu2gf+egQNdEZukAtRNEjekZv6N15cl6cD2c4WZ1xKs82+jXO5xfv0Kh9</latexit><latexit sha1_base64="aedSMGz+FYmzHDgjeHAo6pVLVC8=">AAACKHicbVA9T8MwFHT4JnwVGFksKiSmKmEBtgoWBgaQKK3UVJXjvASDY0e2g6ii/B0W/goLSIC68ktw2yAB5U2nu3f2uwszzrTxvKEzMzs3v7C4tOyurK6tb9Q2t661zBWFFpVcqk5INHAmoGWY4dDJFJA05NAO705HevselGZSXJlBBr2UJILFjBJjqX6tGYSQMFFQEAZUGRh4MMU5ERETCSb2pdJ1J2QsFZbhLVBTBiCib0e/Vvca3njwNPArUEfVXPRrr0EkaZ5aO+VE667vZaZXEGUY5VC6Qa4hI/SOJNC1UJAUdK8YJy3xnmUiPDollsLgMfvTUZBU60Ea2s2UmBv9VxuR/2nd3MRHvYKJLDcg6OSjOOfYSDyqDUdM2eR8YAGhitlbMb0hilDbgXZtCf7fyNOgddA4bviXB/XmSdXGEtpBu2gf+egQNdEZukAtRNEjekZv6N15cl6cD2c4WZ1xKs82+jXO5xfv0Kh9</latexit>

Robot - Move
<latexit sha1_base64="sSO8RtlBvjBTyv6FhGrwEnvH+dE=">AAACBHicbVA9TwJBEN3zE/Hr1FKLjcTERnJHo3ZEGxsTNCIkQMjeMsCGvdvL7hyRXGhs/Cs2Fmps/RF2/huXj0LBl0zy9r2Z7MwLYikMet63s7C4tLyymlnLrm9sbm27O7v3RiWaQ5krqXQ1YAakiKCMAiVUYw0sDCRUgt7lyK/0QRuhojscxNAIWScSbcEZWqnpHtQRHjC9VYFCejKk46fh6bXqw7Dp5ry8NwadJ/6U5MgUpab7VW8pnoQQIZfMmJrvxdhImUbBJQyz9cRAzHiPdaBmacRCMI10fMWQHlmlRdtK24qQjtXfEykLjRmEge0MGXbNrDcS//NqCbbPGqmI4gQh4pOP2omkqOgoEtoSGjjKgSWMa2F3pbzLNONog8vaEPzZk+dJuZA/z/s3hVzxYppGhuyTQ3JMfHJKiuSKlEiZcPJInskreXOenBfn3fmYtC4405k98gfO5w9PhJin</latexit><latexit sha1_base64="sSO8RtlBvjBTyv6FhGrwEnvH+dE=">AAACBHicbVA9TwJBEN3zE/Hr1FKLjcTERnJHo3ZEGxsTNCIkQMjeMsCGvdvL7hyRXGhs/Cs2Fmps/RF2/huXj0LBl0zy9r2Z7MwLYikMet63s7C4tLyymlnLrm9sbm27O7v3RiWaQ5krqXQ1YAakiKCMAiVUYw0sDCRUgt7lyK/0QRuhojscxNAIWScSbcEZWqnpHtQRHjC9VYFCejKk46fh6bXqw7Dp5ry8NwadJ/6U5MgUpab7VW8pnoQQIZfMmJrvxdhImUbBJQyz9cRAzHiPdaBmacRCMI10fMWQHlmlRdtK24qQjtXfEykLjRmEge0MGXbNrDcS//NqCbbPGqmI4gQh4pOP2omkqOgoEtoSGjjKgSWMa2F3pbzLNONog8vaEPzZk+dJuZA/z/s3hVzxYppGhuyTQ3JMfHJKiuSKlEiZcPJInskreXOenBfn3fmYtC4405k98gfO5w9PhJin</latexit><latexit sha1_base64="sSO8RtlBvjBTyv6FhGrwEnvH+dE=">AAACBHicbVA9TwJBEN3zE/Hr1FKLjcTERnJHo3ZEGxsTNCIkQMjeMsCGvdvL7hyRXGhs/Cs2Fmps/RF2/huXj0LBl0zy9r2Z7MwLYikMet63s7C4tLyymlnLrm9sbm27O7v3RiWaQ5krqXQ1YAakiKCMAiVUYw0sDCRUgt7lyK/0QRuhojscxNAIWScSbcEZWqnpHtQRHjC9VYFCejKk46fh6bXqw7Dp5ry8NwadJ/6U5MgUpab7VW8pnoQQIZfMmJrvxdhImUbBJQyz9cRAzHiPdaBmacRCMI10fMWQHlmlRdtK24qQjtXfEykLjRmEge0MGXbNrDcS//NqCbbPGqmI4gQh4pOP2omkqOgoEtoSGjjKgSWMa2F3pbzLNONog8vaEPzZk+dJuZA/z/s3hVzxYppGhuyTQ3JMfHJKiuSKlEiZcPJInskreXOenBfn3fmYtC4405k98gfO5w9PhJin</latexit><latexit sha1_base64="sSO8RtlBvjBTyv6FhGrwEnvH+dE=">AAACBHicbVA9TwJBEN3zE/Hr1FKLjcTERnJHo3ZEGxsTNCIkQMjeMsCGvdvL7hyRXGhs/Cs2Fmps/RF2/huXj0LBl0zy9r2Z7MwLYikMet63s7C4tLyymlnLrm9sbm27O7v3RiWaQ5krqXQ1YAakiKCMAiVUYw0sDCRUgt7lyK/0QRuhojscxNAIWScSbcEZWqnpHtQRHjC9VYFCejKk46fh6bXqw7Dp5ry8NwadJ/6U5MgUpab7VW8pnoQQIZfMmJrvxdhImUbBJQyz9cRAzHiPdaBmacRCMI10fMWQHlmlRdtK24qQjtXfEykLjRmEge0MGXbNrDcS//NqCbbPGqmI4gQh4pOP2omkqOgoEtoSGjjKgSWMa2F3pbzLNONog8vaEPzZk+dJuZA/z/s3hVzxYppGhuyTQ3JMfHJKiuSKlEiZcPJInskreXOenBfn3fmYtC4405k98gfO5w9PhJin</latexit>

Robot - MoveToObject
<latexit sha1_base64="0Egq1LL7BUXEVdHvHyGRnG8mVeI=">AAACDHicbVDLTgIxFO34RHyhLt00ookbyQwbdUd048aIBoQECOmUC1Q600l7h0gm/IAbf8WNCzVu/QB3/o3lsVD0JE1Oz7k37Tl+JIVB1/1y5uYXFpeWUyvp1bX1jc3M1vatUbHmUOZKKl31mQEpQiijQAnVSAMLfAkVv3c+8it90EaosISDCBoB64SiLThDKzUz+3WEe0xulK+QHg3p+Gp4cqn6UFJX/h1wHDYzWTfnjkH/Em9KsmSKYjPzWW8pHgcQIpfMmJrnRthImEbBJQzT9dhAxHiPdaBmacgCMI1knGZID6zSom2l7QmRjtWfGwkLjBkEvp0MGHbNrDcS//NqMbZPGokIoxgh5JOH2rGkqOioGtoS2qaVA0sY18L+lfIu04yjLTBtS/BmI/8l5XzuNOdd57OFs2kbKbJL9sgh8cgxKZALUiRlwskDeSIv5NV5dJ6dN+d9MjrnTHd2yC84H9+MSpwR</latexit><latexit sha1_base64="0Egq1LL7BUXEVdHvHyGRnG8mVeI=">AAACDHicbVDLTgIxFO34RHyhLt00ookbyQwbdUd048aIBoQECOmUC1Q600l7h0gm/IAbf8WNCzVu/QB3/o3lsVD0JE1Oz7k37Tl+JIVB1/1y5uYXFpeWUyvp1bX1jc3M1vatUbHmUOZKKl31mQEpQiijQAnVSAMLfAkVv3c+8it90EaosISDCBoB64SiLThDKzUz+3WEe0xulK+QHg3p+Gp4cqn6UFJX/h1wHDYzWTfnjkH/Em9KsmSKYjPzWW8pHgcQIpfMmJrnRthImEbBJQzT9dhAxHiPdaBmacgCMI1knGZID6zSom2l7QmRjtWfGwkLjBkEvp0MGHbNrDcS//NqMbZPGokIoxgh5JOH2rGkqOioGtoS2qaVA0sY18L+lfIu04yjLTBtS/BmI/8l5XzuNOdd57OFs2kbKbJL9sgh8cgxKZALUiRlwskDeSIv5NV5dJ6dN+d9MjrnTHd2yC84H9+MSpwR</latexit><latexit sha1_base64="0Egq1LL7BUXEVdHvHyGRnG8mVeI=">AAACDHicbVDLTgIxFO34RHyhLt00ookbyQwbdUd048aIBoQECOmUC1Q600l7h0gm/IAbf8WNCzVu/QB3/o3lsVD0JE1Oz7k37Tl+JIVB1/1y5uYXFpeWUyvp1bX1jc3M1vatUbHmUOZKKl31mQEpQiijQAnVSAMLfAkVv3c+8it90EaosISDCBoB64SiLThDKzUz+3WEe0xulK+QHg3p+Gp4cqn6UFJX/h1wHDYzWTfnjkH/Em9KsmSKYjPzWW8pHgcQIpfMmJrnRthImEbBJQzT9dhAxHiPdaBmacgCMI1knGZID6zSom2l7QmRjtWfGwkLjBkEvp0MGHbNrDcS//NqMbZPGokIoxgh5JOH2rGkqOioGtoS2qaVA0sY18L+lfIu04yjLTBtS/BmI/8l5XzuNOdd57OFs2kbKbJL9sgh8cgxKZALUiRlwskDeSIv5NV5dJ6dN+d9MjrnTHd2yC84H9+MSpwR</latexit><latexit sha1_base64="0Egq1LL7BUXEVdHvHyGRnG8mVeI=">AAACDHicbVDLTgIxFO34RHyhLt00ookbyQwbdUd048aIBoQECOmUC1Q600l7h0gm/IAbf8WNCzVu/QB3/o3lsVD0JE1Oz7k37Tl+JIVB1/1y5uYXFpeWUyvp1bX1jc3M1vatUbHmUOZKKl31mQEpQiijQAnVSAMLfAkVv3c+8it90EaosISDCBoB64SiLThDKzUz+3WEe0xulK+QHg3p+Gp4cqn6UFJX/h1wHDYzWTfnjkH/Em9KsmSKYjPzWW8pHgcQIpfMmJrnRthImEbBJQzT9dhAxHiPdaBmacgCMI1knGZID6zSom2l7QmRjtWfGwkLjBkEvp0MGHbNrDcS//NqMbZPGokIoxgh5JOH2rGkqOioGtoS2qaVA0sY18L+lfIu04yjLTBtS/BmI/8l5XzuNOdd57OFs2kbKbJL9sgh8cgxKZALUiRlwskDeSIv5NV5dJ6dN+d9MjrnTHd2yC84H9+MSpwR</latexit>

Object - PositionObject
<latexit sha1_base64="B8rq5xHZ68Lh3KXUC1GhIjy4Dao=">AAACD3icbVC7TsMwFHXKq5RXgJHFokKwUCVdgK2ChY0iEVqpjSrHdVpT5yH7BlFF+QQWfoWFARArKxt/g5N2gJYjWTo+515dnePFgiuwrG+jtLC4tLxSXq2srW9sbpnbO7cqSiRlDo1EJNseUUzwkDnAQbB2LBkJPMFa3ugi91v3TCoehTcwjpkbkEHIfU4JaKlnHnaBPUB65d0xCvg4w8Vf0bQZKZ6PTJysZ1atmlUAzxN7SqpoimbP/Or2I5oELAQqiFId24rBTYkETgXLKt1EsZjQERmwjqYhCZhy0yJQhg+00sd+JPULARfq742UBEqNA09PBgSGatbLxf+8TgL+qZvyME6AhXRyyE8Ehgjn7eA+lzqtGGtCqNQFUEyHRBIKusOKLsGejTxPnHrtrGZf16uN82kbZbSH9tERstEJaqBL1EQOougRPaNX9GY8GS/Gu/ExGS0Z051d9AfG5w8dfJ17</latexit><latexit sha1_base64="B8rq5xHZ68Lh3KXUC1GhIjy4Dao=">AAACD3icbVC7TsMwFHXKq5RXgJHFokKwUCVdgK2ChY0iEVqpjSrHdVpT5yH7BlFF+QQWfoWFARArKxt/g5N2gJYjWTo+515dnePFgiuwrG+jtLC4tLxSXq2srW9sbpnbO7cqSiRlDo1EJNseUUzwkDnAQbB2LBkJPMFa3ugi91v3TCoehTcwjpkbkEHIfU4JaKlnHnaBPUB65d0xCvg4w8Vf0bQZKZ6PTJysZ1atmlUAzxN7SqpoimbP/Or2I5oELAQqiFId24rBTYkETgXLKt1EsZjQERmwjqYhCZhy0yJQhg+00sd+JPULARfq742UBEqNA09PBgSGatbLxf+8TgL+qZvyME6AhXRyyE8Ehgjn7eA+lzqtGGtCqNQFUEyHRBIKusOKLsGejTxPnHrtrGZf16uN82kbZbSH9tERstEJaqBL1EQOougRPaNX9GY8GS/Gu/ExGS0Z051d9AfG5w8dfJ17</latexit><latexit sha1_base64="B8rq5xHZ68Lh3KXUC1GhIjy4Dao=">AAACD3icbVC7TsMwFHXKq5RXgJHFokKwUCVdgK2ChY0iEVqpjSrHdVpT5yH7BlFF+QQWfoWFARArKxt/g5N2gJYjWTo+515dnePFgiuwrG+jtLC4tLxSXq2srW9sbpnbO7cqSiRlDo1EJNseUUzwkDnAQbB2LBkJPMFa3ugi91v3TCoehTcwjpkbkEHIfU4JaKlnHnaBPUB65d0xCvg4w8Vf0bQZKZ6PTJysZ1atmlUAzxN7SqpoimbP/Or2I5oELAQqiFId24rBTYkETgXLKt1EsZjQERmwjqYhCZhy0yJQhg+00sd+JPULARfq742UBEqNA09PBgSGatbLxf+8TgL+qZvyME6AhXRyyE8Ehgjn7eA+lzqtGGtCqNQFUEyHRBIKusOKLsGejTxPnHrtrGZf16uN82kbZbSH9tERstEJaqBL1EQOougRPaNX9GY8GS/Gu/ExGS0Z051d9AfG5w8dfJ17</latexit><latexit sha1_base64="B8rq5xHZ68Lh3KXUC1GhIjy4Dao=">AAACD3icbVC7TsMwFHXKq5RXgJHFokKwUCVdgK2ChY0iEVqpjSrHdVpT5yH7BlFF+QQWfoWFARArKxt/g5N2gJYjWTo+515dnePFgiuwrG+jtLC4tLxSXq2srW9sbpnbO7cqSiRlDo1EJNseUUzwkDnAQbB2LBkJPMFa3ugi91v3TCoehTcwjpkbkEHIfU4JaKlnHnaBPUB65d0xCvg4w8Vf0bQZKZ6PTJysZ1atmlUAzxN7SqpoimbP/Or2I5oELAQqiFId24rBTYkETgXLKt1EsZjQERmwjqYhCZhy0yJQhg+00sd+JPULARfq742UBEqNA09PBgSGatbLxf+8TgL+qZvyME6AhXRyyE8Ehgjn7eA+lzqtGGtCqNQFUEyHRBIKusOKLsGejTxPnHrtrGZf16uN82kbZbSH9tERstEJaqBL1EQOougRPaNX9GY8GS/Gu/ExGS0Z051d9AfG5w8dfJ17</latexit>

Reference paths
<latexit sha1_base64="XcAMy2Q5cNhnhZiEfDcylgf5MyE=">AAAB/nicbVC7TgJBFJ3FF+ILNbGxmUhMrMgujdoRbSzRiJDAhswOd2HC7CMzd41kpfBXbCzU2Poddv6Ns7CFgieZ5OScezPnHi+WQqNtf1uFpeWV1bXiemljc2t7p7y7d6ejRHFo8khGqu0xDVKE0ESBEtqxAhZ4Elre6DLzW/egtIjCWxzH4AZsEApfcIZG6pUPuggPmN6ADwpCDjRmONSTXrliV+0p6CJxclIhORq98le3H/EkgBC5ZFp3HDtGN2UKBZcwKXUTDTHjIzaAjqEhC0C76TT/hB4bpU/9SJkXIp2qvzdSFmg9DjwzGWTx5r1M/M/rJOifuakI4wTNcbOP/ERSjGhWBu0LBRzl2BDGlTBZKR8yxTiaykqmBGf+5EXSrFXPq851rVK/yNsokkNyRE6IQ05JnVyRBmkSTh7JM3klb9aT9WK9Wx+z0YKV7+yTP7A+fwD0wpZB</latexit><latexit sha1_base64="XcAMy2Q5cNhnhZiEfDcylgf5MyE=">AAAB/nicbVC7TgJBFJ3FF+ILNbGxmUhMrMgujdoRbSzRiJDAhswOd2HC7CMzd41kpfBXbCzU2Poddv6Ns7CFgieZ5OScezPnHi+WQqNtf1uFpeWV1bXiemljc2t7p7y7d6ejRHFo8khGqu0xDVKE0ESBEtqxAhZ4Elre6DLzW/egtIjCWxzH4AZsEApfcIZG6pUPuggPmN6ADwpCDjRmONSTXrliV+0p6CJxclIhORq98le3H/EkgBC5ZFp3HDtGN2UKBZcwKXUTDTHjIzaAjqEhC0C76TT/hB4bpU/9SJkXIp2qvzdSFmg9DjwzGWTx5r1M/M/rJOifuakI4wTNcbOP/ERSjGhWBu0LBRzl2BDGlTBZKR8yxTiaykqmBGf+5EXSrFXPq851rVK/yNsokkNyRE6IQ05JnVyRBmkSTh7JM3klb9aT9WK9Wx+z0YKV7+yTP7A+fwD0wpZB</latexit><latexit sha1_base64="XcAMy2Q5cNhnhZiEfDcylgf5MyE=">AAAB/nicbVC7TgJBFJ3FF+ILNbGxmUhMrMgujdoRbSzRiJDAhswOd2HC7CMzd41kpfBXbCzU2Poddv6Ns7CFgieZ5OScezPnHi+WQqNtf1uFpeWV1bXiemljc2t7p7y7d6ejRHFo8khGqu0xDVKE0ESBEtqxAhZ4Elre6DLzW/egtIjCWxzH4AZsEApfcIZG6pUPuggPmN6ADwpCDjRmONSTXrliV+0p6CJxclIhORq98le3H/EkgBC5ZFp3HDtGN2UKBZcwKXUTDTHjIzaAjqEhC0C76TT/hB4bpU/9SJkXIp2qvzdSFmg9DjwzGWTx5r1M/M/rJOifuakI4wTNcbOP/ERSjGhWBu0LBRzl2BDGlTBZKR8yxTiaykqmBGf+5EXSrFXPq851rVK/yNsokkNyRE6IQ05JnVyRBmkSTh7JM3klb9aT9WK9Wx+z0YKV7+yTP7A+fwD0wpZB</latexit><latexit sha1_base64="XcAMy2Q5cNhnhZiEfDcylgf5MyE=">AAAB/nicbVC7TgJBFJ3FF+ILNbGxmUhMrMgujdoRbSzRiJDAhswOd2HC7CMzd41kpfBXbCzU2Poddv6Ns7CFgieZ5OScezPnHi+WQqNtf1uFpeWV1bXiemljc2t7p7y7d6ejRHFo8khGqu0xDVKE0ESBEtqxAhZ4Elre6DLzW/egtIjCWxzH4AZsEApfcIZG6pUPuggPmN6ADwpCDjRmONSTXrliV+0p6CJxclIhORq98le3H/EkgBC5ZFp3HDtGN2UKBZcwKXUTDTHjIzaAjqEhC0C76TT/hB4bpU/9SJkXIp2qvzdSFmg9DjwzGWTx5r1M/M/rJOifuakI4wTNcbOP/ERSjGhWBu0LBRzl2BDGlTBZKR8yxTiaykqmBGf+5EXSrFXPq851rVK/yNsokkNyRE6IQ05JnVyRBmkSTh7JM3klb9aT9WK9Wx+z0YKV7+yTP7A+fwD0wpZB</latexit>

Landing area
for robot

<latexit sha1_base64="zAss8hWXB1Lpv+rqnqvwOOhZ4V0=">AAACJ3icbVC7TsQwEHR4E14HlDQWJySqU0IDVCBoKChA4gDpcjo5zuawcOzI3iBOUT6Hhl+hQQgQlPwJvgcSr6lGMzv27sS5FBaD4N0bG5+YnJqemfXn5hcWl2rLK+dWF4ZDk2upzWXMLEihoIkCJVzmBlgWS7iIrw/7/sUNGCu0OsNeDu2MdZVIBWfopE5tL4qhK1TJQSGYKkK4xfKYqUSoLmXupcr3h2KqDTU61lhFoJKvQKdWDxrBAPQvCUekTkY46dSeokTzInNxLpm1rTDIsV0yg4JLqPyosJAzfs260HJUsQxsuxwcWtENpyS0v0mqFdKB+j1RsszaXha7yYzhlf3t9cX/vFaB6U67FCovEBQffpQWkqKm/dZoIgxwlD1HGDfC7Ur5FTOMuw6s70oIf5/8lzS3GruN8HSrvn8wamOGrJF1sklCsk32yRE5IU3CyR15IM/kxbv3Hr1X7204OuaNMqvkB7yPTzhsqCI=</latexit><latexit sha1_base64="zAss8hWXB1Lpv+rqnqvwOOhZ4V0=">AAACJ3icbVC7TsQwEHR4E14HlDQWJySqU0IDVCBoKChA4gDpcjo5zuawcOzI3iBOUT6Hhl+hQQgQlPwJvgcSr6lGMzv27sS5FBaD4N0bG5+YnJqemfXn5hcWl2rLK+dWF4ZDk2upzWXMLEihoIkCJVzmBlgWS7iIrw/7/sUNGCu0OsNeDu2MdZVIBWfopE5tL4qhK1TJQSGYKkK4xfKYqUSoLmXupcr3h2KqDTU61lhFoJKvQKdWDxrBAPQvCUekTkY46dSeokTzInNxLpm1rTDIsV0yg4JLqPyosJAzfs260HJUsQxsuxwcWtENpyS0v0mqFdKB+j1RsszaXha7yYzhlf3t9cX/vFaB6U67FCovEBQffpQWkqKm/dZoIgxwlD1HGDfC7Ur5FTOMuw6s70oIf5/8lzS3GruN8HSrvn8wamOGrJF1sklCsk32yRE5IU3CyR15IM/kxbv3Hr1X7204OuaNMqvkB7yPTzhsqCI=</latexit><latexit sha1_base64="zAss8hWXB1Lpv+rqnqvwOOhZ4V0=">AAACJ3icbVC7TsQwEHR4E14HlDQWJySqU0IDVCBoKChA4gDpcjo5zuawcOzI3iBOUT6Hhl+hQQgQlPwJvgcSr6lGMzv27sS5FBaD4N0bG5+YnJqemfXn5hcWl2rLK+dWF4ZDk2upzWXMLEihoIkCJVzmBlgWS7iIrw/7/sUNGCu0OsNeDu2MdZVIBWfopE5tL4qhK1TJQSGYKkK4xfKYqUSoLmXupcr3h2KqDTU61lhFoJKvQKdWDxrBAPQvCUekTkY46dSeokTzInNxLpm1rTDIsV0yg4JLqPyosJAzfs260HJUsQxsuxwcWtENpyS0v0mqFdKB+j1RsszaXha7yYzhlf3t9cX/vFaB6U67FCovEBQffpQWkqKm/dZoIgxwlD1HGDfC7Ur5FTOMuw6s70oIf5/8lzS3GruN8HSrvn8wamOGrJF1sklCsk32yRE5IU3CyR15IM/kxbv3Hr1X7204OuaNMqvkB7yPTzhsqCI=</latexit><latexit sha1_base64="X/BbPPQRM1pmBhxdK1enSbL+gJw=">AAAB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCozbtSd4MZlBccW2qFkMnfa0ExmSO4IpfQFXLhRfDB3vo3pz0KtBwIf5yTk3pOUSloKgi+vtrW9s7tX3/cPGv7h0XGz8WSLygiMRKEK00u4RSU1RiRJYa80yPNEYTeZ3C3y7jMaKwv9SNMS45yPtMyk4OSszrDZCtrBUmwTwjW0YK1h83OQFqLKUZNQ3Np+GJQUz7ghKRTO/UFlseRiwkfYd6h5jjaeLcecs3PnpCwrjDua2NL9+WLGc2uneeJu5pzG9m+2MP/L+hVl1/FM6rIi1GL1UVYpRgVb7MxSaVCQmjrgwkg3KxNjbrgg14zvOgj/brwJ0WX7ph0+BFCHUziDCwjhCm7hHjoQgYAUXuDNG3uv3vuqqpq37uwEfsn7+AaqKYoN</latexit><latexit sha1_base64="w7hgDTe+9a3YPhCw1uZxVAT8cvQ=">AAACHHicbVBNS+RAFHxxddWo67hXL40ieBoSL7ueXNiLBw8KjgqTYeh0XsbGTnfofhGHkJ/jxb/iRURF/409H4JfdSqquvq9V2mppKMoeglmfszO/ZxfWAyXlld+rbbWlk+cqazAjjDK2LOUO1RSY4ckKTwrLfIiVXiaXvwf+aeXaJ00+piGJfYKPtAyl4KTl/qtvSTFgdS1QE1om4TwiuoDrjOpB4z7n5ownIi5scya1FCToM7eAv3WZtSOxmBfSTwlmzDFYb91n2RGVIWPC8Wd68ZRSb2aW5JCYRMmlcOSiws+wK6nmhfoevX40IZteSVjo01yo4mN1feJmhfODYvUvyw4nbvP3kj8zutWlP/t1VKXFaEWk0F5pRgZNmqNZdKiIDX0hAsr/a5MnHPLhe/Ahb6E+PPJX0lnp73bjo8iWIB12IBtiOEP/IN9OIQOCLiGW3iAx+AmuAueJm3NBNPafsMHBM+vBSemkg==</latexit><latexit sha1_base64="w7hgDTe+9a3YPhCw1uZxVAT8cvQ=">AAACHHicbVBNS+RAFHxxddWo67hXL40ieBoSL7ueXNiLBw8KjgqTYeh0XsbGTnfofhGHkJ/jxb/iRURF/409H4JfdSqquvq9V2mppKMoeglmfszO/ZxfWAyXlld+rbbWlk+cqazAjjDK2LOUO1RSY4ckKTwrLfIiVXiaXvwf+aeXaJ00+piGJfYKPtAyl4KTl/qtvSTFgdS1QE1om4TwiuoDrjOpB4z7n5ownIi5scya1FCToM7eAv3WZtSOxmBfSTwlmzDFYb91n2RGVIWPC8Wd68ZRSb2aW5JCYRMmlcOSiws+wK6nmhfoevX40IZteSVjo01yo4mN1feJmhfODYvUvyw4nbvP3kj8zutWlP/t1VKXFaEWk0F5pRgZNmqNZdKiIDX0hAsr/a5MnHPLhe/Ahb6E+PPJX0lnp73bjo8iWIB12IBtiOEP/IN9OIQOCLiGW3iAx+AmuAueJm3NBNPafsMHBM+vBSemkg==</latexit><latexit sha1_base64="GKv4/yD2hmWAnqGlCCUcyes7w6s=">AAACJ3icbVC7TsQwEHR4E14HlDQWJySqU0IDVCBoKChA4gDpcjo5zuawcOzI3iBOUT6Hhl+hQQgQlPwJvgcSr6lGMzv27sS5FBaD4N0bG5+YnJqemfXn5hcWl2rLK+dWF4ZDk2upzWXMLEihoIkCJVzmBlgWS7iIrw/7/sUNGCu0OsNeDu2MdZVIBWfopE5tL4qhK1TJQSGYKkK4xfKYqUSoLmXupcr3h2KqDTU61lhFoJKvQKdWDxrBAPQvCUekTkY46dSeokTzInNxLpm1rTDIsV0yg4JLqPyosJAzfs260HJUsQxsuxwcWtENpyS0v0mqFdKB+j1RsszaXha7yYzhlf3t9cX/vFaB6U67FCovEBQffpQWkqKm/dZoIgxwlD1HGDfC7Ur5FTOMuw6s70oIf5/8lzS3GruN8DSo7x+M2pgha2SdbJKQbJN9ckROSJNwckceyDN58e69R+/VexuOjnmjzCr5Ae/jEzfMqCA=</latexit><latexit sha1_base64="zAss8hWXB1Lpv+rqnqvwOOhZ4V0=">AAACJ3icbVC7TsQwEHR4E14HlDQWJySqU0IDVCBoKChA4gDpcjo5zuawcOzI3iBOUT6Hhl+hQQgQlPwJvgcSr6lGMzv27sS5FBaD4N0bG5+YnJqemfXn5hcWl2rLK+dWF4ZDk2upzWXMLEihoIkCJVzmBlgWS7iIrw/7/sUNGCu0OsNeDu2MdZVIBWfopE5tL4qhK1TJQSGYKkK4xfKYqUSoLmXupcr3h2KqDTU61lhFoJKvQKdWDxrBAPQvCUekTkY46dSeokTzInNxLpm1rTDIsV0yg4JLqPyosJAzfs260HJUsQxsuxwcWtENpyS0v0mqFdKB+j1RsszaXha7yYzhlf3t9cX/vFaB6U67FCovEBQffpQWkqKm/dZoIgxwlD1HGDfC7Ur5FTOMuw6s70oIf5/8lzS3GruN8HSrvn8wamOGrJF1sklCsk32yRE5IU3CyR15IM/kxbv3Hr1X7204OuaNMqvkB7yPTzhsqCI=</latexit><latexit sha1_base64="zAss8hWXB1Lpv+rqnqvwOOhZ4V0=">AAACJ3icbVC7TsQwEHR4E14HlDQWJySqU0IDVCBoKChA4gDpcjo5zuawcOzI3iBOUT6Hhl+hQQgQlPwJvgcSr6lGMzv27sS5FBaD4N0bG5+YnJqemfXn5hcWl2rLK+dWF4ZDk2upzWXMLEihoIkCJVzmBlgWS7iIrw/7/sUNGCu0OsNeDu2MdZVIBWfopE5tL4qhK1TJQSGYKkK4xfKYqUSoLmXupcr3h2KqDTU61lhFoJKvQKdWDxrBAPQvCUekTkY46dSeokTzInNxLpm1rTDIsV0yg4JLqPyosJAzfs260HJUsQxsuxwcWtENpyS0v0mqFdKB+j1RsszaXha7yYzhlf3t9cX/vFaB6U67FCovEBQffpQWkqKm/dZoIgxwlD1HGDfC7Ur5FTOMuw6s70oIf5/8lzS3GruN8HSrvn8wamOGrJF1sklCsk32yRE5IU3CyR15IM/kxbv3Hr1X7204OuaNMqvkB7yPTzhsqCI=</latexit><latexit sha1_base64="zAss8hWXB1Lpv+rqnqvwOOhZ4V0=">AAACJ3icbVC7TsQwEHR4E14HlDQWJySqU0IDVCBoKChA4gDpcjo5zuawcOzI3iBOUT6Hhl+hQQgQlPwJvgcSr6lGMzv27sS5FBaD4N0bG5+YnJqemfXn5hcWl2rLK+dWF4ZDk2upzWXMLEihoIkCJVzmBlgWS7iIrw/7/sUNGCu0OsNeDu2MdZVIBWfopE5tL4qhK1TJQSGYKkK4xfKYqUSoLmXupcr3h2KqDTU61lhFoJKvQKdWDxrBAPQvCUekTkY46dSeokTzInNxLpm1rTDIsV0yg4JLqPyosJAzfs260HJUsQxsuxwcWtENpyS0v0mqFdKB+j1RsszaXha7yYzhlf3t9cX/vFaB6U67FCovEBQffpQWkqKm/dZoIgxwlD1HGDfC7Ur5FTOMuw6s70oIf5/8lzS3GruN8HSrvn8wamOGrJF1sklCsk32yRE5IU3CyR15IM/kxbv3Hr1X7204OuaNMqvkB7yPTzhsqCI=</latexit><latexit sha1_base64="zAss8hWXB1Lpv+rqnqvwOOhZ4V0=">AAACJ3icbVC7TsQwEHR4E14HlDQWJySqU0IDVCBoKChA4gDpcjo5zuawcOzI3iBOUT6Hhl+hQQgQlPwJvgcSr6lGMzv27sS5FBaD4N0bG5+YnJqemfXn5hcWl2rLK+dWF4ZDk2upzWXMLEihoIkCJVzmBlgWS7iIrw/7/sUNGCu0OsNeDu2MdZVIBWfopE5tL4qhK1TJQSGYKkK4xfKYqUSoLmXupcr3h2KqDTU61lhFoJKvQKdWDxrBAPQvCUekTkY46dSeokTzInNxLpm1rTDIsV0yg4JLqPyosJAzfs260HJUsQxsuxwcWtENpyS0v0mqFdKB+j1RsszaXha7yYzhlf3t9cX/vFaB6U67FCovEBQffpQWkqKm/dZoIgxwlD1HGDfC7Ur5FTOMuw6s70oIf5/8lzS3GruN8HSrvn8wamOGrJF1sklCsk32yRE5IU3CyR15IM/kxbv3Hr1X7204OuaNMqvkB7yPTzhsqCI=</latexit><latexit sha1_base64="zAss8hWXB1Lpv+rqnqvwOOhZ4V0=">AAACJ3icbVC7TsQwEHR4E14HlDQWJySqU0IDVCBoKChA4gDpcjo5zuawcOzI3iBOUT6Hhl+hQQgQlPwJvgcSr6lGMzv27sS5FBaD4N0bG5+YnJqemfXn5hcWl2rLK+dWF4ZDk2upzWXMLEihoIkCJVzmBlgWS7iIrw/7/sUNGCu0OsNeDu2MdZVIBWfopE5tL4qhK1TJQSGYKkK4xfKYqUSoLmXupcr3h2KqDTU61lhFoJKvQKdWDxrBAPQvCUekTkY46dSeokTzInNxLpm1rTDIsV0yg4JLqPyosJAzfs260HJUsQxsuxwcWtENpyS0v0mqFdKB+j1RsszaXha7yYzhlf3t9cX/vFaB6U67FCovEBQffpQWkqKm/dZoIgxwlD1HGDfC7Ur5FTOMuw6s70oIf5/8lzS3GruN8HSrvn8wamOGrJF1sklCsk32yRE5IU3CyR15IM/kxbv3Hr1X7204OuaNMqvkB7yPTzhsqCI=</latexit><latexit sha1_base64="zAss8hWXB1Lpv+rqnqvwOOhZ4V0=">AAACJ3icbVC7TsQwEHR4E14HlDQWJySqU0IDVCBoKChA4gDpcjo5zuawcOzI3iBOUT6Hhl+hQQgQlPwJvgcSr6lGMzv27sS5FBaD4N0bG5+YnJqemfXn5hcWl2rLK+dWF4ZDk2upzWXMLEihoIkCJVzmBlgWS7iIrw/7/sUNGCu0OsNeDu2MdZVIBWfopE5tL4qhK1TJQSGYKkK4xfKYqUSoLmXupcr3h2KqDTU61lhFoJKvQKdWDxrBAPQvCUekTkY46dSeokTzInNxLpm1rTDIsV0yg4JLqPyosJAzfs260HJUsQxsuxwcWtENpyS0v0mqFdKB+j1RsszaXha7yYzhlf3t9cX/vFaB6U67FCovEBQffpQWkqKm/dZoIgxwlD1HGDfC7Ur5FTOMuw6s70oIf5/8lzS3GruN8HSrvn8wamOGrJF1sklCsk32yRE5IU3CyR15IM/kxbv3Hr1X7204OuaNMqvkB7yPTzhsqCI=</latexit>

Start
<latexit sha1_base64="4GWNY703bhKN117VUncF6y0u4MU=">AAAB8nicbVA9T8MwEHX4LOWrwMhiUSExVUkXYKtgYSyC0kpNVDnupbXqOJF9QVRR/wYLAyBWfg0b/wa3zQAtTzrp6b07++6FqRQGXffbWVldW9/YLG2Vt3d29/YrB4cPJsk0hxZPZKI7ITMghYIWCpTQSTWwOJTQDkfXU7/9CNqIRN3jOIUgZgMlIsEZWsn3EZ4wv0OmcdKrVN2aOwNdJl5BqqRAs1f58vsJz2JQyCUzpuu5KQa5fUtwCZOynxlIGR+xAXQtVSwGE+SznSf01Cp9GiXalkI6U39P5Cw2ZhyHtjNmODSL3lT8z+tmGF0EuVBphqD4/KMokxQTOg2A9oUGjnJsCeNa2F0pHzLNONqYyjYEb/HkZdKq1y5r3m292rgq0iiRY3JCzohHzkmD3JAmaRFOUvJMXsmbkzkvzrvzMW9dcYqZI/IHzucPGwOR6w==</latexit><latexit sha1_base64="4GWNY703bhKN117VUncF6y0u4MU=">AAAB8nicbVA9T8MwEHX4LOWrwMhiUSExVUkXYKtgYSyC0kpNVDnupbXqOJF9QVRR/wYLAyBWfg0b/wa3zQAtTzrp6b07++6FqRQGXffbWVldW9/YLG2Vt3d29/YrB4cPJsk0hxZPZKI7ITMghYIWCpTQSTWwOJTQDkfXU7/9CNqIRN3jOIUgZgMlIsEZWsn3EZ4wv0OmcdKrVN2aOwNdJl5BqqRAs1f58vsJz2JQyCUzpuu5KQa5fUtwCZOynxlIGR+xAXQtVSwGE+SznSf01Cp9GiXalkI6U39P5Cw2ZhyHtjNmODSL3lT8z+tmGF0EuVBphqD4/KMokxQTOg2A9oUGjnJsCeNa2F0pHzLNONqYyjYEb/HkZdKq1y5r3m292rgq0iiRY3JCzohHzkmD3JAmaRFOUvJMXsmbkzkvzrvzMW9dcYqZI/IHzucPGwOR6w==</latexit><latexit sha1_base64="4GWNY703bhKN117VUncF6y0u4MU=">AAAB8nicbVA9T8MwEHX4LOWrwMhiUSExVUkXYKtgYSyC0kpNVDnupbXqOJF9QVRR/wYLAyBWfg0b/wa3zQAtTzrp6b07++6FqRQGXffbWVldW9/YLG2Vt3d29/YrB4cPJsk0hxZPZKI7ITMghYIWCpTQSTWwOJTQDkfXU7/9CNqIRN3jOIUgZgMlIsEZWsn3EZ4wv0OmcdKrVN2aOwNdJl5BqqRAs1f58vsJz2JQyCUzpuu5KQa5fUtwCZOynxlIGR+xAXQtVSwGE+SznSf01Cp9GiXalkI6U39P5Cw2ZhyHtjNmODSL3lT8z+tmGF0EuVBphqD4/KMokxQTOg2A9oUGjnJsCeNa2F0pHzLNONqYyjYEb/HkZdKq1y5r3m292rgq0iiRY3JCzohHzkmD3JAmaRFOUvJMXsmbkzkvzrvzMW9dcYqZI/IHzucPGwOR6w==</latexit><latexit sha1_base64="4GWNY703bhKN117VUncF6y0u4MU=">AAAB8nicbVA9T8MwEHX4LOWrwMhiUSExVUkXYKtgYSyC0kpNVDnupbXqOJF9QVRR/wYLAyBWfg0b/wa3zQAtTzrp6b07++6FqRQGXffbWVldW9/YLG2Vt3d29/YrB4cPJsk0hxZPZKI7ITMghYIWCpTQSTWwOJTQDkfXU7/9CNqIRN3jOIUgZgMlIsEZWsn3EZ4wv0OmcdKrVN2aOwNdJl5BqqRAs1f58vsJz2JQyCUzpuu5KQa5fUtwCZOynxlIGR+xAXQtVSwGE+SznSf01Cp9GiXalkI6U39P5Cw2ZhyHtjNmODSL3lT8z+tmGF0EuVBphqD4/KMokxQTOg2A9oUGjnJsCeNa2F0pHzLNONqYyjYEb/HkZdKq1y5r3m292rgq0iiRY3JCzohHzkmD3JAmaRFOUvJMXsmbkzkvzrvzMW9dcYqZI/IHzucPGwOR6w==</latexit>

End
<latexit sha1_base64="bCZe9cw2oIbMVvyyxS1WPRikleQ=">AAAB8HicbVBNS8NAEN3Ur1q/qh69BIvgqSQiqLeiCB4rGFtsQ9lsJu3SzSbsTsQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvSAXX6DjfVmlpeWV1rbxe2djc2t6p7u7d6yRTDDyWiES1A6pBcAkechTQThXQOBDQCoZXE7/1CErzRN7hKAU/pn3JI84oGumhi/CE+bUMx71qzak7U9iLxC1IjRRo9qpf3TBhWQwSmaBad1wnRT+nCjkTMK50Mw0pZUPah46hksag/Xx68dg+MkpoR4kyJdGeqr8nchprPYoD0xlTHOh5byL+53UyjM79nMs0Q5BstijKhI2JPXnfDrkChmJkCGWKm1ttNqCKMjQhVUwI7vzLi8Q7qV/U3dvTWuOySKNMDsghOSYuOSMNckOaxCOMSPJMXsmbpa0X6936mLWWrGJmn/yB9fkDUyGQ4g==</latexit><latexit sha1_base64="bCZe9cw2oIbMVvyyxS1WPRikleQ=">AAAB8HicbVBNS8NAEN3Ur1q/qh69BIvgqSQiqLeiCB4rGFtsQ9lsJu3SzSbsTsQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvSAXX6DjfVmlpeWV1rbxe2djc2t6p7u7d6yRTDDyWiES1A6pBcAkechTQThXQOBDQCoZXE7/1CErzRN7hKAU/pn3JI84oGumhi/CE+bUMx71qzak7U9iLxC1IjRRo9qpf3TBhWQwSmaBad1wnRT+nCjkTMK50Mw0pZUPah46hksag/Xx68dg+MkpoR4kyJdGeqr8nchprPYoD0xlTHOh5byL+53UyjM79nMs0Q5BstijKhI2JPXnfDrkChmJkCGWKm1ttNqCKMjQhVUwI7vzLi8Q7qV/U3dvTWuOySKNMDsghOSYuOSMNckOaxCOMSPJMXsmbpa0X6936mLWWrGJmn/yB9fkDUyGQ4g==</latexit><latexit sha1_base64="bCZe9cw2oIbMVvyyxS1WPRikleQ=">AAAB8HicbVBNS8NAEN3Ur1q/qh69BIvgqSQiqLeiCB4rGFtsQ9lsJu3SzSbsTsQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvSAXX6DjfVmlpeWV1rbxe2djc2t6p7u7d6yRTDDyWiES1A6pBcAkechTQThXQOBDQCoZXE7/1CErzRN7hKAU/pn3JI84oGumhi/CE+bUMx71qzak7U9iLxC1IjRRo9qpf3TBhWQwSmaBad1wnRT+nCjkTMK50Mw0pZUPah46hksag/Xx68dg+MkpoR4kyJdGeqr8nchprPYoD0xlTHOh5byL+53UyjM79nMs0Q5BstijKhI2JPXnfDrkChmJkCGWKm1ttNqCKMjQhVUwI7vzLi8Q7qV/U3dvTWuOySKNMDsghOSYuOSMNckOaxCOMSPJMXsmbpa0X6936mLWWrGJmn/yB9fkDUyGQ4g==</latexit><latexit sha1_base64="bCZe9cw2oIbMVvyyxS1WPRikleQ=">AAAB8HicbVBNS8NAEN3Ur1q/qh69BIvgqSQiqLeiCB4rGFtsQ9lsJu3SzSbsTsQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvSAXX6DjfVmlpeWV1rbxe2djc2t6p7u7d6yRTDDyWiES1A6pBcAkechTQThXQOBDQCoZXE7/1CErzRN7hKAU/pn3JI84oGumhi/CE+bUMx71qzak7U9iLxC1IjRRo9qpf3TBhWQwSmaBad1wnRT+nCjkTMK50Mw0pZUPah46hksag/Xx68dg+MkpoR4kyJdGeqr8nchprPYoD0xlTHOh5byL+53UyjM79nMs0Q5BstijKhI2JPXnfDrkChmJkCGWKm1ttNqCKMjQhVUwI7vzLi8Q7qV/U3dvTWuOySKNMDsghOSYuOSMNckOaxCOMSPJMXsmbpa0X6936mLWWrGJmn/yB9fkDUyGQ4g==</latexit>

Start
<latexit sha1_base64="4GWNY703bhKN117VUncF6y0u4MU=">AAAB8nicbVA9T8MwEHX4LOWrwMhiUSExVUkXYKtgYSyC0kpNVDnupbXqOJF9QVRR/wYLAyBWfg0b/wa3zQAtTzrp6b07++6FqRQGXffbWVldW9/YLG2Vt3d29/YrB4cPJsk0hxZPZKI7ITMghYIWCpTQSTWwOJTQDkfXU7/9CNqIRN3jOIUgZgMlIsEZWsn3EZ4wv0OmcdKrVN2aOwNdJl5BqqRAs1f58vsJz2JQyCUzpuu5KQa5fUtwCZOynxlIGR+xAXQtVSwGE+SznSf01Cp9GiXalkI6U39P5Cw2ZhyHtjNmODSL3lT8z+tmGF0EuVBphqD4/KMokxQTOg2A9oUGjnJsCeNa2F0pHzLNONqYyjYEb/HkZdKq1y5r3m292rgq0iiRY3JCzohHzkmD3JAmaRFOUvJMXsmbkzkvzrvzMW9dcYqZI/IHzucPGwOR6w==</latexit><latexit sha1_base64="4GWNY703bhKN117VUncF6y0u4MU=">AAAB8nicbVA9T8MwEHX4LOWrwMhiUSExVUkXYKtgYSyC0kpNVDnupbXqOJF9QVRR/wYLAyBWfg0b/wa3zQAtTzrp6b07++6FqRQGXffbWVldW9/YLG2Vt3d29/YrB4cPJsk0hxZPZKI7ITMghYIWCpTQSTWwOJTQDkfXU7/9CNqIRN3jOIUgZgMlIsEZWsn3EZ4wv0OmcdKrVN2aOwNdJl5BqqRAs1f58vsJz2JQyCUzpuu5KQa5fUtwCZOynxlIGR+xAXQtVSwGE+SznSf01Cp9GiXalkI6U39P5Cw2ZhyHtjNmODSL3lT8z+tmGF0EuVBphqD4/KMokxQTOg2A9oUGjnJsCeNa2F0pHzLNONqYyjYEb/HkZdKq1y5r3m292rgq0iiRY3JCzohHzkmD3JAmaRFOUvJMXsmbkzkvzrvzMW9dcYqZI/IHzucPGwOR6w==</latexit><latexit sha1_base64="4GWNY703bhKN117VUncF6y0u4MU=">AAAB8nicbVA9T8MwEHX4LOWrwMhiUSExVUkXYKtgYSyC0kpNVDnupbXqOJF9QVRR/wYLAyBWfg0b/wa3zQAtTzrp6b07++6FqRQGXffbWVldW9/YLG2Vt3d29/YrB4cPJsk0hxZPZKI7ITMghYIWCpTQSTWwOJTQDkfXU7/9CNqIRN3jOIUgZgMlIsEZWsn3EZ4wv0OmcdKrVN2aOwNdJl5BqqRAs1f58vsJz2JQyCUzpuu5KQa5fUtwCZOynxlIGR+xAXQtVSwGE+SznSf01Cp9GiXalkI6U39P5Cw2ZhyHtjNmODSL3lT8z+tmGF0EuVBphqD4/KMokxQTOg2A9oUGjnJsCeNa2F0pHzLNONqYyjYEb/HkZdKq1y5r3m292rgq0iiRY3JCzohHzkmD3JAmaRFOUvJMXsmbkzkvzrvzMW9dcYqZI/IHzucPGwOR6w==</latexit><latexit sha1_base64="4GWNY703bhKN117VUncF6y0u4MU=">AAAB8nicbVA9T8MwEHX4LOWrwMhiUSExVUkXYKtgYSyC0kpNVDnupbXqOJF9QVRR/wYLAyBWfg0b/wa3zQAtTzrp6b07++6FqRQGXffbWVldW9/YLG2Vt3d29/YrB4cPJsk0hxZPZKI7ITMghYIWCpTQSTWwOJTQDkfXU7/9CNqIRN3jOIUgZgMlIsEZWsn3EZ4wv0OmcdKrVN2aOwNdJl5BqqRAs1f58vsJz2JQyCUzpuu5KQa5fUtwCZOynxlIGR+xAXQtVSwGE+SznSf01Cp9GiXalkI6U39P5Cw2ZhyHtjNmODSL3lT8z+tmGF0EuVBphqD4/KMokxQTOg2A9oUGjnJsCeNa2F0pHzLNONqYyjYEb/HkZdKq1y5r3m292rgq0iiRY3JCzohHzkmD3JAmaRFOUvJMXsmbkzkvzrvzMW9dcYqZI/IHzucPGwOR6w==</latexit>End

<latexit sha1_base64="bCZe9cw2oIbMVvyyxS1WPRikleQ=">AAAB8HicbVBNS8NAEN3Ur1q/qh69BIvgqSQiqLeiCB4rGFtsQ9lsJu3SzSbsTsQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvSAXX6DjfVmlpeWV1rbxe2djc2t6p7u7d6yRTDDyWiES1A6pBcAkechTQThXQOBDQCoZXE7/1CErzRN7hKAU/pn3JI84oGumhi/CE+bUMx71qzak7U9iLxC1IjRRo9qpf3TBhWQwSmaBad1wnRT+nCjkTMK50Mw0pZUPah46hksag/Xx68dg+MkpoR4kyJdGeqr8nchprPYoD0xlTHOh5byL+53UyjM79nMs0Q5BstijKhI2JPXnfDrkChmJkCGWKm1ttNqCKMjQhVUwI7vzLi8Q7qV/U3dvTWuOySKNMDsghOSYuOSMNckOaxCOMSPJMXsmbpa0X6936mLWWrGJmn/yB9fkDUyGQ4g==</latexit><latexit sha1_base64="bCZe9cw2oIbMVvyyxS1WPRikleQ=">AAAB8HicbVBNS8NAEN3Ur1q/qh69BIvgqSQiqLeiCB4rGFtsQ9lsJu3SzSbsTsQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvSAXX6DjfVmlpeWV1rbxe2djc2t6p7u7d6yRTDDyWiES1A6pBcAkechTQThXQOBDQCoZXE7/1CErzRN7hKAU/pn3JI84oGumhi/CE+bUMx71qzak7U9iLxC1IjRRo9qpf3TBhWQwSmaBad1wnRT+nCjkTMK50Mw0pZUPah46hksag/Xx68dg+MkpoR4kyJdGeqr8nchprPYoD0xlTHOh5byL+53UyjM79nMs0Q5BstijKhI2JPXnfDrkChmJkCGWKm1ttNqCKMjQhVUwI7vzLi8Q7qV/U3dvTWuOySKNMDsghOSYuOSMNckOaxCOMSPJMXsmbpa0X6936mLWWrGJmn/yB9fkDUyGQ4g==</latexit><latexit sha1_base64="bCZe9cw2oIbMVvyyxS1WPRikleQ=">AAAB8HicbVBNS8NAEN3Ur1q/qh69BIvgqSQiqLeiCB4rGFtsQ9lsJu3SzSbsTsQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvSAXX6DjfVmlpeWV1rbxe2djc2t6p7u7d6yRTDDyWiES1A6pBcAkechTQThXQOBDQCoZXE7/1CErzRN7hKAU/pn3JI84oGumhi/CE+bUMx71qzak7U9iLxC1IjRRo9qpf3TBhWQwSmaBad1wnRT+nCjkTMK50Mw0pZUPah46hksag/Xx68dg+MkpoR4kyJdGeqr8nchprPYoD0xlTHOh5byL+53UyjM79nMs0Q5BstijKhI2JPXnfDrkChmJkCGWKm1ttNqCKMjQhVUwI7vzLi8Q7qV/U3dvTWuOySKNMDsghOSYuOSMNckOaxCOMSPJMXsmbpa0X6936mLWWrGJmn/yB9fkDUyGQ4g==</latexit><latexit sha1_base64="bCZe9cw2oIbMVvyyxS1WPRikleQ=">AAAB8HicbVBNS8NAEN3Ur1q/qh69BIvgqSQiqLeiCB4rGFtsQ9lsJu3SzSbsTsQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvSAXX6DjfVmlpeWV1rbxe2djc2t6p7u7d6yRTDDyWiES1A6pBcAkechTQThXQOBDQCoZXE7/1CErzRN7hKAU/pn3JI84oGumhi/CE+bUMx71qzak7U9iLxC1IjRRo9qpf3TBhWQwSmaBad1wnRT+nCjkTMK50Mw0pZUPah46hksag/Xx68dg+MkpoR4kyJdGeqr8nchprPYoD0xlTHOh5byL+53UyjM79nMs0Q5BstijKhI2JPXnfDrkChmJkCGWKm1ttNqCKMjQhVUwI7vzLi8Q7qV/U3dvTWuOySKNMDsghOSYuOSMNckOaxCOMSPJMXsmbpa0X6936mLWWrGJmn/yB9fkDUyGQ4g==</latexit>

Start
<latexit sha1_base64="4GWNY703bhKN117VUncF6y0u4MU=">AAAB8nicbVA9T8MwEHX4LOWrwMhiUSExVUkXYKtgYSyC0kpNVDnupbXqOJF9QVRR/wYLAyBWfg0b/wa3zQAtTzrp6b07++6FqRQGXffbWVldW9/YLG2Vt3d29/YrB4cPJsk0hxZPZKI7ITMghYIWCpTQSTWwOJTQDkfXU7/9CNqIRN3jOIUgZgMlIsEZWsn3EZ4wv0OmcdKrVN2aOwNdJl5BqqRAs1f58vsJz2JQyCUzpuu5KQa5fUtwCZOynxlIGR+xAXQtVSwGE+SznSf01Cp9GiXalkI6U39P5Cw2ZhyHtjNmODSL3lT8z+tmGF0EuVBphqD4/KMokxQTOg2A9oUGjnJsCeNa2F0pHzLNONqYyjYEb/HkZdKq1y5r3m292rgq0iiRY3JCzohHzkmD3JAmaRFOUvJMXsmbkzkvzrvzMW9dcYqZI/IHzucPGwOR6w==</latexit><latexit sha1_base64="4GWNY703bhKN117VUncF6y0u4MU=">AAAB8nicbVA9T8MwEHX4LOWrwMhiUSExVUkXYKtgYSyC0kpNVDnupbXqOJF9QVRR/wYLAyBWfg0b/wa3zQAtTzrp6b07++6FqRQGXffbWVldW9/YLG2Vt3d29/YrB4cPJsk0hxZPZKI7ITMghYIWCpTQSTWwOJTQDkfXU7/9CNqIRN3jOIUgZgMlIsEZWsn3EZ4wv0OmcdKrVN2aOwNdJl5BqqRAs1f58vsJz2JQyCUzpuu5KQa5fUtwCZOynxlIGR+xAXQtVSwGE+SznSf01Cp9GiXalkI6U39P5Cw2ZhyHtjNmODSL3lT8z+tmGF0EuVBphqD4/KMokxQTOg2A9oUGjnJsCeNa2F0pHzLNONqYyjYEb/HkZdKq1y5r3m292rgq0iiRY3JCzohHzkmD3JAmaRFOUvJMXsmbkzkvzrvzMW9dcYqZI/IHzucPGwOR6w==</latexit><latexit sha1_base64="4GWNY703bhKN117VUncF6y0u4MU=">AAAB8nicbVA9T8MwEHX4LOWrwMhiUSExVUkXYKtgYSyC0kpNVDnupbXqOJF9QVRR/wYLAyBWfg0b/wa3zQAtTzrp6b07++6FqRQGXffbWVldW9/YLG2Vt3d29/YrB4cPJsk0hxZPZKI7ITMghYIWCpTQSTWwOJTQDkfXU7/9CNqIRN3jOIUgZgMlIsEZWsn3EZ4wv0OmcdKrVN2aOwNdJl5BqqRAs1f58vsJz2JQyCUzpuu5KQa5fUtwCZOynxlIGR+xAXQtVSwGE+SznSf01Cp9GiXalkI6U39P5Cw2ZhyHtjNmODSL3lT8z+tmGF0EuVBphqD4/KMokxQTOg2A9oUGjnJsCeNa2F0pHzLNONqYyjYEb/HkZdKq1y5r3m292rgq0iiRY3JCzohHzkmD3JAmaRFOUvJMXsmbkzkvzrvzMW9dcYqZI/IHzucPGwOR6w==</latexit><latexit sha1_base64="4GWNY703bhKN117VUncF6y0u4MU=">AAAB8nicbVA9T8MwEHX4LOWrwMhiUSExVUkXYKtgYSyC0kpNVDnupbXqOJF9QVRR/wYLAyBWfg0b/wa3zQAtTzrp6b07++6FqRQGXffbWVldW9/YLG2Vt3d29/YrB4cPJsk0hxZPZKI7ITMghYIWCpTQSTWwOJTQDkfXU7/9CNqIRN3jOIUgZgMlIsEZWsn3EZ4wv0OmcdKrVN2aOwNdJl5BqqRAs1f58vsJz2JQyCUzpuu5KQa5fUtwCZOynxlIGR+xAXQtVSwGE+SznSf01Cp9GiXalkI6U39P5Cw2ZhyHtjNmODSL3lT8z+tmGF0EuVBphqD4/KMokxQTOg2A9oUGjnJsCeNa2F0pHzLNONqYyjYEb/HkZdKq1y5r3m292rgq0iiRY3JCzohHzkmD3JAmaRFOUvJMXsmbkzkvzrvzMW9dcYqZI/IHzucPGwOR6w==</latexit>

End
<latexit sha1_base64="bCZe9cw2oIbMVvyyxS1WPRikleQ=">AAAB8HicbVBNS8NAEN3Ur1q/qh69BIvgqSQiqLeiCB4rGFtsQ9lsJu3SzSbsTsQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvSAXX6DjfVmlpeWV1rbxe2djc2t6p7u7d6yRTDDyWiES1A6pBcAkechTQThXQOBDQCoZXE7/1CErzRN7hKAU/pn3JI84oGumhi/CE+bUMx71qzak7U9iLxC1IjRRo9qpf3TBhWQwSmaBad1wnRT+nCjkTMK50Mw0pZUPah46hksag/Xx68dg+MkpoR4kyJdGeqr8nchprPYoD0xlTHOh5byL+53UyjM79nMs0Q5BstijKhI2JPXnfDrkChmJkCGWKm1ttNqCKMjQhVUwI7vzLi8Q7qV/U3dvTWuOySKNMDsghOSYuOSMNckOaxCOMSPJMXsmbpa0X6936mLWWrGJmn/yB9fkDUyGQ4g==</latexit><latexit sha1_base64="bCZe9cw2oIbMVvyyxS1WPRikleQ=">AAAB8HicbVBNS8NAEN3Ur1q/qh69BIvgqSQiqLeiCB4rGFtsQ9lsJu3SzSbsTsQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvSAXX6DjfVmlpeWV1rbxe2djc2t6p7u7d6yRTDDyWiES1A6pBcAkechTQThXQOBDQCoZXE7/1CErzRN7hKAU/pn3JI84oGumhi/CE+bUMx71qzak7U9iLxC1IjRRo9qpf3TBhWQwSmaBad1wnRT+nCjkTMK50Mw0pZUPah46hksag/Xx68dg+MkpoR4kyJdGeqr8nchprPYoD0xlTHOh5byL+53UyjM79nMs0Q5BstijKhI2JPXnfDrkChmJkCGWKm1ttNqCKMjQhVUwI7vzLi8Q7qV/U3dvTWuOySKNMDsghOSYuOSMNckOaxCOMSPJMXsmbpa0X6936mLWWrGJmn/yB9fkDUyGQ4g==</latexit><latexit sha1_base64="bCZe9cw2oIbMVvyyxS1WPRikleQ=">AAAB8HicbVBNS8NAEN3Ur1q/qh69BIvgqSQiqLeiCB4rGFtsQ9lsJu3SzSbsTsQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvSAXX6DjfVmlpeWV1rbxe2djc2t6p7u7d6yRTDDyWiES1A6pBcAkechTQThXQOBDQCoZXE7/1CErzRN7hKAU/pn3JI84oGumhi/CE+bUMx71qzak7U9iLxC1IjRRo9qpf3TBhWQwSmaBad1wnRT+nCjkTMK50Mw0pZUPah46hksag/Xx68dg+MkpoR4kyJdGeqr8nchprPYoD0xlTHOh5byL+53UyjM79nMs0Q5BstijKhI2JPXnfDrkChmJkCGWKm1ttNqCKMjQhVUwI7vzLi8Q7qV/U3dvTWuOySKNMDsghOSYuOSMNckOaxCOMSPJMXsmbpa0X6936mLWWrGJmn/yB9fkDUyGQ4g==</latexit><latexit sha1_base64="bCZe9cw2oIbMVvyyxS1WPRikleQ=">AAAB8HicbVBNS8NAEN3Ur1q/qh69BIvgqSQiqLeiCB4rGFtsQ9lsJu3SzSbsTsQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvSAXX6DjfVmlpeWV1rbxe2djc2t6p7u7d6yRTDDyWiES1A6pBcAkechTQThXQOBDQCoZXE7/1CErzRN7hKAU/pn3JI84oGumhi/CE+bUMx71qzak7U9iLxC1IjRRo9qpf3TBhWQwSmaBad1wnRT+nCjkTMK50Mw0pZUPah46hksag/Xx68dg+MkpoR4kyJdGeqr8nchprPYoD0xlTHOh5byL+53UyjM79nMs0Q5BstijKhI2JPXnfDrkChmJkCGWKm1ttNqCKMjQhVUwI7vzLi8Q7qV/U3dvTWuOySKNMDsghOSYuOSMNckOaxCOMSPJMXsmbpa0X6936mLWWrGJmn/yB9fkDUyGQ4g==</latexit>

Figure 5.7: Task #1 - No Obstacles (Section 5.4.2): Vicon data showing the robot successfully
following paths provided by the deliberative layer (dotted line segments): the robot has to approach
(and then mount) the object (action MoveToObject), push the object inside a desired landing
area (action PositionObject) and (first dismount) then retire to move to a predefined position
(action Move), while following the reference paths (dotted lines).
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Figure 5.8: Task #1 - Unanticipated Obstacle (Section 5.4.2): The reactive layer allows for successful
task completions even in the presence of non-convex obstacles, that have not been accounted for by
the deliberative layer. The red dashed line represents the original (blocked by the obstacle) path
given by the deliberative planner, associated with the action MoveToObject.
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MoveToObject(2)

<latexit sha1_base64="1jvY2dC/uyafi1+80wUS0SVV5/I=">AAACAHicbVC7TgJBFJ3FF+Jr1cbEZiMxwYbs0qgd0cbGiAkICRAyO1xgZHZnM3OXSDbY+Cs2Fmps/Qw7/8bhUSh4kklOzrk3d87xI8E1uu63lVpaXlldS69nNja3tnfs3b07LWPFoMKkkKrmUw2Ch1BBjgJqkQIa+AKqfv9y7FcHoDSXYRmHETQD2g15hzOKRmrZBw2EB9QsuZYDKMsb/x4Y5gono5addfPuBM4i8WYkS2YoteyvRluyOIAQmaBa1z03wmZCFXImYJRpxBoiyvq0C3VDQxqAbiaTBCPn2ChtpyOVeSE6E/X3RkIDrYeBbyYDij09743F/7x6jJ2zZsLDKEYI2fRQJxYOSmdch9PmygQWQ0MoU9z81WE9qihDU1rGlODNR14klUL+PO/dFrLFi1kbaXJIjkiOeOSUFMkVKZEKYeSRPJNX8mY9WS/Wu/UxHU1Zs5198gfW5w+qhZaQ</latexit><latexit sha1_base64="1jvY2dC/uyafi1+80wUS0SVV5/I=">AAACAHicbVC7TgJBFJ3FF+Jr1cbEZiMxwYbs0qgd0cbGiAkICRAyO1xgZHZnM3OXSDbY+Cs2Fmps/Qw7/8bhUSh4kklOzrk3d87xI8E1uu63lVpaXlldS69nNja3tnfs3b07LWPFoMKkkKrmUw2Ch1BBjgJqkQIa+AKqfv9y7FcHoDSXYRmHETQD2g15hzOKRmrZBw2EB9QsuZYDKMsb/x4Y5gono5addfPuBM4i8WYkS2YoteyvRluyOIAQmaBa1z03wmZCFXImYJRpxBoiyvq0C3VDQxqAbiaTBCPn2ChtpyOVeSE6E/X3RkIDrYeBbyYDij09743F/7x6jJ2zZsLDKEYI2fRQJxYOSmdch9PmygQWQ0MoU9z81WE9qihDU1rGlODNR14klUL+PO/dFrLFi1kbaXJIjkiOeOSUFMkVKZEKYeSRPJNX8mY9WS/Wu/UxHU1Zs5198gfW5w+qhZaQ</latexit><latexit sha1_base64="1jvY2dC/uyafi1+80wUS0SVV5/I=">AAACAHicbVC7TgJBFJ3FF+Jr1cbEZiMxwYbs0qgd0cbGiAkICRAyO1xgZHZnM3OXSDbY+Cs2Fmps/Qw7/8bhUSh4kklOzrk3d87xI8E1uu63lVpaXlldS69nNja3tnfs3b07LWPFoMKkkKrmUw2Ch1BBjgJqkQIa+AKqfv9y7FcHoDSXYRmHETQD2g15hzOKRmrZBw2EB9QsuZYDKMsb/x4Y5gono5addfPuBM4i8WYkS2YoteyvRluyOIAQmaBa1z03wmZCFXImYJRpxBoiyvq0C3VDQxqAbiaTBCPn2ChtpyOVeSE6E/X3RkIDrYeBbyYDij09743F/7x6jJ2zZsLDKEYI2fRQJxYOSmdch9PmygQWQ0MoU9z81WE9qihDU1rGlODNR14klUL+PO/dFrLFi1kbaXJIjkiOeOSUFMkVKZEKYeSRPJNX8mY9WS/Wu/UxHU1Zs5198gfW5w+qhZaQ</latexit><latexit sha1_base64="1jvY2dC/uyafi1+80wUS0SVV5/I=">AAACAHicbVC7TgJBFJ3FF+Jr1cbEZiMxwYbs0qgd0cbGiAkICRAyO1xgZHZnM3OXSDbY+Cs2Fmps/Qw7/8bhUSh4kklOzrk3d87xI8E1uu63lVpaXlldS69nNja3tnfs3b07LWPFoMKkkKrmUw2Ch1BBjgJqkQIa+AKqfv9y7FcHoDSXYRmHETQD2g15hzOKRmrZBw2EB9QsuZYDKMsb/x4Y5gono5addfPuBM4i8WYkS2YoteyvRluyOIAQmaBa1z03wmZCFXImYJRpxBoiyvq0C3VDQxqAbiaTBCPn2ChtpyOVeSE6E/X3RkIDrYeBbyYDij09743F/7x6jJ2zZsLDKEYI2fRQJxYOSmdch9PmygQWQ0MoU9z81WE9qihDU1rGlODNR14klUL+PO/dFrLFi1kbaXJIjkiOeOSUFMkVKZEKYeSRPJNX8mY9WS/Wu/UxHU1Zs5198gfW5w+qhZaQ</latexit>

PositionObject(2)
<latexit sha1_base64="aeIpmVvbYldZj9wRKPvQOFB4a7Q=">AAACAnicbVBNS8NAFNzUr1q/ot70EixCvZSkF/VW9OLNCsYW2lA22227utkNuy9iCQUv/hUvHlS8+iu8+W/ctDlo68CDYeY9HjNhzJkG1/22CguLS8srxdXS2vrG5pa9vXOjZaII9YnkUrVCrClngvrAgNNWrCiOQk6b4d155jfvqdJMimsYxTSI8ECwPiMYjNS19zpAH0CTtCE1y6TL8JYSqNSOxl277FbdCZx54uWkjHI0uvZXpydJElEBhGOt254bQ5BiBYxwOi51Ek1jTO7wgLYNFTiiOkgnGcbOoVF6Tl8qMwKcifr7IsWR1qMoNJsRhqGe9TLxP6+dQP8kSJmIE6CCTB/1E+6AdLJCnB5TJjAfGYKJMh0QhwyxwgRMbSVTgjcbeZ74tepp1buqletneRtFtI8OUAV56BjV0QVqIB8R9Iie0St6s56sF+vd+piuFqz8Zhf9gfX5A4a1l58=</latexit><latexit sha1_base64="aeIpmVvbYldZj9wRKPvQOFB4a7Q=">AAACAnicbVBNS8NAFNzUr1q/ot70EixCvZSkF/VW9OLNCsYW2lA22227utkNuy9iCQUv/hUvHlS8+iu8+W/ctDlo68CDYeY9HjNhzJkG1/22CguLS8srxdXS2vrG5pa9vXOjZaII9YnkUrVCrClngvrAgNNWrCiOQk6b4d155jfvqdJMimsYxTSI8ECwPiMYjNS19zpAH0CTtCE1y6TL8JYSqNSOxl277FbdCZx54uWkjHI0uvZXpydJElEBhGOt254bQ5BiBYxwOi51Ek1jTO7wgLYNFTiiOkgnGcbOoVF6Tl8qMwKcifr7IsWR1qMoNJsRhqGe9TLxP6+dQP8kSJmIE6CCTB/1E+6AdLJCnB5TJjAfGYKJMh0QhwyxwgRMbSVTgjcbeZ74tepp1buqletneRtFtI8OUAV56BjV0QVqIB8R9Iie0St6s56sF+vd+piuFqz8Zhf9gfX5A4a1l58=</latexit><latexit sha1_base64="aeIpmVvbYldZj9wRKPvQOFB4a7Q=">AAACAnicbVBNS8NAFNzUr1q/ot70EixCvZSkF/VW9OLNCsYW2lA22227utkNuy9iCQUv/hUvHlS8+iu8+W/ctDlo68CDYeY9HjNhzJkG1/22CguLS8srxdXS2vrG5pa9vXOjZaII9YnkUrVCrClngvrAgNNWrCiOQk6b4d155jfvqdJMimsYxTSI8ECwPiMYjNS19zpAH0CTtCE1y6TL8JYSqNSOxl277FbdCZx54uWkjHI0uvZXpydJElEBhGOt254bQ5BiBYxwOi51Ek1jTO7wgLYNFTiiOkgnGcbOoVF6Tl8qMwKcifr7IsWR1qMoNJsRhqGe9TLxP6+dQP8kSJmIE6CCTB/1E+6AdLJCnB5TJjAfGYKJMh0QhwyxwgRMbSVTgjcbeZ74tepp1buqletneRtFtI8OUAV56BjV0QVqIB8R9Iie0St6s56sF+vd+piuFqz8Zhf9gfX5A4a1l58=</latexit><latexit sha1_base64="aeIpmVvbYldZj9wRKPvQOFB4a7Q=">AAACAnicbVBNS8NAFNzUr1q/ot70EixCvZSkF/VW9OLNCsYW2lA22227utkNuy9iCQUv/hUvHlS8+iu8+W/ctDlo68CDYeY9HjNhzJkG1/22CguLS8srxdXS2vrG5pa9vXOjZaII9YnkUrVCrClngvrAgNNWrCiOQk6b4d155jfvqdJMimsYxTSI8ECwPiMYjNS19zpAH0CTtCE1y6TL8JYSqNSOxl277FbdCZx54uWkjHI0uvZXpydJElEBhGOt254bQ5BiBYxwOi51Ek1jTO7wgLYNFTiiOkgnGcbOoVF6Tl8qMwKcifr7IsWR1qMoNJsRhqGe9TLxP6+dQP8kSJmIE6CCTB/1E+6AdLJCnB5TJjAfGYKJMh0QhwyxwgRMbSVTgjcbeZ74tepp1buqletneRtFtI8OUAV56BjV0QVqIB8R9Iie0St6s56sF+vd+piuFqz8Zhf9gfX5A4a1l58=</latexit>

MoveToObject(2)
<latexit sha1_base64="1jvY2dC/uyafi1+80wUS0SVV5/I=">AAACAHicbVC7TgJBFJ3FF+Jr1cbEZiMxwYbs0qgd0cbGiAkICRAyO1xgZHZnM3OXSDbY+Cs2Fmps/Qw7/8bhUSh4kklOzrk3d87xI8E1uu63lVpaXlldS69nNja3tnfs3b07LWPFoMKkkKrmUw2Ch1BBjgJqkQIa+AKqfv9y7FcHoDSXYRmHETQD2g15hzOKRmrZBw2EB9QsuZYDKMsb/x4Y5gono5addfPuBM4i8WYkS2YoteyvRluyOIAQmaBa1z03wmZCFXImYJRpxBoiyvq0C3VDQxqAbiaTBCPn2ChtpyOVeSE6E/X3RkIDrYeBbyYDij09743F/7x6jJ2zZsLDKEYI2fRQJxYOSmdch9PmygQWQ0MoU9z81WE9qihDU1rGlODNR14klUL+PO/dFrLFi1kbaXJIjkiOeOSUFMkVKZEKYeSRPJNX8mY9WS/Wu/UxHU1Zs5198gfW5w+qhZaQ</latexit><latexit sha1_base64="1jvY2dC/uyafi1+80wUS0SVV5/I=">AAACAHicbVC7TgJBFJ3FF+Jr1cbEZiMxwYbs0qgd0cbGiAkICRAyO1xgZHZnM3OXSDbY+Cs2Fmps/Qw7/8bhUSh4kklOzrk3d87xI8E1uu63lVpaXlldS69nNja3tnfs3b07LWPFoMKkkKrmUw2Ch1BBjgJqkQIa+AKqfv9y7FcHoDSXYRmHETQD2g15hzOKRmrZBw2EB9QsuZYDKMsb/x4Y5gono5addfPuBM4i8WYkS2YoteyvRluyOIAQmaBa1z03wmZCFXImYJRpxBoiyvq0C3VDQxqAbiaTBCPn2ChtpyOVeSE6E/X3RkIDrYeBbyYDij09743F/7x6jJ2zZsLDKEYI2fRQJxYOSmdch9PmygQWQ0MoU9z81WE9qihDU1rGlODNR14klUL+PO/dFrLFi1kbaXJIjkiOeOSUFMkVKZEKYeSRPJNX8mY9WS/Wu/UxHU1Zs5198gfW5w+qhZaQ</latexit><latexit sha1_base64="1jvY2dC/uyafi1+80wUS0SVV5/I=">AAACAHicbVC7TgJBFJ3FF+Jr1cbEZiMxwYbs0qgd0cbGiAkICRAyO1xgZHZnM3OXSDbY+Cs2Fmps/Qw7/8bhUSh4kklOzrk3d87xI8E1uu63lVpaXlldS69nNja3tnfs3b07LWPFoMKkkKrmUw2Ch1BBjgJqkQIa+AKqfv9y7FcHoDSXYRmHETQD2g15hzOKRmrZBw2EB9QsuZYDKMsb/x4Y5gono5addfPuBM4i8WYkS2YoteyvRluyOIAQmaBa1z03wmZCFXImYJRpxBoiyvq0C3VDQxqAbiaTBCPn2ChtpyOVeSE6E/X3RkIDrYeBbyYDij09743F/7x6jJ2zZsLDKEYI2fRQJxYOSmdch9PmygQWQ0MoU9z81WE9qihDU1rGlODNR14klUL+PO/dFrLFi1kbaXJIjkiOeOSUFMkVKZEKYeSRPJNX8mY9WS/Wu/UxHU1Zs5198gfW5w+qhZaQ</latexit><latexit sha1_base64="1jvY2dC/uyafi1+80wUS0SVV5/I=">AAACAHicbVC7TgJBFJ3FF+Jr1cbEZiMxwYbs0qgd0cbGiAkICRAyO1xgZHZnM3OXSDbY+Cs2Fmps/Qw7/8bhUSh4kklOzrk3d87xI8E1uu63lVpaXlldS69nNja3tnfs3b07LWPFoMKkkKrmUw2Ch1BBjgJqkQIa+AKqfv9y7FcHoDSXYRmHETQD2g15hzOKRmrZBw2EB9QsuZYDKMsb/x4Y5gono5addfPuBM4i8WYkS2YoteyvRluyOIAQmaBa1z03wmZCFXImYJRpxBoiyvq0C3VDQxqAbiaTBCPn2ChtpyOVeSE6E/X3RkIDrYeBbyYDij09743F/7x6jJ2zZsLDKEYI2fRQJxYOSmdch9PmygQWQ0MoU9z81WE9qihDU1rGlODNR14klUL+PO/dFrLFi1kbaXJIjkiOeOSUFMkVKZEKYeSRPJNX8mY9WS/Wu/UxHU1Zs5198gfW5w+qhZaQ</latexit>

PositionObject(2)
<latexit sha1_base64="aeIpmVvbYldZj9wRKPvQOFB4a7Q=">AAACAnicbVBNS8NAFNzUr1q/ot70EixCvZSkF/VW9OLNCsYW2lA22227utkNuy9iCQUv/hUvHlS8+iu8+W/ctDlo68CDYeY9HjNhzJkG1/22CguLS8srxdXS2vrG5pa9vXOjZaII9YnkUrVCrClngvrAgNNWrCiOQk6b4d155jfvqdJMimsYxTSI8ECwPiMYjNS19zpAH0CTtCE1y6TL8JYSqNSOxl277FbdCZx54uWkjHI0uvZXpydJElEBhGOt254bQ5BiBYxwOi51Ek1jTO7wgLYNFTiiOkgnGcbOoVF6Tl8qMwKcifr7IsWR1qMoNJsRhqGe9TLxP6+dQP8kSJmIE6CCTB/1E+6AdLJCnB5TJjAfGYKJMh0QhwyxwgRMbSVTgjcbeZ74tepp1buqletneRtFtI8OUAV56BjV0QVqIB8R9Iie0St6s56sF+vd+piuFqz8Zhf9gfX5A4a1l58=</latexit><latexit sha1_base64="aeIpmVvbYldZj9wRKPvQOFB4a7Q=">AAACAnicbVBNS8NAFNzUr1q/ot70EixCvZSkF/VW9OLNCsYW2lA22227utkNuy9iCQUv/hUvHlS8+iu8+W/ctDlo68CDYeY9HjNhzJkG1/22CguLS8srxdXS2vrG5pa9vXOjZaII9YnkUrVCrClngvrAgNNWrCiOQk6b4d155jfvqdJMimsYxTSI8ECwPiMYjNS19zpAH0CTtCE1y6TL8JYSqNSOxl277FbdCZx54uWkjHI0uvZXpydJElEBhGOt254bQ5BiBYxwOi51Ek1jTO7wgLYNFTiiOkgnGcbOoVF6Tl8qMwKcifr7IsWR1qMoNJsRhqGe9TLxP6+dQP8kSJmIE6CCTB/1E+6AdLJCnB5TJjAfGYKJMh0QhwyxwgRMbSVTgjcbeZ74tepp1buqletneRtFtI8OUAV56BjV0QVqIB8R9Iie0St6s56sF+vd+piuFqz8Zhf9gfX5A4a1l58=</latexit><latexit sha1_base64="aeIpmVvbYldZj9wRKPvQOFB4a7Q=">AAACAnicbVBNS8NAFNzUr1q/ot70EixCvZSkF/VW9OLNCsYW2lA22227utkNuy9iCQUv/hUvHlS8+iu8+W/ctDlo68CDYeY9HjNhzJkG1/22CguLS8srxdXS2vrG5pa9vXOjZaII9YnkUrVCrClngvrAgNNWrCiOQk6b4d155jfvqdJMimsYxTSI8ECwPiMYjNS19zpAH0CTtCE1y6TL8JYSqNSOxl277FbdCZx54uWkjHI0uvZXpydJElEBhGOt254bQ5BiBYxwOi51Ek1jTO7wgLYNFTiiOkgnGcbOoVF6Tl8qMwKcifr7IsWR1qMoNJsRhqGe9TLxP6+dQP8kSJmIE6CCTB/1E+6AdLJCnB5TJjAfGYKJMh0QhwyxwgRMbSVTgjcbeZ74tepp1buqletneRtFtI8OUAV56BjV0QVqIB8R9Iie0St6s56sF+vd+piuFqz8Zhf9gfX5A4a1l58=</latexit><latexit sha1_base64="aeIpmVvbYldZj9wRKPvQOFB4a7Q=">AAACAnicbVBNS8NAFNzUr1q/ot70EixCvZSkF/VW9OLNCsYW2lA22227utkNuy9iCQUv/hUvHlS8+iu8+W/ctDlo68CDYeY9HjNhzJkG1/22CguLS8srxdXS2vrG5pa9vXOjZaII9YnkUrVCrClngvrAgNNWrCiOQk6b4d155jfvqdJMimsYxTSI8ECwPiMYjNS19zpAH0CTtCE1y6TL8JYSqNSOxl277FbdCZx54uWkjHI0uvZXpydJElEBhGOt254bQ5BiBYxwOi51Ek1jTO7wgLYNFTiiOkgnGcbOoVF6Tl8qMwKcifr7IsWR1qMoNJsRhqGe9TLxP6+dQP8kSJmIE6CCTB/1E+6AdLJCnB5TJjAfGYKJMh0QhwyxwgRMbSVTgjcbeZ74tepp1buqletneRtFtI8OUAV56BjV0QVqIB8R9Iie0St6s56sF+vd+piuFqz8Zhf9gfX5A4a1l58=</latexit>

PositionObject(1)
<latexit sha1_base64="LnT8VJxZF0zHhfhkImvFXcN3MqM=">AAACAnicbVBNS8NAFNzUr1q/ot70sliEeilJL+qt6MWbFYwttKFsttt2dbMJuy9iCQUv/hUvHlS8+iu8+W/ctDlo68CDYeY9HjNBLLgGx/m2CguLS8srxdXS2vrG5pa9vXOjo0RR5tFIRKoVEM0El8wDDoK1YsVIGAjWDO7OM795z5TmkbyGUcz8kAwk73NKwEhde68D7AE0TRuR5pl0GdwyChX3aNy1y07VmQDPEzcnZZSj0bW/Or2IJiGTQAXRuu06MfgpUcCpYONSJ9EsJvSODFjbUElCpv10kmGMD43Sw/1ImZGAJ+rvi5SEWo/CwGyGBIZ61svE/7x2Av0TP+UyToBJOn3UTwSGCGeF4B5XJrAYGUKoMh1QTIdEEQqmtpIpwZ2NPE+8WvW06l7VyvWzvI0i2kcHqIJcdIzq6AI1kIcoekTP6BW9WU/Wi/VufUxXC1Z+s4v+wPr8AYUwl54=</latexit><latexit sha1_base64="LnT8VJxZF0zHhfhkImvFXcN3MqM=">AAACAnicbVBNS8NAFNzUr1q/ot70sliEeilJL+qt6MWbFYwttKFsttt2dbMJuy9iCQUv/hUvHlS8+iu8+W/ctDlo68CDYeY9HjNBLLgGx/m2CguLS8srxdXS2vrG5pa9vXOjo0RR5tFIRKoVEM0El8wDDoK1YsVIGAjWDO7OM795z5TmkbyGUcz8kAwk73NKwEhde68D7AE0TRuR5pl0GdwyChX3aNy1y07VmQDPEzcnZZSj0bW/Or2IJiGTQAXRuu06MfgpUcCpYONSJ9EsJvSODFjbUElCpv10kmGMD43Sw/1ImZGAJ+rvi5SEWo/CwGyGBIZ61svE/7x2Av0TP+UyToBJOn3UTwSGCGeF4B5XJrAYGUKoMh1QTIdEEQqmtpIpwZ2NPE+8WvW06l7VyvWzvI0i2kcHqIJcdIzq6AI1kIcoekTP6BW9WU/Wi/VufUxXC1Z+s4v+wPr8AYUwl54=</latexit><latexit sha1_base64="LnT8VJxZF0zHhfhkImvFXcN3MqM=">AAACAnicbVBNS8NAFNzUr1q/ot70sliEeilJL+qt6MWbFYwttKFsttt2dbMJuy9iCQUv/hUvHlS8+iu8+W/ctDlo68CDYeY9HjNBLLgGx/m2CguLS8srxdXS2vrG5pa9vXOjo0RR5tFIRKoVEM0El8wDDoK1YsVIGAjWDO7OM795z5TmkbyGUcz8kAwk73NKwEhde68D7AE0TRuR5pl0GdwyChX3aNy1y07VmQDPEzcnZZSj0bW/Or2IJiGTQAXRuu06MfgpUcCpYONSJ9EsJvSODFjbUElCpv10kmGMD43Sw/1ImZGAJ+rvi5SEWo/CwGyGBIZ61svE/7x2Av0TP+UyToBJOn3UTwSGCGeF4B5XJrAYGUKoMh1QTIdEEQqmtpIpwZ2NPE+8WvW06l7VyvWzvI0i2kcHqIJcdIzq6AI1kIcoekTP6BW9WU/Wi/VufUxXC1Z+s4v+wPr8AYUwl54=</latexit><latexit sha1_base64="LnT8VJxZF0zHhfhkImvFXcN3MqM=">AAACAnicbVBNS8NAFNzUr1q/ot70sliEeilJL+qt6MWbFYwttKFsttt2dbMJuy9iCQUv/hUvHlS8+iu8+W/ctDlo68CDYeY9HjNBLLgGx/m2CguLS8srxdXS2vrG5pa9vXOjo0RR5tFIRKoVEM0El8wDDoK1YsVIGAjWDO7OM795z5TmkbyGUcz8kAwk73NKwEhde68D7AE0TRuR5pl0GdwyChX3aNy1y07VmQDPEzcnZZSj0bW/Or2IJiGTQAXRuu06MfgpUcCpYONSJ9EsJvSODFjbUElCpv10kmGMD43Sw/1ImZGAJ+rvi5SEWo/CwGyGBIZ61svE/7x2Av0TP+UyToBJOn3UTwSGCGeF4B5XJrAYGUKoMh1QTIdEEQqmtpIpwZ2NPE+8WvW06l7VyvWzvI0i2kcHqIJcdIzq6AI1kIcoekTP6BW9WU/Wi/VufUxXC1Z+s4v+wPr8AYUwl54=</latexit>

MoveToObject(1)
<latexit sha1_base64="Cue9IinBrsF6gL5CJH+uNQv3Y40=">AAACAHicbVC7TgJBFJ3FF+Jr1cbEZiMxwYbs0qgd0cbGiAkICRAyO1xgZHZnM3OXSDbY+Cs2Fmps/Qw7/8bhUSh4kklOzrk3d87xI8E1uu63lVpaXlldS69nNja3tnfs3b07LWPFoMKkkKrmUw2Ch1BBjgJqkQIa+AKqfv9y7FcHoDSXYRmHETQD2g15hzOKRmrZBw2EB9QsuZYDKMsb/x4Y5ryTUcvOunl3AmeReDOSJTOUWvZXoy1ZHECITFCt654bYTOhCjkTMMo0Yg0RZX3ahbqhIQ1AN5NJgpFzbJS205HKvBCdifp7I6GB1sPAN5MBxZ6e98bif149xs5ZM+FhFCOEbHqoEwsHpTOuw2lzZQKLoSGUKW7+6rAeVZShKS1jSvDmIy+SSiF/nvduC9nixayNNDkkRyRHPHJKiuSKlEiFMPJInskrebOerBfr3fqYjqas2c4++QPr8wepAJaP</latexit><latexit sha1_base64="Cue9IinBrsF6gL5CJH+uNQv3Y40=">AAACAHicbVC7TgJBFJ3FF+Jr1cbEZiMxwYbs0qgd0cbGiAkICRAyO1xgZHZnM3OXSDbY+Cs2Fmps/Qw7/8bhUSh4kklOzrk3d87xI8E1uu63lVpaXlldS69nNja3tnfs3b07LWPFoMKkkKrmUw2Ch1BBjgJqkQIa+AKqfv9y7FcHoDSXYRmHETQD2g15hzOKRmrZBw2EB9QsuZYDKMsb/x4Y5ryTUcvOunl3AmeReDOSJTOUWvZXoy1ZHECITFCt654bYTOhCjkTMMo0Yg0RZX3ahbqhIQ1AN5NJgpFzbJS205HKvBCdifp7I6GB1sPAN5MBxZ6e98bif149xs5ZM+FhFCOEbHqoEwsHpTOuw2lzZQKLoSGUKW7+6rAeVZShKS1jSvDmIy+SSiF/nvduC9nixayNNDkkRyRHPHJKiuSKlEiFMPJInskrebOerBfr3fqYjqas2c4++QPr8wepAJaP</latexit><latexit sha1_base64="Cue9IinBrsF6gL5CJH+uNQv3Y40=">AAACAHicbVC7TgJBFJ3FF+Jr1cbEZiMxwYbs0qgd0cbGiAkICRAyO1xgZHZnM3OXSDbY+Cs2Fmps/Qw7/8bhUSh4kklOzrk3d87xI8E1uu63lVpaXlldS69nNja3tnfs3b07LWPFoMKkkKrmUw2Ch1BBjgJqkQIa+AKqfv9y7FcHoDSXYRmHETQD2g15hzOKRmrZBw2EB9QsuZYDKMsb/x4Y5ryTUcvOunl3AmeReDOSJTOUWvZXoy1ZHECITFCt654bYTOhCjkTMMo0Yg0RZX3ahbqhIQ1AN5NJgpFzbJS205HKvBCdifp7I6GB1sPAN5MBxZ6e98bif149xs5ZM+FhFCOEbHqoEwsHpTOuw2lzZQKLoSGUKW7+6rAeVZShKS1jSvDmIy+SSiF/nvduC9nixayNNDkkRyRHPHJKiuSKlEiFMPJInskrebOerBfr3fqYjqas2c4++QPr8wepAJaP</latexit><latexit sha1_base64="Cue9IinBrsF6gL5CJH+uNQv3Y40=">AAACAHicbVC7TgJBFJ3FF+Jr1cbEZiMxwYbs0qgd0cbGiAkICRAyO1xgZHZnM3OXSDbY+Cs2Fmps/Qw7/8bhUSh4kklOzrk3d87xI8E1uu63lVpaXlldS69nNja3tnfs3b07LWPFoMKkkKrmUw2Ch1BBjgJqkQIa+AKqfv9y7FcHoDSXYRmHETQD2g15hzOKRmrZBw2EB9QsuZYDKMsb/x4Y5ryTUcvOunl3AmeReDOSJTOUWvZXoy1ZHECITFCt654bYTOhCjkTMMo0Yg0RZX3ahbqhIQ1AN5NJgpFzbJS205HKvBCdifp7I6GB1sPAN5MBxZ6e98bif149xs5ZM+FhFCOEbHqoEwsHpTOuw2lzZQKLoSGUKW7+6rAeVZShKS1jSvDmIy+SSiF/nvduC9nixayNNDkkRyRHPHJKiuSKlEiFMPJInskrebOerBfr3fqYjqas2c4++QPr8wepAJaP</latexit>

Move
<latexit sha1_base64="J3PQe1dcCFw/Czb2EjQi6u/GwJE=">AAAB83icbVA9TwJBEN3zE/ELtbTZSEysyB2N2hFtbEww8YQELmRvGWDD3t65O0ckF36HjYUaW/+Mnf/GBa5Q8CWTvLw3k5l5YSKFQdf9dlZW19Y3Ngtbxe2d3b390sHhg4lTzcHnsYx1M2QGpFDgo0AJzUQDi0IJjXB4PfUbI9BGxOoexwkEEesr0ROcoZWCNsITGp7dxiOYdEplt+LOQJeJl5MyyVHvlL7a3ZinESjkkhnT8twEg4xpFFzCpNhODSSMD1kfWpYqFoEJstnRE3pqlS7txdqWQjpTf09kLDJmHIW2M2I4MIveVPzPa6XYuwgyoZIUQfH5ol4qKcZ0mgDtCg0c5dgSxrWwt1I+YJpxtDkVbQje4svLxK9WLiveXbVcu8rTKJBjckLOiEfOSY3ckDrxCSeP5Jm8kjdn5Lw4787HvHXFyWeOyB84nz/UnpJU</latexit><latexit sha1_base64="J3PQe1dcCFw/Czb2EjQi6u/GwJE=">AAAB83icbVA9TwJBEN3zE/ELtbTZSEysyB2N2hFtbEww8YQELmRvGWDD3t65O0ckF36HjYUaW/+Mnf/GBa5Q8CWTvLw3k5l5YSKFQdf9dlZW19Y3Ngtbxe2d3b390sHhg4lTzcHnsYx1M2QGpFDgo0AJzUQDi0IJjXB4PfUbI9BGxOoexwkEEesr0ROcoZWCNsITGp7dxiOYdEplt+LOQJeJl5MyyVHvlL7a3ZinESjkkhnT8twEg4xpFFzCpNhODSSMD1kfWpYqFoEJstnRE3pqlS7txdqWQjpTf09kLDJmHIW2M2I4MIveVPzPa6XYuwgyoZIUQfH5ol4qKcZ0mgDtCg0c5dgSxrWwt1I+YJpxtDkVbQje4svLxK9WLiveXbVcu8rTKJBjckLOiEfOSY3ckDrxCSeP5Jm8kjdn5Lw4787HvHXFyWeOyB84nz/UnpJU</latexit><latexit sha1_base64="J3PQe1dcCFw/Czb2EjQi6u/GwJE=">AAAB83icbVA9TwJBEN3zE/ELtbTZSEysyB2N2hFtbEww8YQELmRvGWDD3t65O0ckF36HjYUaW/+Mnf/GBa5Q8CWTvLw3k5l5YSKFQdf9dlZW19Y3Ngtbxe2d3b390sHhg4lTzcHnsYx1M2QGpFDgo0AJzUQDi0IJjXB4PfUbI9BGxOoexwkEEesr0ROcoZWCNsITGp7dxiOYdEplt+LOQJeJl5MyyVHvlL7a3ZinESjkkhnT8twEg4xpFFzCpNhODSSMD1kfWpYqFoEJstnRE3pqlS7txdqWQjpTf09kLDJmHIW2M2I4MIveVPzPa6XYuwgyoZIUQfH5ol4qKcZ0mgDtCg0c5dgSxrWwt1I+YJpxtDkVbQje4svLxK9WLiveXbVcu8rTKJBjckLOiEfOSY3ckDrxCSeP5Jm8kjdn5Lw4787HvHXFyWeOyB84nz/UnpJU</latexit><latexit sha1_base64="J3PQe1dcCFw/Czb2EjQi6u/GwJE=">AAAB83icbVA9TwJBEN3zE/ELtbTZSEysyB2N2hFtbEww8YQELmRvGWDD3t65O0ckF36HjYUaW/+Mnf/GBa5Q8CWTvLw3k5l5YSKFQdf9dlZW19Y3Ngtbxe2d3b390sHhg4lTzcHnsYx1M2QGpFDgo0AJzUQDi0IJjXB4PfUbI9BGxOoexwkEEesr0ROcoZWCNsITGp7dxiOYdEplt+LOQJeJl5MyyVHvlL7a3ZinESjkkhnT8twEg4xpFFzCpNhODSSMD1kfWpYqFoEJstnRE3pqlS7txdqWQjpTf09kLDJmHIW2M2I4MIveVPzPa6XYuwgyoZIUQfH5ol4qKcZ0mgDtCg0c5dgSxrWwt1I+YJpxtDkVbQje4svLxK9WLiveXbVcu8rTKJBjckLOiEfOSY3ckDrxCSeP5Jm8kjdn5Lw4787HvHXFyWeOyB84nz/UnpJU</latexit>
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<latexit sha1_base64="eoomXg07Rowz8CY30PDMMuXJbG0=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q0oiMcKxhaaUDbbbbt0swm7E7GE/g0vHlS8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7S8srq2Xtoob25t7+xW9vYfTJJpxn2WyES3Imq4FIr7KFDyVqo5jSPJm9HweuI3H7k2IlH3OEp5GNO+Ej3BKFopCJA/YX4jFJXjTqXq1twpyCLxClKFAo1O5SvoJiyLuUImqTFtz00xzKlGwSQfl4PM8JSyIe3ztqWKxtyE+fTmMTm2Spf0Em1LIZmqvydyGhsziiPbGVMcmHlvIv7ntTPsXYS5UGmGXLHZol4mCSZkEgDpCs0ZypEllGlhbyVsQDVlaGMq2xC8+ZcXiX9au6x5d2fV+lWRRgkO4QhOwINzqMMtNMAHBik8wyu8OZnz4rw7H7PWJaeYOYA/cD5/AOS4kck=</latexit><latexit sha1_base64="eoomXg07Rowz8CY30PDMMuXJbG0=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q0oiMcKxhaaUDbbbbt0swm7E7GE/g0vHlS8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7S8srq2Xtoob25t7+xW9vYfTJJpxn2WyES3Imq4FIr7KFDyVqo5jSPJm9HweuI3H7k2IlH3OEp5GNO+Ej3BKFopCJA/YX4jFJXjTqXq1twpyCLxClKFAo1O5SvoJiyLuUImqTFtz00xzKlGwSQfl4PM8JSyIe3ztqWKxtyE+fTmMTm2Spf0Em1LIZmqvydyGhsziiPbGVMcmHlvIv7ntTPsXYS5UGmGXLHZol4mCSZkEgDpCs0ZypEllGlhbyVsQDVlaGMq2xC8+ZcXiX9au6x5d2fV+lWRRgkO4QhOwINzqMMtNMAHBik8wyu8OZnz4rw7H7PWJaeYOYA/cD5/AOS4kck=</latexit><latexit sha1_base64="eoomXg07Rowz8CY30PDMMuXJbG0=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q0oiMcKxhaaUDbbbbt0swm7E7GE/g0vHlS8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7S8srq2Xtoob25t7+xW9vYfTJJpxn2WyES3Imq4FIr7KFDyVqo5jSPJm9HweuI3H7k2IlH3OEp5GNO+Ej3BKFopCJA/YX4jFJXjTqXq1twpyCLxClKFAo1O5SvoJiyLuUImqTFtz00xzKlGwSQfl4PM8JSyIe3ztqWKxtyE+fTmMTm2Spf0Em1LIZmqvydyGhsziiPbGVMcmHlvIv7ntTPsXYS5UGmGXLHZol4mCSZkEgDpCs0ZypEllGlhbyVsQDVlaGMq2xC8+ZcXiX9au6x5d2fV+lWRRgkO4QhOwINzqMMtNMAHBik8wyu8OZnz4rw7H7PWJaeYOYA/cD5/AOS4kck=</latexit><latexit sha1_base64="eoomXg07Rowz8CY30PDMMuXJbG0=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q0oiMcKxhaaUDbbbbt0swm7E7GE/g0vHlS8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7S8srq2Xtoob25t7+xW9vYfTJJpxn2WyES3Imq4FIr7KFDyVqo5jSPJm9HweuI3H7k2IlH3OEp5GNO+Ej3BKFopCJA/YX4jFJXjTqXq1twpyCLxClKFAo1O5SvoJiyLuUImqTFtz00xzKlGwSQfl4PM8JSyIe3ztqWKxtyE+fTmMTm2Spf0Em1LIZmqvydyGhsziiPbGVMcmHlvIv7ntTPsXYS5UGmGXLHZol4mCSZkEgDpCs0ZypEllGlhbyVsQDVlaGMq2xC8+ZcXiX9au6x5d2fV+lWRRgkO4QhOwINzqMMtNMAHBik8wyu8OZnz4rw7H7PWJaeYOYA/cD5/AOS4kck=</latexit>

Figure 5.9: Task #2 (Section 5.4.3): Vicon data showing Minitaur swapping the positions of two
objects. The dashed lines represent the reference paths for the robot or for the objects, provided
by the deliberative layer. Non-filled and filled circles depict the start and end positions for each
action execution. Any discrepancies of the final trajectories with the reference paths are caused by
the controller’s reactive nature and do not affect task completion.
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MoveToObject(2)
<latexit sha1_base64="1jvY2dC/uyafi1+80wUS0SVV5/I=">AAACAHicbVC7TgJBFJ3FF+Jr1cbEZiMxwYbs0qgd0cbGiAkICRAyO1xgZHZnM3OXSDbY+Cs2Fmps/Qw7/8bhUSh4kklOzrk3d87xI8E1uu63lVpaXlldS69nNja3tnfs3b07LWPFoMKkkKrmUw2Ch1BBjgJqkQIa+AKqfv9y7FcHoDSXYRmHETQD2g15hzOKRmrZBw2EB9QsuZYDKMsb/x4Y5gono5addfPuBM4i8WYkS2YoteyvRluyOIAQmaBa1z03wmZCFXImYJRpxBoiyvq0C3VDQxqAbiaTBCPn2ChtpyOVeSE6E/X3RkIDrYeBbyYDij09743F/7x6jJ2zZsLDKEYI2fRQJxYOSmdch9PmygQWQ0MoU9z81WE9qihDU1rGlODNR14klUL+PO/dFrLFi1kbaXJIjkiOeOSUFMkVKZEKYeSRPJNX8mY9WS/Wu/UxHU1Zs5198gfW5w+qhZaQ</latexit><latexit sha1_base64="1jvY2dC/uyafi1+80wUS0SVV5/I=">AAACAHicbVC7TgJBFJ3FF+Jr1cbEZiMxwYbs0qgd0cbGiAkICRAyO1xgZHZnM3OXSDbY+Cs2Fmps/Qw7/8bhUSh4kklOzrk3d87xI8E1uu63lVpaXlldS69nNja3tnfs3b07LWPFoMKkkKrmUw2Ch1BBjgJqkQIa+AKqfv9y7FcHoDSXYRmHETQD2g15hzOKRmrZBw2EB9QsuZYDKMsb/x4Y5gono5addfPuBM4i8WYkS2YoteyvRluyOIAQmaBa1z03wmZCFXImYJRpxBoiyvq0C3VDQxqAbiaTBCPn2ChtpyOVeSE6E/X3RkIDrYeBbyYDij09743F/7x6jJ2zZsLDKEYI2fRQJxYOSmdch9PmygQWQ0MoU9z81WE9qihDU1rGlODNR14klUL+PO/dFrLFi1kbaXJIjkiOeOSUFMkVKZEKYeSRPJNX8mY9WS/Wu/UxHU1Zs5198gfW5w+qhZaQ</latexit><latexit sha1_base64="1jvY2dC/uyafi1+80wUS0SVV5/I=">AAACAHicbVC7TgJBFJ3FF+Jr1cbEZiMxwYbs0qgd0cbGiAkICRAyO1xgZHZnM3OXSDbY+Cs2Fmps/Qw7/8bhUSh4kklOzrk3d87xI8E1uu63lVpaXlldS69nNja3tnfs3b07LWPFoMKkkKrmUw2Ch1BBjgJqkQIa+AKqfv9y7FcHoDSXYRmHETQD2g15hzOKRmrZBw2EB9QsuZYDKMsb/x4Y5gono5addfPuBM4i8WYkS2YoteyvRluyOIAQmaBa1z03wmZCFXImYJRpxBoiyvq0C3VDQxqAbiaTBCPn2ChtpyOVeSE6E/X3RkIDrYeBbyYDij09743F/7x6jJ2zZsLDKEYI2fRQJxYOSmdch9PmygQWQ0MoU9z81WE9qihDU1rGlODNR14klUL+PO/dFrLFi1kbaXJIjkiOeOSUFMkVKZEKYeSRPJNX8mY9WS/Wu/UxHU1Zs5198gfW5w+qhZaQ</latexit><latexit sha1_base64="1jvY2dC/uyafi1+80wUS0SVV5/I=">AAACAHicbVC7TgJBFJ3FF+Jr1cbEZiMxwYbs0qgd0cbGiAkICRAyO1xgZHZnM3OXSDbY+Cs2Fmps/Qw7/8bhUSh4kklOzrk3d87xI8E1uu63lVpaXlldS69nNja3tnfs3b07LWPFoMKkkKrmUw2Ch1BBjgJqkQIa+AKqfv9y7FcHoDSXYRmHETQD2g15hzOKRmrZBw2EB9QsuZYDKMsb/x4Y5gono5addfPuBM4i8WYkS2YoteyvRluyOIAQmaBa1z03wmZCFXImYJRpxBoiyvq0C3VDQxqAbiaTBCPn2ChtpyOVeSE6E/X3RkIDrYeBbyYDij09743F/7x6jJ2zZsLDKEYI2fRQJxYOSmdch9PmygQWQ0MoU9z81WE9qihDU1rGlODNR14klUL+PO/dFrLFi1kbaXJIjkiOeOSUFMkVKZEKYeSRPJNX8mY9WS/Wu/UxHU1Zs5198gfW5w+qhZaQ</latexit>
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<latexit sha1_base64="aeIpmVvbYldZj9wRKPvQOFB4a7Q=">AAACAnicbVBNS8NAFNzUr1q/ot70EixCvZSkF/VW9OLNCsYW2lA22227utkNuy9iCQUv/hUvHlS8+iu8+W/ctDlo68CDYeY9HjNhzJkG1/22CguLS8srxdXS2vrG5pa9vXOjZaII9YnkUrVCrClngvrAgNNWrCiOQk6b4d155jfvqdJMimsYxTSI8ECwPiMYjNS19zpAH0CTtCE1y6TL8JYSqNSOxl277FbdCZx54uWkjHI0uvZXpydJElEBhGOt254bQ5BiBYxwOi51Ek1jTO7wgLYNFTiiOkgnGcbOoVF6Tl8qMwKcifr7IsWR1qMoNJsRhqGe9TLxP6+dQP8kSJmIE6CCTB/1E+6AdLJCnB5TJjAfGYKJMh0QhwyxwgRMbSVTgjcbeZ74tepp1buqletneRtFtI8OUAV56BjV0QVqIB8R9Iie0St6s56sF+vd+piuFqz8Zhf9gfX5A4a1l58=</latexit><latexit sha1_base64="aeIpmVvbYldZj9wRKPvQOFB4a7Q=">AAACAnicbVBNS8NAFNzUr1q/ot70EixCvZSkF/VW9OLNCsYW2lA22227utkNuy9iCQUv/hUvHlS8+iu8+W/ctDlo68CDYeY9HjNhzJkG1/22CguLS8srxdXS2vrG5pa9vXOjZaII9YnkUrVCrClngvrAgNNWrCiOQk6b4d155jfvqdJMimsYxTSI8ECwPiMYjNS19zpAH0CTtCE1y6TL8JYSqNSOxl277FbdCZx54uWkjHI0uvZXpydJElEBhGOt254bQ5BiBYxwOi51Ek1jTO7wgLYNFTiiOkgnGcbOoVF6Tl8qMwKcifr7IsWR1qMoNJsRhqGe9TLxP6+dQP8kSJmIE6CCTB/1E+6AdLJCnB5TJjAfGYKJMh0QhwyxwgRMbSVTgjcbeZ74tepp1buqletneRtFtI8OUAV56BjV0QVqIB8R9Iie0St6s56sF+vd+piuFqz8Zhf9gfX5A4a1l58=</latexit><latexit sha1_base64="aeIpmVvbYldZj9wRKPvQOFB4a7Q=">AAACAnicbVBNS8NAFNzUr1q/ot70EixCvZSkF/VW9OLNCsYW2lA22227utkNuy9iCQUv/hUvHlS8+iu8+W/ctDlo68CDYeY9HjNhzJkG1/22CguLS8srxdXS2vrG5pa9vXOjZaII9YnkUrVCrClngvrAgNNWrCiOQk6b4d155jfvqdJMimsYxTSI8ECwPiMYjNS19zpAH0CTtCE1y6TL8JYSqNSOxl277FbdCZx54uWkjHI0uvZXpydJElEBhGOt254bQ5BiBYxwOi51Ek1jTO7wgLYNFTiiOkgnGcbOoVF6Tl8qMwKcifr7IsWR1qMoNJsRhqGe9TLxP6+dQP8kSJmIE6CCTB/1E+6AdLJCnB5TJjAfGYKJMh0QhwyxwgRMbSVTgjcbeZ74tepp1buqletneRtFtI8OUAV56BjV0QVqIB8R9Iie0St6s56sF+vd+piuFqz8Zhf9gfX5A4a1l58=</latexit><latexit sha1_base64="aeIpmVvbYldZj9wRKPvQOFB4a7Q=">AAACAnicbVBNS8NAFNzUr1q/ot70EixCvZSkF/VW9OLNCsYW2lA22227utkNuy9iCQUv/hUvHlS8+iu8+W/ctDlo68CDYeY9HjNhzJkG1/22CguLS8srxdXS2vrG5pa9vXOjZaII9YnkUrVCrClngvrAgNNWrCiOQk6b4d155jfvqdJMimsYxTSI8ECwPiMYjNS19zpAH0CTtCE1y6TL8JYSqNSOxl277FbdCZx54uWkjHI0uvZXpydJElEBhGOt254bQ5BiBYxwOi51Ek1jTO7wgLYNFTiiOkgnGcbOoVF6Tl8qMwKcifr7IsWR1qMoNJsRhqGe9TLxP6+dQP8kSJmIE6CCTB/1E+6AdLJCnB5TJjAfGYKJMh0QhwyxwgRMbSVTgjcbeZ74tepp1buqletneRtFtI8OUAV56BjV0QVqIB8R9Iie0St6s56sF+vd+piuFqz8Zhf9gfX5A4a1l58=</latexit>
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Figure 5.10: Task #3 (Section 5.4.4): Consecutive snapshots from a successful completion of a task
where the robot must move an object that blocks the desired location of another object, highlighting
the robustness of the approach. Apart from the presence of a convex obstacle (depicted in black) and
terrain irregularities in the form of a 4cm-tall platform (depicted by a solid black line), the robot loses
track of its pose estimation due to unfortunate network delays while executing MoveToObject(1).
However, with the successful coordination of the reactive and the gait layer, it manages to find the
reference path again once it reconnects. Also, as shown in the accompanying video3 (and discernible
from the relatively large oscillations of the robot’s path in frame 4), although the wheels of the stool
get caught by the platform during PositionObject(1), the persistence of the reactive layer allows
for successful task completion while avoiding unexpected obstacles.
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to validate the performance of the wall following law, presented in Section 5.3, a similar

experiment is repeated, with the robot having to avoid a non-convex obstacle blocking its

path to the object. As shown in Fig. 5.8 and in the accompanying video3, the task is

successfully completed, using the wall following algorithm.

5.4.3 Task #2 - Swapping Object Positions

The second task is more demanding for the deliberative planner, since the robot has to

successfully swap the positions of two objects and then move to a “nest” location. As

expected, the deliberative planner outputs a plan which includes an intermediate position

for one of the objects. Using the reactive layer, the robot completes this task, as shown in

Fig. 5.9 and in the accompanying video3. Notice how the robot switches to wall following

when necessary and avoids any obstacles that block its path. The gait layer successfully

executes the commands provided by the reactive layer.

5.4.4 Task #3 - Object Blocking the Position of Another Object

Finally, in the third set of experiments, we explore a similar task where the robot has to

move an object in a location occupied by another object. We demonstrate several successful

trials in the corresponding video3, but here we focus on a special case where the online

execution is incommoded by the presence of an obstacle and terrain irregularities, shown in

Fig. 5.10. The robot also has to face other unfortunate events, such as network delays and

getting the wheels of the stool stuck in the platform’s step, but eventually completes the

task. This illustrates the role of the reactive layer whose “persistence” can handle changes

in the environment not predicted beforehand. It also highlights the value of legged over

wheeled locomotion when “mobipulation” in unstructured environments with rough terrain

is needed. We hope to report more on that in the future.

3https://youtu.be/pOTcxosbOe0
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Chapter 6

Reactive Navigation in Partially

Known Non-Convex Environments

Cluttered with Star-Shaped Obstacles

This Chapter presents a provably correct method for robot navigation in 2D environments

cluttered with familiar but unexpected non-convex, star-shaped obstacles as well as com-

pletely unknown, convex obstacles. We presuppose a limited range onboard sensor, capable

of recognizing, localizing and (leveraging ideas from constructive solid geometry) generating

online from its catalogue of the familiar, non-convex shapes an implicit representation of

each one. These representations underlie an online change of coordinates to a completely

convex model planning space wherein a previously developed online construction yields a

provably correct reactive controller that is pulled back to the physically sensed represen-

tation to generate the actual robot commands. We extend the construction to differential

drive robots, and suggest the empirical utility of the proposed control architecture using

both formal proofs and numerical simulations.

The Chapter is organized as follows. Section 6.1 describes the problem and establishes

our assumptions. Section 6.2 describes the physical, mapped and model planning layers used

in the constructed diffeomorphism between the mapped and model layers, whose properties
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are established next. Based on these results, Section 6.3 describes our control approach

both for fully actuated and differential drive robots, and Section 6.4 presents a variety of

illustrative numerical studies. Finally, the reader is referred to Appendix A for a sketch

of the ideas from computational geometry [176] underlying our modular construction of

implicit representations of polygonal obstacles.

6.1 Problem Formulation

We consider a disk-shaped robot with radius r > 0, centered at x ∈ R2, navigating a closed,

compact workspace W ⊂ R2, with known convex boundary ∂W. The robot is assumed to

possess a sensor with fixed range R, capable of recognizing “familiar” objects, as well as

estimating the distance of the robot to nearby obstacles1.

The workspace is cluttered by an unknown number of fixed, disjoint obstacles, denoted

by O := (O1, O2, . . .). We adopt the notation in [7] and define the freespace as

F :=

{
x ∈ W

∣∣∣B (x, r) ⊆ W \
⋃
i

Oi

}
(6.1)

where B (x, r) is the open ball centered at x with radius r, and B (x, r) denotes its closure.

To simplify our notation, we neglect the robot dimensions, by dilating each obstacle in O

by r, and assume that the robot operates in F . We denote the set of dilated obstacles by

Õ.

Although none of the positions of any obstacles in Õ are à-priori known, a subset Õ∗ ⊆ Õ

of these obstacles is assumed to be “familiar” in the sense of having an à-priori known, readily

recognizable star-shaped geometry [164] (i.e., belonging to a known catalogue of star-shaped

geometry classes), which the robot can efficiently identify and localize instantaneously from

online sensory measurement. Although the implementation of such a sensory apparatus lies

well beyond the scope of the present Section (but revisited in Chapter 7), recent work on

semantic SLAM [30] provides an excellent example with empirically demonstrated technol-
1We refer the reader to an example of existing technology [144] generating 2D LIDAR scans from 3D

point clouds for such an approach.
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ogy for achieving this need for localizing, identifying and keeping track of all the familiar

obstacles encountered in the otherwise unknown semantic environment. The à-priori un-

known center of each catalogued star-shaped obstacle Õ∗i is denoted x∗i . Similarly to [165],

each star-shaped obstacle Õ∗i ∈ Õ∗ can be described by an obstacle function, a real-valued

map providing an implicit representation of the form

Õ∗i = {x ∈ R2 |βi(x) ≤ 0} (6.2)

which the robot must construct online from the catalogued geometry, after it has localized

Õ∗i . The remaining obstacles Õconvex := Õ\Õ∗ are are assumed to be strictly convex but are

in all other regards (location and specific shape) completely unknown to the robot, while

nevertheless satisfying a curvature condition given in [7, Assumption 2].

For the obstacle functions, we require the technical assumptions introduced in [165,

Appendix III], outlined as follows.

Assumption 6.1. The obstacle functions satisfy the following requirements

1. For each Õ∗i ∈ Õ∗, there exists ε1i > 0 such that for any two obstacles Õ∗i , Õ
∗
j ∈ Õ∗

{x |βi(x) ≤ ε1i}
⋂
{x |βj(x) ≤ ε1j} = ∅ (6.3)

i.e., the “thickened boundaries” of any two stars still do not overlap.

2. For each Õ∗i ∈ Õ∗, there exists ε2i > 0 such that the set {x |βi(x) ≤ ε2i} does not

contain the goal xd ∈ F and does not intersubsect with any other obstacle in Õconvex.

3. For each obstacle function βi, there exists a pair of positive constants (δi, ε3i) satisfying

the inner product condition2

(x− x∗i )
>∇βi(x) ≥ δi (6.4)

2A brief discussion on this condition is given in Appendix A.1.
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for all x ∈ R2 such that βi(x) ≤ ε3i.

For each obstacle Õ∗i ∈ Õ∗, we then define εi = min{ε1i, ε2i, ε3i}. Finally, we will assume

that the range of the sensor R satisfies R >> εi for all i.

Based on these assumptions and further positing first-order, fully-actuated robot dynam-

ics ẋ = u(x), the problem consists of finding a Lipschitz continuous controller u : F → R2,

that leaves the freespace F positively invariant and asymptotically steers almost all config-

urations in F to the given goal xd ∈ F .

6.2 Multi-layer Representation of the Environment and Its

Associated Transformations

In this Section, we introduce associated notation for, and transformations between three

distinct representations of the environment that we will refer to as planning “layers” and

use in the construction of our algorithm. Fig. 6.1 illustrates the role of these layers and

the transformations that relate them in constructing and analyzing a realtime generated

vector field that guarantees safe passage to the goal. The new technical contribution is an

adaptation of the methods of [165] to the construction of a diffeomorphism, h, where the

requirement for fast, online performance demands an algorithm that is as simple as possible

and with few tunable parameters. Hence, since the reactive controller in [7], also presented in

Section 3.2, is designed to (provably) handle convex shapes, sensed obstacles not recognized

by the semantic SLAM process are simply assumed to be convex (implemented by designing

h to resolve to the identity transformation in the neighborhood of “unfamiliar” objects) and

the control response defaults to that prior construction.

6.2.1 Description of Planning Layers

Physical Layer

The physical layer is a complete description of the geometry of the unknown actual world

and while inaccessible to the robot is used for purposes of analysis. It describes the actual

workspace W, punctured with the obstacles O. This gives rise to the freespace F , given
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Figure 6.1: Snapshot Illustration of Key Ideas in Chapter 6. The robot in the physical layer (left
frame, depicting in blue the robot’s placement in the workspace along with the prior trajectory
of its centroid) containing both familiar objects of known geometry but unknown location (dark
grey) and unknown obstacles (light grey), moves towards a goal and discovers obstacles (black)
with an onboard sensor of limited range (orange disk). These obstacles are localized and stored
permanently in the mapped layer (middle frame, depicting in blue the robot’s placement as a point
in freespace rather than its body in the workspace) if they have familiar geometry or temporarily,
with just the corresponding sensed fragments, if they are unknown. An online map h(x) is then
constructed (Section 6.2), from the mapped layer to a geometrically simple model layer (right frame,
now depicting the robot’s placement and prior tractory amongst the h-deformed convex images of
the mapped obstacles). A doubly reactive control scheme for convex environments [7] (Section 3.2)
defines a vector field on the model layer which is pulled back in realtime through the diffeomorphism
to generate the input in the physical layer (Section 6.3).

in (6.1), consisting of all placements of the robot’s centroid that entail no intersections of

its body with any obstacles. The robot navigates this layer, and discovers and localizes new

obstacles, which are then stored in its semantic map if their geometry is familiar.

Mapped Layer

The mapped layer Fmap has the same boundary as F (i.e. ∂Fmap := ∂F) and records the

robot’s evolving information about the environment aggregated from the raw sensor data

about the observable portions of N ≥ 0 unrecognized (and therefore, presumed convex)

obstacles {Õ1, . . . , ÕN} ⊆ Õconvex, together with the inferred star centers x∗j and obstacle

functions βj of M ≥ 0 star-shaped obstacles {Õ∗1, . . . , Õ∗M} ⊆ Õ∗, that are instantiated at

the moment the sensory data triggers the “memory” that identifies and localizes a familiar

obstacle. It is important to note that the star environment is constantly updated, both by

discovering and storing new star-shaped obstacles in the semantic map and by discarding
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old information and storing new information regarding obstacles in Õconvex. In this repre-

sentation, the robot is treated as a point particle, since all obstacles are dilated by r in the

passage from the workspace to the freespace representation of valid placements.

Model Layer

The model layer Fmodel has the same boundary as F (i.e. ∂Fmodel := ∂F) and consists

of a collection of M Euclidean disks, each centered at one of the mapped star centers,

x∗j , j = 1, . . . ,M , and copies of the sensed fragments of the N unrecognized visible convex

obstacles in Õconvex. The radii {ρ1, . . . , ρM} of the M disks are chosen so that B
(
x∗j , ρj

)
⊆

{x |βj(x) < 0}, as in [165].

This metric convex sphere world comprises the data generating the doubly reactive al-

gorithm of Section r3.2, which will be applied to the physical robot via the online generated

change of coordinates between the mapped layer and the model layer to be now constructed.

6.2.2 Description of the C∞ Switches

In order to simplify the diffeomorphism construction, we depart from the construction of

analytic switches [164] and rely instead on the C∞ function ζ : R→ R [78] described by

ζ(χ) =

e
−1/χ, χ > 0

0, χ ≤ 0
(6.5)

with derivative

ζ ′(χ) =


ζ(χ)
χ2 , χ > 0

0, χ ≤ 0
(6.6)

Based on that function, we can then define the C∞ switches for each star-shaped obstacle

Õ∗j in the semantic map as

σj(x) = ηj ◦ βj(x), j = 1, . . . ,M (6.7)

91



with ηj(χ) = ζ(εj − χ)/ζ(εj) and εj given according to Assumption 6.1. The gradient of

the switch σj is given by

∇σj(x) = (η′j ◦ βj(x)) · ∇βj(x) (6.8)

Finally, we define

σd(x) = 1−
M∑
j=1

σj(x) (6.9)

Using the above construction, it is easy to see that σj(x) = 1 on the boundary of the j-th

obstacle and σj(x) = 0 when βj(x) > εj for each j = 1, . . . ,M . Based on Assumption 6.1

and the choice of εj for each j, we are, therefore, led to the following results.

Lemma 6.1. At any point x ∈ Fmap, at most one of the switches {σ1, . . . , σM} can be

nonzero.

Corollary 6.1. The set {σ1, . . . , σM , σd} defines a partition of unity over Fmap.

6.2.3 Description of the Star Deforming Factors

The deforming factors are the functions νj(x) : Fmap → R, j = 1, . . . ,M , responsible for

transforming each star-shaped obstacle into a disk in R2. Once again, we use here a slightly

different construction than [164], in that the value of each deforming factor νj at a point x

does not depend on the value of βj(x). Namely, the deforming factors are given based on

the desired final radii ρj , j = 1, . . . ,M as

νj(x) =
ρj

||x− x∗j ||
(6.10)

We also get

∇νj(x) = − ρj
||x− x∗j ||3

(x− x∗j ) (6.11)
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6.2.4 The Map Between the Mapped and the Model Layer

Construction

The map forM star-shaped obstacles centered at x∗j , j = 1, . . . ,M is described by a function

h : Fmap → Fmodel given by

h(x) =

M∑
j=1

σj(x)
[
νj(x)(x− x∗j ) + x∗j

]
+ σd(x)x (6.12)

Note that the N visible convex obstacles {Õ1, . . . , ÕN} ⊆ Õconvex are not considered in

the construction of the map. Since the reactive controller used in the model space Fmodel
can handle convex obstacles and there is enough separation between convex and star-shaped

obstacles according to Assumption 6.1-(b), we can “transfer” the geometry of those obstacles

directly in the model space using the identity transformation.

Finally, note that Assumption 6.1-(b) implies that h(xd) = xd, since the target location

is assumed to be sufficiently far from all star-shaped obstacles.

Based on the construction of the map h, the jacobian Dxh at any point x ∈ Fmap is

given by

Dxh =

M∑
j=1

{
σj(x)νj(x)I + (x− x∗j )

[
σj(x)∇νj(x)> + (νj(x)− 1)∇σj(x)>

]}
+ σd(x)I

(6.13)

Qualitative Properties of the Map

We first verify that the construction is a smooth change of coordinates between the mapped

and the model layers.

Lemma 6.2. The map h from Fmap to Fmodel is smooth.

Proof. Included in Appendix C.4.1.

Proposition 6.1. The map h is a C∞ diffeomorphism between Fmap and Fmodel.

Proof. Included in Appendix C.4.1.
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Implicit representation of obstacles

To implement the diffeomorphism between Fmap and Fmodel, shown in (6.12), we rely on the

existence of a smooth obstacle function βj(x) for each star-shaped obstacle j = 1, . . . ,M

stored in the semantic map. Since recently developed technology [93, 106, 148], revisited

in Chapter 7, provides means of performing obstacle identification in the form of triangular

meshes, in this work we focus on polygonal obstacles on the plane and derive implicit

representations using so called “R-functions” from the constructive solid geometry literature

[176]. In Appendix A.1, we describe the method used for the construction of such implicit

functions for polygonal obstacles that have the desired property of being analytic everywhere

except for the polygon vertices. For the construction, we assume that the sensor has already

identified, localized and included each discovered star-shaped obstacle in Fmap; i.e., it has

determined its pose in Fmap, given as a rotation Rj of its vertices on the plane followed by

a translation of its center x∗j , and that the corresponding polygon has already been dilated

by r for inclusion in Fmap.

6.3 Reactive Controller

6.3.1 Reactive Controller for Fully Actuated Robots

Construction

First, we consider a fully actuated particle with state x ∈ Fmap, whose dynamics are de-

scribed by

ẋ = u (6.14)

The dynamics of the fully actuated particle in Fmodel with state y ∈ Fmodel are described

by ẏ = v(y) with the control v(y) given in [7] as

v(y) = −k
(
y −ΠLF(y)(xd)

)
(6.15)
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Here, the convex local freespace for y, LF(y) ⊂ Fmodel, is defined as in [7, Eqn. (30)]

(see (3.5) in Chapter 3). Using the diffeomorphism construction in (6.12) and its jacobian

in (6.13), we construct our controller as the vector field u : Fmap → TFmap given by

u(x) = [Dxh]−1 · (v ◦ h(x)) (6.16)

Qualitative Properties

First of all, if the range of the virtual LIDAR sensor used to construct LF(y) in the model

layer is smaller than R, the vector field u is Lipschitz continuous since v(y) is shown to be

Lipschitz continuous in [7] and y = h(x) is a smooth change of coordinates. We are led to

the following result.

Corollary 6.2. The vector field u : Fmap → TFmap generates a unique continuously differ-

entiable partial flow.

To ensure completeness (i.e. absence of finite time escape through boundaries in Fmap)

we must verify that the robot never collides with any obstacle in the environment, i.e., leaves

its freespace positively invariant.

Proposition 6.2. The freespace Fmap is positively invariant under the law (6.16).

Proof. Included in Appendix C.4.2.

Lemma 6.3. 1. The set of stationary points of control law (6.16) is given as

{xd}
⋃
{h−1(sj)}j∈{1,...,M}

N⋃
i=1

Gi

where

sj = x∗j − ρj
xd − x∗j
||xd − x∗j ||

(6.17a)

Gi :=

{
q ∈ Fmap

∣∣∣ d(q, Oi) = r,
(q−ΠOi

(q))>(q− xd)

||q−ΠOi
(q)|| ||q− xd||

= 1

}
(6.17b)
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with j spanning the M star-shaped obstacles in Fmap and i spanning the N convex

obstacles in Fmap.

2. The goal xd is the only locally stable equilibrium of control law (6.16) and all the

other stationary points {h−1(sj)}j∈{1,...,M}
⋃N
i=1 Gi, each associated with an obstacle,

are nondegenerate saddles.

Proof. Included in Appendix C.4.2.

Proposition 6.3. The goal location xd is an asymptotically stable equilibrium of (6.16),

whose region of attraction includes the freespace Fmap excepting a set of measure zero.

Proof. Included in Appendix C.4.2.

We can now immediately conclude the following central summary statement.

Theorem 6.1. The reactive controller in (6.16) leaves the freespace Fmap positively invari-

ant, and its unique continuously differentiable flow, starting at almost any robot placement

x ∈ Fmap, asymptotically reaches the goal location xd, while strictly decreasing ||h(x)− xd||

along the way.

6.3.2 Reactive Controller for Differential Drive Robots

In this Section, we extend our reactive controller to the case of a differential drive robot,

whose state is x := (x, ψ) ∈ Fmap × S1 ⊂ SE(2), and its dynamics are given by

ẋ = B(ψ)u (6.18)

with B(ψ) =

cosψ sinψ 0

0 0 1


>

and u = (v, ω) with v ∈ R and ω ∈ R the linear and

angular input respectively, as discussed in Part II. We will follow a similar procedure to

the fully actuated case; we begin by describing a smooth diffeomorphism h : Fmap × S1 →

Fmodel × S1 and then we establish the results about the controller.
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Construction and Properties of the SE(2) Diffeomorphism

We construct our map h from Fmap × S1 to Fmodel × S1 as

y = (y, ϕ) = h(x) := (h(x), ξ(x)) (6.19)

with x = (x, ψ) ∈ Fmap × S1, y := (y, ϕ) ∈ Fmodel × S1 and

ϕ = ξ(x) := ∠ (e(x)) (6.20)

Here, ∠e := atan2(e2, e1) and

e(x) = Πy ·Dxh ·B(ψ) ·

1

0

 = Dxh

cosψ

sinψ

 (6.21)

with Πy denoting the projection onto the first two components. The reason for choosing ϕ

as in (6.20) will become evident in the next paragraph, in our effort to control the equivalent

differential drive robot dynamics in Fmodel.

Proposition 6.4. The map h in (6.19) is a C∞ diffeomorphism from Fmap×S1 to Fmodel×

S1.

Proof. Included in Appendix C.4.2.

Construction of the Reactive Controller

Using (6.19), we can find the pushforward of the differential drive robot dynamics in (6.18)

as

ẏ =

ẏ
ϕ̇

 =
d

dt

h(x)

ξ(x)

 =
[
Dxh ◦ h−1

(y)
]
·
(
B ◦ h−1

(y)
)
· u (6.22)

Based on the above, we can then write

ẏ =

ẏ
ϕ̇

 =
d

dt

h(x)

ξ(x)

 = B(ϕ)v (6.23)
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with v = (v̂, ω̂), and the inputs (v̂, ω̂) related to (v, ω) through

v̂ = ||e(x)|| v (6.24)

ω̂ = vDxξ

cosψ

sinψ

+
∂ξ

∂ψ
ω (6.25)

with Dxξ =

[
∂ξ
∂x

∂ξ
∂y

]
. The calculation of Dxξ can be tedious, since it involves derivatives

of elements of Dxh, and is included in Appendix B.1.

Hence, we have found equivalent differential drive robot dynamics, defined on Fmodel×S1.

The idea now is to use the control strategy in Section 3.2 for the dynamical system in (6.23)

to find reference inputs v̂, ω̂, and then use (6.24), (6.25) to find the actual inputs v, ω that

achieve those reference inputs as

v =
v̂

||e(x)|| (6.26a)

ω =

(
∂ξ

∂ψ

)−1

ω̂ − vDxξ

cosψ

sinψ


 (6.26b)

Namely, our reference inputs v̂ and ω̂ inspired by [7, 12] (also see (3.8) - (3.9)) are given as3

3In (6.19), we construct a diffeomorphism h between Fmap×S1 and Fmodel×S1. However, for practical
purposes, we deal only with one specific chart of S1 in our control structure, described by the angles (−π, π].
As shown in [12], the discontinuity at ±π does not induce a discontinuity in our controller due to the use of
the atan function in (6.27b). On the contrary, with the use of (6.27b) as in [7, 12], the robot never changes
heading in Fmodel, which implies that the generated trajectories both in Fmodel and (by the properties of
the diffeomorphism h) in Fmap have no cusps, even though the robot might change heading in Fmap because
of the more complicated nature of the function ξ in (6.20).
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v̂ = −k

cosϕ

sinϕ


> (

y −ΠLF(y)∩H‖(xd)
)

(6.27a)

ω̂ = k atan



− sinϕ

cosϕ


>(

y −
ΠLF(y)∩HG(xd) + ΠLF(y)(xd)

2

)
cosϕ

sinϕ


>(

y −
ΠLF(y)∩HG(xd) + ΠLF(y)(xd)

2

)


(6.27b)

with k > 0 a fixed gain, LF(y) ⊂ Fmodel the convex polygon defining the local freespace at

y = h(x), and H‖ and HG the lines defined in [7] (also see (3.12) - (3.13)) as

H‖ =

z ∈ Fmodel
∣∣∣
− sinϕ

cosϕ


>

(z− y) = 0

 (6.28)

HG = {αy + (1− α)xd ∈ Fmodel |α ∈ R} (6.29)

Qualitative Properties

The properties of the differential drive robot control law given in (6.26) can be summarized

in the following theorem.

Theorem 6.2. The reactive controller for differential drive robots, given in (6.26), leaves

the freespace Fmap× S1 positively invariant, and its unique continuously differentiable flow,

starting at almost any robot configuration (x, ψ) ∈ Fmap×S1, asymptotically steers the robot

to the goal location xd, without increasing ||h(x)− xd|| along the way.

Proof. Included in Appendix C.4.2.

6.4 Numerical Experiments

In this Section, we present numerical experiments that verify our formal results. All sim-

ulations were run in MATLAB using ode45, with control gain k = 0.4 and p = 20 for the
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(1a) (1b) (2a) (2b)

Figure 6.2: Navigation around a U-shaped obstacle: 1) Fully actuated particle: (a) Original doubly
reactive algorithm [7], (b) Our algorithm, 2) Differential drive robot: (a) Original doubly reactive
algorithm [7], (b) Our algorithm.

R-function construction. The reader is also referred to the video attachment of [200] for a

visualization of the examples presented here and more numerical simulations4.

6.4.1 Comparison with Original Doubly Reactive Algorithm

We begin with a comparison of our algorithm performance with the standalone version of

the doubly reactive algorithm in [7], that we use in our construction. Fig. 6.2 demonstrates

the basic limitation of this algorithm; in the presence of a non-convex obstacle or a flat

surface, whose curvature violates [7, Assumption 2], the robot gets stuck in undesired local

minima. On the contrary, our algorithm is capable of overcoming this limitation, on the

premise that the robot can recognize the obstacle with star-shaped geometry at hand. The

robot radius is 0.2m and the value of ε used for the obstacle is 0.3.

6.4.2 Navigation in a Cluttered Non-Convex Environment

In the next set of numerical experiments, we evaluate the performance of our algorithm in

a cluttered environment, packed with instances of the same U-shaped obstacle, with star-

shaped geometry, we use in Fig. 6.2. Both the fully actuated and the differential drive robot

are capable of converging to the desired goal from a variety of initial conditions, as shown in

Fig. 6.3. In the same figure, we also focus on a particular initial condition and include the

trajectories observed in the physical, mapped and model layers. The robot radius is 0.25m

and value of ε used for all the star-shaped obstacles in the environment is 0.3.
4https://youtu.be/i-9AxWdal5s
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Fully actuated Differential drive

Figure 6.3: Navigation in a cluttered environment with U-shaped obstacles. Top - Trajectories in
the physical, mapped and model layers from a particular initial condition. Bottom - Convergence
to the goal from several initial conditions: left - fully actuated robot, right - differential drive robot.

Chair

Table 1

Table 2

Armchair

Couch

Fully actuated Differential drive

Figure 6.4: Navigating a room cluttered with known star-shaped and unknown convex obstacles.
Top - Trajectories in the physical, mapped and model layers from a particular initial condition.
Bottom - Convergence to the goal from several initial conditions: left - fully actuated robot, right
- differential drive robot. Mapped obstacles are shown in black, known obstacles in dark grey and
unknown obstacles in light grey.
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6.4.3 Navigation Among Mixed Star-Shaped and Convex Obstacles

Finally, we report experiments in an environment cluttered with both star-shaped obstacles

(with known geometry) and unknown convex obstacles. We consider a robot of radius 0.2m

navigating a room towards a goal. The robot can recognize familiar star-shaped obstacles

(e.g., the couch, tables, armchair, chairs) but is unaware of several other convex obstacles

in the environment. Fig. 6.4 summarizes our results for several initial conditions. We also

include trajectories observed in the physical, mapped and model layers during a single run.

The value of ε used for all the star-shaped obstacles in the environment is 0.3.
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Chapter 7

Reactive Navigation in Partially

Familiar Planar Environments Using

Semantic Perceptual Feedback

In this Chapter, we extend the results of Chapter 6 to solve the general planar navigation

problem by recourse to an online reactive scheme that exploits recent advances in SLAM

and visual object recognition to recast prior geometric knowledge in terms of an offline

catalogue of familiar objects. The resulting vector field planner guarantees convergence

to an arbitrarily specified goal, avoiding collisions along the way with fixed but arbitrarily

placed instances from the catalogue as well as completely unknown fixed obstacles so long as

they are strongly convex and well separated. We illustrate the generic robustness properties

of such deterministic reactive planners as well as the relatively modest computational cost of

this algorithm by supplementing an extensive numerical study with physical implementation

on both a wheeled and legged platform in different settings.

The Chapter is organized as follows. Section 7.1 describes the problem and establishes

our assumptions. Section 7.2 describes the physical, semantic, mapped and model plan-

ning spaces (summarized in Fig. 7.1) used in the diffeomorphism construction between the

mapped and model spaces, whose properties are established next in Section 7.3. Section 7.4
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Figure 7.1: Snapshot Illustration of Key Realtime Computation and Associated Models related to
Chapter 7: The robot moves in the physical space (a - Section 7.2.1), depicted as the blue trace of
its centroid, toward a goal (pink) discovering along the way (black) both familiar objects of known
geometry but unknown location (dark grey) and unknown obstacles (light grey), with an onboard
sensor of limited range (orange disk). These obstacles are localized, dilated and stored permanently
in the semantic space (b - Section 7.2.2) if they have familiar geometry, or temporarily, with just the
corresponding sensed fragments, if they are unknown. The consolidated obstacles (resolved in real
time from the unions of overlapping localized familiar obstacles), along with the sensed fragments
of the unknown obstacles, are then stored in the mapped space (c - Section 7.2.3). A nonlinear
change of coordinates, h(x), into a topologically equivalent but geometrically simplified model space
(e - Section 7.2.4, depicting the robot’s placement and prior trajectory amongst the h-deformed
convex images of the mapped obstacles) is computed instantaneously each time a new perceptual
event instantiates more obstacles to be localized in the semantic space, thus redefining the mapped
space. The map, h, is a diffeomorphism, computed via composition of “purging” transformations
between intermediate spaces (d - Section 7.3.2) that abstract the consolidated localized polygonal
obstacles by successively pruning away their geometric details to yield topologically equivalent disks.
A doubly reactive control scheme for convex environments [7] (Section 3.2) defines a vector field on
the model space which is transformed in realtime through the diffeomorphism to generate the input
in the physical space (Section 7.4).

provides the formal hybrid systems description framework and the correctness proofs for

both a fully actuated (Theorem 7.3) and differential drive (Theorem 7.4) velocity controlled

planar robot, comprising the central theoretical contribution of this Chapter.

Based on these results, Section 7.5 continues with a description of the implemented

mapped space recovery and reactive planning algorithms, for both a fully actuated and a

differential drive robot, shown in Fig. 7.2-(d),(e). Section 7.6 presents a variety of illustra-

tive numerical studies, and Section 7.7 continues with a brief description of the experimental

setup, realizing the deployed perception (relying on prior work and shown in Fig. 7.2-(a),(c))

and motion planning (Fig. 7.2-(d),(e)) algorithms on both the Turtlebot [194] and the Mini-

taur [65] robot. Finally, Section 7.8 continues with our experimental results.
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Figure 7.2: A summary of the online reactive planning architecture used in Chapter 7. Using
the camera image, two separate neural network architectures (configured in serial and run either
onboard at 2.5Hz, or offboard at 10Hz) (a) detect familiar obstacles [158] (Section 7.7.1) and (b)
localize corresponding semantic keypoints [148] (Section 7.7.1). (c) The keypoint locations on the
image and an egomotion estimate provided by visual inertial odometry are used by the semantic
mapping module [30] (Section 7.7.2) to provide updated robot (x) and obstacle poses (P̃I) on the
plane. (d) The mapped space tracking algorithm (Section 7.5.1 - Algorithm 7.1), run onboard at
2.5Hz, uses P̃I to generate the list of obstacles in the mapped space DImap,BImap. (e) The reactive
planning module (Section 7.5.2 - Algorithm 7.2), run onboard at 10Hz, uses DImap,BImap, along with
LIDAR data for unknown obstacles, to provide the robot inputs and close the control loop.

105



W ⊂ R2 Closed, compact, polygonal workspace
We ⊂ R2 Enclosing workspace (7.1)
F ⊂ W Freespace (7.2)
Fe ⊂ We Enclosing freespace (7.3)
r ∈ R Robot radius
R ∈ R Sensor range
xd ∈ F Goal location
Õ := {Õ1, Õ2, . . .} ⊆ R2 Set of fixed, disjoint obstacles
P̃ := {P̃i}i∈NP ⊆ Õ Set of “familiar”, polygonal obstacles,

indexed by the set NP := {1, . . . , NP } ⊂ N
C̃ := Õ\P̃ = {C̃i}i∈NC Set of completely unknown obstacles,

indexed by the set NC := {1, . . . , NC} ⊂ N
O,P, C Set of obstacles in Õ, P̃, C̃ respectively,

dilated by the robot radius, r

Table 7.1: Key symbols used throughout Chapter 7, associated with the Problem Formulation in
Section 7.1. See also Table 7.2 for notation associated with the environment representation in
Section 7.2, Table 7.3 for notation associated with the diffeomorphism construction in Section 7.3,
and Table 7.4 for notation associated with our reactive controller in Section 7.4.

7.1 Problem Formulation

Similarly to Chapter 6, we consider a disk-shaped robot with radius r > 0, centered at

x ∈ R2, navigating a closed, compact, polygonal, potentially non-convex workspaceW ⊂ R2,

with known outer boundary ∂W, towards a target location xd ∈ W. The robot is assumed

to possess a sensor with fixed range R, capable of recognizing “familiar” objects, as well

as estimating the distance of the robot to nearby obstacles1. We also define the enclosing

workspace, as the convex hull of the closure of the workspace W:

We :=
{
x ∈ R2 |x ∈ Conv(W)

}
(7.1)

The workspace is cluttered by a finite, unknown number of fixed, disjoint obstacles,

denoted by Õ := {Õ1, Õ2, . . .}. By convention, the set Õ also includes potentially non-convex

“intrusions” of the boundary of the physical workspace W into the enclosing workspace We,

that can be described as the connected components of We\W. We again use the notation
1For our hardware implementation, this idealized sensor is reduced to a combination of a LIDAR for

distance measurements to obstacles and a monocular camera for object recognition and pose identification.

106



in [7] and define the freespace as

F :=

{
x ∈ We

∣∣∣B (x, r) ⊆ We \
⋃
i

Õi

}
(7.2)

where B (x, r) is the open ball centered at x with radius r, and B (x, r) denotes its closure.

Similarly to the enclosing workspace, We, we define the enclosing freespace, Fe as

Fe :=
{
x ∈ R2 |x ∈ Conv(F)

}
(7.3)

Although none of the positions of any obstacles in Õ are à-priori known, a subset P̃ :=

{P̃i}i∈NP ⊆ Õ of these obstacles, indexed by NP := {1, . . . , NP } ⊂ N, is assumed to be

“familiar” in the sense of having an à-priori known, readily recognizable, potentially non-

convex, polygonal geometry (i.e., belonging to a known catalogue of geometry classes), which

the robot can identify and localize instantaneously from online sensory measurement, as

described in Section 7.7. We require that this subset also includes all connected components

of We\W. The remaining obstacles in C̃ := Õ\P̃, indexed by NC := {1, . . . , NC} ⊂ N

are assumed to be strictly convex but are in all other regards (location and specific shape)

completely unknown to the robot, while nevertheless satisfying a curvature condition given

in [7, Assumption 2], and described as follows.

Assumption 7.1. The Jacobian matrix JΠ
C̃i

(si) of the metric projection Π
C̃i

(si) of any

point si ∈ Gi with

Gi :=

{
s ∈ F

∣∣∣ d(s, C̃i) = r,
(s−Π

C̃i
(s))>(s−xd)

||s−Π
C̃i

(s)||·||s−xd|| = 1

}
(7.4)

onto the associated obstacle C̃i ∈ C̃ for all i ∈ {1, . . . , NC} satisfies

JΠ
C̃i

(si) ≺
||xd −Π

C̃i
(si)||

r + ||xd −Π
C̃i

(si)||
I (7.5)

where d(A,B) := inf{||a− b||,a ∈ A,b ∈ B}.
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This condition is related to the control law described in Section 7.4, and was interpreted

in [9] as the requirement for the convex obstacle C̃i to be contained in the enclosing ball of

radius (||si − xd|| − r) centered at xd, for all i.

To simplify our notation, we neglect the robot dimensions, by dilating each obstacle in

Õ by r, and assume that the robot operates in F . We denote the set of dilated obstacles

derived from Õ, P̃ and C̃, by O,P and C respectively. Since obstacles in P̃ are polygonal, and

dilations of polygonal obstacles are not in general polygonal, we approximate obstacles in P

with conservative polygonal supersets. Note that since the set P̃ is required to contain all

connected components of We\W, that describe non-convex “intrusions” of the boundary of

the physical workspace W into the enclosing workspace We, the set P is similarly required

to contain the dilations of these intrusions. For obstacles in C we require the following

separation assumptions, introduced in [7].

Assumption 7.2. Each obstacle Ci ∈ C has a positive clearance d(Ci, Cj) > 0 from any

obstacle Cj ∈ C, with i 6= j, and a positive clearance d(Ci, ∂F) > 0 from the boundary of the

freespace F .

Then, similarly to [165] and Chapter 6, we describe each polygonal obstacle Pi ∈ P ⊆ O

by an obstacle function, a real-valued map providing an implicit representation of the form

Pi = {x ∈ R2 |βi(x) ≤ 0} (7.6)

that the robot can construct online from the catalogued geometry after it has localized Pi,

as detailed in Appendix A.1. We also require the following technical assumption.

Assumption 7.3. For each Pi ∈ P, there exists εi > 0 such that the set Sβi := {x |βi(x) ≤

εi} has a positive clearance d(Sβi , C) > 0 from any obstacle C ∈ C.

Note that Assumptions 7.2 and 7.3 constrain the shape (convex) and placements (suffi-

ciently separated) only of obstacles that have never previously been encountered. Familiar

(polygonal, dilated by r) obstacles Pi ∈ P, while fixed, can be placed completely arbitrarily
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with no further prior information: in particular, they can overlap unrestrictedly, with no

jeopardy to our formal results, because we rely on the sensor oracle to recognize and locate

them in real time. Obstacles in P are similarly allowed to overlap with the boundary of the

enclosing freespace ∂Fe. To control the scope of the present Section, we simply assume that

a path to the goal always exists, i.e., the robot operates in a non-adversarial environment.

Assumption 7.4. The freespace F is path-connected.

Finally, in Section 7.4.2, we impose the technical Assumption 7.5 precluding the pos-

sibility that any of the (topologically unavoidable) unstable saddle points of our control

law coincide with a catalogued “knot point” of any familiar obstacle (a condition that we

conjecture should be generic in the configuration space of obstacle placements).

Based on these assumptions and further positing first-order, fully-actuated robot dynam-

ics ẋ = u(x), the problem consists of finding a Lipschitz continuous controller u : F → R2,

that leaves the freespace F positively invariant and asymptotically steers almost all con-

figurations in F to the given goal xd ∈ F . We have also summarized key symbols used

throughout this Section in Table 7.1.

7.2 Navigational Representation of the Environment

In this Section, we introduce associated notation for the four distinct representations of

the environment that we will refer to as planning spaces and use in the construction of our

algorithm. Fig. 7.1 illustrates the role of these spaces and the transformations that relate

them in constructing and analyzing a realtime generated vector field that guarantees safe

passage to the goal.

7.2.1 Physical Space

The physical space is a complete description of the geometry of the unknown actual world

and while inaccessible to the robot is used for purposes of analysis. It describes the enclosing

workspace We, punctured with the obstacles Õ. This gives rise to the freespace F , given

in (7.2), consisting of all placements of the robot’s centroid that entail no intersections of

its body with any interior obstacles or intrusions from the boundary. The robot navigates
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P̃I := {P̃i}i∈I ⊆ P̃ Set of instantiated familiar polygonal obstacles
I ⊆ NP Index set of the |I| instantiated obstacles in P̃I
FIsem Semantic space corresponding to I ∈ 2NP

FImap Mapped space corresponding to I ∈ 2NP

FImodel Model space corresponding to I ∈ 2NP

PIsem :=
⊔
i∈I Pi Set of familiar, polygonal obstacles instantiated in the

semantic space
Csem := {Ci}i∈JC ⊆ C Set of unknown obstacles in the semantic space,

indexed by JC ⊆ NC
PImap :=

⋃
i∈I Pi = {Pi}i∈J I Set of consolidated familiar obstacles in the mapped

space, indexed by J I
Cmap := Csem Set of unknown obstacles in the mapped space,

indexed by JC ⊆ NC
BImap := {Bi}i∈J IB Connected components of PImap to be merged into ∂Fe,

indexed by J IB
DImap := {Di}i∈J ID Connected components of PImap to be deformed

into disks, indexed by J ID
x∗i ∈ R2, i ∈ J ID Centers of the |J ID | disks in the model space
ρi ∈ R, i ∈ J ID Radii of the |J ID | disks in the model space

Table 7.2: Key symbols related to the environment representation in Section 7.2.

this space toward the goal, discovering and localizing new obstacles along the way. Those

discovered obstacles which are not convex are (by assumption) “familiar” and are then “in-

stantiated” — recalled, and registered from memory to populate the accumulating record of

discovery in the semantic space — as we next discuss. Similarly to Chapter 6, those which

are “unfamiliar” are presumed convex and registered as such in the companion spaces next

to be presented2.

We denote by P̃I := {P̃i}i∈I ⊆ P̃ the finite set of (constantly updated) physically

“instantiated” familiar objects, indexed by I ⊆ NP , that drives the construction of the

semantic, mapped and model spaces described next. As explained in Section 7.4.1, such

elements I of the power set 2NP also index the modes of our hybrid system.
2Although we make no use in the present work of the discovered unfamiliar objects beyond simply avoiding

them, future work could relax the convexity requirement to build up in memory an increasingly complete
geometric description (treated in the same manner as in the “familiar” case) from whatever subsequent
encounters ensue along the way to the goal.
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7.2.2 Semantic Space

The semantic space FIsem records the robot’s evolving information about the environment

aggregated from the raw sensor data about the observable portions of a subset of unrec-

ognized (and therefore, presumed convex) obstacles from C, together with the polygonal

boundaries of the |I| familiar obstacles, that are instantiated at the moment the sensory

data triggers the identification and localization a familiar obstacle.

Definition 7.1. A familiar obstacle P̃ ∈ P̃ is considered to be “instantiated”, if it has been

sensed, recognized, localized, and its dilation P ∈ P is permanently included in the semantic

space. This means that there exists a time tP > 0, such that B (xtP , R) ∩ P̃ 6= ∅ and

B (xt, R) ∩ P̃ = ∅, for all t < tP .

We denote the set of unrecognized obstacles in the semantic space by Csem := {Ci}i∈JC ,

indexed by JC ⊆ NC , and the set of familiar obstacles in the semantic space by PIsem :=⊔
i∈I Pi.

It is important to note that this environment is constantly updated, both by discovering

and storing new familiar obstacles in the semantic map and by discarding old information

and storing new information regarding obstacles in C.2 Here, the robot is treated as a point

particle, since all obstacles are dilated by r in the passage from the workspace to the freespace

representation of valid placements.

7.2.3 Mapped Space

Although the semantic space contains all the relevant geometric information (identity and

pose) about the obstacles the robot has encountered, it does not explicitly contain any

topological information about the explored environment, as represented by the disjoint union

operation in the definition of PIsem. This is because Assumption 7.3 does not exclude overlaps

between obstacles in P. Their algorithmically effective consolidation in real time reduces

the number while increasing the geometric complexity of the actual freespace obstacles the

robot must negotiate along the way to the goal. To do so, we need therefore to take unions

of overlapping obstacles in PIsem, making up PImap :=
⋃
i∈I Pi = {Pi}i∈J I (i.e., a new set
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of consolidated familiar obstacles indexed by J I with |J I | ≤ |I|), as well as copies of the

sensed fragments of unknown obstacles from Csem (i.e., Cmap := Csem) to form the mapped

space FImap as

FImap := Fe\(PImap ∪ Cmap) (7.7)

Note that, by Assumption 7.3, the convex obstacles are assumed to be far enough away from

the familiar obstacles, such that no overlap occurs in the above union.

Next, we focus on the connected components of PImap; since Assumption 7.3 allows

overlaps between obstacles in P and the boundary of the enclosing freespace ∂Fe, for any

connected component P of PImap such that P ∩ ∂Fe 6= ∅, we take B := P ∩ Fe and include

B in a new set BImap, indexed by J IB . The rest of the connected components in PImap,

which do not intersect ∂Fe, are included in a separate set DImap, indexed by J ID . The idea

here is that obstacles in BImap should be merged to the boundary of the enclosing freespace

∂Fe, and obstacles in DImap should be deformed to disks, since FImap and FImodel need to be

diffeomorphic.

7.2.4 Model Space

The model space FImodel has the same boundary as Fe (i.e. ∂FImodel := ∂Fe) and consists

of copies of the sensed fragments of the |JC | unrecognized visible convex obstacles in Cmap,

and a collection of |J ID | Euclidean disks corresponding to the |J ID | consolidated obstacles

in DImap that are deformed to disks. The centers {x∗i }i∈J ID and radii {ρi}i∈J ID of the |J ID |

disks are chosen so that B (x∗i , ρi) is contained in the interior of Di ∈ DImap, as required in

[164]. The obstacles in BImap are merged into ∂Fe, to make FImap and FImodel topologically

equivalent, through a map hI : FImap → FImodel. We can, therefore, write FImodel as

FImodel = Fe
∖ ⋃

i∈J ID

B (x∗i , ρi) ∪ Cmap

 (7.8)
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7.2.5 Implicit Representation of Obstacles

We note here that the construction of the map hI between the mapped space FImap and

the model space FImodel, described next in Section 7.3 and shown in Fig. 7.1, relies on the

existence of smooth implicit functions β : R2 → R for polygons, constructed such that

β(x) = 0 implies that x lies on the boundary of the polygon. Although the construction

of such functions is a separate problem on its own, here we derive implicit representations

using so-called “R-functions” from the constructive solid geometry literature [176]. In Ap-

pendix A.1, we describe the method used for the construction of such implicit functions for

polygonal obstacles that have the desired property of being analytic everywhere except for

the polygon vertices.

7.3 The Diffeomorphism Construction Between the Mapped

and Model Spaces

In this Section, we describe our method of constructing the diffeomorphism, hI , between

the mapped space FImap and the model space FImodel. We assume that the robot has already

recognized, localized and stored the |J I | consolidated familiar polygonal obstacles in PImap
in its map, and has subsequently identified obstacles to be merged to the boundary of the

enclosing freespace ∂Fe, stored in BImap, and obstacles to be deformed to disks, stored in

DImap.

The idea is then to compose a sequence of “purging” diffeomorphisms, which coincide

with the identity map except on a small “collar” around each component of PImap, that

produce successively less complicated isolated shapes. The final simplified shapes are then

conveniently deformed into a disk if the corresponding obstacle belongs in DImap, or into

the boundary of Fe if the corresponding obstacle belongs in BImap, in order to generate

the model space FImodel. Before describing these transformations, we first provide some

background on the used obstacle representation methodology in Section 7.3.1, and provide

associated notation in Table 7.3.
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TPi Tree of triangles, constructed from the dual graph of the
triangulation of Pi

VPi Set of vertices of TPi identified with triangles in the
triangulation of Pi

EPi Set of edges of TPi encoding triangle adjacency in the
triangulation of Pi

FImap,ji ⊂ R2 Mapped space before the purging of leaf triangle ji ∈ VPi
FImap,p(ji) ⊂ R2 Mapped space after the purging of leaf triangle ji ∈ VPi
F̂Imap ⊂ R2 Mapped space after the purging of all leaf triangles
x∗ji ∈ R2 Admissible center for the purging transformation of a leaf

triangle ji ∈ VPi
x∗i ∈ R2 Admissible center for the transformation of a root triangle

ri ∈ VPi
x1ji ,x2ji ,x3ji Vertices of a leaf triangle ji ∈ VPi
x1ri ,x2ri ,x3ri Vertices of a root triangle ri ∈ VPi
Qji ⊂ R2 Quadrilateral x3jix1jix

∗
ji
x2jix3ji associated with a leaf

triangle ji ∈ VPi
Qri ⊂ R2 Quadrilateral x3rix1rix

∗
ix2rix3ri associated with a root

triangle ri ∈ VPi
Qji ⊂ R2 Admissible polygonal collar associated with a leaf triangle

ji ∈ VPi
Qri ⊂ R2 Admissible polygonal collar associated with a root triangle

ri ∈ VPi
γji , γri : R2 → R Implicit function associated with Qji or Qri
δji , δri : R2 → R Implicit function associated with Qji or Qri
σγji , σγri : R2 → [0, 1] Auxiliary C∞ switch associated with Qji or Qri
σδji , σδri : R2 → [0, 1] Auxiliary C∞ switch associated with Qji or Qri
σji , σri : R2 → [0, 1] C∞ switch of the transformation of a leaf triangle ji

or a root triangle ri
νji , νri : R2 → [0, 1] Deforming factor for a leaf triangle ji or a root

triangle ri
hIji : FImap,ji → FImap,p(ji) Purging transformation mapping a leaf triangle ji to its

parent p(ji)
gI : FImap → F̂Imap Composition of purging transformations mapping FImap

to F̂Imap
ĥI : F̂Imap → FImodel Diffeomorphism between F̂Imap and FImodel
hI : FImap → FImodel Diffeomorphism between FImap and FImodel

Table 7.3: Key symbols related to the diffeomorphism construction from FImap to FImodel, described
in Section 7.3.
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Figure 7.3: Triangulation of a non-convex obstacle using the Ear Clipping Method. The original
polygon is guaranteed to have at least two ears (red dots) by the Two Ears Theorem, which induce
triangles that can be removed from the polygon. By repeating this process, we get the final triangu-
lation and its dual graph, which is guaranteed to be a tree. This tree can be restructured by setting
the root to be the triangle of maximal surface area, to yield the order of purging transformations in
descending depth; in this particular example this order is 1→ 2→ 6→ 3→ 5→ 4.

7.3.1 Obstacle Representation

In order to construct the map hI between the mapped space and the model space, we assume

that the robot has access to the triangulation of each one of the obstacles stored in both

DImap and BImap. This triangulation can be efficiently constructed online upon recognition of

each obstacle, using the Two Ears Theorem [133], and the associated Ear Clipping Method

[55]3.

Briefly, an ear of a simple polygon is a vertex of the polygon such that the line segment

between the two neighbors of the vertex lies entirely in the interior of the polygon. The

Two Ears Theorem guarantees that every simple polygon has at least two such ears, and

the Ear Clipping Method uses this result to efficiently construct polygon triangulations in

O(n2) time. Namely, an ear and its two neighbors form a triangle that is not crossed by

any other part of the polygon and can be, therefore, safely removed. Removing a triangle of

this type produces a polygon with one less vertex than the original polygon; we can repeat

the process to eventually get a single triangle and complete the triangulation. An example

is shown in Fig. 7.3.

Except for its utility in constructing triangulations, the Two Ears Theorem guarantees

that the dual graph of the triangulation of a simple polygon with no holes constructed with

the Ear Clipping Method (i.e., a graph with one vertex per triangle and one edge per pair
3Special thanks to Prof. Elon Rimon for pointing out these results.
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of adjacent triangles) is in fact a tree [142].

Therefore, in order to construct a tree of triangles TPi := (VPi , EPi) corresponding to

a polygon Pi, with VPi a set of vertices identified with triangles (i.e., vertices of the dual

of the formal triangulation) and EPi a set of edges encoding triangle adjacency, we can

triangulate Pi using the Ear Clipping Method, pick any triangle as root, and construct

TPi based on the adjacency properties induced by the dual graph of the triangulation, as

shown in Fig. 7.3. If Pi ∈ DImap, we pick as root the triangle with the largest surface area,

whereas if Pi ∈ BImap, we pick as root a triangle adjacent to ∂Fe. This will give us a tree-of-

triangles for Pi in a notion similar to [165]. Our goal is then to successively “purge” this tree,

triangle by triangle, in order of descending depth, until we reach the root triangle. Then,

we can use a diffeomorphism similar to that presented in Chapter 6 to map the exterior and

boundary of the root triangle onto the exterior and boundary of a topologically equivalent

disk if Pi ∈ DImap, or merge the root triangle into ∂Fe if Pi ∈ BImap. These operations are all

performed online; we provide some computational performance metrics with our experiments

in Section 7.8.

We describe the algorithm for each purging transformation of the leaf nodes in Sec-

tion 7.3.2 and the (final) root triangle purging transformation in Section 7.3.3. Finally,

Section 7.3.4 defines the diffeomorphism between the mapped and model spaces, along with

associated qualitative properties.

7.3.2 Intermediate Spaces Related by Leaf Purging Transformations

In this Section, we describe the purging transformation that maps the boundary of a leaf

triangle ji ∈ VPi onto the boundary of its parent p(ji) ∈ VPi , as shown in Fig. 7.4-(1a), (2a).

This gives rise to a composition of transformations between a succession of intermediate

spaces, each including the triangle ji, and FImap,p(ji), where ji has been mapped onto the

boundary of its parent. Each of these transformations is in principle similar and performing

a role analogous to the corresponding purging transformation in [165], with two important

differences. First, it deforms space only “locally” around the triangle, without taking into

consideration other triangles or polygons, allowing the use of fewer tunable parameters and
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x⇤
i

<latexit sha1_base64="9WmW8pLx5AJt+hPERuZ6p0SSiSk=">AAAB+XicdVDLSgMxFM3UV62vUZduQotQXJSZaenUXdGNywr2AW0tmTTThmYeJJliGeZLdONCEbd+hVt3oh9jplVQ0QOBwzn3ck+OEzIqpGG8apml5ZXVtex6bmNza3tH391riSDimDRxwALecZAgjPqkKalkpBNygjyHkbYzOU399pRwQQP/Qs5C0vfQyKcuxUgqaaDrPQ/JsePGV8kgpsnl0UAvGKXjWtWqVKFRMgzbtMyUWHalXIGmUlIU6vni+5v9fN0Y6C+9YYAjj/gSMyRE1zRC2Y8RlxQzkuR6kSAhwhM0Il1FfeQR0Y/nyRN4qJQhdAOuni/hXP2+ESNPiJnnqMk0p/jtpeJfXjeSbq0fUz+MJPHx4pAbMSgDmNYAh5QTLNlMEYQ5VVkhHiOOsFRl5VQJXz+F/5OWVTLLJetctXECFsiCA5AHRWACG9TBGWiAJsBgCm7AHbjXYu1We9AeF6MZ7XNnH/yA9vQBdzeX7w==</latexit>

⇢i
<latexit sha1_base64="pi5q1Uvqd3F8wcXZOTubahADY5I=">AAAB7XicdVDLSgMxFM3UV62vqktFgkVwNWSmOra7ohuXLdgHtEPJpGkbm5kMSUYopUv3blwo4tZf6He48xv8CdNWQUUPXDiccy/33hPEnCmN0JuVWlhcWl5Jr2bW1jc2t7LbOzUlEklolQguZCPAinIW0apmmtNGLCkOA07rweBi6tdvqFRMRFd6GFM/xL2IdRnB2ki1luyLNmtnc8guFtGJ40FknyLkekVDUN4teB50bDRDrrQ/qbzfHkzK7exrqyNIEtJIE46Vajoo1v4IS80Ip+NMK1E0xmSAe7RpaIRDqvzR7NoxPDJKB3aFNBVpOFO/T4xwqNQwDExniHVf/fam4l9eM9Hdgj9iUZxoGpH5om7CoRZw+jrsMEmJ5kNDMJHM3ApJH0tMtAkoY0L4+hT+T2qu7eRtt2LSOAdzpMEeOATHwAFnoAQuQRlUAQHX4A48gEdLWPfWk/U8b01ZnzO74Aeslw/4sJMa</latexit>

(1a) (1b)

x2ji
<latexit sha1_base64="ZIz2N8V0gLbzMmd4544zr2jxApQ=">AAAB+nicbVC7TsMwFHXKq7Q8UhhZLAoSU5WUAcYKFsYi0YfURpHjOq2p40S2U6hCPoWFAYRYET/AH7DxITDjtB2g5UiWjs65V/f4eBGjUlnWp5FbWl5ZXcuvF4obm1vbZmmnKcNYYNLAIQtF20OSMMpJQ1HFSDsSBAUeIy1veJ75rRERkob8So0j4gSoz6lPMVJacs1SN0Bq4PnJbeom1WuXpq5ZtirWBHCR2DNSrh18vb2Pit911/zo9kIcB4QrzJCUHduKlJMgoShmJC10Y0kihIeoTzqachQQ6SST6Ck81EoP+qHQjys4UX9vJCiQchx4ejILKue9TPzP68TKP3USyqNYEY6nh/yYQRXCrAfYo4JgxcaaICyozgrxAAmElW6roEuw57+8SJrVin1cqV7qNs7AFHmwB/bBEbDBCaiBC1AHDYDBDbgHj+DJuDMejGfjZTqaM2Y7u+APjNcfhHSYlw==</latexit>

x1ji
<latexit sha1_base64="DXOL3ruKHLmWuGjR08WBBtVECwE=">AAAB+nicbVC7TsMwFHXKq7Q8UhhZLAoSU5WUAcYKFsYi0YfURpHjOq2p40S2U6hCPoWFAYRYET/AH7DxITDjtB2g5UiWjs65V/f4eBGjUlnWp5FbWl5ZXcuvF4obm1vbZmmnKcNYYNLAIQtF20OSMMpJQ1HFSDsSBAUeIy1veJ75rRERkob8So0j4gSoz6lPMVJacs1SN0Bq4PnJbeom9rVLU9csWxVrArhI7Bkp1w6+3t5Hxe+6a350eyGOA8IVZkjKjm1FykmQUBQzkha6sSQRwkPUJx1NOQqIdJJJ9BQeaqUH/VDoxxWcqL83EhRIOQ48PZkFlfNeJv7ndWLlnzoJ5VGsCMfTQ37MoAph1gPsUUGwYmNNEBZUZ4V4gATCSrdV0CXY819eJM1qxT6uVC91G2dgijzYA/vgCNjgBNTABaiDBsDgBtyDR/Bk3BkPxrPxMh3NGbOdXfAHxusPguyYlg==</latexit>

x3ji
<latexit sha1_base64="n6OGByStWBiD/0T3rdvmrv5iCTk=">AAAB+nicbVC7TsMwFHV4lpZHCiOLRUFiqpJ2gLGChbFI9CG1UeS4TmvqOJHtFKqQT2FhACFWxA/wB2x8CMw4bQdoOZKlo3Pu1T0+XsSoVJb1aSwtr6yurec28oXNre0ds7jblGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3PM/81ogISUN+pcYRcQLU59SnGCktuWaxGyA18PzkNnWT6rVLU9csWWVrArhI7Bkp1Q6/3t5Hhe+6a350eyGOA8IVZkjKjm1FykmQUBQzkua7sSQRwkPUJx1NOQqIdJJJ9BQeaaUH/VDoxxWcqL83EhRIOQ48PZkFlfNeJv7ndWLlnzoJ5VGsCMfTQ37MoAph1gPsUUGwYmNNEBZUZ4V4gATCSreV1yXY819eJM1K2a6WK5e6jTMwRQ7sgwNwDGxwAmrgAtRBA2BwA+7BI3gy7owH49l4mY4uGbOdPfAHxusPhfyYmA==</latexit>

H1ji
<latexit sha1_base64="ROBeR4cXtMe937tYmw2cAuT7N08=">AAAB73icdVDLSgMxFM34rK2Pqks3wSq4GjIdau2u6KbLCvYB7TBk0kwbm3mYZApl6E+4caGIW3/AH/AP3PkhujZtFVT0wIXDOfdy7z1ezJlUCL0aC4tLyyurmbVsbn1jcyu/vdOUUSIIbZCIR6LtYUk5C2lDMcVpOxYUBx6nLW94NvVbIyoki8ILNY6pE+B+yHxGsNJSu+am1qXLJm6+gMwSsiqlMkRmRePY1gTZFrIr0DLRDIXqwdvT8yj3XnfzL91eRJKAhopwLGXHQrFyUiwUI5xOst1E0hiTIe7TjqYhDqh00tm9E3iolR70I6ErVHCmfp9IcSDlOPB0Z4DVQP72puJfXidR/omTsjBOFA3JfJGfcKgiOH0e9pigRPGxJpgIpm+FZIAFJkpHlNUhfH0K/yfNomnZZvFcp3EK5siAPbAPjoAFyqAKaqAOGoAADq7BLbgzrowb4954mLcuGJ8zu+AHjMcPDq2UbQ==</latexit>

H2ji
<latexit sha1_base64="Y+gGJ24sTPGFmHUXIkFkwJhyKDo=">AAAB73icdVDLSgMxFM34rK2Pqks3wSq4GjIdau2u6KbLCvYB7TBk0kwbm3mYZApl6E+4caGIW3/AH/AP3PkhujZtFVT0wIXDOfdy7z1ezJlUCL0aC4tLyyurmbVsbn1jcyu/vdOUUSIIbZCIR6LtYUk5C2lDMcVpOxYUBx6nLW94NvVbIyoki8ILNY6pE+B+yHxGsNJSu+amxUuXTdx8AZklZFVKZYjMisaxrQmyLWRXoGWiGQrVg7en51Huve7mX7q9iCQBDRXhWMqOhWLlpFgoRjidZLuJpDEmQ9ynHU1DHFDppLN7J/BQKz3oR0JXqOBM/T6R4kDKceDpzgCrgfztTcW/vE6i/BMnZWGcKBqS+SI/4VBFcPo87DFBieJjTTARTN8KyQALTJSOKKtD+PoU/k+aRdOyzeK5TuMUzJEBe2AfHAELlEEV1EAdNAABHFyDW3BnXBk3xr3xMG9dMD5ndsEPGI8fEDWUbg==</latexit>

Qji
<latexit sha1_base64="4zycPbFRagzjUWd0gbLf7UKjq9o=">AAAB+nicdVDLTgIxFO34RPAx6NJNI5q4Ih0MCjuiG5eQyCMBMumUApXOI20HQ8b5FDcuNMat8Qf8A3d+iK7tACZq9CRNTs65N/f0OAFnUiH0ZiwsLi2vrKbW0pn1jc0tM7vdkH4oCK0Tn/ui5WBJOfNoXTHFaSsQFLsOp01ndJb4zTEVkvnehZoEtOvigcf6jGClJdvMdlyshgTzqBbb0aXNYtvMoXyhiMolBFEeTaFJEVnlYwtacyVX2X9/fhlnPqq2+drp+SR0qacIx1K2LRSoboSFYoTTON0JJQ0wGeEBbWvqYZfKbjSNHsMDrfRg3xf6eQpO1e8bEXalnLiOnkyCyt9eIv7ltUPVL3Uj5gWhoh6ZHeqHHCofJj3AHhOUKD7RBBPBdFZIhlhgonRbaV3C10/h/6RRyFtH+UJNt3EKZkiBXbAHDoEFTkAFnIMqqAMCrsANuAP3xrVxazwYj7PRBWO+swN+wHj6BN1QmNQ=</latexit>

Qji
<latexit sha1_base64="t/R8nFR0Usz84KVJ4ofrzRNQXFM="></latexit>

ji
<latexit sha1_base64="eqFwFTnaop1S05XFXdiw4/IpUFc=">AAAB6nicbVC7SgNBFL0bXzG+opaKDAbBKuzGQsugjWWC5gHJEmYns8nozOwyMyuEJaWljYUitn5EvsPOb/AnnDwKTTxw4XDOvdx7TxBzpo3rfjmZpeWV1bXsem5jc2t7J7+7V9dRogitkYhHqhlgTTmTtGaY4bQZK4pFwGkjuL8a+40HqjSL5K0ZxNQXuCdZyAg2Vrq567BOvuAW3QnQIvFmpFA+HFW/H49GlU7+s92NSCKoNIRjrVueGxs/xcowwukw1040jTG5xz3aslRiQbWfTk4dohOrdFEYKVvSoIn6eyLFQuuBCGynwKav572x+J/XSkx44adMxomhkkwXhQlHJkLjv1GXKUoMH1iCiWL2VkT6WGFibDo5G4I3//IiqZeK3lmxVLVpXMIUWTiAYzgFD86hDNdQgRoQ6METvMCrw51n5815n7ZmnNnMPvyB8/EDOYmRdQ==</latexit>

p(ji)
<latexit sha1_base64="zk1YshdGfU9ZDmzjHvvxxvRNb2w=">AAAB7XicbVDLSgNBEOyNrxhfUY9ehgQhIoTdeNBj0IvHCOYByRJmJ7PJJLMzy8ysEJb8gwc9KOLV//GWv3HyOGhiQUNR1U13VxBzpo3rTp3MxubW9k52N7e3f3B4lD8+aWiZKELrRHKpWgHWlDNB64YZTluxojgKOG0Go7uZ33yiSjMpHs04pn6E+4KFjGBjpUZcGnbZRTdfdMvuHGideEtSrBY6ly/T6rjWzX93epIkERWGcKx123Nj46dYGUY4neQ6iaYxJiPcp21LBY6o9tP5tRN0bpUeCqWyJQyaq78nUhxpPY4C2xlhM9Cr3kz8z2snJrzxUybixFBBFovChCMj0ex11GOKEsPHlmCimL0VkQFWmBgbUM6G4K2+vE4albJ3Va482DRuYYEsnEEBSuDBNVThHmpQBwJDeIY3eHek8+p8OJ+L1oyznDmFP3C+fgD+hpG4</latexit>

nji
<latexit sha1_base64="SXY3MLNAYZVzi0jFS/5AUOpu+Yk=">AAAB+XicdVDLSgMxFM3UV219jLp0E6yCqzIzLW3dFd24rGAf0JYhk2ba2ExmSDKFMvRP3LhQxK3gD/gH7vwQXZtpFVT0QOBwzr3ck+NFjEplWa9GZml5ZXUtu57Lb2xubZs7uy0ZxgKTJg5ZKDoekoRRTpqKKkY6kSAo8Bhpe+Oz1G9PiJA05JdqGpF+gIac+hQjpSXXNHsBUiPPT/jMTa5cOnPNglU8qVWccgVaRcuq2o6dEqdaLpWhrZUUhfrh29PzJP/ecM2X3iDEcUC4wgxJ2bWtSPUTJBTFjMxyvViSCOExGpKuphwFRPaTefIZPNLKAPqh0I8rOFe/byQokHIaeHoyzSl/e6n4l9eNlV/rJ5RHsSIcLw75MYMqhGkNcEAFwYpNNUFYUJ0V4hESCCtdVk6X8PVT+D9pOUW7VHQudBunYIEs2AcH4BjYoArq4Bw0QBNgMAHX4BbcGYlxY9wbD4vRjPG5swd+wHj8AF5MmJM=</latexit>

x⇤
ji

<latexit sha1_base64="aF8Wk7/G60mYg6wxeyOWqzWLUsc=">AAAB+3icdVDLSgMxFM3UV62vsS7dBIsgCmVmWtq6K7pxWcE+oK1DJs20sZkHSUZahvkC/8GNgiJu/RF3foh7M62Cih4IHM65l3tynJBRIQ3jTcssLC4tr2RXc2vrG5tb+na+JYKIY9LEAQt4x0GCMOqTpqSSkU7ICfIcRtrO+DT129eECxr4F3Iakr6Hhj51KUZSSbae73lIjhw3niR2fGXT5PLQ1gtG8bhWscoVaBQNo2paZkqsarlUhqZSUhTqR+/3N6QQNmz9tTcIcOQRX2KGhOiaRij7MeKSYkaSXC8SJER4jIakq6iPPCL68Sx7AveVMoBuwNXzJZyp3zdi5Akx9Rw1mSYVv71U/MvrRtKt9WPqh5EkPp4fciMGZQDTIuCAcoIlmyqCMKcqK8QjxBGWqq6cKuHrp/B/0rKKZqlonas2TsAcWbAL9sABMEEV1MEZaIAmwGACbsEDeNQS7U570p7noxntc2cH/ID28gGQ0Jh3</latexit>

ri
<latexit sha1_base64="wctD4NccA2mT6dnqpkA0rL09Sfs=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2cpMMmZ1dZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSx4Nq47peTWVldW9/Ibua2tnd29/L7Bw0dJYphnUUiUq2AahRcYt1wI7AVK6RhILAZDK8mfvMeleaRvDWjGP2Q9iXvcUaNlW5Uh3fyBbfoTkGWiTcnhfJR7Zu/Vz6qnfznXTdiSYjSMEG1bntubPyUKsOZwHHuLtEYUzakfWxbKmmI2k+np47JqVW6pBcpW9KQqfp7IqWh1qMwsJ0hNQO96E3E/7x2YnqXfsplnBiUbLaolwhiIjL5m3S5QmbEyBLKFLe3EjagijJj08nZELzFl5dJo1T0zoulmk2jAjNk4RhO4Aw8uIAyXEMV6sCgDw/wBM+OcB6dF+d11ppx5jOH8AfO2w83YpFz</latexit>

x1ri
<latexit sha1_base64="7YIbCS40SAn5n3zGSyvJz4lXnaA=">AAAB+nicbVC7TsMwFL3hWcorhZElaoXEVCVlgLGChbFI9CE1UeS4TmvVcSLbAaqQD+ALmFgYQIiVP+APWBB/g/sYoOVIlo7OuVf3+AQJo1LZ9rextLyyurZe2Chubm3v7JqlvZaMU4FJE8csFp0AScIoJ01FFSOdRBAUBYy0g+H52G9fEyFpzK/UKCFehPqchhQjpSXfLLkRUoMgzG5zP3OET3PfrNhVewJrkTgzUqmX3fL9w8dXwzc/3V6M04hwhRmSsuvYifIyJBTFjORFN5UkQXiI+qSrKUcRkV42iZ5bh1rpWWEs9OPKmqi/NzIUSTmKAj05DirnvbH4n9dNVXjqZZQnqSIcTw+FKbNUbI17sHpUEKzYSBOEBdVZLTxAAmGl2yrqEpz5Ly+SVq3qHFdrl7qNM5iiAAdQhiNw4ATqcAENaAKGG3iEZ3gx7own49V4m44uGbOdffgD4/0HoO2X7w==</latexit>

x2ri
<latexit sha1_base64="hfq6o2EOSA+Kxai2S+EfX5PLUHk=">AAAB+nicbVC7TsMwFL3hWcqrhZElaoXEVCVlgLGChbFI9CE1UeS4TmvVcSLbAaqQD+ALmFgYQIiVP+APWBB/g9N2gJYjWTo6517d4+PHjEplWd/G0vLK6tp6YaO4ubW9s1sq77VllAhMWjhikej6SBJGOWkpqhjpxoKg0Gek44/Oc79zTYSkEb9S45i4IRpwGlCMlJa8UtkJkRr6QXqbeWldeDTzSlWrZk1gLhJ7RqqNilO5f/j4anqlT6cf4SQkXGGGpOzZVqzcFAlFMSNZ0UkkiREeoQHpacpRSKSbTqJn5qFW+mYQCf24Mifq740UhVKOQ19P5kHlvJeL/3m9RAWnbkp5nCjC8fRQkDBTRWbeg9mngmDFxpogLKjOauIhEggr3VZRl2DPf3mRtOs1+7hWv9RtnMEUBTiAChyBDSfQgAtoQgsw3MAjPMOLcWc8Ga/G23R0yZjt7MMfGO8/onWX8A==</latexit>

x3ri
<latexit sha1_base64="PwBxa9v8mTEkEpIceT6PdTOzZNM=">AAAB+nicbVC7TsMwFHXKq5RXCiOL1QqJqUraAcYKFsYi0YfURJHjOq1Vx4lsB6hCPoAvYGJhACFW/oA/YEH8DU7bAVqOZOnonHt1j48fMyqVZX0bhZXVtfWN4mZpa3tnd88s73dklAhM2jhikej5SBJGOWkrqhjpxYKg0Gek64/Pc797TYSkEb9Sk5i4IRpyGlCMlJY8s+yESI38IL3NvLQhPJp5ZtWqWVPAZWLPSbVZcSr3Dx9fLc/8dAYRTkLCFWZIyr5txcpNkVAUM5KVnESSGOExGpK+phyFRLrpNHoGj7QygEEk9OMKTtXfGykKpZyEvp7Mg8pFLxf/8/qJCk7dlPI4UYTj2aEgYVBFMO8BDqggWLGJJggLqrNCPEICYaXbKukS7MUvL5NOvWY3avVL3cYZmKEIDkEFHAMbnIAmuAAt0AYY3IBH8AxejDvjyXg13majBWO+cwD+wHj/AaP9l/E=</latexit>

Qri
<latexit sha1_base64="xdrou8cnbgs/HqiJw89BqdGiopQ=">AAAB+nicdVDLSgMxFM3UV62vVpduQovgashUqu2u6MZlC/YBnWHIpJk2NPMgyShl7Af4Ba7cuFDErX/gH7gR/8b0IajogcDhnHu5J8eLOZMKoQ8js7S8srqWXc9tbG5t7+QLu20ZJYLQFol4JLoelpSzkLYUU5x2Y0Fx4HHa8UZnU79zSYVkUXihxjF1AjwImc8IVlpy8wU7wGpIME+bEzcVLpu4+RIyyxVUqyKITDSDJhVk1Y4taC2UUr1oF29uX98bbv7N7kckCWioCMdS9iwUKyfFQjHC6SRnJ5LGmIzwgPY0DXFApZPOok/ggVb60I+EfqGCM/X7RooDKceBpyenQeVvbyr+5fUS5VedlIVxomhI5of8hEMVwWkPsM8EJYqPNcFEMJ0VkiEWmCjdVk6X8PVT+D9pl03ryCw3dRunYI4s2AdFcAgscALq4Bw0QAsQcAXuwAN4NK6Ne+PJeJ6PZozFzh74AePlE/tRmC0=</latexit>

Qri
<latexit sha1_base64="Oz0lur7/RpcbWT/9vhn9nw/nm6c="></latexit>

(2a)

x2ji
<latexit sha1_base64="ZIz2N8V0gLbzMmd4544zr2jxApQ=">AAAB+nicbVC7TsMwFHXKq7Q8UhhZLAoSU5WUAcYKFsYi0YfURpHjOq2p40S2U6hCPoWFAYRYET/AH7DxITDjtB2g5UiWjs65V/f4eBGjUlnWp5FbWl5ZXcuvF4obm1vbZmmnKcNYYNLAIQtF20OSMMpJQ1HFSDsSBAUeIy1veJ75rRERkob8So0j4gSoz6lPMVJacs1SN0Bq4PnJbeom1WuXpq5ZtirWBHCR2DNSrh18vb2Pit911/zo9kIcB4QrzJCUHduKlJMgoShmJC10Y0kihIeoTzqachQQ6SST6Ck81EoP+qHQjys4UX9vJCiQchx4ejILKue9TPzP68TKP3USyqNYEY6nh/yYQRXCrAfYo4JgxcaaICyozgrxAAmElW6roEuw57+8SJrVin1cqV7qNs7AFHmwB/bBEbDBCaiBC1AHDYDBDbgHj+DJuDMejGfjZTqaM2Y7u+APjNcfhHSYlw==</latexit>

x1ji
<latexit sha1_base64="DXOL3ruKHLmWuGjR08WBBtVECwE=">AAAB+nicbVC7TsMwFHXKq7Q8UhhZLAoSU5WUAcYKFsYi0YfURpHjOq2p40S2U6hCPoWFAYRYET/AH7DxITDjtB2g5UiWjs65V/f4eBGjUlnWp5FbWl5ZXcuvF4obm1vbZmmnKcNYYNLAIQtF20OSMMpJQ1HFSDsSBAUeIy1veJ75rRERkob8So0j4gSoz6lPMVJacs1SN0Bq4PnJbeom9rVLU9csWxVrArhI7Bkp1w6+3t5Hxe+6a350eyGOA8IVZkjKjm1FykmQUBQzkha6sSQRwkPUJx1NOQqIdJJJ9BQeaqUH/VDoxxWcqL83EhRIOQ48PZkFlfNeJv7ndWLlnzoJ5VGsCMfTQ37MoAph1gPsUUGwYmNNEBZUZ4V4gATCSrdV0CXY819eJM1qxT6uVC91G2dgijzYA/vgCNjgBNTABaiDBsDgBtyDR/Bk3BkPxrPxMh3NGbOdXfAHxusPguyYlg==</latexit>

x3ji
<latexit sha1_base64="n6OGByStWBiD/0T3rdvmrv5iCTk=">AAAB+nicbVC7TsMwFHV4lpZHCiOLRUFiqpJ2gLGChbFI9CG1UeS4TmvqOJHtFKqQT2FhACFWxA/wB2x8CMw4bQdoOZKlo3Pu1T0+XsSoVJb1aSwtr6yurec28oXNre0ds7jblGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3PM/81ogISUN+pcYRcQLU59SnGCktuWaxGyA18PzkNnWT6rVLU9csWWVrArhI7Bkp1Q6/3t5Hhe+6a350eyGOA8IVZkjKjm1FykmQUBQzkua7sSQRwkPUJx1NOQqIdJJJ9BQeaaUH/VDoxxWcqL83EhRIOQ48PZkFlfNeJv7ndWLlnzoJ5VGsCMfTQ37MoAph1gPsUUGwYmNNEBZUZ4V4gATCSreV1yXY819eJM1K2a6WK5e6jTMwRQ7sgwNwDGxwAmrgAtRBA2BwA+7BI3gy7owH49l4mY4uGbOdPfAHxusPhfyYmA==</latexit>

H1ji
<latexit sha1_base64="ROBeR4cXtMe937tYmw2cAuT7N08=">AAAB73icdVDLSgMxFM34rK2Pqks3wSq4GjIdau2u6KbLCvYB7TBk0kwbm3mYZApl6E+4caGIW3/AH/AP3PkhujZtFVT0wIXDOfdy7z1ezJlUCL0aC4tLyyurmbVsbn1jcyu/vdOUUSIIbZCIR6LtYUk5C2lDMcVpOxYUBx6nLW94NvVbIyoki8ILNY6pE+B+yHxGsNJSu+am1qXLJm6+gMwSsiqlMkRmRePY1gTZFrIr0DLRDIXqwdvT8yj3XnfzL91eRJKAhopwLGXHQrFyUiwUI5xOst1E0hiTIe7TjqYhDqh00tm9E3iolR70I6ErVHCmfp9IcSDlOPB0Z4DVQP72puJfXidR/omTsjBOFA3JfJGfcKgiOH0e9pigRPGxJpgIpm+FZIAFJkpHlNUhfH0K/yfNomnZZvFcp3EK5siAPbAPjoAFyqAKaqAOGoAADq7BLbgzrowb4954mLcuGJ8zu+AHjMcPDq2UbQ==</latexit>

H2ji
<latexit sha1_base64="Y+gGJ24sTPGFmHUXIkFkwJhyKDo=">AAAB73icdVDLSgMxFM34rK2Pqks3wSq4GjIdau2u6KbLCvYB7TBk0kwbm3mYZApl6E+4caGIW3/AH/AP3PkhujZtFVT0wIXDOfdy7z1ezJlUCL0aC4tLyyurmbVsbn1jcyu/vdOUUSIIbZCIR6LtYUk5C2lDMcVpOxYUBx6nLW94NvVbIyoki8ILNY6pE+B+yHxGsNJSu+amxUuXTdx8AZklZFVKZYjMisaxrQmyLWRXoGWiGQrVg7en51Huve7mX7q9iCQBDRXhWMqOhWLlpFgoRjidZLuJpDEmQ9ynHU1DHFDppLN7J/BQKz3oR0JXqOBM/T6R4kDKceDpzgCrgfztTcW/vE6i/BMnZWGcKBqS+SI/4VBFcPo87DFBieJjTTARTN8KyQALTJSOKKtD+PoU/k+aRdOyzeK5TuMUzJEBe2AfHAELlEEV1EAdNAABHFyDW3BnXBk3xr3xMG9dMD5ndsEPGI8fEDWUbg==</latexit>

Qji
<latexit sha1_base64="4zycPbFRagzjUWd0gbLf7UKjq9o=">AAAB+nicdVDLTgIxFO34RPAx6NJNI5q4Ih0MCjuiG5eQyCMBMumUApXOI20HQ8b5FDcuNMat8Qf8A3d+iK7tACZq9CRNTs65N/f0OAFnUiH0ZiwsLi2vrKbW0pn1jc0tM7vdkH4oCK0Tn/ui5WBJOfNoXTHFaSsQFLsOp01ndJb4zTEVkvnehZoEtOvigcf6jGClJdvMdlyshgTzqBbb0aXNYtvMoXyhiMolBFEeTaFJEVnlYwtacyVX2X9/fhlnPqq2+drp+SR0qacIx1K2LRSoboSFYoTTON0JJQ0wGeEBbWvqYZfKbjSNHsMDrfRg3xf6eQpO1e8bEXalnLiOnkyCyt9eIv7ltUPVL3Uj5gWhoh6ZHeqHHCofJj3AHhOUKD7RBBPBdFZIhlhgonRbaV3C10/h/6RRyFtH+UJNt3EKZkiBXbAHDoEFTkAFnIMqqAMCrsANuAP3xrVxazwYj7PRBWO+swN+wHj6BN1QmNQ=</latexit>

Qji
<latexit sha1_base64="t/R8nFR0Usz84KVJ4ofrzRNQXFM="></latexit>

ji
<latexit sha1_base64="eqFwFTnaop1S05XFXdiw4/IpUFc=">AAAB6nicbVC7SgNBFL0bXzG+opaKDAbBKuzGQsugjWWC5gHJEmYns8nozOwyMyuEJaWljYUitn5EvsPOb/AnnDwKTTxw4XDOvdx7TxBzpo3rfjmZpeWV1bXsem5jc2t7J7+7V9dRogitkYhHqhlgTTmTtGaY4bQZK4pFwGkjuL8a+40HqjSL5K0ZxNQXuCdZyAg2Vrq567BOvuAW3QnQIvFmpFA+HFW/H49GlU7+s92NSCKoNIRjrVueGxs/xcowwukw1040jTG5xz3aslRiQbWfTk4dohOrdFEYKVvSoIn6eyLFQuuBCGynwKav572x+J/XSkx44adMxomhkkwXhQlHJkLjv1GXKUoMH1iCiWL2VkT6WGFibDo5G4I3//IiqZeK3lmxVLVpXMIUWTiAYzgFD86hDNdQgRoQ6METvMCrw51n5815n7ZmnNnMPvyB8/EDOYmRdQ==</latexit>

p(ji)
<latexit sha1_base64="zk1YshdGfU9ZDmzjHvvxxvRNb2w=">AAAB7XicbVDLSgNBEOyNrxhfUY9ehgQhIoTdeNBj0IvHCOYByRJmJ7PJJLMzy8ysEJb8gwc9KOLV//GWv3HyOGhiQUNR1U13VxBzpo3rTp3MxubW9k52N7e3f3B4lD8+aWiZKELrRHKpWgHWlDNB64YZTluxojgKOG0Go7uZ33yiSjMpHs04pn6E+4KFjGBjpUZcGnbZRTdfdMvuHGideEtSrBY6ly/T6rjWzX93epIkERWGcKx123Nj46dYGUY4neQ6iaYxJiPcp21LBY6o9tP5tRN0bpUeCqWyJQyaq78nUhxpPY4C2xlhM9Cr3kz8z2snJrzxUybixFBBFovChCMj0ex11GOKEsPHlmCimL0VkQFWmBgbUM6G4K2+vE4albJ3Va482DRuYYEsnEEBSuDBNVThHmpQBwJDeIY3eHek8+p8OJ+L1oyznDmFP3C+fgD+hpG4</latexit>

nji
<latexit sha1_base64="SXY3MLNAYZVzi0jFS/5AUOpu+Yk=">AAAB+XicdVDLSgMxFM3UV219jLp0E6yCqzIzLW3dFd24rGAf0JYhk2ba2ExmSDKFMvRP3LhQxK3gD/gH7vwQXZtpFVT0QOBwzr3ck+NFjEplWa9GZml5ZXUtu57Lb2xubZs7uy0ZxgKTJg5ZKDoekoRRTpqKKkY6kSAo8Bhpe+Oz1G9PiJA05JdqGpF+gIac+hQjpSXXNHsBUiPPT/jMTa5cOnPNglU8qVWccgVaRcuq2o6dEqdaLpWhrZUUhfrh29PzJP/ecM2X3iDEcUC4wgxJ2bWtSPUTJBTFjMxyvViSCOExGpKuphwFRPaTefIZPNLKAPqh0I8rOFe/byQokHIaeHoyzSl/e6n4l9eNlV/rJ5RHsSIcLw75MYMqhGkNcEAFwYpNNUFYUJ0V4hESCCtdVk6X8PVT+D9pOUW7VHQudBunYIEs2AcH4BjYoArq4Bw0QBNgMAHX4BbcGYlxY9wbD4vRjPG5swd+wHj8AF5MmJM=</latexit>

x⇤
ji

<latexit sha1_base64="aF8Wk7/G60mYg6wxeyOWqzWLUsc=">AAAB+3icdVDLSgMxFM3UV62vsS7dBIsgCmVmWtq6K7pxWcE+oK1DJs20sZkHSUZahvkC/8GNgiJu/RF3foh7M62Cih4IHM65l3tynJBRIQ3jTcssLC4tr2RXc2vrG5tb+na+JYKIY9LEAQt4x0GCMOqTpqSSkU7ICfIcRtrO+DT129eECxr4F3Iakr6Hhj51KUZSSbae73lIjhw3niR2fGXT5PLQ1gtG8bhWscoVaBQNo2paZkqsarlUhqZSUhTqR+/3N6QQNmz9tTcIcOQRX2KGhOiaRij7MeKSYkaSXC8SJER4jIakq6iPPCL68Sx7AveVMoBuwNXzJZyp3zdi5Akx9Rw1mSYVv71U/MvrRtKt9WPqh5EkPp4fciMGZQDTIuCAcoIlmyqCMKcqK8QjxBGWqq6cKuHrp/B/0rKKZqlonas2TsAcWbAL9sABMEEV1MEZaIAmwGACbsEDeNQS7U570p7noxntc2cH/ID28gGQ0Jh3</latexit>

x⇤
i

<latexit sha1_base64="3Oral/zpT58sLtDeaSAn2FBr5+w=">AAAB9XicdVDLSsNAFJ3UV62vqks3g0UQFyFJQ1t3RTcuK9gHtGmZTCft0MkkzEzUEvofblwo4tZ/ceffOGkrqOiBgcM593LPHD9mVCrL+jByK6tr6xv5zcLW9s7uXnH/oCWjRGDSxBGLRMdHkjDKSVNRxUgnFgSFPiNtf3KZ+e1bIiSN+I2axsQL0YjTgGKktNTvhUiN/SC9nw1o/2xQLFnmea3iuBVomZZVtR07I07VLbvQ1kqGEliiMSi+94YRTkLCFWZIyq5txcpLkVAUMzIr9BJJYoQnaES6mnIUEuml89QzeKKVIQwioR9XcK5+30hRKOU09PVkllL+9jLxL6+bqKDmpZTHiSIcLw4FCYMqglkFcEgFwYpNNUFYUJ0V4jESCCtdVEGX8PVT+D9pOaZdNp1rt1S/WNaRB0fgGJwCG1RBHVyBBmgCDAR4AE/g2bgzHo0X43UxmjOWO4fgB4y3TwM7kto=</latexit>

Qri
<latexit sha1_base64="Oz0lur7/RpcbWT/9vhn9nw/nm6c="></latexit>

Qri
<latexit sha1_base64="xdrou8cnbgs/HqiJw89BqdGiopQ=">AAAB+nicdVDLSgMxFM3UV62vVpduQovgashUqu2u6MZlC/YBnWHIpJk2NPMgyShl7Af4Ba7cuFDErX/gH7gR/8b0IajogcDhnHu5J8eLOZMKoQ8js7S8srqWXc9tbG5t7+QLu20ZJYLQFol4JLoelpSzkLYUU5x2Y0Fx4HHa8UZnU79zSYVkUXihxjF1AjwImc8IVlpy8wU7wGpIME+bEzcVLpu4+RIyyxVUqyKITDSDJhVk1Y4taC2UUr1oF29uX98bbv7N7kckCWioCMdS9iwUKyfFQjHC6SRnJ5LGmIzwgPY0DXFApZPOok/ggVb60I+EfqGCM/X7RooDKceBpyenQeVvbyr+5fUS5VedlIVxomhI5of8hEMVwWkPsM8EJYqPNcFEMJ0VkiEWmCjdVk6X8PVT+D9pl03ryCw3dRunYI4s2AdFcAgscALq4Bw0QAsQcAXuwAN4NK6Ne+PJeJ6PZozFzh74AePlE/tRmC0=</latexit>

ri
<latexit sha1_base64="wctD4NccA2mT6dnqpkA0rL09Sfs=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2cpMMmZ1dZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSx4Nq47peTWVldW9/Ibua2tnd29/L7Bw0dJYphnUUiUq2AahRcYt1wI7AVK6RhILAZDK8mfvMeleaRvDWjGP2Q9iXvcUaNlW5Uh3fyBbfoTkGWiTcnhfJR7Zu/Vz6qnfznXTdiSYjSMEG1bntubPyUKsOZwHHuLtEYUzakfWxbKmmI2k+np47JqVW6pBcpW9KQqfp7IqWh1qMwsJ0hNQO96E3E/7x2YnqXfsplnBiUbLaolwhiIjL5m3S5QmbEyBLKFLe3EjagijJj08nZELzFl5dJo1T0zoulmk2jAjNk4RhO4Aw8uIAyXEMV6sCgDw/wBM+OcB6dF+d11ppx5jOH8AfO2w83YpFz</latexit>

ri
<latexit sha1_base64="wctD4NccA2mT6dnqpkA0rL09Sfs=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2cpMMmZ1dZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSx4Nq47peTWVldW9/Ibua2tnd29/L7Bw0dJYphnUUiUq2AahRcYt1wI7AVK6RhILAZDK8mfvMeleaRvDWjGP2Q9iXvcUaNlW5Uh3fyBbfoTkGWiTcnhfJR7Zu/Vz6qnfznXTdiSYjSMEG1bntubPyUKsOZwHHuLtEYUzakfWxbKmmI2k+np47JqVW6pBcpW9KQqfp7IqWh1qMwsJ0hNQO96E3E/7x2YnqXfsplnBiUbLaolwhiIjL5m3S5QmbEyBLKFLe3EjagijJj08nZELzFl5dJo1T0zoulmk2jAjNk4RhO4Aw8uIAyXEMV6sCgDw/wBM+OcB6dF+d11ppx5jOH8AfO2w83YpFz</latexit>

ri
<latexit sha1_base64="wctD4NccA2mT6dnqpkA0rL09Sfs=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2cpMMmZ1dZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSx4Nq47peTWVldW9/Ibua2tnd29/L7Bw0dJYphnUUiUq2AahRcYt1wI7AVK6RhILAZDK8mfvMeleaRvDWjGP2Q9iXvcUaNlW5Uh3fyBbfoTkGWiTcnhfJR7Zu/Vz6qnfznXTdiSYjSMEG1bntubPyUKsOZwHHuLtEYUzakfWxbKmmI2k+np47JqVW6pBcpW9KQqfp7IqWh1qMwsJ0hNQO96E3E/7x2YnqXfsplnBiUbLaolwhiIjL5m3S5QmbEyBLKFLe3EjagijJj08nZELzFl5dJo1T0zoulmk2jAjNk4RhO4Aw8uIAyXEMV6sCgDw/wBM+OcB6dF+d11ppx5jOH8AfO2w83YpFz</latexit>

x3ji
<latexit sha1_base64="n6OGByStWBiD/0T3rdvmrv5iCTk=">AAAB+nicbVC7TsMwFHV4lpZHCiOLRUFiqpJ2gLGChbFI9CG1UeS4TmvqOJHtFKqQT2FhACFWxA/wB2x8CMw4bQdoOZKlo3Pu1T0+XsSoVJb1aSwtr6yurec28oXNre0ds7jblGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3PM/81ogISUN+pcYRcQLU59SnGCktuWaxGyA18PzkNnWT6rVLU9csWWVrArhI7Bkp1Q6/3t5Hhe+6a350eyGOA8IVZkjKjm1FykmQUBQzkua7sSQRwkPUJx1NOQqIdJJJ9BQeaaUH/VDoxxWcqL83EhRIOQ48PZkFlfNeJv7ndWLlnzoJ5VGsCMfTQ37MoAph1gPsUUGwYmNNEBZUZ4V4gATCSreV1yXY819eJM1K2a6WK5e6jTMwRQ7sgwNwDGxwAmrgAtRBA2BwA+7BI3gy7owH49l4mY4uGbOdPfAHxusPhfyYmA==</latexit>

x1ji
<latexit sha1_base64="DXOL3ruKHLmWuGjR08WBBtVECwE=">AAAB+nicbVC7TsMwFHXKq7Q8UhhZLAoSU5WUAcYKFsYi0YfURpHjOq2p40S2U6hCPoWFAYRYET/AH7DxITDjtB2g5UiWjs65V/f4eBGjUlnWp5FbWl5ZXcuvF4obm1vbZmmnKcNYYNLAIQtF20OSMMpJQ1HFSDsSBAUeIy1veJ75rRERkob8So0j4gSoz6lPMVJacs1SN0Bq4PnJbeom9rVLU9csWxVrArhI7Bkp1w6+3t5Hxe+6a350eyGOA8IVZkjKjm1FykmQUBQzkha6sSQRwkPUJx1NOQqIdJJJ9BQeaqUH/VDoxxWcqL83EhRIOQ48PZkFlfNeJv7ndWLlnzoJ5VGsCMfTQ37MoAph1gPsUUGwYmNNEBZUZ4V4gATCSrdV0CXY819eJM1qxT6uVC91G2dgijzYA/vgCNjgBNTABaiDBsDgBtyDR/Bk3BkPxrPxMh3NGbOdXfAHxusPguyYlg==</latexit>

x2ji
<latexit sha1_base64="ZIz2N8V0gLbzMmd4544zr2jxApQ=">AAAB+nicbVC7TsMwFHXKq7Q8UhhZLAoSU5WUAcYKFsYi0YfURpHjOq2p40S2U6hCPoWFAYRYET/AH7DxITDjtB2g5UiWjs65V/f4eBGjUlnWp5FbWl5ZXcuvF4obm1vbZmmnKcNYYNLAIQtF20OSMMpJQ1HFSDsSBAUeIy1veJ75rRERkob8So0j4gSoz6lPMVJacs1SN0Bq4PnJbeom1WuXpq5ZtirWBHCR2DNSrh18vb2Pit911/zo9kIcB4QrzJCUHduKlJMgoShmJC10Y0kihIeoTzqachQQ6SST6Ck81EoP+qHQjys4UX9vJCiQchx4ejILKue9TPzP68TKP3USyqNYEY6nh/yYQRXCrAfYo4JgxcaaICyozgrxAAmElW6roEuw57+8SJrVin1cqV7qNs7AFHmwB/bBEbDBCaiBC1AHDYDBDbgHj+DJuDMejGfjZTqaM2Y7u+APjNcfhHSYlw==</latexit>

nri
<latexit sha1_base64="pcrDwMabR/rG4Ejc6JGo7bpwcWg=">AAAB+XicdVDLSsNAFJ3UV62vqEs3g0VwFZI0tHVXdOOygn1AG8JkOmmHTiZhZlIooX/ixoUibv0Td/6Nk7aCih4YOJxzL/fMCVNGpbLtD6O0sbm1vVPereztHxwemccnXZlkApMOTlgi+iGShFFOOooqRvqpICgOGemF05vC782IkDTh92qeEj9GY04jipHSUmCawxipSRjlfBHkIqCLwKza1lWz7np1aFu23XBcpyBuw6t50NFKgSpYox2Y78NRgrOYcIUZknLg2KnycyQUxYwsKsNMkhThKRqTgaYcxUT6+TL5Al5oZQSjROjHFVyq3zdyFEs5j0M9WeSUv71C/MsbZCpq+jnlaaYIx6tDUcagSmBRAxxRQbBic00QFlRnhXiCBMJKl1XRJXz9FP5Puq7l1Cz3zqu2rtd1lMEZOAeXwAEN0AK3oA06AIMZeABP4NnIjUfjxXhdjZaM9c4p+AHj7ROotJRW</latexit>

(2b)

@Fe
<latexit sha1_base64="oLgf84Fir50yVLCQrHLpCShrsPQ=">AAAB/3icbVDLSgMxFM34rPU1KrhxEyyCqzJTBV0WBXFZwT6gMwx30rQNzWSGJCOUsQt/xY0LRdz6G+78GzPtLLT1QOBwzr3JyQkTzpR2nG9raXlldW29tFHe3Nre2bX39lsqTiWhTRLzWHZCUJQzQZuaaU47iaQQhZy2w9F17rcfqFQsFvd6nFA/goFgfUZAGymwD70EpGbAsReBHhLg2c0koIFdcarOFHiRuAWpoAKNwP7yejFJIyo04aBU13US7Wf53YTTSdlLFU2AjGBAu4YKiKjys2n+CT4xSg/3Y2mO0Hiq/t7IIFJqHIVmMg+p5r1c/M/rprp/6WdMJKmmgswe6qcc6xjnZeAek5RoPjYEiGQmKyZDkEC0qaxsSnDnv7xIWrWqe1at3Z1X6ldFHSV0hI7RKXLRBaqjW9RATUTQI3pGr+jNerJerHfrYza6ZBU7B+gPrM8fIdmWLA==</latexit>

@Fe
<latexit sha1_base64="oLgf84Fir50yVLCQrHLpCShrsPQ=">AAAB/3icbVDLSgMxFM34rPU1KrhxEyyCqzJTBV0WBXFZwT6gMwx30rQNzWSGJCOUsQt/xY0LRdz6G+78GzPtLLT1QOBwzr3JyQkTzpR2nG9raXlldW29tFHe3Nre2bX39lsqTiWhTRLzWHZCUJQzQZuaaU47iaQQhZy2w9F17rcfqFQsFvd6nFA/goFgfUZAGymwD70EpGbAsReBHhLg2c0koIFdcarOFHiRuAWpoAKNwP7yejFJIyo04aBU13US7Wf53YTTSdlLFU2AjGBAu4YKiKjys2n+CT4xSg/3Y2mO0Hiq/t7IIFJqHIVmMg+p5r1c/M/rprp/6WdMJKmmgswe6qcc6xjnZeAek5RoPjYEiGQmKyZDkEC0qaxsSnDnv7xIWrWqe1at3Z1X6ldFHSV0hI7RKXLRBaqjW9RATUTQI3pGr+jNerJerHfrYza6ZBU7B+gPrM8fIdmWLA==</latexit>

Figure 7.4: Illustration of features used in the transformation of - Top: (1a) a leaf triangle ji onto
its parent p(ji), and (1b) a root triangle ri onto a disk centered at x∗i with radius ρi for an obstacle
in DImap, Bottom: (2a) a leaf triangle ji onto its parent p(ji), and (2b) a root triangle ri onto ∂Fe

for an obstacle in BImap.

affording better numerical stability since only one triangle is considered at a time. Second,

the method presented in [165] is limited to parent-child pairs that strongly overlap instead of

just being adjacent, which makes the method impractical for the arbitrary polygonal shapes

and meshes involved in this work.

Center of the Transformation and Surrounding Polygonal Collars

Let the vertices of the triangle ji ∈ VPi be x1ji , x2ji and x3ji in counterclockwise order, with

x1jix2ji the common edge between ji and p(ji).

Definition 7.2. An admissible center for the purging transformation of the leaf triangle

ji ∈ VPi , denoted by x∗ji , is a point in p(ji) such that the polygon Qji with vertices the

original vertices of ji and x∗ji is convex.

Such a point is always possible to be found, since the two triangles share a common edge;

see e.g., Fig. 7.4-(1a),(2a), where we use the median from x3ji to find x∗ji in p(ji).

Definition 7.3. An admissible polygonal collar for the purging transformation of the leaf

triangle ji is a convex polygon Qji such that:
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1. Qji does not intersect the interior of any triangle k ∈ VP with k 6= ji, p(ji), for all

polygons P involved in the construction of FImap,ji , or any C ∈ Cmap.

2. Qji ⊂ Qji , and Qji\Qji ⊂ FImap,ji .

Examples of such polygons are shown in Fig. 7.4-(1a),(2a). This polygon is responsible

for limiting the effect of the purging transformation in its interior, while keeping its value

equal to the identity everywhere else. Intuitively, the requirements in Definition 7.3 will

limit the effect of the purging transformation in a region that encloses the triangle ji and

is away from the boundary of any other obstacle. Note that Definition 7.3 forces the edges

x1jix
∗
ji
and x∗jix2ji to be edges ofQji ; the importance of this requirement will become evident

in the construction of the provable properties of the diffeomorphism, summarized below in

Proposition 7.1. We provide more details about the construction of admissible collars in

Appendix A.2.

For the following, we also construct implicit functions γji(x) and δji(x) corresponding

to the leaf triangle ji ∈ VPi , as described in Appendix A.1, such that

Qji = {x ∈ R2 | γji(x) ≤ 0} (7.9)

Qji = {x ∈ R2 | δji(x) ≥ 0} (7.10)

Description of the C∞ switches

As in Chapter 6, we depart from the construction of analytic switches [164] and rely instead

on the C∞ function ζµ : R→ R [78] described by

ζµ(χ) =

e
−µ/χ, χ > 0

0, χ ≤ 0
(7.11)

and parametrized by µ > 0, that has derivative

ζ ′µ(χ) =


µ ζµ(χ)
χ2 , χ > 0

0, χ ≤ 0
(7.12)
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Based on that function, we can then define the auxiliary C∞ switches

σγji (x) := ηµγji ,εji
◦ γji(x) (7.13)

σδji (x) := ζµδji
◦ δji(x)

||x− x∗ji ||
(7.14)

with ηµ,ε(χ) := ζµ(ε− χ)/ζµ(ε), and µγji , µδji , εji > 0 tunable parameters. Notice that σγji
is exactly equal to 1 on the boundary of Qji and equal to 0 when γji(x) ≥ εji , whereas σδji
is 0 outside Qji . The parameters µγji and µδji are used to tune the “slope” of σγji on the

boundary of Qji and how fast σδji approaches 1 in the interior of Qji respectively.

Based on the above, we define the C∞ switch of the purging transformation for the leaf

triangle ji ∈ VPi as a function σji : FImap,ji → R, defined by

σji(x) :=


σγji

(x)σδji
(x)

σγji
(x)σδji

(x)+
(

1−σγji (x)
) , x 6= x1ji ,x2ji

1, x = x1ji ,x2ji

(7.15)

In this way, we see that σji(x) = 0 when σγji (x) = 0 or σδji (x) = 0 (i.e., when γji(x) ≥ εji

or outside Qji), σji(x) = 1 when σγji (x) = 1 (i.e., on the boundary of Qji) and σji varies

between 0 and 1 everywhere, since σγji and σδji also vary between 0 and 1. Based on

Definitions 7.2 and 7.3, it is straightforward to show the following lemma.

Lemma 7.1. The function σji : FImap,ji → R is smooth away from the triangle vertices

x1ji ,x2ji ,x3ji , none of which lies in the interior of FImap,ji .

Proof. Included in Appendix C.5.1.

Description of the Deforming Factors

The deforming factors are the functions νji : FImap,ji → R, responsible for mapping the

boundary of the leaf triangle ji ∈ VPi onto the boundary of its parent p(ji). Based on

Definitions 7.2 and 7.3 and as shown in Fig. 7.4-(1a),(2a), this implies that the functions νji

are responsible for mapping the polygonal chain x2jix3jix1ji onto the shared edge x2jix1ji
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between ji and p(ji). For this reason, we construct νji as follows

νji(x) :=

(
x1ji − x∗ji

)>
nji(

x− x∗ji

)>
nji

(7.16)

with

nji := Rπ
2

x2ji − x1ji

||x2ji − x1ji ||
, Rπ

2
:=

0 −1

1 0

 (7.17)

the normal vector corresponding to the shared edge between ji and p(ji).

The Map Between FImap,ji and FImap,p(ji)

Based on the above, we then construct the map between FImap,ji and FImap,p(ji) with the

ji-th leaf triangle of Pi purged, as

hIji(x) := σji(x)
(
x∗ji + νji(x)(x− x∗ji)

)
+ (1− σji(x))x (7.18)

Qualitative Properties of the Map Between FImap,ji and FImap,p(ji)

We first verify that the construction is a smooth change of coordinates between the inter-

mediate mapped spaces.

Lemma 7.2. The map hIji : FImap,ji → FImap,p(ji) is smooth away from the triangle vertices

x1ji ,x2ji ,x3ji , none of which lies in the interior of FImap,ji .

Proof. Included in Appendix C.5.1.

Proposition 7.1. The map hIji is a C
∞ diffeomorphism between FImap,ji and FImap,p(ji) away

from the triangle vertices x1ji ,x2ji ,x3ji , none of which lies in the interior of FImap,ji .

Proof. Included in Appendix C.5.1.

Composition of Leaf Purging Transformations

The application of the purging transformation described above will result in a tree for Pi

with one less vertex and one less edge. Therefore, similarly to [165], we can keep applying
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such purging transformations by composition, during execution time, for all leaf triangles

of all obstacles P in BImap and DImap (in any order), until we reach their root triangles.

We denote by F̂Imap this final intermediate space, where all obstacles in FImap have been

deformed to their root triangles {ri}, and by gI : FImap → F̂Imap the map between FImap and

F̂Imap, arising from this composition of purging transformations. Since gI is a composition

of diffeomorphisms, we immediately get the following result.

Corollary 7.1. The map gI : FImap → F̂Imap is a C∞ diffeomorphism between FImap and

F̂Imap away from sharp corners, none of which lie in the interior of freespace for any of the

intermediate or final spaces.

7.3.3 Purging of Root Triangles

After the successive application of the leaf purging transformations presented in Sec-

tion 7.3.2, familiar obstacles in FImap are reduced to triangles in F̂Imap. These triangles

either are homeomorphic to a disk in the interior of F̂Imap if they correspond to obstacles in

DImap, or have a common edge with ∂Fe if they correspond to obstacles in BImap. Therefore,

the final step to generate the model space FImodel is to transform each of the root triangles

corresponding to obstacles in DImap to disks, following a procedure similar to Chapter 6, and

merge the root triangles corresponding to obstacles in BImap to ∂Fe.

Center of the Transformation and Surrounding Polygonal Collars for Obstacles

in DImap

Here we assume that Pi ∈ DImap. Let the vertices of the root triangle ri ∈ VPi be x1ri , x2ri

and x3ri in counterclockwise order, as shown in Fig. 7.4-(1b).

Definition 7.4. An admissible center for the transformation of the root triangle ri, corre-

sponding to a polygon Pi ∈ DImap, is a point x∗i in the interior of ri.

Without loss of generality, we pick x∗i to be the barycenter of ri, and the radius of the

transformation to be a number ρi < d(x∗i , ∂ri), following the admissibility assumptions made

in [165]. We also set Qri to be the closure of ri itself, and define a polygonal collar Qri for

the root triangle transformation as follows.
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Definition 7.5. An admissible polygonal collar for the transformation of the root triangle

ri, corresponding to a polygon Pi ∈ DImap, is a convex polygon Qri such that:

1. Qri does not intersect the interior of any other triangle rj, or any C ∈ Cmap.

2. Qri ⊂ Qri , and Qri\Qri ⊂ F̂Imap.

An example of such a polygon is shown in Fig. 7.4-(1b). Again, this polygon is responsible

for limiting the effect of the transformation in its interior, while keeping it equal to the

identity map everywhere else. Similarly to Section 7.3.2, we also construct implicit functions

γri(x) and δri(x) for each root triangle ri, such that

Qri = {x ∈ R2 | γri(x) ≤ 0} (7.19)

Qri = {x ∈ R2 | δri(x) ≥ 0} (7.20)

Description of the C∞ switches for Obstacles in DImap

Following the notation of Section 7.3.2, we can define the auxiliary C∞ switches

σγri (x) := ηµγri ,εri
◦ γri(x) (7.21)

σδri (x) := ζµδri
◦ δri(x)

||x− x∗i ||
(7.22)

with ηµ,ε(χ) := ζµ(ε− χ)/ζµ(ε), ζ defined as in (7.11) and µγri , µδri , εri > 0 tunable param-

eters.

Based on the above, we then define the C∞ switch of the transformation of the root

triangle ri as the function σri : F̂Imap → FImap given by

σri(x) :=
σγri (x)σδri (x)

σγri (x)σδri (x) +
(
1− σγri (x)

) (7.23)

It can be seen that the function σri will be 0 outside Qri , exactly equal to 1 on the boundary

of Qri (i.e., on the boundary of the root triangle ri) and varies smoothly between 0 and 1

everywhere else.
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We can easily show the following lemma, as the function ζ eliminates all the singular

points of δri that correspond to the vertices of Qri .

Lemma 7.3. The switch σri : F̂Imap → R is smooth away from the triangle vertices x1ri ,

x2ri , x3ri , none of which lies in the interior of F̂Imap.

Description of the Deforming Factors for Obstacles in DImap

Here, the deforming factors are the functions νri : F̂Imap → R, responsible for transforming

each root triangle corresponding to an obstacle in DImap to a disk in R2. The deforming

factors we use are inspired by those in [165], but do not depend on the values of the implicit

functions γri . Namely, the deforming factors are given based on the desired final radii ρi as

νri(x) :=
ρi

||x− x∗i ||
(7.24)

Center of the Transformation and Surrounding Polygonal Collars for Obstacles

in BImap

Next we focus on obstacles in BImap. The procedure here is slightly different, since we want

to merge the root triangle ri to the boundary of the enclosing freespace Fe. Namely, we

assume that the vertices of the triangle ri are x1ri ,x2ri ,x3ri in counterclockwise order, with

x1rix2ri the common edge between ri and ∂Fe, as shown in Fig. 7.4-(2b)4. Then, we pick

an admissible center similarly to Definition 7.2, as follows.

Definition 7.6. An admissible center for the transformation of the root triangle ri, corre-

sponding to a polygon Pi ∈ BImap, denoted by x∗i , is a point in R2\Fe such that the polygon

Qri with vertices the original vertices of ri and x∗i is convex.

We also define Qri to be the convex quadrilateral with boundary x3rix1rix
∗
ix2rix3ri . The

collars used are defined similarly to Definition 7.3, as the transformation itself is designed

to be quite similar with the purging transformation.
4If ri and ∂Fe share two common edges, we just pick one of them at random.
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Definition 7.7. An admissible polygonal collar for the transformation of the root triangle

ri, corresponding to a polygon Pi ∈ BImap, is a convex polygon Qri such that:

1. Qri does not intersect the interior of any other triangle rj, or any C ∈ Cmap.

2. Qri ⊂ Qri , and Qri\Qri ⊂ F̂Imap.

Description of the C∞ switches for Obstacles in BImap

With the definition of Qri and Qri as described above, we associate implicit functions γri(x)

and δri(x) as in (7.19), (7.20), auxiliary switches σγri and σδri as in (7.21) and (7.22), and

overall C∞ switch of the transformation of the root triangle ri as the function σri : F̂Imap →

FImap given in (7.23).

Description of the Deforming Factors for Obstacles in BImap

Finally, in order to merge the root triangle into the boundary ∂Fe, we define the deforming

factors similarly to (7.16), as the functions νri : F̂Imap → R, given by

νri(x) :=
(x1ri − x∗i )

> nri

(x− x∗i )
> nri

(7.25)

with

nri := Rπ
2

x2ri − x1ri

||x2ri − x1ri ||
, Rπ

2
:=

0 −1

1 0

 (7.26)

the normal vector corresponding to the shared edge between ri and ∂Fe.

The Map Between F̂Imap and FImodel

First of all, we define

σd(x) := 1−
∑

i∈J IB ∪J
I
D

σri(x) (7.27)

Using the above constructions and Definitions 7.4, 7.5, 7.6 and 7.7 we are led to the following

results.

Lemma 7.4. At any point x ∈ F̂Imap, at most one of the switches {σri}i∈J IB ∪J ID can be

nonzero.
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Corollary 7.2. The set {σri}i∈J IB ∪J ID ∪ {σd} defines a partition of unity over F̂Imap.

With the construction of σri (as in (7.23)) and νri (as in either (7.24) or (7.25), depending

on whether i belongs to J ID or J IB respectively) for each root triangle, we can now construct

the map ĥI : F̂Imap → FImodel given by

ĥI(x) :=
∑

i∈J IB ∪J
I
D

σri(x) [x∗i + νri(x)(x− x∗i )] + σd(x)x (7.28)

Qualitative Properties of the Map Between F̂Imap and FImodel

We can again verify that the construction is a smooth change of coordinates between F̂Imap
and FImodel. Using Lemma 7.3 and the fact that the deforming factors νri are smooth in

F̂Imap (because the centers x∗i do not belong in F̂Imap) for all i, we get the following result.

Lemma 7.5. The map ĥI : F̂Imap → FImodel is smooth away from any sharp corners, none

of which lie in the interior of F̂Imap.

Proposition 7.2. The map ĥI is a C∞ diffeomorphism between F̂Imap and FImodel away

from any sharp corners, none of which lie in the interior of F̂Imap.

Proof. Included in Appendix C.5.1.

7.3.4 The Map Between the Mapped Space and the Model Space

Based on the construction of gI : FImap → F̂Imap in Section 7.3.2 and ĥI : F̂Imap → FImodel in

Section 7.3.3, we can finally write the map between the mapped space and the model space

as the function hI : FImap → FImodel given by

hI(x) = ĥI ◦ gI(x) (7.29)

It is straightforward to get the following result, since both gI and ĥI are C∞ diffeomorphisms

away from sharp corners.

Corollary 7.3. The map hI is a C∞ diffeomorphism between FImap and FImodel away from

any sharp corners, none of which lie in the interior of FImap.
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Figure 7.5: Values of det(Dxh
I) for a single polygon in logarithmic scale, showing the local nature

of the diffeomorphism (hI becomes equal to the identity transform away from the polygon) and the
fact that hI is smooth away from sharp corners, that do not lie in the interior of the freespace.

An illustration of the behavior of the map hI through a visualization of the values of

det(Dxh
I) for a specific example with a single polygon is included in Fig. 7.5.

7.4 Reactive Controller

The preceding analysis in Section 7.3 describes the diffeomorphism construction between

FImap and FImodel for a given index set I of instantiated familiar obstacles. However, the

onboard sensor might discover new obstacles and, subsequently, incorporate them in the

semantic map, updating the set I. Therefore, in this Section, we enhance the formal results

of Chapter 6 by providing a hybrid systems description of our reactive controller, where

each mode is defined by an index set I ∈ 2NP of familiar obstacles stored in the semantic

map, the guards describe the sensor trigger events where a previously “unexplored” obstacle

is discovered and incorporated in the semantic map (thereby changing PImap, along with

DImap, BImap), and the resets describe transitions to new modes that might result in discrete

“jumps” of the robot position in the model space. We then need to show that the resulting

hybrid controller, for both the fully actuated robot and the differential drive robot, must

succeed in the navigation task.
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I ∈ 2NP Mode of the hybrid system
FI ,FIsem,FImap,FImodel ∈ R2 Physical, semantic, mapped, model freespace for I
hI : FImap → FImodel Map between FImap and FImodel for mode I
Γ ⊂ 2NP × 2NP Directed graph of discrete mode transitions
D :=

⊔
I∈2NP FI Collection of domains for a fully actuated robot

G :=
⊔

(I,I′)∈Γ G
I,I′ Collection of guards for a fully actuated robot

R : G→ D Continuous reset map for a fully actuated robot
U : D→ TD Hybrid vector field for a fully actuated robot
H :=

(
2NP , Γ,D,U,G,R

)
Hybrid system for a fully actuated robot

D :=
⊔
I∈2NP (FI × S1) Collection of domains for a differential drive robot

G :=
⊔

(I,I′)∈Γ G
I,I′ Collection of guards for a differential drive robot

R : G→ D Continuous reset map for a differential drive robot
U : D→ TD Hybrid vector field for a differential drive robot
H :=

(
2NP , Γ,D,U,G,R

)
Hybrid system for a differential drive robot

x ∈ FImap Fully actuated robot position in FImap
y := hI(x) ∈ FImodel Fully actuated robot position in FImodel
yd := hI(xd) Goal position in FImodel
LF(y) ⊂ FImodel Local freespace at y ∈ FImodel
vI : FImodel → TFImodel Vector field controller for a fully actuated robot

in FImodel
uI : FImap → TFImap Vector field controller for a fully actuated robot

in FImap
h
I

: FImap × S1 → FImodel × S1 Diffeomorphism between FImap × S1 and
FImodel × S1

x := (x, ψ) ∈ FImap × S1 Differential drive robot state in FImap × S1

y := (y, ϕ) = h
I
(x) ∈ FImodel × S1 Differential drive robot state in FImodel × S1

ξI : S1 → S1 Angle transformation between FImap × S1 and
FImodel × S1

yd,‖(y),yd,G(y) ∈ FImodel Linear and angular local goals for y ∈ FImodel × S1

vI := (v̂I , ω̂I) ∈ R2 Linear and angular inputs for a unicycle robot in
FImodel × S1

uI := (vI , ωI) ∈ R2 Linear and angular inputs for a unicycle robot in
FImap × S1

Table 7.4: Key symbols related to the hybrid systems formulation (top - Section 7.4.1) and the
reactive controller construction in each mode of the hybrid system (bottom - Section 7.4.2) for both
a fully actuated robot and a differential drive robot.
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In the following, Section 7.4.1 provides the hybrid systems description, Section 7.4.2

describes the reactive controller applied in each mode of the hybrid system, Section 7.4.3

summarizes the qualitative properties of our hybrid controller, and Section 7.4.4 describes

our method of generating bounded inputs, each time for both the fully actuated and the

differential drive robot. Table 7.4 summarizes associated notation used throughout this

Section.

7.4.1 Hybrid Systems Description of Navigation Framework

Fully Actuated Robots

First, we consider a fully actuated particle with state x ∈ F , and dynamics

ẋ = u (7.30)

Since different subsets of instantiated obstacles in P̃, indexed by I, result in different con-

solidated polygonal obstacles stored in PImap, it is natural to index the modes of the hybrid

controller according to elements I of the power set 2NP . Every execution, from any initial

state, is required to start in the initial mode, indexed by I = ∅. We also define a terminal

mode as follows.

Definition 7.8. The terminal mode of the hybrid system is indexed by the improper subset,

I = NP , where all familiar obstacles in the workspace have been instantiated in the set PIsem,

in the sense of Definition 7.1.

We denote the freespace in the semantic, mapped and model spaces, associated with

a unique subset I of NP , by FIsem,FImap,FImodel respectively, as in Section 7.2. We also

denote the corresponding perceived physical freespace by FI , with FI := FImap, since the

dilation of obstacles by r in the passage from the physical to the semantic space and the

obstacle merging in the passage from the semantic to the mapped space do not alter the

freespace description. The domain D of our hybrid system is then defined as the collection

D :=
⊔
I∈2NP FI .
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Following the notation in [87], we can then denote by Γ ⊂ 2NP × 2NP the set of discrete

transitions for the hybrid system, forming a directed graph structure over the set of modes

2NP . The collection of guards associated with Γ can be described as G :=
⊔

(I,I′)∈Γ G
I,I′ ,

with GI,I′ ⊂ FI given by

GI,I
′

:={x ∈ FI | I ′ = I ∪ Iu

Iu 6= ∅, Iu ∩ I = ∅,

B (x, R) ∩ P̃i 6= ∅ for all i ∈ Iu,

B (x, R) ∩ P̃NP\(I∪Iu) = ∅} (7.31)

with P̃NP\(I∪Iu) := {P̃i}i∈NP\(I∪Iu).

Also, the reset R : G→ D is the continuous map that restricts simply as RI,I′ := R|GI,I′ :

GI,I
′ → FI′ , with

RI,I
′
(x) = x (7.32)

the identity map. Note, however, that although the robot cannot experience discrete jumps

in the physical space, the model space FI′model is likely to be a discontinuously different space

from FImodel (i.e., there is no guaranteed inclusion from FI′model into FImodel), hence the model

position in the new space bears no obvious relationship to that in the prior. Namely, the

position of the robot in the model space after a transition from mode I to mode I ′ will be

given by hI
′ ◦ (hI)−1(y), with y ∈ FImodel.

Finally, we can construct the hybrid vector field U : D → TD that restricts to a vector

field UI := U|FI : FI → TFI , that can be written as

UI(x) := uI(x) (7.33)

with uI given in (7.40) and described in the next Section.

Based on the above definitions, we define the navigational hybrid system for fully actu-

ated robots as the tuple H :=
(
2NP , Γ,D,U,G,R

)
describing the modes, discrete transitions,
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domains, associated vector fields, guards and resets.

Differential Drive Robots

Next, we focus on a differential drive robot, whose state is x := (x, ψ) ∈ F × S1 ⊂ SE(2),

and its dynamics are given by

ẋ = B(ψ)u (7.34)

with B(ψ) :=

cosψ sinψ 0

0 0 1


>

and u := (v, ω), with v, ω ∈ R the linear and angular

input respectively.

The analysis here is fairly similar; the modes and discrete transitions are identical.

However, the robot operates on a subset of SE(2) and, therefore, the domains must be

described as D :=
⊔
I∈2NP (FI × S1). Consequently, the collection of guards that will result

in transitions between different modes according to Γ are described as G :=
⊔

(I,I′)∈Γ G
I,I′ ,

with GI,I
′
⊂ (FI × S1) given by

G
I,I′

:={x = (x, ψ) ∈ FI × S1 | I ′ = I ∪ Iu

Iu 6= ∅, Iu ∩ I = ∅,

B (x, R) ∩ P̃i 6= ∅ for all i ∈ Iu,

B (x, R) ∩ P̃NP\(I∪Iu) = ∅} (7.35)

Also, the reset R : G→ D is the continuous map that restricts simply as RI,I
′

:= R|
G
I,I′ :

G
I,I′ → (FI′ × S1), with

R
I,I′

(x) = x (7.36)

the identity map.

Finally, the fact that the robot operates in SE(2) gives rise to a new hybrid vector field

U : D → TD, that restricts to a vector field UI := U|FI×S1 : FI × S1 → T (FI × S1), that

can be written as

U
I
(x) := B(ψ)uI (7.37)
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with the inputs uI = (vI , ωI) given as in (7.54) and described in the next Section.

Based on the above definitions, we define the navigational hybrid system for differential

drive robots as the tuple H :=
(
2NP , Γ,D,U,G,R

)
describing the modes, discrete transitions,

domains, associated vector fields, guards and resets.

7.4.2 Reactive Controller in Each Hybrid Mode

The preceding analysis of the hybrid system allows us to now describe the constituent con-

trollers in each mode I of the hybrid system, for both the fully actuated and the differential

drive robot. For the results pertaining to each separate mode, we are going to assume that

I describes the terminal mode of the hybrid system, in the notion of Definition 7.8.

With this assumption, we can arrive to Theorems 7.1 and 7.2, that allow us to establish

the main results about our hybrid controller in Theorems 7.3 and 7.4. We assume that the

robot operates in FImap5, and the set of consolidated obstacles PImap in mode I has been

identified.

Fully Actuated Robots

The dynamics of the fully actuated particle in FImodel with state y = hI(x) ∈ FImodel can be

described by ẏ = vI(y) with the input vI(y) given in [7] (Section 3.2) as

vI(y) = −
(
y −ΠLF(y)(yd)

)
(7.38)

with yd = hI(xd), and the convex local freespace for y, LF(y), defined as the Voronoi cell

in [7, Eqns. (7), (24)]:

LF(y) :=
{
q ∈ FImodel | ||q− y|| ≤ ||q−ΠOi

(y)||, ∀i
}
∩ B

(
y, Rmodel2

)
(7.39)

5This is afforded by the fact that the perceived physical freespace FI was explicitly constructed in
Section 7.4.1 to be equal to FImap. To be accurate, one must write the identity map from FI into FImap
as ι : FI → FImap and, subsequently, define the control in the physical space as [Dxι]

−1uI , with uI :
FImap → TFImap the control strategy in the mapped space, described next. However, since [Dxι] resolves to
the identity matrix, this construction reduces to direct application of uI on the physical space.
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Here, i spans the obstacles in both DImap (represented in FImodel by B (x∗i , ρi)) and Cmap
(transferred to FImodel with an identity map), and Rmodel is the range of the virtual sensor

used for obstacle detection in FImodel. Similarly to Chapter 6, using the diffeomorphism

construction in (7.29), we construct our controller as the vector field uI =: FImap → TFImap
given by

uI(x) = k
[
Dxh

I]−1 ·
(
vI ◦ hI(x)

)
(7.40)

with k > 0. Note here that the strategy employed never requires the explicit computation

of (hI)−1, which would make our numerical realization quite difficult; instead, it merely

requires inversion of [Dxh
I ].

We notice that if the range of the virtual sensor Rmodel used to construct LF(y) in

the model space is smaller than the range of our sensor R, the vector field uI is Lipschitz

continuous since vI(y) is shown to be Lipschitz continuous in [7], y = hI(x) is a smooth

change of coordinates away from sharp corners, and the robot discovers obstacles before

actually using them for navigation, because Rmodel < R. We are led to the following result.

Corollary 7.4. With I the terminal mode of the hybrid controller, the vector field uI :

FImap → TFImap generates a unique continuously differentiable partial flow.

To ensure completeness (i.e., absence of finite time escape through boundaries in FImap)

we must verify that the robot never collides with any obstacle in the environment, i.e.,

leaves its freespace positively invariant. However, this property follows almost directly from

the fact that the vector field uI on FImap is the pushforward of the complete vector field

vI through (hI)−1, guaranteed to insure that FImodel remain positively invariant under its

flow as shown in [7], away from sharp corners on the boundary of FImap. Therefore, we

immediately get the following result.

Proposition 7.3. With I = NP the terminal mode of the hybrid controller, the freespace

interior FImap is positively invariant under the law (7.40).

Next, we focus on the stationary points of uI .

Lemma 7.6. With I = NP the terminal mode of the hybrid controller:
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1. The set of stationary points of control law (7.40) is given as

{xd}
⋃
{(hI)−1(si)}i∈J ID

⋃
{Gk}k∈JC

where

si = x∗i − ρi
hI(xd)− x∗i
||hI(xd)− x∗i ||

(7.41a)

Gk =
{
q ∈ FImap

∣∣∣d(q, Ck) = r, κ(q) = 1
}

(7.41b)

with

κ(q) :=
(q−ΠCk

(q))>(q− hI(xd))

||q−ΠCk
(q)|| · ||q− hI(xd)||

2. The goal xd is the only locally stable equilibrium of control law (7.40) and all the other

stationary points {(hI)−1(si)}i∈J ID
⋃{Gk}k∈JC , each associated with an obstacle, are

nondegenerate saddles.

Proof. Included in Appendix C.5.2.

Note that there is a slight complication here; each stationary point si, i ∈ J ID lies on the

boundary of the corresponding ball B (x∗i , ρi) in the model space and thus, by construction of

the diffeomorphism hI , it might not lie in the domain of (hI)−1 because it could correspond

to a sharp corner (i.e., a polygon vertex) in the mapped space. Although such problems

can only occur for a thin subset of obstacle placements, we explicitly impose the following

assumption to facilitate our formal results.

Assumption 7.5. The stationary points of control law (7.38) in the model space lie in the

domain of the map (hI)−1 between FImodel and FImap.

Then, using Lemma 7.6, we arrive at the following result, that establishes (almost) global

convergence to the goal xd.

Proposition 7.4. With I the terminal mode of the hybrid controller, the goal xd is an
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Figure 7.6: Depiction of the vector field in (7.40) for the terminal mode I from one of our numerical
examples presented in Section 7.6 with several overlapping obstacles. Notice how the vector field
guarantees safety around each obstacle, with the goal in purple attracting globally.

asymptotically stable equilibrium of (7.40), whose region of attraction includes the freespace

FImap except a set of measure zero.

Proof. Included in Appendix C.5.2.

We can now immediately conclude the following central summary statement.

Theorem 7.1. With I the terminal mode of the hybrid controller, the reactive controller

in (7.40) leaves the freespace FImap positively invariant, and its unique continuously differ-

entiable flow, starting at almost any robot placement x ∈ FImap, asymptotically reaches the

goal location xd, while strictly decreasing ||hI(x)− hI(xd)|| along the way.

A depiction of the vector field in (7.40) for the terminal mode I (Definition 7.8) from

one of our numerical examples presented in Section 7.6 is included in Fig. 7.6.

Differential Drive Robots

Since the robot operates in SE(2) instead of R2, we first need to come up with a smooth

diffeomorphism h
I

: FImap×S1 → FImodel ×S1 away from sharp corners on the boundary of

FImap × S1, and then establish the results about our controller.
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Following Section 6.3, we construct our map h
I from FImap × S1 to FImodel × S1 as

y = (y, ϕ) = h
I
(x) := (hI(x), ξI(x)) (7.42)

with x = (x, ψ) ∈ FImap × S1, y := (y, ϕ) ∈ FImodel × S1 and

ϕ = ξI(x) := ∠(e(x)) (7.43)

Here, ∠e := atan2(e2, e1) and

e(x) = Πy ·Dxh
I ·B(ψ) ·

1

0

 = Dxh
I

cosψ

sinψ

 (7.44)

with Πy denoting the projection onto the first two components. The reason for choosing

ϕ as in (7.43) will become evident later, in our effort to control the equivalent differential

drive robot dynamics in FImodel.

Proposition 7.5. The map h
I in (7.42) is a C∞ diffeomorphism from FImap×S1 to FImodel×

S1 away from sharp corners, none of which lie in the interior of FImap × S1.

Proof. Included in Appendix C.5.2.

Then, using (7.42), we can find the pushforward of the differential drive robot dynamics

in (7.34) as

ẏ =
d

dt

hI(x)

ξI(x)


=
[
Dxh

I ◦ (h
I
)−1
]
·
(
B ◦ (h

I
)−1(y)

)
· uI (7.45)
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Based on the above, we can then write

ẏ =

ẏ
ϕ̇

 =
d

dt

hI(x)

ξI(x)

 = B(ϕ)vI (7.46)

with vI = (v̂I , ω̂I), and the inputs (v̂I , ω̂I) related to (vI , ωI) through

v̂I = ||e(x)|| vI (7.47)

ω̂I = vIDxξ
I

cosψ

sinψ

+
∂ξI

∂ψ
ωI (7.48)

with Dxξ
I =

[
∂ξI

∂x
∂ξI

∂y

]
. Here, we can calculate

Dxξ
I

cosψ

sinψ

 =
α1(x)α3(x) + α2(x)α4(x)

||e(x)||2 (7.49)

with the auxiliary terms α1, α2, α3, α4 defined as

α1(x) :=−
(
[Dxh

I ]21 cosψ + [Dxh
I ]22 sinψ

)
(7.50)

α2(x) :=[Dxh
I ]11 cosψ + [Dxh

I ]12 sinψ (7.51)

α3(x) :=
∂[Dxh

I ]11

∂[x]1
cos2 ψ +

∂[Dxh
I ]12

∂[x]2
sin2 ψ

+

(
∂[Dxh

I ]11

∂[x]2
+
∂[Dxh

I ]12

∂[x]1

)
sinψ cosψ (7.52)

α4(x) :=
∂[Dxh

I ]21

∂[x]1
cos2 ψ +

∂[Dxh
I ]22

∂[x]2
sin2 ψ

+

(
∂[Dxh

I ]21

∂[x]2
+
∂[Dxh

I ]22

∂[x]1

)
sinψ cosψ (7.53)

We provide more details about the calculation of partial derivatives for elements of Dxh
I

used above in Section 7.5 and in Appendix B.2.

Hence, we have found equivalent differential drive robot dynamics, defined on FImodel×S1.
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The idea now is to use the control strategy in [7] (Section 3.2) for the dynamical system

in (7.46) to find inputs v̂I , ω̂I in FImodel × S1, and then use (7.47), (7.48) to find the actual

inputs vI , ωI in FImap × S1 that achieve v̂I , ω̂I as

vI =
kv v̂

I

||e(x)|| (7.54a)

ωI =

(
∂ξI

∂ψ

)−1

kω ω̂I − vIDxξ
I

cosψ

sinψ


 (7.54b)

with kv, kω > 0 fixed gains.

Namely, we design our inputs v̂I and ω̂I as in (3.8) - (3.9)

v̂I = −

cosϕ

sinϕ


> (

y − yd,‖(y)
)

(7.55a)

ω̂I = atan



− sinϕ

cosϕ


>

(y − yd,G(y))

cosϕ

sinϕ


>

(y − yd,G(y))


(7.55b)

with LF(y) ⊂ FImodel the convex polygon defining the local freespace at y = hI(x), and

linear and angular local goals yd,‖(y),yd,G(y) given by

yd,‖(y) := ΠLF(y)∩H‖(yd) (7.56)

yd,G(y) :=
ΠLF(y)∩HG(yd) + ΠLF(y)(yd)

2
(7.57)
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with H‖ and HG the lines defined in [7] (see also (3.12) - (3.13)) as

H‖ =

z ∈ FImodel
∣∣∣
− sinϕ

cosϕ


>

(z− y) = 0

 (7.58)

HG =
{
αy + (1− α)yd ∈ FImodel |α ∈ R

}
(7.59)

The properties of the differential drive robot control law given in (7.54) can be summa-

rized in the following theorem.

Theorem 7.2. With I the terminal mode of the hybrid controller, the reactive controller for

differential drive robots, given in (7.54), leaves the freespace FImap×S1 positively invariant,

and its unique continuously differentiable flow, starting at almost any robot configuration

(x, ψ) ∈ FImap×S1, asymptotically steers the robot to the goal location xd, without increasing

||hI(x)− hI(xd)|| along the way.

Proof. Included in Appendix C.5.2.

7.4.3 Qualitative Properties of the Hybrid Controller

Fully Actuated Robots

First, we show that the navigational hybrid system H inherits the fundamental consistency

properties outlined in [87, Theorems 5-9], in order to establish that the hybrid system is

well-behaved in the sense of being both deterministic and non-blocking (i.e., generating

executions defined for all future times).

Lemma 7.7. The hybrid system H has disjoint guards.

Proof. Included in Appendix C.5.2.

An immediate result following Lemma 7.7, that does not allow a robot state x ∈ FI to be

contained in more than one guard GI,I′ , and the nice properties of the flow in each separate

mode, summarized in Corollary 7.4, is the following important consistency property.
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Corollary 7.5. The hybrid system H is deterministic.

Next, we focus on the non-blocking property. As stated in [87], a hybrid execution might

be blocked either by conventional finite escape through the boundary of the hybrid domain

at a point in the complement of all the guards, by escape through a point in the guard whose

reset lies outside of the hybrid domain, or by hybrid ambiguity, i.e., by arriving at a point

through the continuous flow that lies in the complement of the guard G and yet still on the

boundary of G. We eliminate all cases in the proof of the following result.

Lemma 7.8. The hybrid system H is non-blocking.

Proof. Included in Appendix C.5.2.

Finally, using the last part of the proof of Lemma 7.8 which shows that the (identity)

reset from a given mode cannot lie in the guard of the next mode, we arrive at the following

result about the discrete transitions of the hybrid system H.

Corollary 7.6. An execution of the hybrid system H undergoes no more than one hybrid

transition at a single time t.

Based on the above, the central result about the hybrid controller for a fully actuated

robot can be summarized in the following Theorem.

Theorem 7.3. For a fully actuated robot with dynamics defined in (7.30), the deterministic,

non-blocking navigational hybrid system H :=
(
2NP , Γ,D,U,G,R

)
, with the restrictions of

guards G, resets R and vector fields U defined as in (7.31), (7.32) and (7.33) respectively,

leaves the free space F positively invariant under the Lipschitz continuous, piecewise smooth

flow associated with each of its hybrid domains, and, starting at almost any robot placement

x ∈ F at time t0 with an initial mode I = ∅, asymptotically reaches a designated goal

location xd ∈ F , in a previously unexplored environment satisfying Assumptions 7.1 - 7.4,

with a uniquely defined (in both state and mode) execution for all t > t0.

Proof. Included in Appendix C.5.2.
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Differential Drive Robots

We can then follow exactly the same procedure to prove the following statement for the

hybrid controller for differential drive robots.

Theorem 7.4. For a differential drive robot with dynamics defined in (7.34), the determin-

istic, non-blocking navigational hybrid system H :=
(
2NP , Γ,D,U,G,R

)
, with the restrictions

of guards G, resets R and vector fields U defined as in (7.35), (7.36) and (7.37) respectively,

leaves the free space F × S1 positively invariant under the Lipschitz continuous, piecewise

smooth flow associated with each of its hybrid domains, and, starting at almost any robot

placement x ∈ F × S1 at time t0 with an initial mode I = ∅, asymptotically reaches a

designated goal location xd ∈ F , in a previously unexplored environment satisfying Assump-

tions 7.1 - 7.4, with a uniquely defined (in both state and mode) execution for all t > t0.

7.4.4 Generating Bounded Inputs

Although the control inputs for both a fully actuated robot and a differential drive robot,

described in (7.40) and (7.54) respectively, can be used in the hybrid systems description of

the controller (see (7.33) and (7.37)) to yield the desired results of Theorems 7.3 and 7.4,

we have so far implicitly assumed that there is no bound in the magnitude of uI in (7.40)

or the magnitudes of vI , ωI in (7.54) for each separate mode I. In this Section, we show

how to generate bounded inputs without affecting the results of Theorems 7.3 and 7.4.

Fully Actuated Robots

We focus on fully actuated robots first. Let uInom : FImap → TFImap denote the nominal

input for mode I, defined using (7.40) as

uInom(x) :=
[
Dxh

I]−1 ·
(
vI ◦ hI(x)

)
(7.60)

We can then easily satisfy the requirement ||uI || ≤ umax by picking a gain k such that
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0 < k ≤ umax and defining our controller as

uI(x) := k
uInom(x)

||uInom(x)||+ εu
(7.61)

with εu > 0 a small number. The modified (bounded) controller in (7.61) does not affect the

results of Theorem 7.3, since it maintains the heading direction of the original (unbounded)

controller in (7.40), and just limits its magnitude.

Differential Drive Robots

The analysis is slightly more complicated for differential drive robots, since we have to respect

the fact that the actual inputs vI , ωI are related to the inputs v̂I , ω̂I through (7.54).

However, an important observation, deriving from the proof of Theorem 7.2, is that the

choice of gains kv, kω > 0 in (7.54) does not affect the positive invariance or convergence

properties of the controller, which rely entirely on v̂I , ω̂I , given in (7.55).

Therefore, the main idea is to adaptively change the gains online, in order to satisfy the

constraints |vI | ≤ vmax, |ωI | ≤ ωmax. Namely, using (7.54), we look for gains kv(x), kω(x)

such that

kv(x)
|v̂I(x)|
||e(x)|| ≤ vmax∣∣∣∣kω(x) ω̂I(x)− kv(x)

v̂I(x)

||e(x)||ϑ(ψ)

∣∣∣∣ ≤ ∂ξI

∂ψ
ωmax

with ϑ(ψ) := Dxξ
I
[
cosψ sinψ

]>
, since ∂ξI

∂ψ > 0, as shown in the proof of Proposition 7.5.

A conservative selection of gains that satisfies the above constraints can then be extracted

using the triangle inequality as follows

kv(x) = min

(
kv,nom,

||e(x)||
|v̂I(x)|vmax,

λ
∂ξI

∂ψ

||e(x)||
|v̂I(x)| |ϑ(ψ)|ωmax

)
(7.63)

kω(x) = min

(
kω,nom, (1− λ)

∂ξI

∂ψ

ωmax

|ω̂I(x)|

)
(7.64)
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with kv,nom, kω,nom > 0 initially provided nominal gains and λ ∈ (0, 1) a tuning parameter.

It can be seen that kv(x), kω(x) are always positive since ||e(x)||, ∂ξI∂ψ are always positive.

7.5 Online Reactive Planning Algorithms

With the description of the diffeomorphism construction and the overall hybrid controller,

we are now ready to describe the algorithm we use during execution time to generate our

control inputs. As shown in Fig. 7.2 that summarizes the whole architecture, we divide the

main algorithm that communicates with the semantic mapping and the perception pipelines6

in two distinct components. First, the mapped space recovery component, described in

Section 7.5.1, is responsible for keeping track of all encountered objects, and extracting

the sets of obstacles DImap, BImap. Next, the reactive planning component, described in

Section 7.5.2, uses the input from the mapped space recovery component to generate the

diffeomorphism hI (described in Section 7.3) between the mapped space and the model

space during execution time, and provide the commands for the robot according to the

hybrid controller (described in Section 7.4).

7.5.1 Mapped Space Recovery

Given as input the aggregated set of localized, recognized familiar obstacles P̃I , we first

dilate all these elements of P̃I by the robot radius r, to form the components of PIsem, and

consolidate the connected components resulting from their union into a new set of merged

obstacles to form PImap. Then, for each connected component P of PImap that intersects the

boundary of the enclosing freespace Fe, we take B = P ∩ Fe, as described in Section 7.2.3,

and include B in the list of obstacles to be merged into ∂Fe, BImap; the rest of the components

of PImap are included in the list of obstacles to be deformed into disks, DImap.

Note in consequence of these consolidations that the cardinality of the index I denoting

the subset of familiar objects discovered and localized in the semantic space, PIsem, will in

general be larger than the cardinality of connected components in PImap, whose cardinality in

6For our numerical studies, we simply assume an idealized sensor of fixed range that can instantly
recognize and localize obstacles within its range. For our hardware implementation, the semantic mapping
and perception pipelines rely mostly on prior work and are briefly described in Section 7.7.
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Algorithm 7.1 Derivation of the sets of obstacles DImap,BImap, used in the diffeomorphism
construction, and their associated properties, from the aggregated list of known obstacles in
the physical space P̃I .
function MappedSpaceRecovery(P̃I)
PImap ← Union(dilate(P̃I , r))
do

P ← pop(PImap) . Pop next component
if P ∩ ∂Fe 6= ∅ then

B.geometry← P ∩ Fe
B.tree← EarClipping(B.geometry)
Find root of tree B.root as in Section 7.3.1
Restructure B.tree around B.root
for j ∈ B.tree.vertices do . Dfns. 7.2-7.7

B.tree.vertices(j).append(x∗j )

B.tree.vertices(j).append(Qj)
end for
BImap.append(B)

else
D.geometry← P
D.tree← EarClipping(D.geometry)
Find root of tree D.root as in Section 7.3.1
Restructure D.tree around D.root
for j ∈ D.tree.vertices do . Dfns. 7.2-7.7

D.tree.vertices(j).append(x∗j )

D.tree.vertices(j).append(Qj)
end for
Find ρ = D.radius as in Section 7.3.3
DImap.append(D)

end if
while PImap 6= ∅
return DImap,BImap

end function
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turn will generally be larger than that of the connected components in DImap. Nevertheless,

under the assumption of fixed obstacles, these cardinalities are also fixed functions of I,

constant over some fixed subset of robot placements, hence these subsets of semantically

identified and localized familiar obstacles, I ⊆ NP , comprise the appropriate indices for the

modes (i.e., they label the vertices of the graph Γ) of the hybrid system just analyzed in

Section 7.4.1. This situation is illustrated in Section 7.8.

All these computational steps rely on underlying polygon operations (unions, intersec-

tions, differences); the development of such algorithms has been heavily explored in the

computational geometry literature [41, 53, 54], and here we rely on their efficient implemen-

tations, either in the open-source C++ Boost library [170], or in the open-source Shapely

package [174] in Python.

The next step is to triangulate every obstacle Pi in both DImap and BImap using the Ear

Clipping Method, find its root triangle ri and extract the corresponding tree of triangles

TPi := (VPi , EPi), as described in Section 7.3.1. For the implementation of the Ear Clipping

Method, we use either the open-source Boost library [170], for our C++ implementation, or

the open-source tripy package [193], for our Python implementation.

The final operation of the mapped space recovery algorithm is to extract the admissible

centers of transformation, x∗j , according to Definitions 7.2 - 7.7, the corresponding radius of

transformation, ρi (if Pi ∈ DImap), and the admissible polygonal collars, Qj for all triangles

j ∈ VPi and polygons Pi in DImap and BImap. There is not a unique method of perform-

ing this operation, and we provide our implemented method along with other details in

Appendix A.2. The mapped space recovery algorithm is summarized in Algorithm 7.1.

7.5.2 Reactive Planning Component

The mapped space recovery algorithm described above just informs the robot about its sur-

roundings, by post-processing aggregated information from the semantic mapping pipeline.

In this Section, we describe the algorithm for generating actual robot inputs, that closes our

control loop.

Given the robot state in the mapped space, (x for a fully actuated robot or x for a dif-
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Algorithm 7.2 Description of the online reactive planning module that uses the state of
the robot, LIDAR input, and DImap,BImap.
function ReactivePlanning(State, LIDAR, DImap,BImap)

if RobotType is FullyActuated then
x← State
y← hI(x) . Sec. 7.3, Appendix B.2
Compute Dxh

I . Appendix B.2
Populate FImodel using LIDAR,DImap,BImap
Construct LF(y) . (7.39)
Compute input vI . (7.38)
Compute input uI . (7.61)
RobotInput← uI

else if RobotType is DiffDrive then
x← State
y← h

I
(x) . Sec. 7.4.2, (7.42), Appendix B.2

Compute Dxh
I ,

∂[DxhI ]ij
∂[x]k

. Appendix B.2
Populate FImodel using LIDAR,DImap,BImap
Construct LF(y) . (7.39)
Compute inputs vI . (7.55)
Compute input uI . (7.54) using (7.63),(7.64)
RobotInput← uI

end if
return RobotInput

end function
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ferential drive robot), and the list of obstacles in the mapped space, DImap,BImap, along with

their associated triangulation trees and their properties as computed with Algorithm 7.1,

the first step of the reactive planning algorithm is to compute the state of the robot in

the model space (hI(x) for a fully actuated robot (7.29) or h
I
(x) for a differential drive

robot (7.42)), the diffeomorphism jacobian Dxh
I , and partial derivatives of the terms of

the jacobian ∂[DxhI ]ij
∂[x]k

(needed in (7.54) for a differential drive robot), following the methods

outlined in Section 7.3. We show in Appendix B.2 how to perform this operation inductively,

given the general form of hI in (7.29).

Next, we need to properly populate the model space with obstacles, in order to compute

the input (7.61) for a fully actuated robot, or the inputs (7.54) (using (7.63),(7.64)) for a

differential drive robot. This procedure is straightforward for familiar obstacles; obstacles

in BImap are not taken into account in the model space, since they are merged into the

boundary ∂Fe, and obstacles in DImap are represented in the model space as disks with

radius ρi centered at x∗i , with i spanning the elements of DImap. For unknown obstacles in

Cmap, we use the LIDAR measurements (see Fig. 7.2). Namely, we first pre-process the 2D

LIDAR pointcloud by disregarding points that correspond to obstacles in DImap or BImap,

since those have already been considered. The pointcloud with the remaining points is

then transferred with an identity transform to the model space; this is allowed because,

by construction, the diffeomorphism hI between FImap and FImodel defaults to the identity

transform (i.e., hI(x) = x) on the boundary of any unknown obstacle, provided that this

obstacle is sufficienty separated from any obstacle in PImap (see Assumption 7.3).

With the (“virtual”) model space constructed, we can then construct the local freespace

(7.39), as in [7, Eqn. (24)], and, subsequently, compute the input vI (7.38) for a fully

actuated robot or the inputs vI (7.55) for a differential drive robot. The final step is

to compute the “pull-backs” of these inputs in the physical space and enforce bounds, by

using (7.61) for a fully actuated robot, or (7.54) along with (7.63), (7.64) to adaptively modify

the input gains for a differential drive robot. The reactive planning module functionality is

summarized in Algorithm 7.2.
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It must be highlighted that the presented reactive planning pipeline (summarized in

Fig. 7.2) runs at 10Hz online and onboard our physical robots’ Nvidia Jetson TX2 modules,

during execution time.

7.6 Numerical Results

In this Section, we present numerical simulations that illustrate our formal results. Our

simulations are run in MATLAB using ode45, and p = 20 for the R-function construction, as

described in Appendix A.1. Our mapped space recovery (Section 7.5.1) and reactive planning

(Section 7.5.2) algorithms are implemented in Python and communicate with MATLAB

using the standard MATLAB-Python interface. For our numerical results, we assume perfect

robot state estimation and localization of obstacles, using a fixed range sensor that can

instantly identify and localize either the entirety of familiar obstacles that intersect its

footprint, or the corresponding fragments of unknown obstacles within its range.

7.6.1 Comparison with Original Doubly Reactive Algorithm

We begin with a comparison of our algorithm performance with the original version of the

doubly reactive algorithm in [7], that we use in the model space computed at each instant

from the perceptual inputs as depicted in Fig. 7.2-(e) and described in Section 7.5.2. Fig. 7.7

demonstrates the well understood limitations of this algorithm (limitations of all online [28]

or offline [59] reactive schemes we are aware of). Namely, in the presence of a flat surface or

a non-convex obstacle, or when separation assumptions are violated, the robot gets stuck in

undesired local minima. In contrast, our algorithm overcomes this limitation, by recourse

to the robot’s ability to recognize obstacles at hand (documented empirically in Section 7.8)

and transform them appropriately (as detailed in Section 7.3) for both a fully actuated and a

differential drive robot. The robot radius used in our simulation studies is 0.2m, the control

gains are k = kv = kω = 0.4, and the values of µγji = µγri , µδji = µδri and εji = εri used in

the diffeomorphism construction are 4.0, 0.05 and 2.0 respectively. Finally, the maximum

input umax for the fully actuated robot as well as the maximum linear and angular inputs

vmax, ωmax for the differential drive robot are limited to 0.4.
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(a)

(b)

(c)

Figure 7.7: Comparison with original doubly reactive algorithm for a fully actuated robot (blue)
navigating towards a goal (purple). (a) Convex obstacle with flat surfaces, (b) Non-convex obstacle,
(c) Convex obstacles violating the separation assumptions of [7]. Left column: Original doubly
reactive algorithm [7], Right column: Our algorithm.

7.6.2 Navigation in a Cluttered Environment with Obstacle Merging

For the next set of numerical studies, we focus on environments cluttered with several

instances of the same familiar obstacle, in different, à-priori unknown poses. We illustrate

the concept in Fig. 7.8. The robot abstracts away the familiar geometry to explore the

unknown topology of the workspace online during execution time. In this particular example,

the robot first adopts the hypothesis that an “opening” exists above the initially observed

obstacle. With the observation and instantiation of the second obstacle in the semantic map,

it is then capable of correcting this hypothesis by merging the obstacle to the boundary of

Fe. The properties of the hybrid controller presented in Section 7.4 guarantee convergence

to the goal for both the fully actuated and the differential drive robot, as shown in Fig. 7.9.

We further illustrate the scope of formal results by presenting numerical simulations

where the constellation of fixed obstacles incurs the need for multiple mergings between

obstacles or between obstacles and the boundary of the enclosing freespace Fe. As guaran-
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teed, both the fully actuated (Theorem 7.3) and the differential drive (Theorem 7.4) robots

converge to the desired goal from a variety of initial conditions (all but a set of measure

zero must converge), as shown in Fig. 7.10. The robot radius used in our simulations is

0.25m, the control gains are k = kv = kω = 0.4, and the values of µγji = µγri , µδji = µδri

and εji = εri used in the diffeomorphism construction are 2.0, 0.05 and 1.0 respectively.

The maximum input umax for the fully actuated robot as well as the maximum linear and

angular inputs vmax, ωmax for the differential drive robot are limited to 0.4.

7.6.3 Navigation Among Mixed Known and Unknown Obstacles

Finally, Fig. 7.11 illustrates the convergence guarantees for both a fully actuated as well

as a differential drive robot when confronted both by familiar obstacles (with à-priori un-

known pose) as well as completely unknown obstacles (presumed to satisfy the convexity

and separation assumptions of [7]), as outlined in Section 7.1. The robot radius used in our

simulations is 0.25m, the control gains are k = kv = kω = 0.4, and the values of µγji = µγri ,

µδji = µδri and εji = εri used in the diffeomorphism construction are 1.6, 0.05 and 0.8

respectively. The maximum input umax for the fully actuated robot as well as the maximum

linear and angular inputs vmax, ωmax for the differential drive robot are limited to 0.4.

7.7 Experimental Setup

Because the reactive planners introduced in this Section take the form of first order vector

fields (i.e., issuing velocity commands at each state), we use a quasi-static platform, the

Turtlebot robot [194], for the bulk of physical experiments reported next. With the aim of

merely suggesting the robustness of these feedback controllers, we also repeat two of those

experiments using the more dynamic Minitaur robot (Section 3.1), whose rough approxi-

mation to the quasi-static differential drive motion model as reported in Section 3.1.3 is

adequate to yield nearly indistinguishable navigation behavior.

The experimental setups for our robots are depicted in Fig. 7.12. In both cases, the

main computer is an Nvidia TX2 GPU unit [139], responsible for running our mapped

space recovery and reactive planning algorithms online, during execution time, according to
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Figure 7.8: Illustration of the algorithm with successive snapshots of a single simulation run in
the presence of two familiar obstacles with à-priori unknown pose. (a) The robot starts navigating
towards the goal with no prior information about its environment. The initial mode of the hybrid
controller is I = ∅. (b) The robot discovers the first familiar obstacle (labeled 2 as shown in the
physical space), driving the hybrid dynamical system (Section 7.4) into mode I = {2}, wherein it
makes an (incorrect) hypothesis about the topological state of the workspace (shown in the mapped
space). The robot now computes according to [7] the model control input in the topological model
space (shown in the fourth column). (c) The robot discovers the second familiar obstacle (labeled 1
in the physical space), driving the hybrid dynamical system into the terminal (Definition 7.8) mode
I = {1, 2}, wherein it corrects the initial hypothesis by merging the union of the two obstacles
to the boundary. (d) The reactive field pushing the robot along a direct path to the goal in the
unobstructed model space is deformed to generate a sharp correction of course in the geometrically
accurate mapped space until, finally, (e) safely navigates to the goal. The deformation of space that
aligns the geometrically informed mapped space with its topologically equivalent model space can
be visualized by comparing the direct path to the goal the planner generates in the model space
with its diffeomorphic image, the curved path connecting the robot’s starting point to the goal in
the mapped space. Note that the robot has no prior information about the structure of the hybrid
system (depicted in the right-most column with unexplored modes in grey): it is driven around the
hybrid graph, Γ, by its online perceptual experiences as it accumulates more information about its
surroundings. Note, as well, that the cardinality of topological obstacles (the number of punctures
in the model space) is independent of the number of semantically localized objects, |I|.
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Fully Actuated Differential Drive

Figure 7.9: Numerically simulated illustrations of the navigation planner’s behavior from multiple
initial conditions for both a fully actuated and a differential drive robot, in the presence of two
familiar obstacles with à-priori completely unknown placement in the workspace. Top: Obstacles
with rectangular shape, Bottom: U-shaped obstacles. The hybrid systems theorems presented in
Section 7.4 guarantee the robot will safely navigate to the goal with no collisions along the way.

Fully Actuated Differential Drive

Figure 7.10: Simulated trajectories from multiple initial conditions for both a fully actuated and
a differential drive robot, in the presence of many instances of the same familiar obstacle with
à-priori unknown pose. The robot explores the geometry and topology of the workspace online
during execution time, and the guarantees of the hybrid controller in Section 7.4 allow it to safely
navigate to the goal, without converging to local minima arising from the complicated geometry of
the workspace.
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Fully Actuated Differential Drive

Figure 7.11: Simulated trajectories from multiple initial conditions for both a fully actuated robot
and a differential drive robot, in the presence of both familiar obstacles with à-priori unknown pose
(dark grey) and completely unknown obstacles (light grey). The guarantees of the hybrid controller
in Section 7.4 allow the robot to always safely navigate to the goal.
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Figure 7.12: The platforms used in our experiments: (Left) Turtlebot, (Right) Minitaur, equipped
with a Hokuyo LIDAR for avoidance of unknown obstacles, a stereo camera for object recognition
and visual odometry, and an NVIDIA TX2 GPU module as the main onboard computer.

Fig. 7.2. The GPU unit communicates with a Hokuyo LIDAR [79], used to detect unknown

obstacles, and a ZED Mini stereo camera [183], used for visual-inertial state estimation and

for detecting familiar obstacles. As shown in Fig. 7.2, we choose to run our perception

and semantic mapping pipelines described next either onboard (using the same Nvidia TX2

GPU unit) or offboard (on a desktop computer with an Nvidia GeForce RTX 2080 GPU),

for faster inference and improved performance. We also assume that the differential drive

robot model, presented in (7.34), is the most suitable motion model for both robots. This

is indeed the case for Turtlebot, and we refer the reader to Section 3.1.3 for an extensive

discussion on the empirical anchoring [61] of the unicycle template on Minitaur.
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Since the main focus of this work is not the development of new perception or state esti-

mation algorithms, but rather the development of a provably correct planning architecture

for partially known environments, we rely to as great an extent as possible on off-the-shelf

perception algorithms, implemented in ROS [155], and couple them with our motion planner

for the hardware experiments. We are further motivated by the intent for our accompany-

ing software to be modular and easily integrated to existing perception pipelines for future

users. We briefly describe the perception and semantic mapping algorithms employed in the

Sections below, and refer the reader once more to the summary illustration of the whole

navigation stack in Fig. 7.2.

7.7.1 Object Detection and Keypoint Localization

The pipeline we use to detect the objects in the scene and extract the geometric properties

needed in order to estimate their 3D pose relies on [148]. The two components involved in

this procedure are:

• Object detection, which returns 2D bounding boxes for each object.

• Keypoint localization, which estimates the 2D locations for a set of predefined key-

points for the specific object instance and class.

The algorithm is described in detail in [148], but here we give a brief overview of each step in

Sections 7.7.1 and 7.7.1, and provide training details for our neural networks in Section 7.7.1.

Object Detection

For the task of object detection, we only require the estimation of a 2D bounding box for

each object that is visible on the image. We use the YOLOv3 detector [158] which offers a

good trade-off between detection accuracy and inference speed. Given a single RGB image

as input, the output of the detector is a 2D bounding box for each object instance, along

with the estimated class for this bounding box.
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Keypoint Localization

For the keypoint localization task, we use a Convolutional Neural Network to accurately

estimate the 2D location of the keypoints within the object’s bounding box. The keypoints

are defined on the 3D model of the object and are selected in advance for each object

instance. The keypoint localization network uses as input an RGB image of a specific

object, which is cropped using the bounding box information from the detection step. The

output of the network is a set of 2D heatmaps. Assuming we select k keypoints for an

object, each heatmap is responsible for the localization of the corresponding keypoint. To

estimate the locations W ∈ R2×k of the k keypoints on the image, we use the 2D heatmap

location with the maximum activation for each heatmap as the detected location for the

corresponding keypoint. We also consider the value of the activation at this location as the

detection confidence di for keypoint i. The architecture for this network follows the Stacked

Hourglass design [137]. In practice, we train a single network for all objects of interest and

at test time we use only the heatmaps for the specific class, which is already known from

the detection step.

Training Details

The aforementioned neural networks are trained to detect a predefined set of object instances

visualized in Figure 7.13. The object classes represented for our experiments are chair, table,

ladder, cart, gascan and pelican case. Our goal is to include a variety of instances in terms of

the size, shape and visual appearance, in an attempt to simulate the variety of objects that

can be encountered in a partially familiar environment. The training data for the particular

instances of interest are collected with a semi-automatic procedure, similarly to [148]. Given

the bounding box and keypoint annotations for each image, the two networks were trained

with their default configurations until convergence.

7.7.2 Semantic Mapping

Our semantic mapping infrastructure relies on the algorithm presented in [30], and imple-

mented in C++ using GTSAM [50] and its iSAM2 implementation [90] as the optimization
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Figure 7.13: Top row: Objects used in our experimental setup: table, chair, gascan, pelican case,
ladder, cart. Bottom row: Visualization of the semantic keypoints for each object class.

back-end. Briefly, this algorithm fuses inertial information (here simply provided by the

position tracking implementation from StereoLabs on the ZED Mini stereo camera [182]),

and semantic information (i.e., the detected keypoints and the associated object labels as

described in Section 7.7.1) to provide a posterior estimate for both the robot state and the

associated poses for all tracked objects, by simultaneously solving the data association prob-

lem arising when several objects of the same class exist in the map. As described in [30],

except for providing an estimate for all poses tracked in the environment, this algorithm fa-

cilitates loop closure recognition based on viewpoint-independent semantic information (i.e.,

tracked objects), rather than low-level geometric features such as points, lines, or planes.

For a single frame detection, the 3D pose of each object with respect to the camera is

recovered using the estimated 2D locations of the associated object keypoints. By denoting

with S ∈ R3×k the 3D locations of the keypoints in the canonical pose of an object instance

with k keypoints, the goal is to estimate the rotation R ∈ R3×3 and translation T ∈ R3×1

of the object, such that the distance of the projected 3D keypoints from their corresponding

detected 2D locations is minimized. To incorporate the detection confidence for each key-

point in the optimization, we define the matrix D ∈ Rk×k. This is a diagonal matrix that

features the detection confidences di for each keypoint i in its diagonal. The optimization
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problem is then formulated as:

min
R,T

1

2

∥∥∥(W̃Z−RS−TI>)D
1
2

∥∥∥2

F
, (7.65)

where W̃ ∈ R3×k represents the normalized homogeneous coordinates of the 2D keypoints

and Z ∈ Rk×k is a diagonal matrix, that features the depths zi for each keypoint i in its

diagonal.

After the estimation of the object’s 3D pose from a single frame measurement as described

above, the 3D positions of its corresponding semantic keypoints are then independently

tracked and the object’s pose is appropriately updated, as more frame measurements are

added. Once a sufficient number of frame measurements7 has been incorporated so that the

3D keypoint positions can be triangulated, the object is considered to be localized and is

permanently added to the map. The reader is referred to [30] for more details. Fig. 7.14

shows an example of this localization process. It should be noted that for our onboard

implementation, where inference using the object detection and keypoint estimation neural

networks is slower, we include in the semantic map both the localized objects, after several

frame measurements, and objects resulting from a single frame measurement pose estimation,

to allow for faster response to sensory input.

As shown in Fig. 7.2, the meshes of the objects in the semantic map, defined by the

corresponding keypoint adjacency properties and the extracted 3D pose, are projected on

the robot’s plane of motion to provide the aggregated list of known obstacles in the physical

space P̃I , forwarded to our mapped space recovery module (described in Section 7.5.1).

On the other hand, the posterior estimate of the robot pose on the plane, extracted by

the semantic mapping module, is forwarded to our reactive planning module (described in

Section 7.5.2).
7This number depends on the needed camera motion between successive measurements, in order to

establish a good baseline for triangulation [73]; in this work, we found that 5 measurements for the offboard
experiments and 3 measurements for the onboard experiments yielded reasonably fast keypoint localization.
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Figure 7.14: Illustration of the object localization process using the semantic mapping pipeline from
[30]. Left: The robot starts navigating toward its goal and discovers a familiar obstacle (table). The
obstacle is temporarily included in the semantic map, after its 3D pose is estimated using a single
frame measurement (7.65) (red). Right: Once a sufficient number of frame measurements has been
incorporated and the 3D pose has been accordingly updated, the object is permanently localized
and included in the semantic map (blue).

7.8 Experimental Results

In this Section, we provide our experimental results using both the Turtlebot and the Mini-

taur robot, and the setup described in Section 7.7. We begin with experiments run using

Turtlebot and offboard (Section 7.8.1) or onboard (Section 7.8.2) perception, and continue

with Minitaur experiments using offboard perception (Section 7.8.3), to demonstrate the ro-

bustness of our method on a more dynamic legged platform. It should be noted that although

the perception algorithms, described in Section 7.7, are run either offboard or onboard, our

mapped space recovery and reactive planning modules, described in Algorithms 7.1 and 7.2

respectively, are always run onboard each robot’s Nvidia TX2 module. The control gains

used in our experiments are kv = kω = 0.4, and the maximum linear and angular inputs

vmax, ωmax are set to 0.4.

Comparison with Original Doubly Reactive Algorithm

In this Section, we demonstrate experiments similar to the simulations reported in Sec-

tion 7.6.1. We first illustrate various well understood failures of the original version of the

doubly reactive algorithm in [7]. Collisions result from the presence of short obstacles that
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Figure 7.15: Physical experiments akin to the numerical simulations depicted in Fig. 7.7, comparing
the original doubly reactive algorithm [7] (middle column) with our algorithm (right column) in
different physical settings (left column), using Turtlebot and offboard perception. (a) Two gascans
forming a non-convex trap, (b) Table used as a flat obstacle, (c) Two chairs violating the separation
assumptions of [7].

cannot be detected by the 2D LIDAR (Fig. 7.15-(a)). Confronted by obstacles with flat

surfaces (Fig. 7.15-(b)), or when separation assumptions are violated (Fig. 7.15-(c)), the

original algorithm gets stuck in undesired local minima (Fig. 7.15-(b),(c)). In contrast, our

new algorithm guarantees safe convergence to the goal in all these cases: short but familiar

obstacles (in this case the gascan in column 3 of Fig. 7.13) are recognized by the camera

system and localized; once localized, these known geometries can then be appropriately

abstracted into the model space (Section 7.3) which is topologically equivalent but geomet-

rically simplified to meet the requirements of [7]. Fig. 7.15 shows the groundtruth trajectory

of the robot, recorded using Vicon, along with 2D projections on the horizontal plane of the

obstacles’ keypoint meshes, that were used for the construction of the semantic space (Sec-

tion 7.2.2). The values of µγji = µγri , µδji = µδri and εji = εri used in the diffeomorphism

construction are 4.0, 0.05 and 2.0 respectively.
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Figure 7.16: Illustration of the empirically implemented complete navigation scheme (akin to the
numerical simulation depicted in Fig. 7.8) in a physical setting where three familiar obstacles (two
chairs and a table) form a non-convex trap. (a) The robot starts navigating toward its designated
target in a previously unknown environment, and detects familiar obstacles. The initial mode of the
hybrid system is I = ∅. (b)-(d) The robot keeps localizing familiar obstacles, and changes its belief
about the topological state of the workspace (as evident in the column showing the corresponding
model space). (e) Using the information in the semantic space and now being in the terminal
(Definition 7.8) mode I = {1, 2, 3}, wherein it has encountered and localized all the environment’s
familiar obstacles, the robot is driven by the mapped space transformation (Section 7.3) of the model
space vector field [7] to avoid the obstacles, until (f) it converges to the designated goal as guaranteed
by the results of Section 7.4. The right column shows how the robot experiences transitions in the
(previously unknown) hybrid system (modes that are never experienced are shown in grey).
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7.8.1 Experiments with Turtlebot and Offboard Perception

Navigation in a Cluttered Environment with Obstacle Merging

We begin the second set of experiments by demonstrating the merging process and the

properties of the hybrid controller, reported in Section 7.4, in a physical setting. As shown

in Fig. 7.16, the robot starts navigating toward its target and localizing obstacles in front of

it, until it converges to its target; at the same time, by incorporating more information in

its semantic map, it experiences transitions to different modes of the (previously unknown)

hybrid system. The values of µγji = µγri , µδji = µδri and εji = εri used in this experiment

are 4.0, 0.05 and 2.0 respectively.

Finally, Fig. 7.17 demonstrates navigation in environments cluttered with multiple fa-

miliar obstacles. In the first illustration, the robot reactively chooses to navigate through

a gap between the gascan and a chair. Despite the blockage of this gap by another famil-

iar obstacle (pelican case) in the second illustration, the robot reactively chooses to follow

another safe and convergent trajectory (as guaranteed by the theorems of Section 7.4), by

merging the set gascan - pelican case - chair, and considering them as a single obstacle. The

values of µγji = µγri , µδji = µδri and εji = εri used in this experiment are 1.6, 0.05 and 0.8

respectively.

Navigation Among Mixed Known and Unknown Obstacles

In the next set of experiments, we consider navigation among multiple familiar and unknown

obstacles. Fig. 7.18 shows that the robot safely converges to the goal from multiple initial

conditions, using vision and the setup described in Section 7.7 for familiar obstacle detection

and localization, and the onboard 2D LIDAR for all the unknown obstacles. In Fig. 7.18, we

also overlay trajectories from a MATLAB simulation of a differential-drive robot with the

same initial conditions and similar control gains; the simulated and physical platform follow

similar trajectories in all three cases. The values of µγji = µγri , µδji = µδri and εji = εri

used in these experiments are 2.0, 0.05 and 1.0.

It should be highlighted that even when the object localization process fails, collision
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Figure 7.17: Navigation among multiple familiar obstacles, using Turtlebot and offboard perception.
Top: The robot exploits the gap between the gascan and the chair to safely navigate to the goal.
Bottom: When we block this gap by another familiar obstacle (pelican case), the robot reactively
chooses to follow another safe and convergent trajectory, by consolidating the semantic triad {gascan,
pelican case, chair} into a single, “mapped” obstacle in DImap.

avoidance is still guaranteed with the use of the onboard LIDAR. Nevertheless, collisions

could result with obstacles that cannot be detected by the 2D horizontal LIDAR (e.g., see

Fig. 7.15-(a)). One could still think of extensions to the presented sensory infrastructure

(e.g., the use of a 3D LIDAR) that could still guarantee safety under such circumstances.

7.8.2 Experiments with Turtlebot and Onboard Perception

This Section briefly reports on experiments using onboard perception. As described in

Section 7.7.2, here we use both the localized obstacles by the semantic mapping pipeline

and raw, not permanently localized obstacles, resulting from a single semantic keypoint

frame measurement and the optimization problem given in (7.65). Fig. 7.19 illustrates an

example; the robot detects and avoids the two chairs in front of it, even if they are only

temporarily included in the semantic map (in the absence of more frame measurements).

The robot then proceeds to localize and avoid the gascan and the two tables and safely

converge to the designated goal. The values of µγji = µγri , µδji = µδri and εji = εri used in
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Figure 7.18: Navigation among familiar and unknown obstacles, using Turtlebot and offboard per-
ception, from three different initial conditions. Left: A snapshot of the physical workspace. Right:
A “bird’s-eye” view of the workspace, with 2D projections of the localized familiar obstacles (dark
grey) and unknown obstacles (light grey - groundtruth locations recorded using Vicon), along with
groundtruth trajectories from the physical experiments and overlaid numerical simulations in MAT-
LAB.
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Figure 7.19: Navigation among familiar obstacles, using Turtlebot and onboard perception. Top:
snapshots of the physical workspace, Bottom: illustrations of the recorded semantic map and the
robot’s trajectory in RViz [155]. The robot detects and avoids the two chairs in front of it, though
they are only temporarily included in the semantic map (in the absence of more frame measurements).
Then it proceeds to localize and avoid the two tables and the gascan, to safely converge to the goal.

this experiment are 2.0, 0.05 and 1.0 respectively.

It should be noted that the object impermanence in the semantic map violates the

formal assumptions of Theorems 7.3 and 7.4; without permanently localizing an object, the

robot could get stuck in an endless loop trying to avoid obstacles that it then “forgets”, in

unfavorable workspace configurations (e.g., like those reported in Fig. 7.9).

7.8.3 Experiments with Minitaur

Finally, Fig. 7.20 presents illustrative snapshots of two navigation examples on the much

more dynamic Minitaur platform. Despite the fact that Minitaur is an imperfect kinematic

unicycle and the overall shakiness of the platform, the robot is capable of detecting and

localizing familiar obstacles of interest and using that information to safely converge to the
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Figure 7.20: Snapshots of Minitaur avoiding multiple familiar obstacles in two different settings,
using offboard perception.

target. The values of µγji = µγri , µδji = µδri and εji = εri used in this experiment are 2.0,

0.05 and 1.0 respectively.
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Chapter 8

Reactive Semantic Planning in

Unexplored Semantic Environments

Using Deep Perceptual Feedback

This Chapter streamlines the diffeomorphism construction and extends the empirical results

of Chapter 7 by incorporating a human mesh estimation algorithm, rendering our system

capable of reacting and responding in real time to semantically labeled human motions and

gestures. Moreover, new formal results allow tracking of suitably non-adversarial moving

targets, while maintaining the same collision avoidance guarantees. We also suggest the

empirical utility of the proposed control architecture with a numerical study including com-

parisons with a state-of-the-art dynamic replanning algorithm, and physical implementation

on both a wheeled and legged platform in different settings with both geometric and semantic

goals.

After stating the problem and introducing technical notation in Section 8.1, Section 8.2

describes the diffeomorphism between the mapped and model spaces, and Section 8.3 in-

cludes our main formal results. Section 8.4 and Section 8.5 continue with our numerical

and experimental studies, and Section 8.6 concludes with a brief discussion of our findings.

We also include pointers to open-source software implementations, for both our MATLAB
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Human mesh

Robot poseDetected
objects

Figure 8.1: Ghost Spirit [67] following a human, while avoiding some familiar and some novel obstacles in a
previously unexplored environment. Familiar obstacles are recognized and localized using visually detected
semantic keypoints (bottom left inset) [148], combined with geometric features (top left inset) [30] and
avoided by a local deformation of space (Fig. 8.3) that brings them within the scope of a doubly reactive
navigation algorithm [9]. Novel obstacles are detected by LIDAR and assumed to be convex, thus falling
within the scope of [9]. Formal guarantees are summarized in Theorems 8.1 and 8.2 of Section 8.3, and
experimental settings are summarized in Fig. 8.7.

simulation package1, and our ROS-based controller2, in C++ and Python.

8.1 Problem Formulation and Approach

8.1.1 Problem Formulation

As in Chapters 6 - 7, we consider a robot with radius r, centered at x ∈ R2, navigating

a compact, polygonal, potentially non-convex workspace W ⊂ R2, with known boundary

∂W, towards a target xd ∈ W. The robot is assumed to possess a sensor with fixed range

R, for recognizing “familiar” objects and estimating distance to nearby obstacles3. We

define the enclosing workspace, as the convex hull of the closure of the workspace W, i.e.,

We :=
{
x ∈ R2 |x ∈ Conv(W)

}
.

The workspace is cluttered by a finite but unknown number of disjoint obstacles, denoted

by Õ := {Õ1, Õ2, . . .}, which might also include non-convex “intrusions” of the boundary of

the physical workspace W into We. As in Chapter 7, we define the freespace F as the set

of collision-free placements for the closed ball B (x, r) centered at x with radius r, and the
1https://github.com/KodlabPenn/semnav_matlab
2https://github.com/KodlabPenn/semnav
3As in Chapter 7, this idealized sensor is reduced to a combination of a LIDAR for distance measurements

to obstacles and a monocular camera for object recognition and pose identification.
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Figure 8.2: Snapshot Illustration of Key Ideas in Chapter 8, following Chapter 7: The robot moves in the
physical space, in an environment with known exterior boundaries (walls), toward a goal (pink) discovering
along the way (black) both familiar objects of known geometry but unknown location (dark grey) and
unknown obstacles (light grey), with an onboard sensor of limited range (orange disk). As in Chapter 7,
these obstacles are processed by the perceptual pipeline (Fig. 8.4) and stored permanently in the semantic
space if they have familiar geometry, or temporarily, with just the corresponding sensed fragments, if they
are unknown. The consolidated obstacles (formed by overlapping catalogued obstacles from the semantic
space), along with the perceptually encountered components of the unknown obstacles, are again stored in
the mapped space. A change of coordinates, h, entailing an online computation greatly streamlined relative
to its counterpart in Chapter 7 deforms the mapped space to yield a geometrically simple but topologically
equivalent model space. This new change of coordinates defines a vector field on the model space, which is
transformed in realtime through the diffeomorphism to generate the input in the physical space.

enclosing freespace, Fe, as Fe :=
{
x ∈ R2 |x ∈ Conv(F)

}
.

Although none of the positions of any obstacles in Õ are à-priori known, a subset P̃ :=

{P̃i}i∈NP ⊆ Õ of these obstacles, indexed by NP := {1, . . . , NP } ⊂ N, is assumed to be

“familiar” in the sense of having a known, readily recognizable polygonal geometry, that the

robot can instantly identify and localize. The remaining obstacles in C̃ := Õ\P̃, indexed by

NC := {1, . . . , NC} ⊂ N, are assumed to be strongly convex according to [9, Assumption 2],

but are otherwise completely unknown to the robot.

To simplify the notation, we dilate each obstacle by r, and assume that the robot operates

in the freespace F . We denote the set of dilated obstacles derived from Õ, P̃ and C̃, by

O,P and C respectively. Then, similarly to Chapters 6 - 7, we describe each polygonal

obstacle Pi ∈ P ⊆ O by an obstacle function, βi(x), a real-valued map providing an implicit

representation of the form Pi = {x ∈ R2 |βi(x) ≤ 0} that the robot can construct online after

it has localized Pi, following [176]. We also require the following separation assumptions.

Assumption 8.1. 1. Each obstacle Ci ∈ C has a positive clearance d(Ci, Cj) > 0 from

any obstacle Cj ∈ C, j 6= i. Also, d(Ci, ∂F) > 0, ∀Ci ∈ C.

2. For each Pi ∈ P, there exists εi > 0 such that the set Sβi := {x |βi(x) ≤ εi} has a

positive clearance d(Sβi , C) > 0 from any obstacle C ∈ C.
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Figure 8.3: Diffeomorphism construction via direct convex decomposition: Any arbitrary convex decomposi-
tion (e.g., [68]) defines a tree TPi := (VPi , EPi) (left), which induces the sequence of purging transformations
that map the polygon’s boundary and exterior to the boundary and exterior of an equivalent disk. The
purging transformation for each convex piece ji ∈ VPi is defined by a pair of convex polygons Qji ,Qji that
limit the effect of the diffeomorphism to a neighborhood of ji. The final map is guaranteed to be smooth,
as shown by a visualization of its determinant in logarithmic scale (right).

Based on these assumptions and considering first-order dynamics ẋ = u(x), the problem

consists of finding a Lipschitz continuous controller u : F → R2, that leaves the path-

connected freespace F positively invariant and steers the robot to the (possibly moving)

goal xd ∈ F .

8.1.2 Environment Representation and Technical Notation

The four distinct representations of the environment that we will refer to as planning spaces

are shown in Fig. 8.2, and follow Section 7.2. The robot navigates the physical space and

discovers obstacles, that are dilated by the robot radius r and stored in the semantic space.

Potentially overlapping obstacles in the semantic space are subsequently consolidated in real

time to form the mapped space. A change of coordinates from this space is then employed to

construct a geometrically simplified (but topologically equivalent) model space, by merging

familiar obstacles overlapping with the boundary of the enclosing freespace ∂Fe to ∂Fe,

deforming other familiar obstacles to disks, and leaving unknown obstacles intact.

8.2 Diffeomorphism Construction

Here, we describe our method of constructing the diffeomorphism, hI , between FImap and

FImodel. We assume that the robot has recognized and localized the |J I | obstacles in PImap,

and has, therefore, identified obstacles to be merged to the boundary of the enclosing

freespace ∂Fe, stored in BImap, and obstacles to be deformed to disks, stored in DImap.

167



8.2.1 Obstacle Representation and Convex Decomposition

As a natural extension to doubly reactive algorithms for environments cluttered with convex

obstacles [9, 147], we assume that the robot has access to the convex decomposition of each

obstacle P ∈ PImap. For polygons without holes, we are interested in decompositions that

do not introduce Steiner points (i.e., additional points except for the polygon vertices), as

this guarantees the dual graph of the convex partition to be a tree. Here, we acquire this

convex decomposition using Greene’s method [68] and its C++ implementation in CGAL

[188], operating in O(r2n2) time, with n the number of polygon vertices r the number of

reflex vertices. Other algorithms [121] could be used as well, such as Keil’s decomposition

algorithm [98, 99], operating in O(r2n2 log n) time.

As shown in Fig. 8.3, convex partioning results in a tree of convex polygons TPi :=

(VPi , EPi) corresponding to Pi, with VPi a set of vertices identified with convex polygons

(i.e., vertices of the dual of the formal partition) and EPi a set of edges encoding polygon

adjacency. Therefore, we can pick any polygon as root and construct TPi based on the

adjacency properties induced by the dual graph of the decomposition, as shown in Fig. 8.3.

If Pi ∈ DImap, we pick as root the polygon with the largest surface area, whereas if Pi ∈ BImap,

we pick as root any polygon adjacent to ∂Fe.

8.2.2 The Map Between the Mapped and the Model Space

As shown in Fig. 8.3, the map hI between the mapped and the model space is constructed in

several steps, involving the successive application of purging transformations by composition,

during execution time, for all leaf polygons of all obstacles P in BImap and DImap, in any

order, until their root polygons are reached. We denote by F̂Imap this final intermediate

space, where all obstacles in FImap have been deformed to their root polygons. We denote by

FImap,ji and FImap,p(ji) the intermediate spaces before and after the purging transformation

of leaf polygon ji ∈ VPi respectively.

We begin our exposition with a description of the purging transformation hIji : FImap,ji →

FImap,p(ji) that maps the boundary of a leaf polygon ji ∈ VPi onto the boundary of its
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parent, p(ji), and continue with a description of the map ĥI : F̂Imap → FImodel that maps

the boundaries of root polygons of obstacles in BImap and DImap to Fe and the corresponding

disks in FImodel respectively.

The map between FImap,ji and FImap,p(ji)

We first find admissible centers x∗ji , and polygonal collars Qji , that encompass the actual

polygonQji , and limit the effect of the purging transformation in their interior, while keeping

its value equal to the identity everywhere else (see Fig. 8.3).

Definition 8.1. An admissible center for the purging transformation of the leaf polygon

ji ∈ VPi , denoted by x∗ji, is a point in p(ji) such that the polygon Qji with vertices the

original vertices of ji and x∗ji is convex.

Definition 8.2. An admissible polygonal collar for the purging transformation of the leaf

polygon ji is a convex polygon Qji such that:

1. Qji does not intersect the interior of any polygon k ∈ VP with k 6= ji, p(ji), for all

polygons P involved in the construction of FImap,ji , or any C ∈ Cmap.

2. Qji ⊂ Qji , and Qji\Qji ⊂ FImap,ji .

Examples are shown in Fig. 8.3. As in Chapter 7, we also construct implicit functions

γji(x), δji(x) corresponding to the leaf polygon ji ∈ VPi such that Qji = {x ∈ R2 | γji(x) ≤

0} and Qji = {x ∈ R2 | δji(x) ≥ 0}, using tools from [176].

Based on these definitions, we construct the C∞ switch of the purging transformation

for the leaf polygon ji ∈ VPi as a function σji : FImap,ji → R, equal to 1 on the boundary of

Qji , equal to 0 outside Qji and smoothly varying (except the polygon vertices) between 0

and 1 everywhere else (see (7.15)). Finally, we define the deforming factors as the functions

νji : FImap,ji → R, responsible for mapping the boundary of the leaf polygon ji onto the

boundary of its parent p(ji) (see (7.16)). We can now construct the map between FImap,ji
and FImap,p(ji) as in (7.18)

hIji(x) := σji(x)
(
x∗ji + νji(x)(x− x∗ji)

)
+ (1− σji(x))x
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Proposition 8.1. The map hIji is a C
∞ diffeomorphism between FImap,ji and FImap,p(ji) away

from the polygon vertices of ji, none of which lies in the interior of FImap,ji .

Proof. Included in Appendix C.6.

We denote by gI : FImap → F̂Imap the map between FImap and F̂Imap, arising from the

composition of purging transformations hIji : FImap,ji → FImap,p(ji).

The Map Between F̂Imap and FImodel

Here, for each root polygon ri, we define the polygonal collar and the C∞ switch of the

transformation σri : F̂Imap → FImap as in Definition 8.2 and (7.23) respectively, and we

distinguish between obstacles in BImap and in DImap for the definition of the centers as follows

(see Fig. 8.3).

Definition 8.3. An admissible center for the transformation of:

1. the root polygon ri, corresponding to Pi ∈ DImap, is a point x∗i in the interior of ri

(here identified with Qri).

2. the root polygon ri, corresponding to Pi ∈ BImap, is a point x∗i ∈ R2\Fe, such that the

polygon Qri with vertices the original vertices of ri and x∗i is convex.

Finally, we define the deforming factors νri : F̂Imap → R as in Section 8.2.2 for obstacles

in BImap, and as the function νri(x) := ρi
||x−x∗i ||

for obstacles in DImap (see Fig. 8.3). We

construct the map between F̂Imap and FImodel as

ĥI(x) :=
∑

i∈J IB ∪J
I
D

σri(x) [x∗i + νri(x)(x− x∗i )] + σd(x)x

with σd(x) := 1−∑i∈J IB ∪J
I
D
σri(x). It should be noted that Definitions 8.2 and 8.3 guarantee

that, at any point in the workspace, at most one switch σri will be greater than zero which,

in turn, guarantees that the diffeomorphism computation is essentially “local”, and allows

scaling to multiple obstacles in the mapped space FImap.

We can similarly arrive at the following result.
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Figure 8.4: The online reactive planning architecture used in Chapter 8: Advancing beyond Chapter 7, cam-
era output is run through a perceptual pipeline incorporating three separate neural networks (run onboard
at 4Hz) whose function is to: (a) detect familiar obstacles and humans [158]; (b) localize corresponding
semantic keypoints [148]; and (c) perform a 3D human mesh estimation [105]. Keypoint locations on the
image, other detected geometric features, and an egomotion estimate provided by visual inertial odometry
are used by the semantic mapping module [30] to give updated robot (x) and obstacle poses (P̃I). The
reactive planner, now streamlined to run onboard at 3x the rate of the corresponding module in Chapter 7,
merges consolidated obstacles in DImap,BImap (recovered from P̃I), along with LIDAR data for unknown
obstacles, to provide the robot inputs and close the control loop. In this new architecture, the estimated
human meshes are used to update the target’s position in the reported human tracking experiments, detect
a specific human gesture or pose related to the experiment’s semantics, or (optionally) introduce additional
obstacles in the semantic mapping module for some out-of-scope experiments.

Proposition 8.2. The map ĥI is a C∞ diffeomorphism between F̂Imap and FImodel away

from any sharp corners, none of which lie in the interior of F̂Imap.

The Map Between FImap and FImodel

Based on the construction of gI : FImap → F̂Imap and ĥI : F̂Imap → FImodel, we can finally

write the map between the mapped space and the model space as the function hI : FImap →

FImodel given by hI(x) = ĥI ◦ gI(x). Since both gI and ĥI are C∞ diffeomorphisms away

from sharp corners, it is straightforward to show that the map hI is a C∞ diffeomorphism

between FImap and FImodel away from any sharp corners, none of which lie in the interior of

FImap.

8.3 Reactive Planning Algorithm

The analysis in Section 8.2 describes the diffeomorphism construction between FImap and

FImodel for a given index set I of instantiated familiar obstacles. However, the onboard

sensor might incorporate new obstacles in the semantic map, updating I. Therefore, as

in Section 7.4, we give a hybrid systems description of our reactive controller, where each

mode is defined by an index set I ∈ 2NP of familiar obstacles stored in the semantic map,

the guards describe the sensor trigger events where a previously “unexplored” obstacle is

discovered and incorporated in the semantic map (thereby changing PImap, and DImap, BImap),
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and the resets describe transitions to new modes that are equal to the identity in the physical

space, but might result in discrete “jumps” of the robot position in the model space. In this

Section, this hybrid systems structure is not modified, and we just focus on each mode I

separately.

For a fully actuated particle with dynamics ẋ = u(x),u ∈ R2, the control law in each

mode I is given as

uI(x) = k
[
Dxh

I]−1 ·
(
vI ◦ hI(x)

)
(8.1)

with Dx denoting the derivative operator with respect to x, and the control input in the

model space given as [9]

vI(y) = −
(
y −ΠLF(y)(yd)

)
(8.2)

Here, y = hI(x) ∈ FImodel and yd = hI(xd) denote the robot and goal position in the model

space respectively, and ΠLF(y)(yd) denotes the projection onto the convex local freespace

for y, LF(y), defined as the Voronoi cell in (7.39), separating y from all the model space

obstacles (see Fig. 8.2). We use the following definition to define a slowly moving, non-

adversarial moving target.

Definition 8.4. The smooth function xd : R→ FImap is a non-adversarial target if its model

space velocity, given as ẏd := Dxh
I(xd)·ẋd, always satisfies either (hI(x)−hI(xd))>ẏd ≥ 0,

or ||ẏd|| ≤ k
||hI(x)−ΠB(hI(x),0.5d(hI(x),∂FImodel))

(hI(xd))||2

||hI(x)− hI(xd)||
.

Intuitively, this Definition requires the moving target to slow down when the robot gets

too close to obstacles (i.e., when d(hI(x), ∂FImodel) becomes small) or the target itself (i.e.,

when ΠB(hI(x),0.5d(hI(x),∂FImodel))
(hI(xd)) = hI(xd)), proportionally to the control gain k,

unless the target approaches the robot (i.e., (hI(x)−hI(xd))>ẏd ≥ 0). We use Definition 8.4

to arrive at the following central result.

Theorem 8.1. With I the terminal mode of the hybrid controller (see Definition 7.8), the

reactive controller in (8.1) leaves the freespace FImap positively invariant, and:

1. tracks xd by not increasing ||hI(x) − hI(xd)||, if xd is a non-adversarial target (see
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Definition 8.4).

2. asymptotically reaches a constant xd with its unique continuously differentiable flow,

from almost any placement x ∈ FImap, while strictly decreasing ||hI(x)−hI(xd)|| along

the way.

Proof. Included in Appendix C.6.

In Chapter 6, we extend our algorithm to differential drive robots, by constructing a

smooth diffeomorphism h
I

: FImap × S1 → FImodel × S1 away from sharp corners, as shown

in (6.26). Based on this construction, we present our main result below, whose proof follows

similar patterns to that of Theorem 8.1 and is omitted for brevity.

Theorem 8.2. With I the terminal mode of the hybrid controller (see Definition 7.8), the

reactive controller for differential drive robots (6.26) leaves the freespace FImap×S1 positively

invariant, and:

1. tracks xd by not increasing ||hI(x) − hI(xd)||, if xd is a non-adversarial target (see

Definition 8.4).

2. asymptotically reaches a constant xd with its unique continuously differentiable flow,

from almost any robot configuration in FImap×S1, without increasing ||hI(x)−hI(xd)||

along the way.

8.4 Numerical Studies

In this Section, we present numerical studies run in MATLAB using ode45, that illustrate

our formal results. Our reactive controller is implemented in Python and communicates

with MATLAB using the standard MATLAB-Python interface. For our numerical results,

we assume perfect robot state estimation and localization of obstacles, using a fixed range

sensor that can instantly identify and localize either the entirety of familiar obstacles that

intersect its footprint, or the fragments of unknown obstacles within its range.
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Fully Actuated Differential Drive

(a)

(b)

Figure 8.5: Top: Navigation in an indoor layout cluttered with multiple familiar obstacles and previously
unknown pose. - Bottom: Navigation in a room cluttered with known non-convex (dark grey) and unknown
convex (light grey) obstacles. Simulations are run from different initial conditions.

8.4.1 Illustrations of the Navigation Framework

We begin by illustrating the performance of our reactive planning framework in two different

settings (Fig. 8.5), for both a fully actuated and a differential drive robot. In the first case

(Fig. 8.5-a), the robot is tasked with moving to a predefined location in an environment

resembling an apartment layout with known walls, cluttered with several familiar obstacles of

unknown location and pose, from different initial conditions. In the second case (Fig. 8.5-b),

the robot navigates a room cluttered with both familiar and unknown obstacles from several

initial conditions. In both cases, the robot avoids all the obstacles and safely converges to

the target. The robot radius used in our simulation studies is 0.2m.

8.4.2 Comparison with RRTX [143]

In the second set of numerical results, we compare our reactive controller with a state-

of-the-art path replanning algorithm, RRTX [143]. We choose to compare against this

specific algorithm instead of another sampling-based method for static environments (e.g.,
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RRT* [96]), since both our reactive controller and RRTX are dynamic in nature; they are

capable of incorporating new information about the environment and modifying the robot’s

behavior appropriately. For our simulations, we assume that RRTX possesses the same

sensory apparatus with our algorithm; an “oracle” that can instantly identify and localize

nearby obstacles. The computed paths are then reactively tracked using [8].

Fig. 8.6-a exemplifies the (well-known [118]) performance degradation of RRTX in the

presence of narrow passages: as the corridor narrows (while always larger than the robot’s

diameter), the minimum number of (offline-computed) samples needed for successful replan-

ning and safe navigation increases in a nonlinear manner. In consequence of this dramatically

growing time-to-completeness, the accompanying video of [205]4 demonstrates a potentially

catastrophic failure of the associated replanner: in the presence of multiple narrow passages,

it cycles repeatedly as it searches for possible alternative openings, before eventually (and

only after increasingly protracted cycling) reporting failure (incorrectly) and halting. On

the contrary, our algorithm always guarantees safe passage to the target through compli-

ant environments – and Fig. 8.6-b illustrates its graceful failure for settings that violate

Assumption 8.1. The non-compliant (novel but not convex) obstacle creates an attracting

equilibrium state that traps a set of initial conditions whose area becomes arbitrarily large

as its “shadow” (the associated basin of attraction) grows. However, the presence of a Lya-

punov function precludes the possibility of any cycling behavior: failure to achieve the goal

(and the diagnosis of a non-compliant environment) is readily identified.

8.5 Experiments

8.5.1 Experimental Setup

Our experimental layout is summarized in Fig. 8.4. Since the algorithms introduced in this

Section take the form of first-order vector fields, we mainly use a quasi-static platform,

the Turtlebot robot [194] for our physical experiments. We suggest the robustness of these

feedback controllers by performing several experiments on the more dynamic Ghost Spirit
4https://youtu.be/0ql1BaPcozc
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(a) (b)

Spurious 
attracting point

Figure 8.6: (a) Minimum number of (offline computed) samples needed for successful online implementation
of RRTX [143] in an unexplored environment with two familiar obstacles forming a narrow passage. The
number becomes increasingly large as the gap becomes smaller. The robot diameter is 50cm. (b) Illustration
of a graceful failure of our proposed algorithm. The sole non-convex but unknown encountered obstacle
creates a spurious attracting equilibrium state that traps a subset of initial conditions. However, collision
avoidance is always guaranteed by the onboard sensor.

Figure 8.7: Types of environments used in our experiments. Visual context is included in the supplementary
video4.

1

2

Start Start
1

2

Figure 8.8: Top: Turtlebot reactively follows a human until a stop gesture is given and detected – Bottom:
Turtlebot safely returns to its starting position.
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legged robot [67], using a rough approximation to the quasi-static differential drive motion

model as reported in Section 3.1.3. In both cases, the main computer is an Nvidia Jetson

AGX Xavier GPU unit, responsible for running our perception and navigation algorithms,

during execution time. This GPU unit communicates with a Hokuyo LIDAR, used to detect

unknown obstacles, and a ZED Mini stereo camera, used for visual-inertial state estimation

and for detecting humans and familiar obstacles.

Our perception pipeline, run onboard the Nvidia Jetson AGX Xavier at 4Hz, supports

the detection and 3D pose estimation of objects and humans, who, for the purposes of this

work, are used as moving targets. We use the YOLOv3 detector [158] to detect 2D bounding

boxes on the image which are then processed based on the class of the detected object. If one

of the specified object classes is detected, then we follow the semantic keypoints approach

of [148] to estimate keypoints of the object on the image plane5. Similarly to Chapter 7,

the familiar object classes (as defined in Section 8.1) used in our experiments are chair,

table, ladder, cart, gascan and pelican case, although this dictionary can increase depending

on the user’s needs. The training data for the particular instances of interest are collected

with a semi-automatic procedure, similarly to [148]. Given the bounding box and keypoint

annotations for each image, the two networks are trained with their default configurations

until convergence. On the other hand, if the bounding box corresponds to a person detection,

then we use the approach of [105], that provides us with the 3D mesh of the person.

As also reported in Section 7.7, our semantic mapping infrastructure relies on the algo-

rithm presented in [30], and is implemented in C++. This algorithm fuses inertial informa-

tion (here provided by the position tracking implementation from StereoLabs on the ZED

Mini stereo camera), geometric (i.e., geometric features on the 2D image), and semantic in-

formation (i.e., the detected keypoints and the associated object labels as described above)

to give a posterior estimate for both the robot state and the associated poses of all tracked

objects, by simultaneously solving the data association problem arising when several objects
5Note that while both the YOLOv3 detector [158] and the keypoint estimation algorithm [148] are

empirically very robust (e.g., particularly against partial occlusions), they could be easily replaced with
other state-of-the-art algorithms that provide reasonable robustness against partial occlusions.
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of the same class exist in the map.

Finally, our reactive controller, running online and onboard the Nvidia Jetson AGX

Xavier GPU unit at 30Hz, is also implemented in C++ using Boost Geometry [170] for the

underlying polygon operations, and communicates with our perception pipelines using ROS,

as shown in Fig. 8.4.

8.5.2 Empirical Results

As also reported in the supplementary video4, we distinguish between two classes of physical

experiments in several different environments shown in Fig. 8.7; tracking either a predefined

static target or a moving human, and tracking a given semantic target (e.g., approach a

desired object).

Geometric tracking of a (moving) target amidst obstacles

Fig. 8.1 shows Spirit tracking a human in a previously unexplored environment, cluttered

with both catalogued obstacles (whose number and placement is unknown in advance) as

well as completely unknown obstacles. The robot uses familiar obstacles to both localize

itself against them [30] and reactively navigate around them. Fig. 8.7 summarizes the wide

diversity of à-priori unexplored environments, with different lighting conditions, successfully

navigated indoors (by Turtlebot and Spirit) and outdoors (by Spirit), while tracking humans6

along thousands of body lengths.

Note that the formal results of Section 8.3 require that unknown obstacles be convex.

However, here we clutter the environment with a mix of unknown obstacles – some convex,

but others of more complicated non-convex shapes (e.g., unknown walls) – to establish em-

pirical robustness in urban environments that are out of scope of the underlying theory. In

such settings, that move beyond the formal assumptions outlined in Section 8.1, the robot

might converge to undesired local minima behind non-convex obstacles from a subset of (un-

favorable) initial conditions (see Fig. 8.6-b); however, collision avoidance is still guaranteed
6Collision avoidance when the robot gets close to the tracked human is guaranteed with the use of the

onboard LIDAR; the human is treated as an unknown obstacle and the robot tries to keep separation and
avoid collision (with formal guarantees assuming the conditions of Definition 8.4).

178



by the onboard LIDAR.

As anticipated, the few failures we recorded were associated with the inability of the

SLAM algorithm to localize the robot in long, featureless environments. However, it should

be noted that even when the robot or object localization process fails, collision avoidance is

still guaranteed with the use of the onboard LIDAR. Nevertheless, collisions could result with

obstacles that cannot be detected by the 2D horizontal LIDAR (e.g., the red gascan shown

in Fig. 8.8). One could still think of extensions to the presented sensory infrastructure (e.g.,

the use of a 3D LIDAR) that could at least still guarantee safety under such circumstances.

Logical reaction using predefined semantics

In the second set of experimental runs, we exploit the new online semantic capabilities to

introduce logic in our reactive tracking process. For example, Fig. 8.8 depicts a tracking

task requiring the robot to respond to the human’s stop signal (raised left or right hand) by

returning to its starting position. The supplementary video4 presents several other seman-

tically specified tasks requiring autonomous reactions of both a logical as well as geometric

nature (all involving negotiation of novel environments from the arbitrary geometric circum-

stances associated with different contexts of logical triggers).

Finally, apart from introducing semantics related to the estimated human pose, we also

consider cases where the behavior of the robot changes on the fly based on the detected

objects. In an experimental run reported in the accompanying video4, the robot is tasked

with moving to a predefined geometric target, unless it sees and localizes a cart; in that

case, it is tasked with properly approaching and facing the cart with its camera, while

avoiding all (previously unknown) obstacles along the way. Based on these results, we

believe that our algorithm can be coupled with the hierarchical control scheme reported in

Part II for accomplishing more sophisticated mobile manipulation tasks (e.g., using temporal

logic [111]).
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8.6 Discussion

Chapters 6 - 8 present a reactive navigation scheme for robots operating in planar

workspaces, cluttered with obstacles of familiar geometry but à-priori unknown placement,

and completely unknown, but strongly convex and well-separated obstacles. To the best of

our knowledge, this is the first doubly reactive navigation framework (i.e., a scheme where

not only the robot’s trajectory but also the vector field that generates it are computed online

at execution time) that can handle arbitrary polygonal shapes in real time without the need

for specific separation assumptions between the familiar obstacles. The resulting algorithm

combines state-of-the-art perception and object recognition techniques (based on neural net-

work architectures) for familiar obstacles, with local range measurements (e.g., LIDAR) for

the unknown obstacles, to yield provably correct navigation in geometrically complicated

environments. We illustrate the practicability of this approach by reporting empirical results

using modest computational hardware on a wheeled robot, and the intrinsic robustness of

such reactive schemes by implementation on dynamic legged platforms, exhibiting imperfect

fidelity to the differential drive model assumed in the formal results, while also provably

safely semantically engage non-adversarial moving targets.
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Part IV

Reactive Semantic Planning for

Mobile Manipulation
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Chapter 9

Reactive Planning for Mobile

Manipulation Tasks in Unexplored

Semantic Environments

Complex manipulation tasks, such as rearrangement planning of numerous objects, are com-

binatorially hard problems. Existing algorithms either do not scale well or assume a great

deal of prior knowledge about the environment, and few offer any rigorous guarantees. In

this Chapter, we propose a novel hybrid control architecture for achieving such tasks with

mobile manipulators, based on the reactive controller presented in Chapter 8. On the dis-

crete side, we enrich a temporal logic specification with mobile manipulation primitives such

as moving to a point, and grasping or moving an object. Such specifications are translated

to an automaton representation, which orchestrates the physical grounding of the task to

mobility or manipulation controllers. The grounding from the discrete to the continuous

reactive controller is online and can respond to the discovery of unknown obstacles or de-

cide to push out of the way movable objects that prohibit task accomplishment. Despite

the problem complexity, we prove that, under specific conditions, our architecture enjoys

provable completeness on the discrete side, provable termination on the continuous side,

and avoids all obstacles in the environment. Simulations illustrate the efficiency of our ar-
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Figure 9.1: An example of a task considered in this Chapter, whose execution is depicted in Fig. 9.7. A
differential drive robot, equipped with a gripper (red) and a limited range onboard sensor for localizing
obstacles (orange), needs to accomplish a mobile manipulation task specified by a Linear Temporal Logic
(LTL) formula, in a partially known environment (black), cluttered with both unanticipated (dark grey)
and completely unknown (light grey) fixed obstacles. Here the task is to rearrange the movable objects
counterclockwise, in the presence of the fixed obstacles. Objects’ abstract locations (relative to abstract,
named regions of the workspace) are known by the symbolic controller both à-priori and during the entire
task sequence. Geometrically complicated obstacles are assumed to be familiar but unanticipated in the
sense that neither their number nor placement are known in advance. Completely unknown obstacles are
presumed to be convex. All obstacles and disconnected configurations caused by the movable objects are
handled by the reactive vector field motion planner (Fig. 9.2) and never reported to the symbolic controller.

chitecture that can handle tasks of increased complexity while also responding to unknown

obstacles or unanticipated adverse configurations.

The Chapter is organized as follows. After formulating the problem in Section 9.1, Sec-

tion 9.2 presents a discrete controller which given an LTL specification generates on-the-fly

high-level manipulation primitives, translated to point navigation commands through an

interface layer outlined in Section 9.3. Using this interface, Section 9.4 continues with the

reactive implementation of our symbolic actions and the employed algorithm for connect-

ing disconnected freespace components blocked by movable objects. Finally, Section 9.5

discusses our numerical results.
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Figure 9.2: System architecture, following Fig. 1.1, without the (platform-specific) gait layer. The task is
encoded in an LTL formula, translated offline to a Büchi automaton (symbolic controller - Section 9.2).
Then, during execution time in a previously unexplored semantic environment, each individual sub-task
provided by the Büchi automaton is translated to a point navigation task toward a target xd and a gripper
command g, through an interface layer (Section 9.3). This task is executed online by realizing each symbolic
action (Section 9.4.3) using a reactive, vector field motion planner (continuous-time controller, Chapter 8)
implementing closed-loop navigation using sensor feedback and working closely with a topology checking
module (Section 9.4.2), responsible for detecting freespace disconnections. The reactive controller guarantees
collision avoidance and target convergence when both the initial and the target configuration lie in the same
freespace component. On the other hand, if the topology checking module determines that the target
is not reachable, the reactive controller either attempts to connect the disconnected configuration space
by switching to a Fix mode and interacting with the environment in order to rearrange blocking movable
objects, or the interface layer reports failure to the symbolic controller when this is impossible and requests
an alternative action.

9.1 Problem Description

9.1.1 Model of the Robot and the Environment

We consider a first-order, nonholonomically-constrained, disk-shaped robot, centered at x ∈

R2 with radius r ∈ R>0 and orientation ψ ∈ S1; its rigid placement is denoted by x :=

(x, ψ) ∈ R2 × S1 and its input vector u := (v, ω) consists of a fore-aft and an angular

velocity command. The robot uses a gripper to move disk-shaped movable objects of known

location, denoted by M̃ := {M̃i}i∈{1,...,NM} , with a vector of radii (ρ1, . . . , ρNM ) ∈ RNM , in

a closed, compact, polygonal, typically non-convex workspace W ⊂ R2. The robot’s gripper

g can either be engaged (g = 1) or disengaged (g = 0). Moreover, we adopt the perceptual

model of Chapter 8 whereby a sensor of range R recognizes and instantaneously localizes
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any fixed “familiar” or “unfamiliar” obstacles; see also Fig. 9.1.

The workspace is cluttered by a finite collection of disjoint obstacles of unknown number

and placement, denoted by Õ. This set might also include non-convex “intrusions” of the

boundary of the physical workspace W into the convex hull of the closure of the workspace

W, defined as the enclosing workspace. As in Chapters 7 - 8, we define the freespace F as

the set of collision-free placements for the closed ball B (x, r) centered at x with radius r,

and the enclosing freespace, Fe, as Fe :=
{
x ∈ R2 |x ∈ Conv(F)

}
.

Although none of the positions of any obstacles in Õ are à-priori known, a subset P̃ ⊆ Õ

of these obstacles is assumed to be “familiar” in the sense of having a recognizable polygonal

geometry, that the robot can instantly identify and localize (see Chapter 8). Similarly to

Chapters 7 - 8, the remaining obstacles in C̃ := Õ\P̃ are assumed to be strongly convex

according to Assumption 7.1, but are otherwise completely unknown.

To simplify the notation, we dilate each obstacle and movable object by r (or r + ρi

when the robot carries an object i), and assume that the robot operates in the freespace F .

We denote the set of dilated objects and obstacles derived from M̃, Õ, P̃ and C̃, byM,O,P

and C respectively. For our formal results, we assume that each obstacle in C is always

well-separated from all other obstacles in both C and P, as outlined in Assumption 7.2; in

practice, the surrounding environment often violates our separation assumptions, without

precluding successful task completion.

9.1.2 Specifying Complex Manipulation Tasks

The robot needs to accomplish a mobile manipulation task, by visiting known regions of

interest `j ⊆ W, where j ∈ {1, . . . , L}, for some L > 0, and applying one of the following

three manipulation actions ak(Mi, `j) ∈ A, with Mi ∈ M referring to a movable object,

defined as follows:

• Move(`j) instructing the robot to move to region `j , labeled as a1(∅, `j), where ∅

means that this action does not logically entail interaction with any specific movable

object1.
1Although, as will be detailed in Section 9.4, the hybrid reactive controller may actually need to move
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• GraspObject(Mi) instructing the robot to grasp the movable object Mi, labeled as

a2(Mi,∅), with ∅ denoting that no region is associated with this action.

• ReleaseObject(Mi, `j) instructing the robot to push the (assumed already grasped)

object Mi toward its designated goal position, `j , labeled as a3(Mi, `j).

For instance, consider a rearrangement planning scenario where the locations of three

objects of interest need to be rearranged, as in Fig. 9.1. We capture such complex manip-

ulation tasks via Linear Temporal Logic (LTL) specifications. Specifically, we use atomic

predicates of the form πak(Mi,`j), which are true when the robot applies the action ak(Mi, `j)

and false until the robot achieves that action. Note that these atomic predicates allow us to

specify temporal logic specifications defined over manipulation primitives and, unlike related

works [74, 179], are entirely agnostic to the geometry of the environment. We define LTL

formulas by collecting such predicates in a set AP of atomic propositions. For example, the

rearrangement planning scenario with three movable objects initially located in regions `1,

`2, and `3, as shown in Fig. 9.1, can be described as a sequencing task [56] by the following

LTL formula:

φ =♦(πa2(M1,∅) ∧ ♦(πa3(M1,`2)∧

♦(πa2(M2,∅) ∧ ♦πa3(M2,`3)∧

♦(πa2(M3,∅) ∧ ♦πa3(M3,`1))))) (9.1)

where ♦ and ∧ refer to the ‘eventually’ and ‘AND’ operator. In particular, this task requires

the robot to perform the following steps in this order (i) grasp object M1 and release it

in location `2 (first line in (9.1)); (ii) then grasp object M2 and release it in location `3

(second line in (9.1)); (iii) grasp object M3 and release it in location `1 (third line in (9.1)).

LTL formulas are satisfied over an infinite sequence of states [17]. Unlike related works

where a state is defined to be the robot position, e.g., [111], here a state is defined by the

objects out of the way, rearranging the topology of the workspace in a manner hidden from the logical task
controller.
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manipulation action ak(Mi, `j) that the robot applies. In other words, an LTL formula

defined over manipulation-based predicates πak(Mi,`j) is satisfied by an infinite sequence of

actions p = p0, p1, . . . , pn, . . . , where pn ∈ A, for all n ≥ 0 [17]. Given a sequence p, the

syntax and semantics of LTL can be found in [17]; hereafter, we exclude the ‘next’ operator

from the syntax, since it is not meaningful for practical robotics applications [103], as well

as the negation operator2.

9.1.3 Problem Statement

Given a task specification captured by an LTL formula φ, our goal is to (i) generate online,

as the robot discovers the environment via sensor feedback, appropriate actions using the

(discrete) symbolic controller, (ii) translate them to point navigation tasks, (iii) execute these

navigation tasks and apply the desired manipulation actions with a (continuous-time) vector

field controller, while avoiding unknown and familiar obstacles, (iv) be able to online detect

freespace disconnections that prohibit successful action completion, and (v) either locally

amend the provided plan by disassembling blocking movable objects, or report failure to the

symbolic controller and request an alternative action.

9.2 Symbolic Controller

In this Section, we design a discrete controller that generates manipulation commands online

in the form of the actions defined in Section 9.1 (e.g., ‘release the movable object Mi at a

region `j ’). A summary of the overall architecture is given in Fig. 9.2, and we now proceed

to outline the manner in which the symbolic controller depicted there extends prior work

[92] to account for the manipulation-based atomic predicates defined in Section 9.1 and

adapted to the single-agent setting. To accomplish this, first in Section 9.2.1 we translate

the LTL formula into a Non-deterministic Büchi Automaton (NBA) and we provide a formal

definition of its accepting condition. Then, in Section 9.2.2, we provide a detailed description

for the construction of the distance metric over this automaton state space. Section 9.2.3
2Since the negation operator is excluded, safety requirements, such as obstacle avoidance, cannot be

captured by the LTL formula; nevertheless, the proposed method can still handle safety constraints by
construction of the (continuous-time) reactive, vector field controller in Section 9.4.
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Figure 9.3: Graphical illustration of the NBA corresponding to the LTL formula φ = �♦(π1)∧�♦(π2) where
for simplicity of notation π1 = πa1(∅,`1) and π2 = πa1(∅,`2). The automaton has been generated using the
tool in [64]. In words, this LTL formula requires the robot to visit infinitely often and in any order the
regions `1 and `2. The initial state of the automaton is denoted by q0B while the final state is denoted by
qF . When the robot is in an NBA state and the Boolean formula associated with an outgoing transition
from this NBA state is satisfied, then this transition can be enabled. For instance, when the robot is in
the initial state q0B and satisfies the atomic predicate π1, the transition from q0B to qB can be enabled, i.e.,
qB ∈ δB(q0B , π1). The LTL formula is satisfied if starting from q0B , the robot generates an infinite sequence of
observations (i.e., atomic predicates that become true) that yields an infinite sequence of transitions so that
the final state qF is visited infinitely often. The red dashed lines correspond to infeasible NBA transitions
as they are enabled only if the Boolean formula π1 ∧ π2 is satisfied, i.e., only if the robot is in more than
one region simultaneously; such edges are removed yielding the pruned NBA.

describes our method for generating symbolic actions online, and Section 9.2.4 includes our

completeness result. The proposed method is also illustrated in Figs. 9.3 - 9.4.

9.2.1 Construction of the Symbolic Controller

First, we translate the specification φ, constructed using a set of atomic predicates AP,

into a Non-deterministic Büchi Automaton (NBA) with state-space and transitions among

states that can be used to measure how much progress the robot has made in terms of

accomplishing the assigned mission, defined as follows.

Definition 9.1 (NBA). A Non-deterministic Büchi Automaton (NBA) B over Σ = 2AP is

defined as a tuple B =
(
QB,Q0

B, δB,QF
)
, where (i) QB is the set of states; (ii) Q0

B ⊆ QB
is a set of initial states; (iii) δB : QB ×Σ→ 2QB is a non-deterministic transition relation,

and QF ⊆ QB is a set of accepting/final states.

To interpret a temporal logic formula over the trajectories of the robot system, we use a

labeling function L : A → 2AP that determines which atomic propositions are true given the
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Figure 9.4: Graphical illustration of the graph G construction for the NBA shown in Fig. 9.3. The left
figure corresponds to the pruned automaton after augmenting its state space with the state qaux

B , where π0

corresponds to the atomic predicate that the robot satisfies initially at t = 0. If no atomic predicates are
satisfied initially, then π0 corresponds to the empty symbol [17]. Observe in the left figure that Dqaux

B
=

{qaux
B , q0B , qB}. The right figure illustrates the graph G corresponding to this automaton. The red dashed line

corresponds to an accepting edge. Also, we have that VF = {qB}, dF (qaux
B ,VF ) = 2, dF (q0B ,VF ) = 1, and

dF (qB ,VF ) = 0. For instance, every time the robot reaches the state q0B with dF (q0B ,VF ) = 1, it generates
a symbol to reach the state qB since reaching this state decreases the distance to the set of accepting edges
(since dF (qB ,VF ) = 0). The symbol that can enable this transition is the symbol that satisfies the Boolean
formula bq

0
B ,qB = π1; this formula is trivially satisfied by the symbol π1 = πa1(∅,`1). As a result the command

send to the continuous time controller is ‘Move to Region `1’.

current robot action ak(Mi, `j); note that, by definition, these actions also encapsulate the

position of the robot in the environment. An infinite sequence p = p(0)p(1) . . . p(k) . . . of

actions p(k) ∈ A, satisfies φ if the word σ = L(p(0))L(p(1)) . . . yields an accepting NBA run

defined as follows [17]. First, a run ρB of B over an infinite word σ = σ(1)σ(2) . . . σ(k) · · · ∈

(2AP)ω, is a sequence ρB = q0
Bq

1
Bq

2
B . . . , q

k
B, . . . , where q

0
B ∈ Q0

B and qk+1
B ∈ δB(qkB, σ(k)),

∀k ∈ N. A run ρB is called accepting if at least one final state appears infinitely often in it.

In words, an infinite-length discrete plan τ satisfies an LTL formula φ if it can generate at

least one accepting NBA run.

9.2.2 Distance Metric Over the NBA

In this Section, given a graph constructed using the NBA, we define a function to compute

how far an NBA state is from the set of final states. Following a similar analysis as in

[91, 92], we first prune the NBA by removing infeasible transitions that can never be enabled

as they require the robot to be in more than one region and/or take more that one action

simultaneously. Specifically, a symbol σ ∈ Σ := 2AP is feasible if and only if σ 6|= binf, where

binf is a Boolean formula defined as

binf = [(∨∀k,r,j,e6=j(πak(·,`e) ∧ πar(·,`j)))]
∨

[(∨∀j,k,r 6=k(πak(·,`j) ∧ πar(·,`j)))] (9.2)
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In words, binf requires the robot to be either present simultaneously in more than one region

or take more than one action in a given region at the same time. Specifically, the first line

requires the robot to be present in locations `j and `e, e 6= j and apply the actions ak, ar ∈ A

while the second line requires the robot to take two distinct actions ak(·, `j) and ar(·, `j) at

the same region `j , simultaneously.

Next, we define the sets that collect all feasible symbols that enable a transition from

an NBA state qB to another, not necessarily different, NBA state q′B. This definition relies

on the fact that transition from a state qB to a state q′B is enabled if a Boolean formula,

denoted by bqB ,q′B and defined over the set of atomic predicates AP, is satisfied. In other

words, q′B ∈ δB(qB, σ), i.e., q′B can be reached from the NBA state qB under the symbol σ,

if σ satisfies bqB ,q′B . An NBA transition from qB to q′B is infeasible if there are no feasible

symbols that satisfy bqB ,q′B . All infeasible NBA transitions are removed yielding a pruned

NBA automaton. All feasible symbols that satisfy bqB ,q′B are collected in the set ΣqB ,q
′
B .

To take into account the initial robot state in the construction of the distance metric, in

the pruned automaton we introduce an auxiliary state qaux
B and transitions from qaux

B to all

initial states q0
B ∈ Q0

B so that bqaux
B ,qaux

B = 1 and bqaux
B ,q0B = π0, i.e., transition from qaux

B to

q0
B can always be enabled based on the atomic predicate that is initially satisfied denoted

by π0; note that if no predicates are satisfied initially, then π0 corresponds to the empty

symbol [17]. Hereafter, the auxiliary state qaux
B is considered to be the initial state of the

resulting NBA; see also Fig. 9.4.

Next, we collect all NBA states that can be reached from qaux
B in a possibly multi-hop

fashion, using a finite sequence of feasible symbols, so that once these states are reached,

the robot can always remain in them as long as needed using the same symbol that allowed

it to reach this state. Formally, let Dqaux
B

be a set that collects all NBA states qB (i) that

have a feasible self-loop, i.e., ΣqB ,qB 6= ∅ and (ii) for which there exists a finite and feasible

word w, i.e., a finite sequence of feasible symbols, so that starting from qaux
B a finite NBA

run ρw (i.e., a finite sequence of NBA states) is incurred that ends in qB and activates the
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self-loop of qB. In math, Dqaux
B

is defined as:

Dqaux
B

= {qB ∈ QB|(ΣqB ,qB 6= ∅) ∧ (∃w s.t. ρw = qaux
B . . . q̄BqBqB)}. (9.3)

By definition of qaux
B , we have that qaux

B ∈ Dqaux
B

.

Among all possible pairs of states in Dqaux
B

, we examine which transitions, possibly multi-

hop, can be enabled using feasible symbols, so that, once these states are reached, the robot

can always remain in them forever using the same symbol that allowed it to reach this state.

Formally, consider any two states qB, q′B ∈ Dqaux
B

(i) that are connected through a - possibly

multi-hop - path in the NBA, and (ii) for which there exists a symbol, denoted by σqB ,q′B ,

so that if it is repeated a finite number of times starting from qB, the following finite run

can be generated:

ρ = qBq
1
B . . . q

K−1
B qKB q

K
B , (9.4)

where q′B = qKB , for some finite K > 0. In (9.4), the run is defined so that (i) qkB 6= qk+1
B , for

all k ∈ {1,K − 1}; (ii) qkB ∈ δB(qkB, σ
qB ,q

′
B ) is not valid for all ∀k ∈ {1, . . . ,K − 1}, i.e., the

robot cannot remain in any of the intermediate states (if any) that connect qB to q′B either

because a feasible self-loop does not exist or because σqB ,q′B cannot activate this self-loop;

and (iii) q′B ∈ δB(q′B, σ
qB ,q

′
B ) i.e., there is a feasible loop associated with q′B that is activated

by σqB ,q
′
B . Due to (iii), the robot can remain in q′B as long as σqB ,q′B is generated. The

fact that the finite repetition of a single symbol needs to generate the run (9.4) precludes

multi-hop transitions from qB to q′B that require the robot to jump from one region of

interest to another one instantaneously as such transitions are not meaningful as discussed

in Section 9.1; see also Fig. 9.4. Hereafter, we denote the - potentially multi-hop - transition

incurred due to the run (9.4) by q′B ∈ δmB (qB, ·).

Then, we construct the directed graph G = {V, E} where V ⊆ QB is the set of nodes and

E ⊆ V × V is the set of edges. The set of nodes is defined so that V = Dqaux
B

and the set of

edges is defined so that (qB, q
′
B) ∈ E if there exists a feasible symbol that incurs the run ρw

defined in (9.4); see also Fig. 9.4.
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Given the graph G, we define the following distance metric.

Definition 9.2 (Distance Metric). Let G = {V, E} be the directed graph that corresponds to

NBA B. Then, we define the distance function d : V × V → N as follows

d(qB, q
′
B) =

 |SPqB ,q′B |, if SPqB ,q′B exists,

∞, otherwise,
(9.5)

where SPqB ,q′B denotes the shortest path (in terms of hops) in G from qB to q′B and |SPqB ,q′B |

stands for its cost (number of hops).

In words, d : V × V → N returns the minimum number of edges in the graph G that

are required to reach a state q′B ∈ V starting from a state qB ∈ V. This metric can be

computed using available shortest path algorithms, such the Dijkstra method with worst-

case complexity O(|E|+ |V| log |V|).

Next, we define the final/accepting edges in G as follows.

Definition 9.3 (Final/Accepting Edges). An edge (qB, q
′
B) ∈ E is called final or accepting if

the corresponding multi-hop NBA transition q′B ∈ δmB (qB, ·) includes at least one final state

qF ∈ QF .

Based on the definition of accepting edges, we define the set VF ⊆ V that collects all

states qB ∈ V from which an accepting edge originates, i.e.,

VF = {qB ∈ V | ∃ accepting edge (qB, q
′
B) ∈ E}. (9.6)

By definition of the accepting condition of the NBA, we have that if at least one of the

accepting edges is traversed infinitely often, then the corresponding LTL formula is satisfied.

Similar to [25], we define the distance of any state qB ∈ V to the set VF ⊆ V as

dF (qB,VF ) = min
q′B∈VF

d(qB, q
′
B), (9.7)

where d(qB, q
′
B) is defined in (9.5) and VF is defined in (9.6); see also Fig. 9.4.
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9.2.3 Online Symbolic Controller

In this Section, we present how manipulation commands are generated online. The main

idea can be summarized as follows. Once the continuous-time controller accomplishes the

assigned sub-task, a new target automaton state is selected and a new manipulation com-

mand is generated. In case the continuous-time controller fails to accomplish the assigned

sub-task (because e.g., a target region of interest is surrounded by fixed obstacles), the sym-

bolic controller checks if there exists an alternative command that ensures reachability of

the target automaton state (e.g., consider a case where a given target NBA state can be

reached if the robot goes to either region `1 or `2). If there are no alternative commands

to reach the desired automaton state, then a new target automaton state is selected that

also decreases the distance to satisfying the accepting NBA condition. If there are no other

automaton states that can decrease this distance, a message is returned stating that the

robot cannot accomplish the assigned mission.

More specifically, the proposed controller requires as an input the graph G defined in

Section 9.2.2, and selects NBA states that the robot should visit next so that the distance

to the final states, as per (9.7), decreases over time. Namely, let qB(t) ∈ V be the NBA

state that the robot has reached after navigating the unknown environment for t time units.

At time t = 0, qB(t) is selected to be the initial NBA state. Given the current NBA state

qB(t), the robot selects a new NBA state, denoted by qnext
B ∈ V that it should reach next to

make progress towards accomplishing their task. This state is selected among the neighbors

of qB(t) in the graph G based on the following two cases. If qB(t) /∈ VF , where VF is defined

in (9.6), then among all neighboring nodes, we select one that satisfies

dF (qnext
B ,VF ) = dF (qB(t),VF )− 1, (9.8)

i.e., a state that is one hop closer to the set VF than qB(t) is where dF is defined in (9.7).

Under this policy of selecting qnext
B , we have that eventually qB(t) ∈ VF ; controlling the

robot to ensure this property is discussed in Section 9.4. If qB(t) ∈ VF , then the state qnext
B
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is selected so that (qB(t), qnext
B ) is an accepting edge as per Definition 9.3. This way we

ensure that accepting edges are traversed infinitely often and, therefore, the assigned LTL

task is satisfied.

Given the selected state qnext
B , a feasible symbol is selected that can enable the transition

from qB(t) to qnext
B , i.e., can incur the run (9.4). By definition of the run in (9.4), it suffices

to select a symbol that satisfies the following Boolean formula:

bqB ,q
′
B = bqB ,q

1
B ∧ bq2B ,q3B ∧ . . . bqK−1

B ,qKB ∧ bqKB ,qKB , (9.9)

where qKB = qnext
B . In words, the Boolean formula in (9.9) is the conjunction of all Boolean

formulas bq
k−1
B ,qkB that need to be satisfied simultaneously to reach qnext

B = qKB through a

multi-hop path. Once such a symbol is generated, a point-to-point navigation and manipu-

lation command is accordingly generated. For instance, if this symbol is πak(Mi,`j) then the

robot has to apply the action ak(Mi, `j), i.e., go to a known region of interest `j and apply

action ak to the movable object Mi. The online implementation of such action is discussed

in Section 9.4.

9.2.4 Completeness of the Symbolic Controller

Here, we provide conditions under which the proposed discrete controller is complete.

Proposition 9.1 (Completeness). Assume that there exists at least one infinite sequence of

manipulation actions in the set A that satisfies φ. If the environmental structure and the

continuous-time controller always ensure that at least one of the candidate next NBA states

can be reached, then the proposed discrete algorithm is complete, i.e., a feasible solution will

be found.3

Proof. Included in Appendix C.7.
3Given the current NBA state, denoted by qB(t), the symbolic controller selects as the next NBA state,

a state that is reachable from qB(t) and closer to the final states as per the proposed distance metric. All
NBA states that satisfy this condition are called candidate next NBA states. Also, reaching an NBA state
means that at least one of the manipulation actions required to enable the transition from qB(t) to the next
NBA state is feasible.
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Note that the graph G is agnostic to the structure of the environment, meaning that an

edge in G may not be able to be traversed. For instance, consider an edge in this graph

that is enabled only if the robot applies a certain action to a movable object that is in a

region blocked by fixed obstacles; in this case the continuous-time controller will not be

able to execute this action due to the environmental structure. Satisfaction of the second

assumption in Proposition 9.1 implies that if such scenarios never happen, (e.g., all regions

and objects that the robot needs to interact with are accessible and the continuous-time

controller allows the robot to reach them) then the proposed hybrid control method will

satisfy the assigned LTL task if this formula is feasible. However, if the second assumption

does not hold, there may be an alternative sequence of automaton states to follow in order

to satisfy the LTL formula that the proposed algorithm failed to find due to the à-priori

unknown structure of the environment.

9.3 Interface Layer Between the Symbolic and the Reactive

Controller

We assume that the robot is nominally in an LTL mode, where it executes sequentially

the commands provided by the symbolic controller described in Section 9.2. We use an

interface layer between the symbolic controller and the reactive motion planner, as shown

in Fig. 9.2, to translate each action to an appropriate gripper command (g = 0 for Move

and GraspObject, and g = 1 for ReleaseObject), and a navigation command toward

a target xd. If the provided action is Move(`j) or ReleaseObject(Mi, `j), we pick as xd

the centroid of region `j . If the action is GraspObject(Mi), we pick as xd a collision-free

location on the boundary of object Mi, contained in the freespace F .

Consider again the example shown in Fig. 9.1. The first step of the assembly requires

the robot to move object M1 to `2 which, however, is occupied by the object M2. In this

case, instead of reporting that the assigned LTL formula cannot be satisfied, we allow the

robot to temporarily pause the command execution from the symbolic controller and switch

to a Fix mode and push objectM2 away from `1, before resuming the execution of the action
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instructed by the symbolic controller. For plan fixing purposes, we introduce a fourth action,

DisassembleObject(Mi,x
∗), invisible to the symbolic controller, instructing the robot to

push the object Mi (after it has been grasped using GraspObject) toward a position x∗

on the boundary of the freespace until specific separation conditions are satisfied. Hence,

an additional responsibility of the interface layer (when in Fix mode) is to pick the next

object to be grasped and disassembled from a stack of blocking movable objects BM, as well

as the target xd of each DisassembleObject action, until the stack BM becomes empty4;

see Section 9.4.3.

Finally, the interface layer (a) requests a new action from the symbolic controller, if the

robot successfully converges to xd to complete the current action execution, or (b) reports

that the currently executed action ak(Mi, `j) (associated with a movable object Mi and a

region of interest `j) is infeasible and requests an alternative action, if the topology checking

module outlined in Section 9.4.2 determines that the goal xd is surrounded by fixed obstacles.

9.4 Symbolic Action Implementation

In this Section, we describe the online implementation of our symbolic actions, assuming

that the robot has already picked a target xd using the interface layer from Section 9.3.

As reported above, in the LTL mode, the robot executes commands from the symbolic

controller, using one of the actions Move, GraspObject and ReleaseObject. The

robot exits the LTL mode and enters the Fix mode when one or more movable objects block

the target destination xd; in this mode, it attempts to rearrange blocking movable objects

using a sequence of the actions GraspObject and DisassembleObject, before returning

to the LTL mode.

The “backbone” of the symbolic action implementation is the reactive, vector field motion

planner from Chapter 8, allowing either a fully actuated or a differential-drive robot to prov-

ably converge to a designated fixed target while avoiding all obstacles in the environment.

When the robot is gripping an object i, we use the method from Chapter 4 for generating
4The exclusion of the negation operator from the LTL syntax, as assumed in Section 9.1, guarantees that

each DisassembleObject action will not interfere with the satisfaction of the LTL formula φ, e.g., the
robot will not disassemble an object that should not be grasped or moved.
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virtual commands for the center xi,c of the circumscribed disk with radius (ρi+r), enclosing

the robot and the object. Namely, we assume that the robot-object pair is a fully actuated

particle with dynamics ẋi,c = ui,c(xi,c), design our control policy ui,c using the same vector

field controller, and translate to commands u = (v, ω) for our differential drive robot as

u := Ti,c(ψ)−1 ui,c, with Ti,c(ψ) the Jacobian of the gripping contact, i.e., ẋi,c = Ti,c(ψ)u.

This reactive controller assumes that a path to the goal always exists (i.e., the robot’s

freespace is path-connected), and does not consider cases where the target is blocked either

by a fixed obstacle or a movable object5. Hence, here, after including a brief overview of

the reactive, vector field motion planner from Chapter 8 (Section 9.4.1), we extend the

algorithm’s capabilities by providing a topology checking algorithm (Section 9.4.2) that

detects blocking movable objects or fixed obstacles, as outlined in Fig. 9.2. Based on these

capabilities, we finally describe our symbolic action implementations (Section 9.4.3).

9.4.1 Reactive Controller Overview

As described in Chapter 8 and shown in Fig. 9.5, the robot navigates the physical space

and discovers obstacles (e.g., using the semantic mapping engine in [30]), which are dilated

by the robot radius and stored in the semantic space. Potentially overlapping obstacles in

the semantic space are subsequently consolidated in real time to form the mapped space.

A change of coordinates h from this space is then employed to construct a geometrically

simplified (but topologically equivalent) model space, by merging familiar obstacles over-

lapping with the boundary of the enclosing freespace to this boundary, deforming other

familiar obstacles to disks, and leaving unknown obstacles intact. As shown in Chapter 8,

the constructed change of coordinates hI between the mapped and the model space, for a

given index set I of instantiated familiar obstacles, is a C∞ diffeomorphism away from sharp

corners. Using the diffeomorphism hI , we construct a hybrid vector field controller (with

the modes indexed by I, i.e., depending on external perceptual updates), that guarantees

simultaneous obstacle avoidance and target convergence, while respecting input command
5The possibility of an entirely unknown blocking convex obstacle is precluded by our separation assump-

tions in Section 9.1.
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limits, in unexplored semantic environments (see (8.1)).

9.4.2 Topology Checking Algorithm

The topology checking algorithm is used to detect freespace disconnections, update the

robot’s enclosing freespace Fe, and modify its action by switching to the Fix mode, if

necessary. In summary, the algorithm’s input is the initially assumed polygonal enclosing

freespace Fe for either the robot or the robot-object pair, along with all known dilated

movable objects inM and fixed obstacles in PI (corresponding to the index set I of localized

familiar obstacles). The algorithm’s output is the detected enclosing freespace Fe, used for

the diffeomorphism construction in the reactive controller (Chapter 8), along with a stack

of blocking movable objects BM and a Boolean indication of whether the current symbolic

action is feasible. Based on this output, the robot switches to the Fix mode when the

stack BM becomes non-empty, and resumes execution from the symbolic controller once all

movable objects in BM are disassembled.

More specifically, this algorithm works as follows (see Algorithm 9.1). Starting with the

initially assumed polygonal enclosing freespace Fe for either the robot or the robot-object

pair, we subtract the union of all known dilated movable objects inM and fixed obstacles

in PI (corresponding to the index set I of localized familiar obstacles), using standard

logic operations with polygons (see e.g., [41, 53, 55]). This operation results in a list of

freespace components, which we denote by LF := (F1,F2, . . .). From this list, we identify

the freespace F as the freespace component Fk that contains the robot position x (or the

robot-object pair center xi,c) and re-define the enclosing freespace as its convex hull, i.e.,

Fe := Conv
(
Fk
)
.

If the goal xd is contained in Fe, the reactive controller proceeds as usual, using Fe
for the diffeomorphism construction (see Section 9.4.1), and treating all other freespace

components as obstacles. Otherwise, we need to check whether movable objects or fixed

obstacles cause a freespace disconnection that does not allow for successful action completion.

Namely, we need to check whether both the robot position x (or the robot-object pair

center xi,c) and the target xd are included in the same connected component of the set
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LF+M := (
⋃
iFi) ∪

(⋃
jMj

)
, i.e., the union of all freespace components in LF with all

dilated movable objects in M. This would imply that a subset of movable objects in M

blocks the target configuration. In that case, the robot switches to the Fix mode to rearrange

these objects; otherwise, the interface layer reports to the symbolic controller that the current

action is infeasible.

In the former case, we proceed one step further to identify the blocking movable objects in

order to reconfigure them on-the-fly. First, we isolate the connected components of the union

of all movable objects inM into a list LM := (M1,M2, . . .); we refer to the elements of that

list as the movable object clusters. Assuming that each movable object cluster is connected

to at most two freespace components from LF , we build a connectivity tree rooted at the

robot’s (or the robot-object pair’s) freespace F , by checking whether the closures of two

individual regions overlap; the tree’s vertices are geometric regions (freespace components

in LF and movable object clusters in LM) and edges denote adjacency. We then backtrack

from the vertex of the tree that contains the goal xd until we reach the root, saving the

encountered movable object clusters along the way. Any movable object intersecting any of

these clusters is pushed to a stack of blocking movable objects BM, that the robot needs to

disassemble. An algorithmic overview of the method is included in Algorithm 9.1.

9.4.3 Action Implementation

We are now ready to describe the used symbolic actions. The symbolic action Move(`j)

simply uses the reactive controller to navigate to the selected target xd, as described in

Section 9.4.1. Similarly, the symbolic action GraspObject(Mi) uses the reactive controller

to navigate to a collision-free location on the boundary of object Mi, and then aligns the

robot so that its gripper faces the object, in order to get around Brockett’s condition [34].

ReleaseObject(Mi, `j) uses the reactive controller to design inputs for the robot-object

center xi,c and translates them to differential drive commands through the center’s Jacobian

Ti,c(ψ), in order to converge to the goal xd.

Finally, the action DisassembleObject(Mi,xd) is identical to ReleaseObject, with

two important differences. First, we heuristically select as target xd the middle point of the
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Algorithm 9.1 Topology Checking Algorithm.
function TopologyChecking(x,xd,Fe,M,PI)
LF ← Subtract(Fe, Union(M,PI))
for Fk ∈ LF do

if x ∈ Fk then
F ← Fk
Fe ← Conv(Fk)
break

end if
end for
if xd ∈ F then
BM ← ∅ . No blocking objects or obstacles
IsFeasible← True . Task feasible

else
LF+M ← (

⋃
iFi) ∪ (

⋃
jMj),Fi ∈ LF ,Mj ∈M

for Fk ∈ LF+M do
if x ∈ Fk then

if xd ∈ Fk then
LM ←

⋃
jMj ,Mj ∈M

(VL, EL)← ConnectTree(LF ,LM)
for V ∈ VL do

if xd ∈ V then
BM ← BacktrackFrom(V )
break

end if
end for
IsFeasible← True

else
BM ← ∅ . Blocked by fixed obstacles
IsFeasible← False

end if
break

end if
end for

end if
return Fe, IsFeasible,BM

end function
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Figure 9.5: Demonstration of local LTL plan fixing, where the task is to navigate to region 1, captured by
the LTL formula φ = ♦πa1(∅,`1) where `1 refers to region 1 in the figure. (a) The robot starts navigating
to its target, until it localizes the two rectangular obstacles and recognizes that the only path to the goal
is blocked by a movable object. (b) The robot switches to the Fix mode, grips the object, and (c) moves it
away from the blocking region, until the separation assumptions outlined in Section 9.4.3 are satisfied. (d)
It then proceeds to complete the task.

edge of the polygonal freespace F that maximizes the distance to all other movable objects

(except Mi) and all regions of interest `j . Second, in order to accelerate performance and

shorten the resulting trajectories, we stop the action’s execution if the robot-object pair,

centered at xi,c does not intersect any region of interest and the distance of xi,c from all other

objects in the workspace is at least 2(r + maxk∈BM ρk), as this would imply that dropping

the object in its current location would not block a next step of the disassembly process.

Even though we do not yet report on formal results pertaining to the task sequence in the

Fix mode, the DisassembleObject action maintains formal results of obstacle avoidance

and target convergence to a feasible xd, using our reactive, vector field controller.

9.5 Illustrative Simulations

In this Section, we implement simulated examples of different tasks in various environments

using our architecture, shown in Fig. 9.2. All simulations were run in MATLAB using
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Figure 9.6: Executing the LTL formula φ = ♦(πa1(∅,`1) ∧ ♦(πa1(∅,`2) ∧ ♦(πa2(M1,∅) ∧ ♦πa3(M1,`3)))) in an
environment cluttered with known walls (black) and unknown convex obstacles (grey).

ode45, leveraging and enhancing the presentation infrastructure from Chapters 7 - 86. The

discrete controller and the interface layer are implemented in MATLAB, whereas the re-

active controller is implemented in Python and communicates with MATLAB using the

standard MATLAB-Python interface. For our numerical results, we assume perfect robot

state estimation and localization of obstacles using the onboard sensor, which can instantly

identify and localize either the entirety of familiar obstacles or fragments of unknown obsta-

cles within its range. The reader is referred to the accompanying video submission of [206]7

for visual context and additional simulations.

9.5.1 Demonstration of Local LTL Plan Fixing

Fig. 9.5 includes a demonstration of a simple task, encoded in the LTL formula φ =

♦πa1(∅,`1), i.e., eventually execute the action Move to navigate to region 1, demonstrating

how the Fix mode for local rearrangement of blocking movable objects works.
6See https://github.com/KodlabPenn/semnav_matlab.
7https://youtu.be/grypNPM1zo4
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Figure 9.7: An illustrative execution of the problem depicted in Fig. 9.1. The task is specified by the LTL
formula (9.1) requires the counterclockwise rearrangement of 3 objects in an environment cluttered with
some unanticipated familiar (initially dark grey and then black upon localization) and some completely
unknown (light grey) fixed obstacles.

9.5.2 Executing More Complex LTL Tasks

Fig. 9.6 includes successive snapshots of a more complicated LTL task, captured by the

formula

φ = ♦(πa1(∅,`1) ∧ ♦(πa1(∅,`2) ∧ ♦(πa2(M1,∅) ∧ ♦πa3(M1,`3))))

which instructs the robot to first navigate to region 1, then navigate to region 2, and finally

grasp object 1 and move it to region 3, in an environment cluttered with both familiar

non-convex and completely unknown convex obstacles. Before navigating to region 1, the

robot correctly identifies that the movable object disconnects its freespace and proceeds to

disassemble it. After visiting region 2, it then revisits the movable object, grasps it and

moves it to the designated location to complete the required task. The reader is referred

to the video submission of [206]7 for visual context regarding the evolution of all planning

spaces (semantic, mapped and model space) during the execution of this task, as well as

several other simulations with more movable objects, including (among others) a task where
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the robot needs to patrol between some predefined regions of interest in an environment

cluttered with obstacles by visiting each one of them infinitely often.

9.5.3 Execution of Rearrangement Tasks

Finally, a promising application of our reactive architecture concerns rearrangement planning

with multiple movable pieces. Traditionally, such tasks are executed using sampling-based

planners, whose offline search times can blow up exponentially with the number of movable

pieces in the environment (see, e.g., [209, Table I]). Instead, as shown in Fig. 9.7, the

persistent nature of our reactive architecture succeeds in achieving the given task online in

an environment with multiple obstacles, even though our approach might require more steps

and longer trajectories in the overall assembly process than other optimal algorithms [210].

Moreover, the LTL formulas for encoding such tasks are quite simple to write (see (9.1) for

the example in Fig. 9.7), instructing the robot to grasp and release each object in sequence;

the reactive controller is capable of handling obstacles and blocking objects during execution

time. The accompanying video submission of [206]7 includes a rearrangement example with

4 movable objects, requiring more steps in the assembly process.
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Chapter 10

Conclusion and Ideas for Future Work

This concluding Chapter presents a summary of observations about the reported work and

discusses possible future directions.

10.1 Conclusion

This research suggests with formal arguments and empirical demonstration the effectiveness

of a hierarchical control structure for highly dynamic physical systems in mobile manip-

ulation settings, shown in Fig. 1.1. We believe this is the first provably correct delibera-

tive/reactive planner to engage an unmodified general purpose mobile manipulator in physi-

cal rearrangements of its environment, by moving objects with size comparable to the robot’s

size among unanticipated conditions and obstacles (Chapters 4 - 5). To this end, we have

developed the mobile manipulation maneuvers to accomplish each task at hand (Chapter 5),

successfully anchored the useful kinematic unicycle template to control the highly dynamic

Minitaur robot (Chapter 3) and integrated perceptual feedback with low-level control to

coordinate the robot’s movement (Chapter 5).

At the same time, this research exploits recent developments in semantic SLAM [30]

and object pose and triangular mesh extraction using convolutional neural net architectures

[93, 106, 148] to provide an avenue for incorporating partial prior knowledge within a deter-

ministic framework well suited to existing vector field planning methods [7]. The developed
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algorithms guarantee collision avoidance and convergence to the designated goal for both a

differential drive robot and a differential drive robot gripping and manipulating objects, in a

workspace cluttered with completely unknown convex obstacles (Chapters 3 - 4), completely

unknown non-convex obstacles (Chapter 5) that obey specific “length-scale” geometric as-

sumptions [152], or “familiar”, online recognizable non-convex obstacles (Chapters 6 - 8).

Based on these capabilities, we build an interface between the developed reactive schemes

and an abstract temporal logic engine [92] for addressing logically complex tasks, and reduce

the overall offline deliberative planning time by greedily rearranging the workspace during

execution time when a given sub-task is not feasible (Chapter 9).

10.2 Proposed Future Work

In the following, we present research currently underway or propose ideas for future work,

that could significantly enhance the hierarchical architecture of Fig. 1.1.

10.2.1 Deliberative Layer

Ongoing research seeks to expand the mobile manipulation work with Minitaur, presented

in Part II, and address more complex tasks in 2.5D environments (planar workspaces clut-

tered with “platforms” of discrete height values that the robot can exploit). As a particular

example, we consider tasks where a quadrupedal robot (such as Minitaur) is trapped in a

cluttered area and, in order to escape its confines, it must rearrange the environment so

that it can execute a sequence of highly dynamic jumping maneuvers, such as climbing the

surrounding “clutter” or jumping across gaps. Finding a reasonable plan in this domain is

quite challenging (even when assuming a deterministic robot in a fully observable world)

since the robot must consider the pose of each movable object, and the ways in which that

pose can affect the problem solution. That problem is exacerbated when we abandon the

planar workspaces considered in this thesis and instead focus on 2.5D environments, as this

introduces additional challenges related to the description of implicit geometric constraints

used for collision detection during the deliberative search, and makes the problem combina-

torially hard by significantly increasing the number of required samples. However, following
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the architecture outlined in Fig. 1.1, we intend to show that such problems can be solved

efficiently, by letting the deliberative planner focus on just the high-level task planning prob-

lem, since the reactive planner can guarantee target convergence to any point in the robot’s

connected component of the configuration space, using the reactive layer for local obstacle

avoidance with sensor feedback, and extending the gait layer to accommodate more complex

pedipulation maneuvers [191].

Initial results demonstrating a simulation example of Minitaur successfully executing

such a complex task are included in Fig. 10.1. The robot is tasked with moving to a

predefined position on top of a table, which is initially unreachable; to reach its target, the

robot needs to first grab and move the circular table to a suitable position and then perform

a sequence of dynamic jumping maneuvers that also exploit other immovable objects in the

environment. Following Fig. 1.1, the deliberative layer reasons about the known movable

objects in the environment (round table, rectangular tables, boxes), and the sequence of

actions that achieve the desired task and connect the disconnected configuration space.

The reactive layer uses sensory feedback from the onboard camera and LIDAR to make

sure that the robot avoids unexpected obstacles in the workspace during the execution of

each action, and carefully aligns the robot with the objects before the execution of each

dynamic maneuver using AprilTags [214]. Finally, the gait layer receives the commands

from the reactive layer (such as distance and bearing to objects that the robot needs to

grab, or desired forward velocity and yaw rate as outlined in Chapter 3) and executes

the corresponding steady-state (Walk or Push-Walk, following Chapter 5) and dynamic

maneuvers (Mount, Dismount, Jump [191]), using low-level feedback from the robot joints

and IMUs.

10.2.2 Interface Layer

In Chapter 9, we propose a novel hybrid control architecture for achieving complex tasks

with mobile manipulators in the presence of unanticipated obstacles and conditions, using

an interface between an abstract temporal logic engine and a reactive controller for target

convergence and collision avoidance. However, we have not yet provided any formal claims on
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Figure 10.1: Simulation example in Gazebo, with Minitaur successfully manipulating and exploiting
its environment with dynamic jumping and other pedipulation maneuvers [191] to reach its target.
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Start

Initial Goal

Figure 10.2: Navigation toward a semantic target with Turtlebot. The robot is initially tasked with
moving to a predefined location, unless it detects and localizes a cart; in that case it has to approach
and face the cart. The last column (Top: snapshot of the physical workspace, Bottom: illustration
of the recorded trajectory in RViz) shows that the robot successfully executes the task.

that interface, and the local plan fixing, mobile manipulation vector field does not necessarily

guarantee task completion (e.g., in tightly packed workspaces). Future work could focus on

providing end-to-end correctness guarantees for the architecture shown in Fig. 9.2, using a

more elaborate intermediate goal selection scheme for plan fixing purposes (see e.g., [10])

that assures task completion under some conservative assumptions about the environment,

as well as extensions to multiple robots for collaborative manipulation tasks.

Figs. 10.2 and 10.3 present snapshots from experiments in settings falling outside the

scope of the formal results in Chapter 7 that illustrate how we can use the perceptual

infrastructure developed in Chapters 7 - 8 to further enhance the interface layer and make the

robot capable of reasoning about its environment. In Fig. 10.2, we command the Turtlebot

robot to move to a geometrically predefined target, unless it sees and localizes a cart; in

that case, it is tasked with approaching and facing the cart with its camera. As shown

in the bottom row of Fig. 10.2, the robot avoids familiar obstacles, localizes the cart and

proceeds to properly approach it, with the right orientation. We take this approach one

step further with the example shown in Fig. 10.3, using the Minitaur platform. Using the

mobile manipulation primitives developed in [191], we task the robot by not only localizing

and approaching the cart, but also jumping to grab and mount it. Therefore, future work
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Figure 10.3: Using reactive navigation with mobile manipulation primitives on Minitaur. Similarly
to Fig. 10.2, the robot is tasked with moving to a predefined location, unless it detects and localizes a
cart; in that case it has to approach and jump to mount the cart, using a maneuver from [191]. Top:
Recorded snapshots of the physical workspace, Middle: First-person view with semantic keypoints
of familiar obstacles shown as red dots, Bottom: RViz illustration of the recorded semantic map.

could seek to develop a more elaborate interface layer that uses such perceptual schemes

to reason about objects in the workspace. For example, one could develop a visuotactile

algorithm that lets the robot not only observe a particular object that blocks a passage to

its goal, but also use its limbs to feel it and decide whether it is movable; the robot could

then deduce whether to declare failure to the task planner and re-plan, or simply grasp

the object and push it to clear the path. Finally, we could consider scenarios where the

interface layer decides whether the robot should switch from navigation to exploration and

vice versa (using, e.g., motivation dynamics [161]), while preserving formal guarantees of

target convergence and obstacle avoidance.

10.2.3 Reactive Layer

We believe the methods developed in Chapters 6 - 8 for generating in real time simple, topo-

logically equivalent model spaces and pulling back the model controller through the corre-

sponding diffeomorphism can be applied to diverse, philosophically alternative approaches

to our purely reactive formulation of motion planning. For example, sampling-based (prob-

abilistically complete) offline planners have been shown to benefit from integration with

even geometrically naive locally reactive methods [11] that can mitigate difficulties such as

finding paths through narrow passages. We imagine that even greater simplification of the
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steering and collision-checking issues arising from sampling-based methods in partially “fa-

miliar” geometrically complicated environments [24, 119] might be achieved by shifting the

problem of finding a feasible path to a topologically equivalent, metrically simple abstracted

model wherein planning might be significantly faster. The robot could then be tasked to

follow a generated path in the abstract space (e.g., along the lines of [8]) and the associated

commands can be pulled back to the physical space through the diffeomorphism. Careful

future inquiry will be needed to explore such deliberative-reactive hybrid uses for the online

topological abstraction of familiar geometry developed here.

Moreover, future work could relax the required degree of partial knowledge and the

separation assumptions needed for our formal results, by merging the “implicit representation

trees” (e.g. see Fig. A.1) online, when needed. As a particular example, Chapters 7 - 8 use

only an RGB camera to detect and reconstruct familiar obstacles in the environment, using

deep learning. We could, however, imagine architectures that use more elaborate sensory

schemes with 3D LIDARs; in this way, the robot would explore its workspace and use its

3D LIDAR to incrementally build an implicit representation of the surrounding (geometric)

environment that would be deformed in real time to its topological model space, used for

navigation during execution time.

In the longer term, we believe that concepts from the literature on convex decompo-

sition of polyhedra [122] may afford a generalization beyond our present restriction to 2D

workspaces toward the challenge of navigating partially known environments in higher di-

mension. Even though the currently presented algorithms would be restricted to shapes with

genus zero (no holes), one could develop algorithms that “patch” the holes of shapes with

non-zero genus when they are not important, and use the same principles for navigation.

Separate research, but related to the problem of reactive planning for more interesting con-

figuration spaces, could focus on robots with more complex and/or differentially constrained

motion models, such as autonomous winged aircrafts.

Finally, research currently underway considers extensions of our reactive planning al-

gorithms to (mildly) adversarial environments with moving obstacles and/or aggressively
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moving targets, to allow for smoother integration of mobile robots in human-crowded envi-

ronments. Although the objective of obstacle avoidance in such scenarios remains the same,

we might need to depart from the notion of “target convergence” in the Lyapunov sense and

come up with a different criterion, that allows the robot to simply track a given target in

adversarial conditions, while avoiding getting trapped in unfavorable configurations.

10.2.4 Gait Layer

Throughout this work, we use the kinematic unicycle model as a well-behaved, steady-state

template for legged locomotion on the horizontal plane (see Chapter 3), even though we have

just offered an empirical anchoring algorithm for the Minitaur and Spirit robots. Future work

could aim to make formal arguments about the anchoring of the kinematic unicycle model

on different gaits or, alternatively, propose a different navigation template for legged robots

(perhaps by fusing traditional templates, such as the first or second order differential drive

model, with footstep planning) and accordingly modify the presented reactive navigation

strategies for more efficient application in outdoor settings with challenging terrains. Future

work could similarly focus on transitional maneuvers [191] and address the problem of more

closely integrating the reactive and deliberative planners, while maintaining provable prop-

erties such as assured successful maneuver execution and tracking of template commands

(e.g., desired speed, jump height) provided by the reactive layer.
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Appendix A

Computational Geometry Methods

A.1 Implicit Representation of Obstacles with R-functions
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<latexit sha1_base64="+/EwHXWHPAt/DLb4IAnTu6ZcTf8=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuFloGbSwTMA9Iljg7mU2GzGOdmRXCkp+wsVDE1t+xs/FbnDwKTTxw4XDOvdx7T5RwZqzvf3m5ldW19Y38ZmFre2d3r7h/0DAq1YTWieJKtyJsKGeS1i2znLYSTbGIOG1Gw5uJ33yk2jAl7+wooaHAfcliRrB1UqujBO3j7kW3WPLL/hRomQRzUqoc1b7vAaDaLX52eoqkgkpLODamHfiJDTOsLSOcjgud1NAEkyHu07ajEgtqwmx67xidOqWHYqVdSYum6u+JDAtjRiJynQLbgVn0JuJ/Xju18VWYMZmklkoyWxSnHFmFJs+jHtOUWD5yBBPN3K2IDLDGxLqICi6EYPHlZdI4Lwd+Oai5NK5hhjwcwwmcQQCXUIFbqEIdCHB4ghd49R68Z+/Ne5+15rz5zCH8gffxA0n2kaI=</latexit><latexit sha1_base64="yf/TyBBRjXLGEyR7YfJOr4bQ2l0=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuFlqG2FgmYB6QhDA7mU2GzGOdmRXCkp+wsVDE1sK/8AvsbPwWJ49CEw9cOJxzL/feE8acGev7X15mZXVtfSO7mdva3tndy+8f1I1KNKE1orjSzRAbypmkNcssp81YUyxCThvh8HriN+6pNkzJWzuKaUfgvmQRI9g6qdlWgvZx96KbL/hFfwq0TII5KZSOqt/svfxR6eY/2z1FEkGlJRwb0wr82HZSrC0jnI5z7cTQGJMh7tOWoxILajrp9N4xOnVKD0VKu5IWTdXfEykWxoxE6DoFtgOz6E3E/7xWYqOrTspknFgqyWxRlHBkFZo8j3pMU2L5yBFMNHO3IjLAGhPrIsq5EILFl5dJ/bwY+MWg6tIowwxZOIYTOIMALqEEN1CBGhDg8ABP8OzdeY/ei/c6a81485lD+APv7QebN5Ne</latexit><latexit sha1_base64="yf/TyBBRjXLGEyR7YfJOr4bQ2l0=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuFlqG2FgmYB6QhDA7mU2GzGOdmRXCkp+wsVDE1sK/8AvsbPwWJ49CEw9cOJxzL/feE8acGev7X15mZXVtfSO7mdva3tndy+8f1I1KNKE1orjSzRAbypmkNcssp81YUyxCThvh8HriN+6pNkzJWzuKaUfgvmQRI9g6qdlWgvZx96KbL/hFfwq0TII5KZSOqt/svfxR6eY/2z1FEkGlJRwb0wr82HZSrC0jnI5z7cTQGJMh7tOWoxILajrp9N4xOnVKD0VKu5IWTdXfEykWxoxE6DoFtgOz6E3E/7xWYqOrTspknFgqyWxRlHBkFZo8j3pMU2L5yBFMNHO3IjLAGhPrIsq5EILFl5dJ/bwY+MWg6tIowwxZOIYTOIMALqEEN1CBGhDg8ABP8OzdeY/ei/c6a81485lD+APv7QebN5Ne</latexit><latexit sha1_base64="cHD34vM4ry77zguUi2OX7xfJMzY=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe600DJoYxnBfEByhL3NXLJk9/bc3RNCyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUPMGG5VZgO9VIZSSwFY1uZ37rCbXhKnmw4xRDSQcJjzmj1kntrpI4oL3LXrniV/05yCoJclKBHPVe+avbVyyTmFgmqDGdwE9tOKHaciZwWupmBlPKRnSAHUcTKtGEk/m9U3LmlD6JlXaVWDJXf09MqDRmLCPXKakdmmVvJv7ndTIbX4cTnqSZxYQtFsWZIFaR2fOkzzUyK8aOUKa5u5WwIdWUWRdRyYUQLL+8SpoX1cCvBvd+pXaTx1GEEziFcwjgCmpwB3VoAAMBz/AKb96j9+K9ex+L1oKXzxzDH3ifP7tPj70=</latexit>

!4
<latexit sha1_base64="xfyGt3Go3ISmBHUf+92XnLcvYPE=">AAAB73icbVDJSgNBEK2JW4xbVPDipTEInsKMCHoMevGYgFkgGWJPpydp0svY3SOEIT/hxYMiXv0db178FjvLQRMfFDzeq6KqXpRwZqzvf3m5ldW19Y38ZmFre2d3r7h/0DAq1YTWieJKtyJsKGeS1i2znLYSTbGIOG1Gw5uJ33yk2jAl7+wooaHAfcliRrB1UqujBO3j7kW3WPLL/hRomQRzUqoc1b7vAaDaLX52eoqkgkpLODamHfiJDTOsLSOcjgud1NAEkyHu07ajEgtqwmx67xidOqWHYqVdSYum6u+JDAtjRiJynQLbgVn0JuJ/Xju18VWYMZmklkoyWxSnHFmFJs+jHtOUWD5yBBPN3K2IDLDGxLqICi6EYPHlZdI4Lwd+Oai5NK5hhjwcwwmcQQCXUIFbqEIdCHB4ghd49R68Z+/Ne5+15rz5zCH8gffxA0t6kaM=</latexit><latexit sha1_base64="U1tJz9imrJHMKV8w7tEddUtJDrE=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuCFqG2FgmYB6QhDA7mU2GzGOdmRXCkp+wsVDE1sK/8AvsbPwWJ49CEw9cOJxzL/feE8acGev7X15mZXVtfSO7mdva3tndy+8f1I1KNKE1orjSzRAbypmkNcssp81YUyxCThvh8HriN+6pNkzJWzuKaUfgvmQRI9g6qdlWgvZx96KbL/hFfwq0TII5KZSOqt/svfxR6eY/2z1FEkGlJRwb0wr82HZSrC0jnI5z7cTQGJMh7tOWoxILajrp9N4xOnVKD0VKu5IWTdXfEykWxoxE6DoFtgOz6E3E/7xWYqOrTspknFgqyWxRlHBkFZo8j3pMU2L5yBFMNHO3IjLAGhPrIsq5EILFl5dJ/bwY+MWg6tIowwxZOIYTOIMALqEEN1CBGhDg8ABP8OzdeY/ei/c6a81485lD+APv7Qecu5Nf</latexit><latexit sha1_base64="U1tJz9imrJHMKV8w7tEddUtJDrE=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuCFqG2FgmYB6QhDA7mU2GzGOdmRXCkp+wsVDE1sK/8AvsbPwWJ49CEw9cOJxzL/feE8acGev7X15mZXVtfSO7mdva3tndy+8f1I1KNKE1orjSzRAbypmkNcssp81YUyxCThvh8HriN+6pNkzJWzuKaUfgvmQRI9g6qdlWgvZx96KbL/hFfwq0TII5KZSOqt/svfxR6eY/2z1FEkGlJRwb0wr82HZSrC0jnI5z7cTQGJMh7tOWoxILajrp9N4xOnVKD0VKu5IWTdXfEykWxoxE6DoFtgOz6E3E/7xWYqOrTspknFgqyWxRlHBkFZo8j3pMU2L5yBFMNHO3IjLAGhPrIsq5EILFl5dJ/bwY+MWg6tIowwxZOIYTOIMALqEEN1CBGhDg8ABP8OzdeY/ei/c6a81485lD+APv7Qecu5Nf</latexit><latexit sha1_base64="01qGGHCQh1OjHsZP4exn2q73wQM=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhMzvrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUPMGG5VZgO9VIZSSwFY1uZ37rCbXhKnmw4xRDSQcJjzmj1kntrpI4oL3LXrniV/05yCoJclKBHPVe+avbVyyTmFgmqDGdwE9tOKHaciZwWupmBlPKRnSAHUcTKtGEk/m9U3LmlD6JlXaVWDJXf09MqDRmLCPXKakdmmVvJv7ndTIbX4cTnqSZxYQtFsWZIFaR2fOkzzUyK8aOUKa5u5WwIdWUWRdRyYUQLL+8SpoX1cCvBvd+pXaTx1GEEziFcwjgCmpwB3VoAAMBz/AKb96j9+K9ex+L1oKXzxzDH3ifP7zTj74=</latexit>

!5
<latexit sha1_base64="92NX6nfTw03riNEM8LaVIqOlG68=">AAAB73icbVDJSgNBEK2JW4xbVPDipTEInsKMIHoMevGYgFkgGWJPpydp0svY3SOEIT/hxYMiXv0db178FjvLQRMfFDzeq6KqXpRwZqzvf3m5ldW19Y38ZmFre2d3r7h/0DAq1YTWieJKtyJsKGeS1i2znLYSTbGIOG1Gw5uJ33yk2jAl7+wooaHAfcliRrB1UqujBO3j7kW3WPLL/hRomQRzUqoc1b7vAaDaLX52eoqkgkpLODamHfiJDTOsLSOcjgud1NAEkyHu07ajEgtqwmx67xidOqWHYqVdSYum6u+JDAtjRiJynQLbgVn0JuJ/Xju18VWYMZmklkoyWxSnHFmFJs+jHtOUWD5yBBPN3K2IDLDGxLqICi6EYPHlZdI4Lwd+Oai5NK5hhjwcwwmcQQCXUIFbqEIdCHB4ghd49R68Z+/Ne5+15rz5zCH8gffxA0z+kaQ=</latexit><latexit sha1_base64="r5znSO29sbG0VHJ95Y/9wsBs4HA=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuIFqG2FgmYB6QhDA7mU2GzGOdmRXCkp+wsVDE1sK/8AvsbPwWJ49CEw9cOJxzL/feE8acGev7X15mZXVtfSO7mdva3tndy+8f1I1KNKE1orjSzRAbypmkNcssp81YUyxCThvh8HriN+6pNkzJWzuKaUfgvmQRI9g6qdlWgvZx96KbL/hFfwq0TII5KZSOqt/svfxR6eY/2z1FEkGlJRwb0wr82HZSrC0jnI5z7cTQGJMh7tOWoxILajrp9N4xOnVKD0VKu5IWTdXfEykWxoxE6DoFtgOz6E3E/7xWYqOrTspknFgqyWxRlHBkFZo8j3pMU2L5yBFMNHO3IjLAGhPrIsq5EILFl5dJ/bwY+MWg6tIowwxZOIYTOIMALqEEN1CBGhDg8ABP8OzdeY/ei/c6a81485lD+APv7QeeP5Ng</latexit><latexit sha1_base64="r5znSO29sbG0VHJ95Y/9wsBs4HA=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuIFqG2FgmYB6QhDA7mU2GzGOdmRXCkp+wsVDE1sK/8AvsbPwWJ49CEw9cOJxzL/feE8acGev7X15mZXVtfSO7mdva3tndy+8f1I1KNKE1orjSzRAbypmkNcssp81YUyxCThvh8HriN+6pNkzJWzuKaUfgvmQRI9g6qdlWgvZx96KbL/hFfwq0TII5KZSOqt/svfxR6eY/2z1FEkGlJRwb0wr82HZSrC0jnI5z7cTQGJMh7tOWoxILajrp9N4xOnVKD0VKu5IWTdXfEykWxoxE6DoFtgOz6E3E/7xWYqOrTspknFgqyWxRlHBkFZo8j3pMU2L5yBFMNHO3IjLAGhPrIsq5EILFl5dJ/bwY+MWg6tIowwxZOIYTOIMALqEEN1CBGhDg8ABP8OzdeY/ei/c6a81485lD+APv7QeeP5Ng</latexit><latexit sha1_base64="GpaUXhIYwfW461WFOrliaTVaYcw=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKewKosegF48RzAOSJcxOepMhMzvrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUPMGG5VZgO9VIZSSwFY1uZ37rCbXhKnmw4xRDSQcJjzmj1kntrpI4oL3LXrniV/05yCoJclKBHPVe+avbVyyTmFgmqDGdwE9tOKHaciZwWupmBlPKRnSAHUcTKtGEk/m9U3LmlD6JlXaVWDJXf09MqDRmLCPXKakdmmVvJv7ndTIbX4cTnqSZxYQtFsWZIFaR2fOkzzUyK8aOUKa5u5WwIdWUWRdRyYUQLL+8SpoX1cCvBvd+pXaTx1GEEziFcwjgCmpwB3VoAAMBz/AKb96j9+K9ex+L1oKXzxzDH3ifP75Xj78=</latexit>

!6
<latexit sha1_base64="aUEqAhNOEIRxCg0HLAyZjPb5VjU=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuhVoGbSwTMA9Iljg7mU2GzGOdmRXCkp+wsVDE1t+xs/FbnDwKTTxw4XDOvdx7T5RwZqzvf3m5ldW19Y38ZmFre2d3r7h/0DAq1YTWieJKtyJsKGeS1i2znLYSTbGIOG1Gw5uJ33yk2jAl7+wooaHAfcliRrB1UqujBO3j7kW3WPLL/hRomQRzUqoc1b7vAaDaLX52eoqkgkpLODamHfiJDTOsLSOcjgud1NAEkyHu07ajEgtqwmx67xidOqWHYqVdSYum6u+JDAtjRiJynQLbgVn0JuJ/Xju18VWYMZmklkoyWxSnHFmFJs+jHtOUWD5yBBPN3K2IDLDGxLqICi6EYPHlZdI4Lwd+Oai5NK5hhjwcwwmcQQCXUIFbqEIdCHB4ghd49R68Z+/Ne5+15rz5zCH8gffxA06CkaU=</latexit><latexit sha1_base64="CW3W64LXK/wFsAivQEMFD4wfMzg=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuhVqG2FgmYB6QhDA7mU2GzGOdmRXCkp+wsVDE1sK/8AvsbPwWJ49CEw9cOJxzL/feE8acGev7X15mZXVtfSO7mdva3tndy+8f1I1KNKE1orjSzRAbypmkNcssp81YUyxCThvh8HriN+6pNkzJWzuKaUfgvmQRI9g6qdlWgvZx96KbL/hFfwq0TII5KZSOqt/svfxR6eY/2z1FEkGlJRwb0wr82HZSrC0jnI5z7cTQGJMh7tOWoxILajrp9N4xOnVKD0VKu5IWTdXfEykWxoxE6DoFtgOz6E3E/7xWYqOrTspknFgqyWxRlHBkFZo8j3pMU2L5yBFMNHO3IjLAGhPrIsq5EILFl5dJ/bwY+MWg6tIowwxZOIYTOIMALqEEN1CBGhDg8ABP8OzdeY/ei/c6a81485lD+APv7Qefw5Nh</latexit><latexit sha1_base64="CW3W64LXK/wFsAivQEMFD4wfMzg=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuhVqG2FgmYB6QhDA7mU2GzGOdmRXCkp+wsVDE1sK/8AvsbPwWJ49CEw9cOJxzL/feE8acGev7X15mZXVtfSO7mdva3tndy+8f1I1KNKE1orjSzRAbypmkNcssp81YUyxCThvh8HriN+6pNkzJWzuKaUfgvmQRI9g6qdlWgvZx96KbL/hFfwq0TII5KZSOqt/svfxR6eY/2z1FEkGlJRwb0wr82HZSrC0jnI5z7cTQGJMh7tOWoxILajrp9N4xOnVKD0VKu5IWTdXfEykWxoxE6DoFtgOz6E3E/7xWYqOrTspknFgqyWxRlHBkFZo8j3pMU2L5yBFMNHO3IjLAGhPrIsq5EILFl5dJ/bwY+MWg6tIowwxZOIYTOIMALqEEN1CBGhDg8ABP8OzdeY/ei/c6a81485lD+APv7Qefw5Nh</latexit><latexit sha1_base64="jb8C0d1ZwYwJBMWp2X/vmf6OzDU=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe4s1DJoYxnBfEByhL3NXLJk9/bc3RNCyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUPMGG5VZgO9VIZSSwFY1uZ37rCbXhKnmw4xRDSQcJjzmj1kntrpI4oL3LXrniV/05yCoJclKBHPVe+avbVyyTmFgmqDGdwE9tOKHaciZwWupmBlPKRnSAHUcTKtGEk/m9U3LmlD6JlXaVWDJXf09MqDRmLCPXKakdmmVvJv7ndTIbX4cTnqSZxYQtFsWZIFaR2fOkzzUyK8aOUKa5u5WwIdWUWRdRyYUQLL+8SpoX1cCvBvd+pXaTx1GEEziFcwjgCmpwB3VoAAMBz/AKb96j9+K9ex+L1oKXzxzDH3ifP7/bj8A=</latexit>

!7
<latexit sha1_base64="pBGaDBBDaNUNMG4gcK5IPxyO95Y=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuTSyDNpYJmAckS5ydzCZD5rHOzAphyU/YWChi6+/Y2fgtTh6FJh64cDjnXu69J0o4M9b3v7zc2vrG5lZ+u7Czu7d/UDw8ahqVakIbRHGl2xE2lDNJG5ZZTtuJplhEnLai0c3Ubz1SbZiSd3ac0FDggWQxI9g6qd1Vgg5wr9IrlvyyPwNaJcGClKon9e97AKj1ip/dviKpoNISjo3pBH5iwwxrywink0I3NTTBZIQHtOOoxIKaMJvdO0HnTumjWGlX0qKZ+nsiw8KYsYhcp8B2aJa9qfif10ltfBVmTCappZLMF8UpR1ah6fOozzQllo8dwUQzdysiQ6wxsS6iggshWH55lTQvy4FfDuoujWuYIw+ncAYXEEAFqnALNWgAAQ5P8AKv3oP37L157/PWnLeYOYY/8D5+AFAGkaY=</latexit><latexit sha1_base64="G8SYklfjDm9VJaFYgekuH0aqHaA=">AAAB73icbVC7SgNBFJ2NrxhfUcHGZjAIVmHXJpYhNpYJmAckS5id3CRD5rHOzAphyU/YWChia+Ff+AV2Nn6Lk0ehiQcuHM65l3vviWLOjPX9Ly+ztr6xuZXdzu3s7u0f5A+PGkYlmkKdKq50KyIGOJNQt8xyaMUaiIg4NKPR9dRv3oM2TMlbO44hFGQgWZ9RYp3U6igBA9ItdfMFv+jPgFdJsCCF8kntm71XPqrd/Genp2giQFrKiTHtwI9tmBJtGeUwyXUSAzGhIzKAtqOSCDBhOrt3gs+d0sN9pV1Ji2fq74mUCGPGInKdgtihWfam4n9eO7H9qzBlMk4sSDpf1E84tgpPn8c9poFaPnaEUM3crZgOiSbUuohyLoRg+eVV0rgsBn4xqLk0KmiOLDpFZ+gCBaiEyugGVVEdUcTRA3pCz96d9+i9eK/z1oy3mDlGf+C9/QChR5Ni</latexit><latexit sha1_base64="G8SYklfjDm9VJaFYgekuH0aqHaA=">AAAB73icbVC7SgNBFJ2NrxhfUcHGZjAIVmHXJpYhNpYJmAckS5id3CRD5rHOzAphyU/YWChia+Ff+AV2Nn6Lk0ehiQcuHM65l3vviWLOjPX9Ly+ztr6xuZXdzu3s7u0f5A+PGkYlmkKdKq50KyIGOJNQt8xyaMUaiIg4NKPR9dRv3oM2TMlbO44hFGQgWZ9RYp3U6igBA9ItdfMFv+jPgFdJsCCF8kntm71XPqrd/Genp2giQFrKiTHtwI9tmBJtGeUwyXUSAzGhIzKAtqOSCDBhOrt3gs+d0sN9pV1Ji2fq74mUCGPGInKdgtihWfam4n9eO7H9qzBlMk4sSDpf1E84tgpPn8c9poFaPnaEUM3crZgOiSbUuohyLoRg+eVV0rgsBn4xqLk0KmiOLDpFZ+gCBaiEyugGVVEdUcTRA3pCz96d9+i9eK/z1oy3mDlGf+C9/QChR5Ni</latexit><latexit sha1_base64="LOzbuXe3oAAi0+8ZsuyOI3UXpuE=">AAAB73icbVDLTgJBEOzFF+IL9ehlIzHxRHa94JHoxSMm8khgQ2aHXpgwj3Vm1oQQfsKLB43x6u94828cYA8KVtJJpao73V1xypmxQfDtFTY2t7Z3irulvf2Dw6Py8UnLqExTbFLFle7ExCBnEpuWWY6dVCMRMcd2PL6d++0n1IYp+WAnKUaCDCVLGCXWSZ2eEjgk/Vq/XAmqwQL+OglzUoEcjX75qzdQNBMoLeXEmG4YpDaaEm0Z5Tgr9TKDKaFjMsSuo5IINNF0ce/Mv3DKwE+UdiWtv1B/T0yJMGYiYtcpiB2ZVW8u/ud1M5tcR1Mm08yipMtFScZ9q/z58/6AaaSWTxwhVDN3q09HRBNqXUQlF0K4+vI6aV1Vw6Aa3geV+k0eRxHO4BwuIYQa1OEOGtAEChye4RXevEfvxXv3PpatBS+fOYU/8D5/AMFfj8E=</latexit>

!8
<latexit sha1_base64="IVQyzDaOrRinNz8/untYBKgdcv8=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKujSmDNpYJmAckS5ydzCZD5rHOzAphyU/YWChi6+/Y2fgtTh6FJh64cDjnXu69J0o4M9b3v7zc2vrG5lZ+u7Czu7d/UDw8ahqVakIbRHGl2xE2lDNJG5ZZTtuJplhEnLai0c3Ubz1SbZiSd3ac0FDggWQxI9g6qd1Vgg5wr9IrlvyyPwNaJcGClKon9e97AKj1ip/dviKpoNISjo3pBH5iwwxrywink0I3NTTBZIQHtOOoxIKaMJvdO0HnTumjWGlX0qKZ+nsiw8KYsYhcp8B2aJa9qfif10ltXAkzJpPUUknmi+KUI6vQ9HnUZ5oSy8eOYKKZuxWRIdaYWBdRwYUQLL+8SpqX5cAvB3WXxjXMkYdTOIMLCOAKqnALNWgAAQ5P8AKv3oP37L157/PWnLeYOYY/8D5+AFGKkac=</latexit><latexit sha1_base64="WaGr+e+0mwEs47M8iDdzpz1HWoQ=">AAAB73icbVC7SgNBFJ2NrxhfUcHGZjAIVmHXxpQhNpYJmAckS5id3CRD5rHOzAphyU/YWChia+Ff+AV2Nn6Lk0ehiQcuHM65l3vviWLOjPX9Ly+ztr6xuZXdzu3s7u0f5A+PGkYlmkKdKq50KyIGOJNQt8xyaMUaiIg4NKPR9dRv3oM2TMlbO44hFGQgWZ9RYp3U6igBA9ItdfMFv+jPgFdJsCCF8kntm71XPqrd/Genp2giQFrKiTHtwI9tmBJtGeUwyXUSAzGhIzKAtqOSCDBhOrt3gs+d0sN9pV1Ji2fq74mUCGPGInKdgtihWfam4n9eO7H9UpgyGScWJJ0v6iccW4Wnz+Me00AtHztCqGbuVkyHRBNqXUQ5F0Kw/PIqaVwWA78Y1FwaFTRHFp2iM3SBAnSFyugGVVEdUcTRA3pCz96d9+i9eK/z1oy3mDlGf+C9/QCiy5Nj</latexit><latexit sha1_base64="WaGr+e+0mwEs47M8iDdzpz1HWoQ=">AAAB73icbVC7SgNBFJ2NrxhfUcHGZjAIVmHXxpQhNpYJmAckS5id3CRD5rHOzAphyU/YWChia+Ff+AV2Nn6Lk0ehiQcuHM65l3vviWLOjPX9Ly+ztr6xuZXdzu3s7u0f5A+PGkYlmkKdKq50KyIGOJNQt8xyaMUaiIg4NKPR9dRv3oM2TMlbO44hFGQgWZ9RYp3U6igBA9ItdfMFv+jPgFdJsCCF8kntm71XPqrd/Genp2giQFrKiTHtwI9tmBJtGeUwyXUSAzGhIzKAtqOSCDBhOrt3gs+d0sN9pV1Ji2fq74mUCGPGInKdgtihWfam4n9eO7H9UpgyGScWJJ0v6iccW4Wnz+Me00AtHztCqGbuVkyHRBNqXUQ5F0Kw/PIqaVwWA78Y1FwaFTRHFp2iM3SBAnSFyugGVVEdUcTRA3pCz96d9+i9eK/z1oy3mDlGf+C9/QCiy5Nj</latexit><latexit sha1_base64="BJGr4k1douzr0gdfJdK/QjB9YCo=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5sTBm0sYxgPiA5wt5mkizZ3Tt394Rw5E/YWChi69+x89+4Sa7QxAcDj/dmmJkXJYIb6/vfXmFjc2t7p7hb2ts/ODwqH5+0TJxqhk0Wi1h3ImpQcIVNy63ATqKRykhgO5rczv32E2rDY/VgpwmGko4UH3JGrZM6vVjiiPZr/XLFr/oLkHUS5KQCORr98ldvELNUorJMUGO6gZ/YMKPaciZwVuqlBhPKJnSEXUcVlWjCbHHvjFw4ZUCGsXalLFmovycyKo2Zysh1SmrHZtWbi/953dQOa2HGVZJaVGy5aJgKYmMyf54MuEZmxdQRyjR3txI2ppoy6yIquRCC1ZfXSeuqGvjV4N6v1G/yOIpwBudwCQFcQx3uoAFNYCDgGV7hzXv0Xrx372PZWvDymVP4A+/zB8Ljj8I=</latexit>

!9
<latexit sha1_base64="MQORZAk+ODIP8wBWPtPH+J51Sn8=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKujdoFbSwTMA9Iljg7mU2GzGOdmRXCkp+wsVDE1t+xs/FbnDwKTTxw4XDOvdx7T5RwZqzvf3m5ldW19Y38ZmFre2d3r7h/0DAq1YTWieJKtyJsKGeS1i2znLYSTbGIOG1Gw5uJ33yk2jAl7+wooaHAfcliRrB1UqujBO3j7lW3WPLL/hRomQRzUqoc1b7vAaDaLX52eoqkgkpLODamHfiJDTOsLSOcjgud1NAEkyHu07ajEgtqwmx67xidOqWHYqVdSYum6u+JDAtjRiJynQLbgVn0JuJ/Xju18WWYMZmklkoyWxSnHFmFJs+jHtOUWD5yBBPN3K2IDLDGxLqICi6EYPHlZdI4Lwd+Oai5NK5hhjwcwwmcQQAXUIFbqEIdCHB4ghd49R68Z+/Ne5+15rz5zCH8gffxA1MOkag=</latexit><latexit sha1_base64="Cu3gHitEmdj1HNFMIevPBNuAk+g=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKujdqF2FgmYB6QhDA7mU2GzGOdmRXCkp+wsVDE1sK/8AvsbPwWJ49CEw9cOJxzL/feE8acGev7X15mZXVtfSO7mdva3tndy+8f1I1KNKE1orjSzRAbypmkNcssp81YUyxCThvh8HriN+6pNkzJWzuKaUfgvmQRI9g6qdlWgvZx96qbL/hFfwq0TII5KZSOqt/svfxR6eY/2z1FEkGlJRwb0wr82HZSrC0jnI5z7cTQGJMh7tOWoxILajrp9N4xOnVKD0VKu5IWTdXfEykWxoxE6DoFtgOz6E3E/7xWYqPLTspknFgqyWxRlHBkFZo8j3pMU2L5yBFMNHO3IjLAGhPrIsq5EILFl5dJ/bwY+MWg6tIowwxZOIYTOIMALqAEN1CBGhDg8ABP8OzdeY/ei/c6a81485lD+APv7QekT5Nk</latexit><latexit sha1_base64="Cu3gHitEmdj1HNFMIevPBNuAk+g=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKujdqF2FgmYB6QhDA7mU2GzGOdmRXCkp+wsVDE1sK/8AvsbPwWJ49CEw9cOJxzL/feE8acGev7X15mZXVtfSO7mdva3tndy+8f1I1KNKE1orjSzRAbypmkNcssp81YUyxCThvh8HriN+6pNkzJWzuKaUfgvmQRI9g6qdlWgvZx96qbL/hFfwq0TII5KZSOqt/svfxR6eY/2z1FEkGlJRwb0wr82HZSrC0jnI5z7cTQGJMh7tOWoxILajrp9N4xOnVKD0VKu5IWTdXfEykWxoxE6DoFtgOz6E3E/7xWYqPLTspknFgqyWxRlHBkFZo8j3pMU2L5yBFMNHO3IjLAGhPrIsq5EILFl5dJ/bwY+MWg6tIowwxZOIYTOIMALqAEN1CBGhDg8ABP8OzdeY/ei/c6a81485lD+APv7QekT5Nk</latexit><latexit sha1_base64="E00ZVRas86xdph3+zwqqAalvSBQ=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5s1C5oYxnBfEByhL3NXLJk9/bc3RNCyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUPMGG5VZgO9VIZSSwFY1uZ37rCbXhKnmw4xRDSQcJjzmj1kntrpI4oL3rXrniV/05yCoJclKBHPVe+avbVyyTmFgmqDGdwE9tOKHaciZwWupmBlPKRnSAHUcTKtGEk/m9U3LmlD6JlXaVWDJXf09MqDRmLCPXKakdmmVvJv7ndTIbX4UTnqSZxYQtFsWZIFaR2fOkzzUyK8aOUKa5u5WwIdWUWRdRyYUQLL+8SpoX1cCvBvd+pXaTx1GEEziFcwjgEmpwB3VoAAMBz/AKb96j9+K9ex+L1oKXzxzDH3ifP8Rnj8M=</latexit>

!10
<latexit sha1_base64="2lUOkKhU2iJyTbsPTMj99bTMA4s=">AAAB8nicbVC7SgNBFL0bXzG+ooKNzWAQrMKujZZBG8sEzAM2S5ydzCZD5rHMzAphyWfYWChi69fY2fgtTh6FJh64cDjnXu69J045M9b3v7zC2vrG5lZxu7Szu7d/UD48ahmVaUKbRHGlOzE2lDNJm5ZZTjuppljEnLbj0e3Ubz9SbZiS93ac0kjggWQJI9g6KewqQQe4lwf+pFeu+FV/BrRKggWp1E4a3w8AUO+VP7t9RTJBpSUcGxMGfmqjHGvLCKeTUjczNMVkhAc0dFRiQU2Uz06eoHOn9FGitCtp0Uz9PZFjYcxYxK5TYDs0y95U/M8LM5tcRzmTaWapJPNFScaRVWj6P+ozTYnlY0cw0czdisgQa0ysS6nkQgiWX14lrctq4FeDhkvjBuYowimcwQUEcAU1uIM6NIGAgid4gVfPes/em/c+by14i5lj+APv4weA15Lm</latexit><latexit sha1_base64="npxtavN1cMBh5qOShF9QBhZDUj0=">AAAB8nicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRssQG8sEzAM2S5id3CRD5rHMzAphyWfYWChiq3/hF9jZ+C1OHoUmHrhwOOde7r0nTjgz1ve/vNza+sbmVn67sLO7t39QPDxqGpVqCg2quNLtmBjgTELDMsuhnWggIubQikc3U791D9owJe/sOIFIkIFkfUaJdVLYUQIGpJsF/qRbLPllfwa8SoIFKVVO6t/svfpR6xY/Oz1FUwHSUk6MCQM/sVFGtGWUw6TQSQ0khI7IAEJHJRFgomx28gSfO6WH+0q7khbP1N8TGRHGjEXsOgWxQ7PsTcX/vDC1/esoYzJJLUg6X9RPObYKT//HPaaBWj52hFDN3K2YDokm1LqUCi6EYPnlVdK8LAd+Oai7NKpojjw6RWfoAgXoClXQLaqhBqJIoQf0hJ496z16L97rvDXnLWaO0R94bz/SGJSi</latexit><latexit sha1_base64="npxtavN1cMBh5qOShF9QBhZDUj0=">AAAB8nicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRssQG8sEzAM2S5id3CRD5rHMzAphyWfYWChiq3/hF9jZ+C1OHoUmHrhwOOde7r0nTjgz1ve/vNza+sbmVn67sLO7t39QPDxqGpVqCg2quNLtmBjgTELDMsuhnWggIubQikc3U791D9owJe/sOIFIkIFkfUaJdVLYUQIGpJsF/qRbLPllfwa8SoIFKVVO6t/svfpR6xY/Oz1FUwHSUk6MCQM/sVFGtGWUw6TQSQ0khI7IAEJHJRFgomx28gSfO6WH+0q7khbP1N8TGRHGjEXsOgWxQ7PsTcX/vDC1/esoYzJJLUg6X9RPObYKT//HPaaBWj52hFDN3K2YDokm1LqUCi6EYPnlVdK8LAd+Oai7NKpojjw6RWfoAgXoClXQLaqhBqJIoQf0hJ496z16L97rvDXnLWaO0R94bz/SGJSi</latexit><latexit sha1_base64="0tSc7nBR0yO2k192h0Nq8MLQWfY=">AAAB8nicbVDLSgNBEOyNrxhfUY9eBoPgKcx60WPQi8cI5gHJEmYns8mQeSwzs0JY8hlePCji1a/x5t84SfagiQUNRVU33V1xKrh1GH8HpY3Nre2d8m5lb//g8Kh6fNK2OjOUtagW2nRjYpngirUcd4J1U8OIjAXrxJO7ud95YsZyrR7dNGWRJCPFE06J81KvryUbkUEe4tmgWsN1vABaJ2FBalCgOah+9YeaZpIpRwWxthfi1EU5MY5TwWaVfmZZSuiEjFjPU0Uks1G+OHmGLrwyRIk2vpRDC/X3RE6ktVMZ+05J3NiuenPxP6+XueQmyrlKM8cUXS5KMoGcRvP/0ZAbRp2YekKo4f5WRMfEEOp8ShUfQrj68jppX9VDXA8fcK1xW8RRhjM4h0sI4RoacA9NaAEFDc/wCm+BC16C9+Bj2VoKiplT+IPg8wfyMJEB</latexit>

{!1, !2}
<latexit sha1_base64="7fFWZ6fHdjn04wFUC4Wvp9v2FRQ=">AAAB/nicbZDLSsNAFIYnXmu9RcWVm2ARXEhJiqDLohuXFewFmhAm09N26FzCzEQooeCruHGhiFufw51v47TNQlt/GPj4zzmcM3+SMqqN7387K6tr6xubpa3y9s7u3r57cNjSMlMEmkQyqToJ1sCogKahhkEnVYB5wqCdjG6n9fYjKE2leDDjFCKOB4L2KcHGWrF7HOah5DDAcXBRQC2cxG7Fr/ozecsQFFBBhRqx+xX2JMk4CEMY1rob+KmJcqwMJQwm5TDTkGIywgPoWhSYg47y2fkT78w6Pa8vlX3CeDP390SOudZjnthOjs1QL9am5n+1bmb611FORZoZEGS+qJ8xz0hvmoXXowqIYWMLmChqb/XIECtMjE2sbEMIFr+8DK1aNfCrwf1lpX5TxFFCJ+gUnaMAXaE6ukMN1EQE5egZvaI358l5cd6dj3nrilPMHKE/cj5/AKW7lUQ=</latexit><latexit sha1_base64="7fFWZ6fHdjn04wFUC4Wvp9v2FRQ=">AAAB/nicbZDLSsNAFIYnXmu9RcWVm2ARXEhJiqDLohuXFewFmhAm09N26FzCzEQooeCruHGhiFufw51v47TNQlt/GPj4zzmcM3+SMqqN7387K6tr6xubpa3y9s7u3r57cNjSMlMEmkQyqToJ1sCogKahhkEnVYB5wqCdjG6n9fYjKE2leDDjFCKOB4L2KcHGWrF7HOah5DDAcXBRQC2cxG7Fr/ozecsQFFBBhRqx+xX2JMk4CEMY1rob+KmJcqwMJQwm5TDTkGIywgPoWhSYg47y2fkT78w6Pa8vlX3CeDP390SOudZjnthOjs1QL9am5n+1bmb611FORZoZEGS+qJ8xz0hvmoXXowqIYWMLmChqb/XIECtMjE2sbEMIFr+8DK1aNfCrwf1lpX5TxFFCJ+gUnaMAXaE6ukMN1EQE5egZvaI358l5cd6dj3nrilPMHKE/cj5/AKW7lUQ=</latexit><latexit sha1_base64="7fFWZ6fHdjn04wFUC4Wvp9v2FRQ=">AAAB/nicbZDLSsNAFIYnXmu9RcWVm2ARXEhJiqDLohuXFewFmhAm09N26FzCzEQooeCruHGhiFufw51v47TNQlt/GPj4zzmcM3+SMqqN7387K6tr6xubpa3y9s7u3r57cNjSMlMEmkQyqToJ1sCogKahhkEnVYB5wqCdjG6n9fYjKE2leDDjFCKOB4L2KcHGWrF7HOah5DDAcXBRQC2cxG7Fr/ozecsQFFBBhRqx+xX2JMk4CEMY1rob+KmJcqwMJQwm5TDTkGIywgPoWhSYg47y2fkT78w6Pa8vlX3CeDP390SOudZjnthOjs1QL9am5n+1bmb611FORZoZEGS+qJ8xz0hvmoXXowqIYWMLmChqb/XIECtMjE2sbEMIFr+8DK1aNfCrwf1lpX5TxFFCJ+gUnaMAXaE6ukMN1EQE5egZvaI358l5cd6dj3nrilPMHKE/cj5/AKW7lUQ=</latexit><latexit sha1_base64="7fFWZ6fHdjn04wFUC4Wvp9v2FRQ=">AAAB/nicbZDLSsNAFIYnXmu9RcWVm2ARXEhJiqDLohuXFewFmhAm09N26FzCzEQooeCruHGhiFufw51v47TNQlt/GPj4zzmcM3+SMqqN7387K6tr6xubpa3y9s7u3r57cNjSMlMEmkQyqToJ1sCogKahhkEnVYB5wqCdjG6n9fYjKE2leDDjFCKOB4L2KcHGWrF7HOah5DDAcXBRQC2cxG7Fr/ozecsQFFBBhRqx+xX2JMk4CEMY1rob+KmJcqwMJQwm5TDTkGIywgPoWhSYg47y2fkT78w6Pa8vlX3CeDP390SOudZjnthOjs1QL9am5n+1bmb611FORZoZEGS+qJ8xz0hvmoXXowqIYWMLmChqb/XIECtMjE2sbEMIFr+8DK1aNfCrwf1lpX5TxFFCJ+gUnaMAXaE6ukMN1EQE5egZvaI358l5cd6dj3nrilPMHKE/cj5/AKW7lUQ=</latexit>

{!3, !4}
<latexit sha1_base64="PDoyyf5g/R1I+QXBVWt4hzgCJQQ=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3AwWwYWURAu6LLpxWcFeoAlhMp20Q+cSZiZCCQVfxY0LRdz6HO58G6dtFtr6w8DHf87hnPnjlFFtPO/bKa2srq1vlDcrW9s7u3vu/kFby0xh0sKSSdWNkSaMCtIy1DDSTRVBPGakE49up/XOI1GaSvFgxikJORoImlCMjLUi9yjIA8nJAEWX5wXUg0nkVr2aNxNcBr+AKijUjNyvoC9xxokwmCGte76XmjBHylDMyKQSZJqkCI/QgPQsCsSJDvPZ+RN4ap0+TKSyTxg4c39P5IhrPeax7eTIDPVibWr+V+tlJrkOcyrSzBCB54uSjEEj4TQL2KeKYMPGFhBW1N4K8RAphI1NrGJD8Be/vAzti5rv1fz7erVxU8RRBsfgBJwBH1yBBrgDTdACGOTgGbyCN+fJeXHenY95a8kpZg7BHzmfP6vllUg=</latexit><latexit sha1_base64="PDoyyf5g/R1I+QXBVWt4hzgCJQQ=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3AwWwYWURAu6LLpxWcFeoAlhMp20Q+cSZiZCCQVfxY0LRdz6HO58G6dtFtr6w8DHf87hnPnjlFFtPO/bKa2srq1vlDcrW9s7u3vu/kFby0xh0sKSSdWNkSaMCtIy1DDSTRVBPGakE49up/XOI1GaSvFgxikJORoImlCMjLUi9yjIA8nJAEWX5wXUg0nkVr2aNxNcBr+AKijUjNyvoC9xxokwmCGte76XmjBHylDMyKQSZJqkCI/QgPQsCsSJDvPZ+RN4ap0+TKSyTxg4c39P5IhrPeax7eTIDPVibWr+V+tlJrkOcyrSzBCB54uSjEEj4TQL2KeKYMPGFhBW1N4K8RAphI1NrGJD8Be/vAzti5rv1fz7erVxU8RRBsfgBJwBH1yBBrgDTdACGOTgGbyCN+fJeXHenY95a8kpZg7BHzmfP6vllUg=</latexit><latexit sha1_base64="PDoyyf5g/R1I+QXBVWt4hzgCJQQ=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3AwWwYWURAu6LLpxWcFeoAlhMp20Q+cSZiZCCQVfxY0LRdz6HO58G6dtFtr6w8DHf87hnPnjlFFtPO/bKa2srq1vlDcrW9s7u3vu/kFby0xh0sKSSdWNkSaMCtIy1DDSTRVBPGakE49up/XOI1GaSvFgxikJORoImlCMjLUi9yjIA8nJAEWX5wXUg0nkVr2aNxNcBr+AKijUjNyvoC9xxokwmCGte76XmjBHylDMyKQSZJqkCI/QgPQsCsSJDvPZ+RN4ap0+TKSyTxg4c39P5IhrPeax7eTIDPVibWr+V+tlJrkOcyrSzBCB54uSjEEj4TQL2KeKYMPGFhBW1N4K8RAphI1NrGJD8Be/vAzti5rv1fz7erVxU8RRBsfgBJwBH1yBBrgDTdACGOTgGbyCN+fJeXHenY95a8kpZg7BHzmfP6vllUg=</latexit><latexit sha1_base64="PDoyyf5g/R1I+QXBVWt4hzgCJQQ=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3AwWwYWURAu6LLpxWcFeoAlhMp20Q+cSZiZCCQVfxY0LRdz6HO58G6dtFtr6w8DHf87hnPnjlFFtPO/bKa2srq1vlDcrW9s7u3vu/kFby0xh0sKSSdWNkSaMCtIy1DDSTRVBPGakE49up/XOI1GaSvFgxikJORoImlCMjLUi9yjIA8nJAEWX5wXUg0nkVr2aNxNcBr+AKijUjNyvoC9xxokwmCGte76XmjBHylDMyKQSZJqkCI/QgPQsCsSJDvPZ+RN4ap0+TKSyTxg4c39P5IhrPeax7eTIDPVibWr+V+tlJrkOcyrSzBCB54uSjEEj4TQL2KeKYMPGFhBW1N4K8RAphI1NrGJD8Be/vAzti5rv1fz7erVxU8RRBsfgBJwBH1yBBrgDTdACGOTgGbyCN+fJeXHenY95a8kpZg7BHzmfP6vllUg=</latexit>

{!5, !6}
<latexit sha1_base64="DpTxc+wZplhHjv+bf5RB2o2Bl2I=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3AwWwYWURLwti25cVrAXaEKYTCft0LmEmYlQQsFXceNCEbc+hzvfxmmbhbb+MPDxn3M4Z/44ZVQbz/t2SkvLK6tr5fXKxubW9o67u9fSMlOYNLFkUnVipAmjgjQNNYx0UkUQjxlpx8PbSb39SJSmUjyYUUpCjvqCJhQjY63IPQjyQHLSR9HFaQGXwThyq17Nmwougl9AFRRqRO5X0JM440QYzJDWXd9LTZgjZShmZFwJMk1ShIeoT7oWBeJEh/n0/DE8tk4PJlLZJwycur8ncsS1HvHYdnJkBnq+NjH/q3Uzk1yHORVpZojAs0VJxqCRcJIF7FFFsGEjCwgram+FeIAUwsYmVrEh+PNfXoTWWc33av79ebV+U8RRBofgCJwAH1yBOrgDDdAEGOTgGbyCN+fJeXHenY9Za8kpZvbBHzmfP7IPlUw=</latexit><latexit sha1_base64="DpTxc+wZplhHjv+bf5RB2o2Bl2I=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3AwWwYWURLwti25cVrAXaEKYTCft0LmEmYlQQsFXceNCEbc+hzvfxmmbhbb+MPDxn3M4Z/44ZVQbz/t2SkvLK6tr5fXKxubW9o67u9fSMlOYNLFkUnVipAmjgjQNNYx0UkUQjxlpx8PbSb39SJSmUjyYUUpCjvqCJhQjY63IPQjyQHLSR9HFaQGXwThyq17Nmwougl9AFRRqRO5X0JM440QYzJDWXd9LTZgjZShmZFwJMk1ShIeoT7oWBeJEh/n0/DE8tk4PJlLZJwycur8ncsS1HvHYdnJkBnq+NjH/q3Uzk1yHORVpZojAs0VJxqCRcJIF7FFFsGEjCwgram+FeIAUwsYmVrEh+PNfXoTWWc33av79ebV+U8RRBofgCJwAH1yBOrgDDdAEGOTgGbyCN+fJeXHenY9Za8kpZvbBHzmfP7IPlUw=</latexit><latexit sha1_base64="DpTxc+wZplhHjv+bf5RB2o2Bl2I=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3AwWwYWURLwti25cVrAXaEKYTCft0LmEmYlQQsFXceNCEbc+hzvfxmmbhbb+MPDxn3M4Z/44ZVQbz/t2SkvLK6tr5fXKxubW9o67u9fSMlOYNLFkUnVipAmjgjQNNYx0UkUQjxlpx8PbSb39SJSmUjyYUUpCjvqCJhQjY63IPQjyQHLSR9HFaQGXwThyq17Nmwougl9AFRRqRO5X0JM440QYzJDWXd9LTZgjZShmZFwJMk1ShIeoT7oWBeJEh/n0/DE8tk4PJlLZJwycur8ncsS1HvHYdnJkBnq+NjH/q3Uzk1yHORVpZojAs0VJxqCRcJIF7FFFsGEjCwgram+FeIAUwsYmVrEh+PNfXoTWWc33av79ebV+U8RRBofgCJwAH1yBOrgDDdAEGOTgGbyCN+fJeXHenY9Za8kpZvbBHzmfP7IPlUw=</latexit><latexit sha1_base64="DpTxc+wZplhHjv+bf5RB2o2Bl2I=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3AwWwYWURLwti25cVrAXaEKYTCft0LmEmYlQQsFXceNCEbc+hzvfxmmbhbb+MPDxn3M4Z/44ZVQbz/t2SkvLK6tr5fXKxubW9o67u9fSMlOYNLFkUnVipAmjgjQNNYx0UkUQjxlpx8PbSb39SJSmUjyYUUpCjvqCJhQjY63IPQjyQHLSR9HFaQGXwThyq17Nmwougl9AFRRqRO5X0JM440QYzJDWXd9LTZgjZShmZFwJMk1ShIeoT7oWBeJEh/n0/DE8tk4PJlLZJwycur8ncsS1HvHYdnJkBnq+NjH/q3Uzk1yHORVpZojAs0VJxqCRcJIF7FFFsGEjCwgram+FeIAUwsYmVrEh+PNfXoTWWc33av79ebV+U8RRBofgCJwAH1yBOrgDDdAEGOTgGbyCN+fJeXHenY9Za8kpZvbBHzmfP7IPlUw=</latexit>

{!7, !8}
<latexit sha1_base64="bP0f//5kWCl/zYgm3HicwL4wpac=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3AwWwYWURIR2WXTjsoK9QBPCZDpph84lzEyEEgq+ihsXirj1Odz5Nk7bLLT1h4GP/5zDOfPHKaPaeN63U1pb39jcKm9Xdnb39g/cw6OOlpnCpI0lk6oXI00YFaRtqGGklyqCeMxINx7fzurdR6I0leLBTFIScjQUNKEYGWtF7kmQB5KTIYrqlwU0gmnkVr2aNxdcBb+AKijUityvYCBxxokwmCGt+76XmjBHylDMyLQSZJqkCI/RkPQtCsSJDvP5+VN4bp0BTKSyTxg4d39P5IhrPeGx7eTIjPRybWb+V+tnJmmEORVpZojAi0VJxqCRcJYFHFBFsGETCwgram+FeIQUwsYmVrEh+MtfXoXOVc33av79dbV5U8RRBqfgDFwAH9RBE9yBFmgDDHLwDF7Bm/PkvDjvzseiteQUM8fgj5zPH7g5lVA=</latexit><latexit sha1_base64="bP0f//5kWCl/zYgm3HicwL4wpac=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3AwWwYWURIR2WXTjsoK9QBPCZDpph84lzEyEEgq+ihsXirj1Odz5Nk7bLLT1h4GP/5zDOfPHKaPaeN63U1pb39jcKm9Xdnb39g/cw6OOlpnCpI0lk6oXI00YFaRtqGGklyqCeMxINx7fzurdR6I0leLBTFIScjQUNKEYGWtF7kmQB5KTIYrqlwU0gmnkVr2aNxdcBb+AKijUityvYCBxxokwmCGt+76XmjBHylDMyLQSZJqkCI/RkPQtCsSJDvP5+VN4bp0BTKSyTxg4d39P5IhrPeGx7eTIjPRybWb+V+tnJmmEORVpZojAi0VJxqCRcJYFHFBFsGETCwgram+FeIQUwsYmVrEh+MtfXoXOVc33av79dbV5U8RRBqfgDFwAH9RBE9yBFmgDDHLwDF7Bm/PkvDjvzseiteQUM8fgj5zPH7g5lVA=</latexit><latexit sha1_base64="bP0f//5kWCl/zYgm3HicwL4wpac=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3AwWwYWURIR2WXTjsoK9QBPCZDpph84lzEyEEgq+ihsXirj1Odz5Nk7bLLT1h4GP/5zDOfPHKaPaeN63U1pb39jcKm9Xdnb39g/cw6OOlpnCpI0lk6oXI00YFaRtqGGklyqCeMxINx7fzurdR6I0leLBTFIScjQUNKEYGWtF7kmQB5KTIYrqlwU0gmnkVr2aNxdcBb+AKijUityvYCBxxokwmCGt+76XmjBHylDMyLQSZJqkCI/RkPQtCsSJDvP5+VN4bp0BTKSyTxg4d39P5IhrPeGx7eTIjPRybWb+V+tnJmmEORVpZojAi0VJxqCRcJYFHFBFsGETCwgram+FeIQUwsYmVrEh+MtfXoXOVc33av79dbV5U8RRBqfgDFwAH9RBE9yBFmgDDHLwDF7Bm/PkvDjvzseiteQUM8fgj5zPH7g5lVA=</latexit><latexit sha1_base64="bP0f//5kWCl/zYgm3HicwL4wpac=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3AwWwYWURIR2WXTjsoK9QBPCZDpph84lzEyEEgq+ihsXirj1Odz5Nk7bLLT1h4GP/5zDOfPHKaPaeN63U1pb39jcKm9Xdnb39g/cw6OOlpnCpI0lk6oXI00YFaRtqGGklyqCeMxINx7fzurdR6I0leLBTFIScjQUNKEYGWtF7kmQB5KTIYrqlwU0gmnkVr2aNxdcBb+AKijUityvYCBxxokwmCGt+76XmjBHylDMyLQSZJqkCI/RkPQtCsSJDvP5+VN4bp0BTKSyTxg4d39P5IhrPeGx7eTIjPRybWb+V+tnJmmEORVpZojAi0VJxqCRcJYFHFBFsGETCwgram+FeIQUwsYmVrEh+MtfXoXOVc33av79dbV5U8RRBqfgDFwAH9RBE9yBFmgDDHLwDF7Bm/PkvDjvzseiteQUM8fgj5zPH7g5lVA=</latexit>

{!9, !10}
<latexit sha1_base64="3MNYHe7wgrGKIExZPeDFqbjZQC4=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYBBdSEhHUXdGNywr2Ak0Ik+m0HTqXMDMRSogbX8WNC0Xc+hbufBunbRba+sPAx3/O4cz544RRbTzv2yktLa+srpXXKxubW9s77u5eS8tUYdLEkknViZEmjArSNNQw0kkUQTxmpB2Pbib19gNRmkpxb8YJCTkaCNqnGBlrRe5BkAWSkwGKrk4LyHwvD/LIrXo1byq4CH4BVVCoEblfQU/ilBNhMENad30vMWGGlKGYkbwSpJokCI/QgHQtCsSJDrPpBTk8tk4P9qWyTxg4dX9PZIhrPeax7eTIDPV8bWL+V+umpn8ZZlQkqSECzxb1UwaNhJM4YI8qgg0bW0BYUftXiIdIIWxsaBUbgj9/8iK0zmq+V/Pvzqv16yKOMjgER+AE+OAC1MEtaIAmwOARPINX8OY8OS/Ou/Mxay05xcw++CPn8wf5kZaR</latexit><latexit sha1_base64="3MNYHe7wgrGKIExZPeDFqbjZQC4=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYBBdSEhHUXdGNywr2Ak0Ik+m0HTqXMDMRSogbX8WNC0Xc+hbufBunbRba+sPAx3/O4cz544RRbTzv2yktLa+srpXXKxubW9s77u5eS8tUYdLEkknViZEmjArSNNQw0kkUQTxmpB2Pbib19gNRmkpxb8YJCTkaCNqnGBlrRe5BkAWSkwGKrk4LyHwvD/LIrXo1byq4CH4BVVCoEblfQU/ilBNhMENad30vMWGGlKGYkbwSpJokCI/QgHQtCsSJDrPpBTk8tk4P9qWyTxg4dX9PZIhrPeax7eTIDPV8bWL+V+umpn8ZZlQkqSECzxb1UwaNhJM4YI8qgg0bW0BYUftXiIdIIWxsaBUbgj9/8iK0zmq+V/Pvzqv16yKOMjgER+AE+OAC1MEtaIAmwOARPINX8OY8OS/Ou/Mxay05xcw++CPn8wf5kZaR</latexit><latexit sha1_base64="3MNYHe7wgrGKIExZPeDFqbjZQC4=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYBBdSEhHUXdGNywr2Ak0Ik+m0HTqXMDMRSogbX8WNC0Xc+hbufBunbRba+sPAx3/O4cz544RRbTzv2yktLa+srpXXKxubW9s77u5eS8tUYdLEkknViZEmjArSNNQw0kkUQTxmpB2Pbib19gNRmkpxb8YJCTkaCNqnGBlrRe5BkAWSkwGKrk4LyHwvD/LIrXo1byq4CH4BVVCoEblfQU/ilBNhMENad30vMWGGlKGYkbwSpJokCI/QgHQtCsSJDrPpBTk8tk4P9qWyTxg4dX9PZIhrPeax7eTIDPV8bWL+V+umpn8ZZlQkqSECzxb1UwaNhJM4YI8qgg0bW0BYUftXiIdIIWxsaBUbgj9/8iK0zmq+V/Pvzqv16yKOMjgER+AE+OAC1MEtaIAmwOARPINX8OY8OS/Ou/Mxay05xcw++CPn8wf5kZaR</latexit><latexit sha1_base64="3MNYHe7wgrGKIExZPeDFqbjZQC4=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYBBdSEhHUXdGNywr2Ak0Ik+m0HTqXMDMRSogbX8WNC0Xc+hbufBunbRba+sPAx3/O4cz544RRbTzv2yktLa+srpXXKxubW9s77u5eS8tUYdLEkknViZEmjArSNNQw0kkUQTxmpB2Pbib19gNRmkpxb8YJCTkaCNqnGBlrRe5BkAWSkwGKrk4LyHwvD/LIrXo1byq4CH4BVVCoEblfQU/ilBNhMENad30vMWGGlKGYkbwSpJokCI/QgHQtCsSJDrPpBTk8tk4P9qWyTxg4dX9PZIhrPeax7eTIDPV8bWL+V+umpn8ZZlQkqSECzxb1UwaNhJM4YI8qgg0bW0BYUftXiIdIIWxsaBUbgj9/8iK0zmq+V/Pvzqv16yKOMjgER+AE+OAC1MEtaIAmwOARPINX8OY8OS/Ou/Mxay05xcw++CPn8wf5kZaR</latexit>

{!1, !2, . . . , !10}
<latexit sha1_base64="mH3c1eWJLBWJ9CillXBWTDz+vzw=">AAACFHicbZDLSsNAFIYnXmu9RV26GSyCoJSkCLosunFZwV6gCWEymbRDZzJhZiKUkIdw46u4caGIWxfufBunbRBt/WHg4z/ncOb8Ycqo0o7zZS0tr6yurVc2qptb2zu79t5+R4lMYtLGggnZC5EijCakralmpJdKgnjISDccXU/q3XsiFRXJnR6nxOdokNCYYqSNFdinXu4JTgYocM9gSQ1DLBJa/Ti56xReEdg1p+5MBRfBLaEGSrUC+9OLBM44STRmSKm+66Taz5HUFDNSVL1MkRThERqQvsEEcaL8fHpUAY+NE8FYSPMSDafu74kccaXGPDSdHOmhmq9NzP9q/UzHl35OkzTTJMGzRXHGoBZwkhCMqCRYs7EBhCU1f4V4iCTC2uRYNSG48ycvQqdRd526e3tea16VcVTAITgCJ8AFF6AJbkALtAEGD+AJvIBX69F6tt6s91nrklXOHIA/sj6+AecQnXc=</latexit><latexit sha1_base64="mH3c1eWJLBWJ9CillXBWTDz+vzw=">AAACFHicbZDLSsNAFIYnXmu9RV26GSyCoJSkCLosunFZwV6gCWEymbRDZzJhZiKUkIdw46u4caGIWxfufBunbRBt/WHg4z/ncOb8Ycqo0o7zZS0tr6yurVc2qptb2zu79t5+R4lMYtLGggnZC5EijCakralmpJdKgnjISDccXU/q3XsiFRXJnR6nxOdokNCYYqSNFdinXu4JTgYocM9gSQ1DLBJa/Ti56xReEdg1p+5MBRfBLaEGSrUC+9OLBM44STRmSKm+66Taz5HUFDNSVL1MkRThERqQvsEEcaL8fHpUAY+NE8FYSPMSDafu74kccaXGPDSdHOmhmq9NzP9q/UzHl35OkzTTJMGzRXHGoBZwkhCMqCRYs7EBhCU1f4V4iCTC2uRYNSG48ycvQqdRd526e3tea16VcVTAITgCJ8AFF6AJbkALtAEGD+AJvIBX69F6tt6s91nrklXOHIA/sj6+AecQnXc=</latexit><latexit sha1_base64="mH3c1eWJLBWJ9CillXBWTDz+vzw=">AAACFHicbZDLSsNAFIYnXmu9RV26GSyCoJSkCLosunFZwV6gCWEymbRDZzJhZiKUkIdw46u4caGIWxfufBunbRBt/WHg4z/ncOb8Ycqo0o7zZS0tr6yurVc2qptb2zu79t5+R4lMYtLGggnZC5EijCakralmpJdKgnjISDccXU/q3XsiFRXJnR6nxOdokNCYYqSNFdinXu4JTgYocM9gSQ1DLBJa/Ti56xReEdg1p+5MBRfBLaEGSrUC+9OLBM44STRmSKm+66Taz5HUFDNSVL1MkRThERqQvsEEcaL8fHpUAY+NE8FYSPMSDafu74kccaXGPDSdHOmhmq9NzP9q/UzHl35OkzTTJMGzRXHGoBZwkhCMqCRYs7EBhCU1f4V4iCTC2uRYNSG48ycvQqdRd526e3tea16VcVTAITgCJ8AFF6AJbkALtAEGD+AJvIBX69F6tt6s91nrklXOHIA/sj6+AecQnXc=</latexit><latexit sha1_base64="mH3c1eWJLBWJ9CillXBWTDz+vzw=">AAACFHicbZDLSsNAFIYnXmu9RV26GSyCoJSkCLosunFZwV6gCWEymbRDZzJhZiKUkIdw46u4caGIWxfufBunbRBt/WHg4z/ncOb8Ycqo0o7zZS0tr6yurVc2qptb2zu79t5+R4lMYtLGggnZC5EijCakralmpJdKgnjISDccXU/q3XsiFRXJnR6nxOdokNCYYqSNFdinXu4JTgYocM9gSQ1DLBJa/Ti56xReEdg1p+5MBRfBLaEGSrUC+9OLBM44STRmSKm+66Taz5HUFDNSVL1MkRThERqQvsEEcaL8fHpUAY+NE8FYSPMSDafu74kccaXGPDSdHOmhmq9NzP9q/UzHl35OkzTTJMGzRXHGoBZwkhCMqCRYs7EBhCU1f4V4iCTC2uRYNSG48ycvQqdRd526e3tea16VcVTAITgCJ8AFF6AJbkALtAEGD+AJvIBX69F6tt6s91nrklXOHIA/sj6+AecQnXc=</latexit>
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!1
<latexit sha1_base64="Bl2rA/NWbRCFDnjFh/hl59VZ4fg=">AAAB73icbVA9SwNBEJ3zM8avqGBjsxgEq3Bno2XQxjIB8wHJEfc2c8mS3b1zd08IIX/CxkIRW/+OnY2/xc1HoYkPBh7vzTAzL0oFN9b3v7yV1bX1jc3cVn57Z3dvv3BwWDdJphnWWCIS3YyoQcEV1iy3ApupRiojgY1ocDPxG4+oDU/UnR2mGEraUzzmjFonNduJxB7tBJ1C0S/5U5BlEsxJsXxc/b4HgEqn8NnuJiyTqCwT1JhW4Kc2HFFtORM4zrczgyllA9rDlqOKSjThaHrvmJw5pUviRLtSlkzV3xMjKo0Zysh1Smr7ZtGbiP95rczGV+GIqzSzqNhsUZwJYhMyeZ50uUZmxdARyjR3txLWp5oy6yLKuxCCxZeXSf2iFPiloOrSuIYZcnACp3AOAVxCGW6hAjVgIOAJXuDVe/CevTfvfda64s1njuAPvI8fRu6RoA==</latexit><latexit sha1_base64="hSEGFmZmDFtrGwFXJ3n/qsHQbzs=">AAAB73icbVC7SgNBFJ31GeMrKtjYDAbBKuzaaBliY5mAeUCyhNnJ3WTIPNaZWSEs+QkbC0VsLfwLv8DOxm9x8ig08cCFwzn3cu89UcKZsb7/5a2srq1vbOa28ts7u3v7hYPDhlGpplCniivdiogBziTULbMcWokGIiIOzWh4PfGb96ANU/LWjhIIBelLFjNKrJNaHSWgT7pBt1D0S/4UeJkEc1IsH9e+2Xvlo9otfHZ6iqYCpKWcGNMO/MSGGdGWUQ7jfCc1kBA6JH1oOyqJABNm03vH+MwpPRwr7UpaPFV/T2REGDMSkesUxA7MojcR//PaqY2vwozJJLUg6WxRnHJsFZ48j3tMA7V85AihmrlbMR0QTah1EeVdCMHiy8ukcVEK/FJQc2lU0Aw5dIJO0TkK0CUqoxtURXVEEUcP6Ak9e3feo/fivc5aV7z5zBH6A+/tB5gvk1w=</latexit><latexit sha1_base64="hSEGFmZmDFtrGwFXJ3n/qsHQbzs=">AAAB73icbVC7SgNBFJ31GeMrKtjYDAbBKuzaaBliY5mAeUCyhNnJ3WTIPNaZWSEs+QkbC0VsLfwLv8DOxm9x8ig08cCFwzn3cu89UcKZsb7/5a2srq1vbOa28ts7u3v7hYPDhlGpplCniivdiogBziTULbMcWokGIiIOzWh4PfGb96ANU/LWjhIIBelLFjNKrJNaHSWgT7pBt1D0S/4UeJkEc1IsH9e+2Xvlo9otfHZ6iqYCpKWcGNMO/MSGGdGWUQ7jfCc1kBA6JH1oOyqJABNm03vH+MwpPRwr7UpaPFV/T2REGDMSkesUxA7MojcR//PaqY2vwozJJLUg6WxRnHJsFZ48j3tMA7V85AihmrlbMR0QTah1EeVdCMHiy8ukcVEK/FJQc2lU0Aw5dIJO0TkK0CUqoxtURXVEEUcP6Ak9e3feo/fivc5aV7z5zBH6A+/tB5gvk1w=</latexit><latexit sha1_base64="JxuqdejcKGAYECcYB07OCyHd4z8=">AAAB73icbVA9SwNBEJ3zM8avqKXNYhCswp2NlkEbywjmA5Ij7G3mkiV7u+funhCO/AkbC0Vs/Tt2/hs3yRWa+GDg8d4MM/OiVHBjff/bW1vf2NzaLu2Ud/f2Dw4rR8ctozLNsMmUULoTUYOCS2xabgV2Uo00iQS2o/HtzG8/oTZcyQc7STFM6FDymDNqndTpqQSHtB/0K1W/5s9BVklQkCoUaPQrX72BYlmC0jJBjekGfmrDnGrLmcBpuZcZTCkb0yF2HZU0QRPm83un5NwpAxIr7UpaMld/T+Q0MWaSRK4zoXZklr2Z+J/XzWx8HeZcpplFyRaL4kwQq8jseTLgGpkVE0co09zdStiIasqsi6jsQgiWX14lrcta4NeCe79avyniKMEpnMEFBHAFdbiDBjSBgYBneIU379F78d69j0XrmlfMnMAfeJ8/uEePuw==</latexit>

!2
<latexit sha1_base64="iy2RXKugOM99VF9jM6gd3VlVbZM=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMJuGi2DNpYJmAckS5ydzCZD5rHOzAphyU/YWChi6+/Y2fgtTh6FJh64cDjnXu69J0o4M9b3v7zc2vrG5lZ+u7Czu7d/UDw8ahqVakIbRHGl2xE2lDNJG5ZZTtuJplhEnLai0c3Ubz1SbZiSd3ac0FDggWQxI9g6qd1Vgg5wr9IrlvyyPwNaJcGClKon9e97AKj1ip/dviKpoNISjo3pBH5iwwxrywink0I3NTTBZIQHtOOoxIKaMJvdO0HnTumjWGlX0qKZ+nsiw8KYsYhcp8B2aJa9qfif10ltfBVmTCappZLMF8UpR1ah6fOozzQllo8dwUQzdysiQ6wxsS6iggshWH55lTQr5cAvB3WXxjXMkYdTOIMLCOASqnALNWgAAQ5P8AKv3oP37L157/PWnLeYOYY/8D5+AEhykaE=</latexit><latexit sha1_base64="bELcQjb2j6+jT9ctnK155dR+1AM=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMJuGi1DbCwTMA9IljA7mSRD5rHOzAphyU/YWChia+Ff+AV2Nn6Lk0ehiQcuHM65l3vviWLOjPX9Ly+ztr6xuZXdzu3s7u0f5A+PGkYlmtA6UVzpVoQN5UzSumWW01asKRYRp81odD31m/dUG6bkrR3HNBR4IFmfEWyd1OooQQe4W+rmC37RnwGtkmBBCuWT2jd7r3xUu/nPTk+RRFBpCcfGtAM/tmGKtWWE00mukxgaYzLCA9p2VGJBTZjO7p2gc6f0UF9pV9Kimfp7IsXCmLGIXKfAdmiWvan4n9dObP8qTJmME0slmS/qJxxZhabPox7TlFg+dgQTzdytiAyxxsS6iHIuhGD55VXSKBUDvxjUXBoVmCMLp3AGFxDAJZThBqpQBwIcHuAJnr0779F78V7nrRlvMXMMf+C9/QCZs5Nd</latexit><latexit sha1_base64="bELcQjb2j6+jT9ctnK155dR+1AM=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMJuGi1DbCwTMA9IljA7mSRD5rHOzAphyU/YWChia+Ff+AV2Nn6Lk0ehiQcuHM65l3vviWLOjPX9Ly+ztr6xuZXdzu3s7u0f5A+PGkYlmtA6UVzpVoQN5UzSumWW01asKRYRp81odD31m/dUG6bkrR3HNBR4IFmfEWyd1OooQQe4W+rmC37RnwGtkmBBCuWT2jd7r3xUu/nPTk+RRFBpCcfGtAM/tmGKtWWE00mukxgaYzLCA9p2VGJBTZjO7p2gc6f0UF9pV9Kimfp7IsXCmLGIXKfAdmiWvan4n9dObP8qTJmME0slmS/qJxxZhabPox7TlFg+dgQTzdytiAyxxsS6iHIuhGD55VXSKBUDvxjUXBoVmCMLp3AGFxDAJZThBqpQBwIcHuAJnr0779F78V7nrRlvMXMMf+C9/QCZs5Nd</latexit><latexit sha1_base64="iJdZYRzOHqzrkuH63qE8VXwvnZA=">AAAB73icbVDLTgJBEOzFF+IL9ehlIzHxRHa56JHoxSMm8khgQ2aHXpgwj3Vm1oQQfsKLB43x6u94828cYA8KVtJJpao73V1xypmxQfDtFTY2t7Z3irulvf2Dw6Py8UnLqExTbFLFle7ExCBnEpuWWY6dVCMRMcd2PL6d++0n1IYp+WAnKUaCDCVLGCXWSZ2eEjgk/Vq/XAmqwQL+OglzUoEcjX75qzdQNBMoLeXEmG4YpDaaEm0Z5Tgr9TKDKaFjMsSuo5IINNF0ce/Mv3DKwE+UdiWtv1B/T0yJMGYiYtcpiB2ZVW8u/ud1M5tcR1Mm08yipMtFScZ9q/z58/6AaaSWTxwhVDN3q09HRBNqXUQlF0K4+vI6adWqYVAN74NK/SaPowhncA6XEMIV1OEOGtAEChye4RXevEfvxXv3PpatBS+fOYU/8D5/ALnLj7w=</latexit>

!3
<latexit sha1_base64="+/EwHXWHPAt/DLb4IAnTu6ZcTf8=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuFloGbSwTMA9Iljg7mU2GzGOdmRXCkp+wsVDE1t+xs/FbnDwKTTxw4XDOvdx7T5RwZqzvf3m5ldW19Y38ZmFre2d3r7h/0DAq1YTWieJKtyJsKGeS1i2znLYSTbGIOG1Gw5uJ33yk2jAl7+wooaHAfcliRrB1UqujBO3j7kW3WPLL/hRomQRzUqoc1b7vAaDaLX52eoqkgkpLODamHfiJDTOsLSOcjgud1NAEkyHu07ajEgtqwmx67xidOqWHYqVdSYum6u+JDAtjRiJynQLbgVn0JuJ/Xju18VWYMZmklkoyWxSnHFmFJs+jHtOUWD5yBBPN3K2IDLDGxLqICi6EYPHlZdI4Lwd+Oai5NK5hhjwcwwmcQQCXUIFbqEIdCHB4ghd49R68Z+/Ne5+15rz5zCH8gffxA0n2kaI=</latexit><latexit sha1_base64="yf/TyBBRjXLGEyR7YfJOr4bQ2l0=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuFlqG2FgmYB6QhDA7mU2GzGOdmRXCkp+wsVDE1sK/8AvsbPwWJ49CEw9cOJxzL/feE8acGev7X15mZXVtfSO7mdva3tndy+8f1I1KNKE1orjSzRAbypmkNcssp81YUyxCThvh8HriN+6pNkzJWzuKaUfgvmQRI9g6qdlWgvZx96KbL/hFfwq0TII5KZSOqt/svfxR6eY/2z1FEkGlJRwb0wr82HZSrC0jnI5z7cTQGJMh7tOWoxILajrp9N4xOnVKD0VKu5IWTdXfEykWxoxE6DoFtgOz6E3E/7xWYqOrTspknFgqyWxRlHBkFZo8j3pMU2L5yBFMNHO3IjLAGhPrIsq5EILFl5dJ/bwY+MWg6tIowwxZOIYTOIMALqEEN1CBGhDg8ABP8OzdeY/ei/c6a81485lD+APv7QebN5Ne</latexit><latexit sha1_base64="yf/TyBBRjXLGEyR7YfJOr4bQ2l0=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuFlqG2FgmYB6QhDA7mU2GzGOdmRXCkp+wsVDE1sK/8AvsbPwWJ49CEw9cOJxzL/feE8acGev7X15mZXVtfSO7mdva3tndy+8f1I1KNKE1orjSzRAbypmkNcssp81YUyxCThvh8HriN+6pNkzJWzuKaUfgvmQRI9g6qdlWgvZx96KbL/hFfwq0TII5KZSOqt/svfxR6eY/2z1FEkGlJRwb0wr82HZSrC0jnI5z7cTQGJMh7tOWoxILajrp9N4xOnVKD0VKu5IWTdXfEykWxoxE6DoFtgOz6E3E/7xWYqOrTspknFgqyWxRlHBkFZo8j3pMU2L5yBFMNHO3IjLAGhPrIsq5EILFl5dJ/bwY+MWg6tIowwxZOIYTOIMALqEEN1CBGhDg8ABP8OzdeY/ei/c6a81485lD+APv7QebN5Ne</latexit><latexit sha1_base64="cHD34vM4ry77zguUi2OX7xfJMzY=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe600DJoYxnBfEByhL3NXLJk9/bc3RNCyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUPMGG5VZgO9VIZSSwFY1uZ37rCbXhKnmw4xRDSQcJjzmj1kntrpI4oL3LXrniV/05yCoJclKBHPVe+avbVyyTmFgmqDGdwE9tOKHaciZwWupmBlPKRnSAHUcTKtGEk/m9U3LmlD6JlXaVWDJXf09MqDRmLCPXKakdmmVvJv7ndTIbX4cTnqSZxYQtFsWZIFaR2fOkzzUyK8aOUKa5u5WwIdWUWRdRyYUQLL+8SpoX1cCvBvd+pXaTx1GEEziFcwjgCmpwB3VoAAMBz/AKb96j9+K9ex+L1oKXzxzDH3ifP7tPj70=</latexit>

!4
<latexit sha1_base64="xfyGt3Go3ISmBHUf+92XnLcvYPE=">AAAB73icbVDJSgNBEK2JW4xbVPDipTEInsKMCHoMevGYgFkgGWJPpydp0svY3SOEIT/hxYMiXv0db178FjvLQRMfFDzeq6KqXpRwZqzvf3m5ldW19Y38ZmFre2d3r7h/0DAq1YTWieJKtyJsKGeS1i2znLYSTbGIOG1Gw5uJ33yk2jAl7+wooaHAfcliRrB1UqujBO3j7kW3WPLL/hRomQRzUqoc1b7vAaDaLX52eoqkgkpLODamHfiJDTOsLSOcjgud1NAEkyHu07ajEgtqwmx67xidOqWHYqVdSYum6u+JDAtjRiJynQLbgVn0JuJ/Xju18VWYMZmklkoyWxSnHFmFJs+jHtOUWD5yBBPN3K2IDLDGxLqICi6EYPHlZdI4Lwd+Oai5NK5hhjwcwwmcQQCXUIFbqEIdCHB4ghd49R68Z+/Ne5+15rz5zCH8gffxA0t6kaM=</latexit><latexit sha1_base64="U1tJz9imrJHMKV8w7tEddUtJDrE=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuCFqG2FgmYB6QhDA7mU2GzGOdmRXCkp+wsVDE1sK/8AvsbPwWJ49CEw9cOJxzL/feE8acGev7X15mZXVtfSO7mdva3tndy+8f1I1KNKE1orjSzRAbypmkNcssp81YUyxCThvh8HriN+6pNkzJWzuKaUfgvmQRI9g6qdlWgvZx96KbL/hFfwq0TII5KZSOqt/svfxR6eY/2z1FEkGlJRwb0wr82HZSrC0jnI5z7cTQGJMh7tOWoxILajrp9N4xOnVKD0VKu5IWTdXfEykWxoxE6DoFtgOz6E3E/7xWYqOrTspknFgqyWxRlHBkFZo8j3pMU2L5yBFMNHO3IjLAGhPrIsq5EILFl5dJ/bwY+MWg6tIowwxZOIYTOIMALqEEN1CBGhDg8ABP8OzdeY/ei/c6a81485lD+APv7Qecu5Nf</latexit><latexit sha1_base64="U1tJz9imrJHMKV8w7tEddUtJDrE=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuCFqG2FgmYB6QhDA7mU2GzGOdmRXCkp+wsVDE1sK/8AvsbPwWJ49CEw9cOJxzL/feE8acGev7X15mZXVtfSO7mdva3tndy+8f1I1KNKE1orjSzRAbypmkNcssp81YUyxCThvh8HriN+6pNkzJWzuKaUfgvmQRI9g6qdlWgvZx96KbL/hFfwq0TII5KZSOqt/svfxR6eY/2z1FEkGlJRwb0wr82HZSrC0jnI5z7cTQGJMh7tOWoxILajrp9N4xOnVKD0VKu5IWTdXfEykWxoxE6DoFtgOz6E3E/7xWYqOrTspknFgqyWxRlHBkFZo8j3pMU2L5yBFMNHO3IjLAGhPrIsq5EILFl5dJ/bwY+MWg6tIowwxZOIYTOIMALqEEN1CBGhDg8ABP8OzdeY/ei/c6a81485lD+APv7Qecu5Nf</latexit><latexit sha1_base64="01qGGHCQh1OjHsZP4exn2q73wQM=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhMzvrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUPMGG5VZgO9VIZSSwFY1uZ37rCbXhKnmw4xRDSQcJjzmj1kntrpI4oL3LXrniV/05yCoJclKBHPVe+avbVyyTmFgmqDGdwE9tOKHaciZwWupmBlPKRnSAHUcTKtGEk/m9U3LmlD6JlXaVWDJXf09MqDRmLCPXKakdmmVvJv7ndTIbX4cTnqSZxYQtFsWZIFaR2fOkzzUyK8aOUKa5u5WwIdWUWRdRyYUQLL+8SpoX1cCvBvd+pXaTx1GEEziFcwjgCmpwB3VoAAMBz/AKb96j9+K9ex+L1oKXzxzDH3ifP7zTj74=</latexit>

!5
<latexit sha1_base64="92NX6nfTw03riNEM8LaVIqOlG68=">AAAB73icbVDJSgNBEK2JW4xbVPDipTEInsKMIHoMevGYgFkgGWJPpydp0svY3SOEIT/hxYMiXv0db178FjvLQRMfFDzeq6KqXpRwZqzvf3m5ldW19Y38ZmFre2d3r7h/0DAq1YTWieJKtyJsKGeS1i2znLYSTbGIOG1Gw5uJ33yk2jAl7+wooaHAfcliRrB1UqujBO3j7kW3WPLL/hRomQRzUqoc1b7vAaDaLX52eoqkgkpLODamHfiJDTOsLSOcjgud1NAEkyHu07ajEgtqwmx67xidOqWHYqVdSYum6u+JDAtjRiJynQLbgVn0JuJ/Xju18VWYMZmklkoyWxSnHFmFJs+jHtOUWD5yBBPN3K2IDLDGxLqICi6EYPHlZdI4Lwd+Oai5NK5hhjwcwwmcQQCXUIFbqEIdCHB4ghd49R68Z+/Ne5+15rz5zCH8gffxA0z+kaQ=</latexit><latexit sha1_base64="r5znSO29sbG0VHJ95Y/9wsBs4HA=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuIFqG2FgmYB6QhDA7mU2GzGOdmRXCkp+wsVDE1sK/8AvsbPwWJ49CEw9cOJxzL/feE8acGev7X15mZXVtfSO7mdva3tndy+8f1I1KNKE1orjSzRAbypmkNcssp81YUyxCThvh8HriN+6pNkzJWzuKaUfgvmQRI9g6qdlWgvZx96KbL/hFfwq0TII5KZSOqt/svfxR6eY/2z1FEkGlJRwb0wr82HZSrC0jnI5z7cTQGJMh7tOWoxILajrp9N4xOnVKD0VKu5IWTdXfEykWxoxE6DoFtgOz6E3E/7xWYqOrTspknFgqyWxRlHBkFZo8j3pMU2L5yBFMNHO3IjLAGhPrIsq5EILFl5dJ/bwY+MWg6tIowwxZOIYTOIMALqEEN1CBGhDg8ABP8OzdeY/ei/c6a81485lD+APv7QeeP5Ng</latexit><latexit sha1_base64="r5znSO29sbG0VHJ95Y/9wsBs4HA=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuIFqG2FgmYB6QhDA7mU2GzGOdmRXCkp+wsVDE1sK/8AvsbPwWJ49CEw9cOJxzL/feE8acGev7X15mZXVtfSO7mdva3tndy+8f1I1KNKE1orjSzRAbypmkNcssp81YUyxCThvh8HriN+6pNkzJWzuKaUfgvmQRI9g6qdlWgvZx96KbL/hFfwq0TII5KZSOqt/svfxR6eY/2z1FEkGlJRwb0wr82HZSrC0jnI5z7cTQGJMh7tOWoxILajrp9N4xOnVKD0VKu5IWTdXfEykWxoxE6DoFtgOz6E3E/7xWYqOrTspknFgqyWxRlHBkFZo8j3pMU2L5yBFMNHO3IjLAGhPrIsq5EILFl5dJ/bwY+MWg6tIowwxZOIYTOIMALqEEN1CBGhDg8ABP8OzdeY/ei/c6a81485lD+APv7QeeP5Ng</latexit><latexit sha1_base64="GpaUXhIYwfW461WFOrliaTVaYcw=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKewKosegF48RzAOSJcxOepMhMzvrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUPMGG5VZgO9VIZSSwFY1uZ37rCbXhKnmw4xRDSQcJjzmj1kntrpI4oL3LXrniV/05yCoJclKBHPVe+avbVyyTmFgmqDGdwE9tOKHaciZwWupmBlPKRnSAHUcTKtGEk/m9U3LmlD6JlXaVWDJXf09MqDRmLCPXKakdmmVvJv7ndTIbX4cTnqSZxYQtFsWZIFaR2fOkzzUyK8aOUKa5u5WwIdWUWRdRyYUQLL+8SpoX1cCvBvd+pXaTx1GEEziFcwjgCmpwB3VoAAMBz/AKb96j9+K9ex+L1oKXzxzDH3ifP75Xj78=</latexit>

!6
<latexit sha1_base64="aUEqAhNOEIRxCg0HLAyZjPb5VjU=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuhVoGbSwTMA9Iljg7mU2GzGOdmRXCkp+wsVDE1t+xs/FbnDwKTTxw4XDOvdx7T5RwZqzvf3m5ldW19Y38ZmFre2d3r7h/0DAq1YTWieJKtyJsKGeS1i2znLYSTbGIOG1Gw5uJ33yk2jAl7+wooaHAfcliRrB1UqujBO3j7kW3WPLL/hRomQRzUqoc1b7vAaDaLX52eoqkgkpLODamHfiJDTOsLSOcjgud1NAEkyHu07ajEgtqwmx67xidOqWHYqVdSYum6u+JDAtjRiJynQLbgVn0JuJ/Xju18VWYMZmklkoyWxSnHFmFJs+jHtOUWD5yBBPN3K2IDLDGxLqICi6EYPHlZdI4Lwd+Oai5NK5hhjwcwwmcQQCXUIFbqEIdCHB4ghd49R68Z+/Ne5+15rz5zCH8gffxA06CkaU=</latexit><latexit sha1_base64="CW3W64LXK/wFsAivQEMFD4wfMzg=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuhVqG2FgmYB6QhDA7mU2GzGOdmRXCkp+wsVDE1sK/8AvsbPwWJ49CEw9cOJxzL/feE8acGev7X15mZXVtfSO7mdva3tndy+8f1I1KNKE1orjSzRAbypmkNcssp81YUyxCThvh8HriN+6pNkzJWzuKaUfgvmQRI9g6qdlWgvZx96KbL/hFfwq0TII5KZSOqt/svfxR6eY/2z1FEkGlJRwb0wr82HZSrC0jnI5z7cTQGJMh7tOWoxILajrp9N4xOnVKD0VKu5IWTdXfEykWxoxE6DoFtgOz6E3E/7xWYqOrTspknFgqyWxRlHBkFZo8j3pMU2L5yBFMNHO3IjLAGhPrIsq5EILFl5dJ/bwY+MWg6tIowwxZOIYTOIMALqEEN1CBGhDg8ABP8OzdeY/ei/c6a81485lD+APv7Qefw5Nh</latexit><latexit sha1_base64="CW3W64LXK/wFsAivQEMFD4wfMzg=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuhVqG2FgmYB6QhDA7mU2GzGOdmRXCkp+wsVDE1sK/8AvsbPwWJ49CEw9cOJxzL/feE8acGev7X15mZXVtfSO7mdva3tndy+8f1I1KNKE1orjSzRAbypmkNcssp81YUyxCThvh8HriN+6pNkzJWzuKaUfgvmQRI9g6qdlWgvZx96KbL/hFfwq0TII5KZSOqt/svfxR6eY/2z1FEkGlJRwb0wr82HZSrC0jnI5z7cTQGJMh7tOWoxILajrp9N4xOnVKD0VKu5IWTdXfEykWxoxE6DoFtgOz6E3E/7xWYqOrTspknFgqyWxRlHBkFZo8j3pMU2L5yBFMNHO3IjLAGhPrIsq5EILFl5dJ/bwY+MWg6tIowwxZOIYTOIMALqEEN1CBGhDg8ABP8OzdeY/ei/c6a81485lD+APv7Qefw5Nh</latexit><latexit sha1_base64="jb8C0d1ZwYwJBMWp2X/vmf6OzDU=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe4s1DJoYxnBfEByhL3NXLJk9/bc3RNCyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUPMGG5VZgO9VIZSSwFY1uZ37rCbXhKnmw4xRDSQcJjzmj1kntrpI4oL3LXrniV/05yCoJclKBHPVe+avbVyyTmFgmqDGdwE9tOKHaciZwWupmBlPKRnSAHUcTKtGEk/m9U3LmlD6JlXaVWDJXf09MqDRmLCPXKakdmmVvJv7ndTIbX4cTnqSZxYQtFsWZIFaR2fOkzzUyK8aOUKa5u5WwIdWUWRdRyYUQLL+8SpoX1cCvBvd+pXaTx1GEEziFcwjgCmpwB3VoAAMBz/AKb96j9+K9ex+L1oKXzxzDH3ifP7/bj8A=</latexit>

!7
<latexit sha1_base64="pBGaDBBDaNUNMG4gcK5IPxyO95Y=">AAAB73icbVC7SgNBFL0bXzG+ooKNzWAQrMKuTSyDNpYJmAckS5ydzCZD5rHOzAphyU/YWChi6+/Y2fgtTh6FJh64cDjnXu69J0o4M9b3v7zc2vrG5lZ+u7Czu7d/UDw8ahqVakIbRHGl2xE2lDNJG5ZZTtuJplhEnLai0c3Ubz1SbZiSd3ac0FDggWQxI9g6qd1Vgg5wr9IrlvyyPwNaJcGClKon9e97AKj1ip/dviKpoNISjo3pBH5iwwxrywink0I3NTTBZIQHtOOoxIKaMJvdO0HnTumjWGlX0qKZ+nsiw8KYsYhcp8B2aJa9qfif10ltfBVmTCappZLMF8UpR1ah6fOozzQllo8dwUQzdysiQ6wxsS6iggshWH55lTQvy4FfDuoujWuYIw+ncAYXEEAFqnALNWgAAQ5P8AKv3oP37L157/PWnLeYOYY/8D5+AFAGkaY=</latexit><latexit sha1_base64="G8SYklfjDm9VJaFYgekuH0aqHaA=">AAAB73icbVC7SgNBFJ2NrxhfUcHGZjAIVmHXJpYhNpYJmAckS5id3CRD5rHOzAphyU/YWChia+Ff+AV2Nn6Lk0ehiQcuHM65l3vviWLOjPX9Ly+ztr6xuZXdzu3s7u0f5A+PGkYlmkKdKq50KyIGOJNQt8xyaMUaiIg4NKPR9dRv3oM2TMlbO44hFGQgWZ9RYp3U6igBA9ItdfMFv+jPgFdJsCCF8kntm71XPqrd/Genp2giQFrKiTHtwI9tmBJtGeUwyXUSAzGhIzKAtqOSCDBhOrt3gs+d0sN9pV1Ji2fq74mUCGPGInKdgtihWfam4n9eO7H9qzBlMk4sSDpf1E84tgpPn8c9poFaPnaEUM3crZgOiSbUuohyLoRg+eVV0rgsBn4xqLk0KmiOLDpFZ+gCBaiEyugGVVEdUcTRA3pCz96d9+i9eK/z1oy3mDlGf+C9/QChR5Ni</latexit><latexit sha1_base64="G8SYklfjDm9VJaFYgekuH0aqHaA=">AAAB73icbVC7SgNBFJ2NrxhfUcHGZjAIVmHXJpYhNpYJmAckS5id3CRD5rHOzAphyU/YWChia+Ff+AV2Nn6Lk0ehiQcuHM65l3vviWLOjPX9Ly+ztr6xuZXdzu3s7u0f5A+PGkYlmkKdKq50KyIGOJNQt8xyaMUaiIg4NKPR9dRv3oM2TMlbO44hFGQgWZ9RYp3U6igBA9ItdfMFv+jPgFdJsCCF8kntm71XPqrd/Genp2giQFrKiTHtwI9tmBJtGeUwyXUSAzGhIzKAtqOSCDBhOrt3gs+d0sN9pV1Ji2fq74mUCGPGInKdgtihWfam4n9eO7H9qzBlMk4sSDpf1E84tgpPn8c9poFaPnaEUM3crZgOiSbUuohyLoRg+eVV0rgsBn4xqLk0KmiOLDpFZ+gCBaiEyugGVVEdUcTRA3pCz96d9+i9eK/z1oy3mDlGf+C9/QChR5Ni</latexit><latexit sha1_base64="LOzbuXe3oAAi0+8ZsuyOI3UXpuE=">AAAB73icbVDLTgJBEOzFF+IL9ehlIzHxRHa94JHoxSMm8khgQ2aHXpgwj3Vm1oQQfsKLB43x6u94828cYA8KVtJJpao73V1xypmxQfDtFTY2t7Z3irulvf2Dw6Py8UnLqExTbFLFle7ExCBnEpuWWY6dVCMRMcd2PL6d++0n1IYp+WAnKUaCDCVLGCXWSZ2eEjgk/Vq/XAmqwQL+OglzUoEcjX75qzdQNBMoLeXEmG4YpDaaEm0Z5Tgr9TKDKaFjMsSuo5IINNF0ce/Mv3DKwE+UdiWtv1B/T0yJMGYiYtcpiB2ZVW8u/ud1M5tcR1Mm08yipMtFScZ9q/z58/6AaaSWTxwhVDN3q09HRBNqXUQlF0K4+vI6aV1Vw6Aa3geV+k0eRxHO4BwuIYQa1OEOGtAEChye4RXevEfvxXv3PpatBS+fOYU/8D5/AMFfj8E=</latexit>

!8
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Convex hull

Figure A.1: Top: (a) An example of a polygonal obstacle and the corresponding ωj functions, (b)
Level curves of the corresponding implicit function β for p = 2, (c) Level curves of the corresponding
implicit function β for p = 20, Bottom: The AND-OR tree, constructed by the algorithm described
in Appendix A.1.2 to represent this polygon. The polygon is split at the vertices of the convex hull
to generate five subchains at depth 1. Each of these subchains is then split into two subchains at
depth 2. The subchains at depth 2 (1) are combined via disjunction (conjunction), since they meet
at non-convex (convex) vertices of the original polygon. In this way, we get our implicit function
β = ¬ ((ω1 ∨ ω2) ∧ (ω3 ∨ ω4) ∧ (ω5 ∨ ω6) ∧ (ω7 ∨ ω8) ∧ (ω9 ∨ ω10)).
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In this Appendix, we describe our method for implicit function representation of our memo-

rized catalogue elements using R-function compositions [168], explored by Rimon [163] and

explicated within the field of constructive solid geometry by Shapiro [176]. This modular

representation of shape helps with the instantiation of the posited mapping oracle for obsta-

cles with known geometry, whose mesh can be identified in real time using state-of-the-art

techniques [93, 106, 148] in order to extract implicit function representations for polygonal

obstacles.

A.1.1 Preliminary Definitions

We begin by providing a definition of an R-function [176].

Definition A.1. A function γΦ : Rn → R is an R-function if there exists a (binary) logic

function Φ : B→ B, called the companion function, that satisfies the relation

Φ(S2(w1), . . . , S2(wn)) = S2(γΦ(w1, . . . , wn)) (A.1)

with (w1, . . . , wn) ∈ Rn and S2 the Heaviside characteristic function S2 : R → B of the

interval [0+,∞) defined as1

S2(χ) =

0, χ ≤ −0

1, χ ≥ +0
(A.2)

Informally, a real function γΦ is an R-function if it can change its property (sign) only

when some of its arguments change the same property (sign) [176]. For example, the

companion logic function for the R-function γ(x, y) = xy is X ⇔ Y ; we just check that

S2(xy) = (S2(x)⇔ S2(y)).
1In [176], it is assumed that zero is always signed: either +0 or −0, which allows the authors to determine

membership of zero either to the set of positive or to the set of negative numbers. This assumption is
employed to resolve pathological cases, where the membership of zero causes R-function discontinuities and
is not of particular importance in our setting.

215



In this work, we use the following (symbolically written) R-functions [176]

¬x := −x (A.3)

x1 ∧ x2 := x1 + x2 − (xp1 + xp2)
1
p (A.4)

x1 ∨ x2 := x1 + x2 + (xp1 + xp2)
1
p (A.5)

with companion logic functions the logical negation ¬, conjunction ∧ and disjunction ∨ re-

spectively and p a positive integer. Intuitively, the author in [176] uses the triangle inequality

with the Lp-norm to derive R-functions with specific properties.

A.1.2 Description of the Algorithm

R-functions have several interesting properties but, most importantly, provide machinery to

construct implicit representations for sets built from other, primitive sets. Namely, in order

to obtain a real function inequality γ ≥ 0 defining a set Ω constructed from primitive sets

Ωj , it suffices to construct an appropriate R-function and substitute for its arguments the

real functions ωj defining the primitive sets Ωj implicitly as ωj ≥ 0 [176, Theorem 3]. In

our case, the set Ω would be a polygon Pi we want to represent, the sets Ωj would be half-

spaces induced by the polygon edges, and the functions ωj : R2 → R their corresponding

hyperplane equations, given by

ωj(x) = (x− xj)
>nj (A.6)

Here xj is any arbitrary point on the edge hyperplane and nj its normal vector, pointing

towards the polygon’s interior.

This result allows us to use a variant of the method presented in [176] and construct

representations of polygons in the form of AND-OR trees [167], as shown in the example of

Fig. A.1. Briefly, the interior of a polygon can be represented as the intersection of two or

more polygonal chains, i.e. sequences of edges that meet at the polygon’s convex hull. In the

same way, each of these chains can then be split recursively into smaller subchains at the
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vertices of its convex hull to form a tree structure. The root node of the tree is the original

polygon, with each other node corresponding to a polygonal chain; the leaves of the tree are

single hyperplanes, the edges of the polygon described by functions ωj . If the split occurs at

a concave vertex of the original polygon, then the subchains are combined using set union

(i.e. disjunction); otherwise, they are combined using set intersection (i.e. conjunction), as

shown in Fig. A.1. In this way, by having as input just the vertices of the polygon in

counterclockwise order, we are able to construct an implicit representation for each node

of the tree bottom-up, using the R-functions (A.4) and (A.5), until we reach the root node

of the tree. If we want βi > 0 in the exterior of Pi, we can negate the result (i.e., we use

the R-function (A.3)) to obtain the function βi, which is analytic everywhere except for the

polygon vertices [176]. This is the reason our results in Section 7.3 still hold, with the map

hI being a C∞ diffeomorphism away from the polygon vertices.

A.1.3 R-functions as Approximations of the Distance Function

It is important to mention that, away from the corners and in a neighborhood of the poly-

gon, normalized R-functions constructed using (A.3)-(A.5) behave as smooth p-th order

approximations of the (non-differentiable) distance function to the polygon, as shown in

Fig. A.1-(b),(c). The reader is referred to [176] for more details; in our setting, a sufficient

condition for normalization is to make sure that for each ωj given in (A.6), the corresponding

normal vector nj has unit norm [176]. This property is quite useful for our purposes, as it

endows the implicit representation of our polygons with a physical meaning, compared to

other representations (e.g., the homogeneous function representations in [164]). Numerical

experimentation showed that even p = 2 gives sufficiently good results in our setting.

A.2 Construction of Polygonal Collars

Definitions 7.3, 7.5 and 7.7 provide the basic guidelines for constructing admissible polygonal

collars that fit our formal results. However, there is not a unique way of performing this

operation. Here, we describe the method employed for a single polygon P , contained in

either DImap or BImap, whose triangulation tree TP := (VP , EP ) has already been constructed,
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according to Section 7.3.1, and the corresponding centers of transformation x∗j have already

been identified, according to Definitions 7.2, 7.4 and 7.6 for all triangles j ∈ VP . We assume

that the value of the corresponding clearance εP , according to Assumption 7.3, is also known.

Algorithm A.1 Construction of the polygonal collars Qj for all triangles j ∈ VP of a
polygon P , whose triangulation tree TP := (VP , EP ) and associated clearance εP are known.
function CollarConstruction(P, εP )
VP ← sort(VP ) . Sort in descending depth
do

j ← pop(VP ) . Pop next triangle
Qj ← x∗jx2jx3jx1jx

∗
j

Aj ← dilate(Qj , εP ) . Dilate Qj by εP
if j is root and P ∈ DImap then
Qj ← Aj ∩ FImap,j

else if j is root and P ∈ BImap then
Rj ← (Aj ∩ FImap,j) ∩ (H1j ∪H2j)

Qj ← Rj ∪ x∗jx2jx1jx
∗
j

else
Rj ← (Aj ∩ FImap,j) ∩ (H1j ∪H2j)
Lj ← List of triangles that will succeed j
do

i← pop(Lj) . Pop next triangle
if i is p(j) then

continue
else
Rj ← Rj − i . Polygon difference

end if
while Lj 6= ∅
{Z}k ← poly_decomp(Rj) . [98]
Qj ← Zk such that Qj ⊂ Zk

end if
while VP 6= ∅

end function

Based on the above, the first step is to stack all triangles in VP in order of descending

depth, as prescribed by the sequence of purging transformations. Then, for each triangle

j ∈ VP in the stack, we first dilate the polygon Qj by εP and take the intersection with

FImap,j . If the triangle j is the root triangle of P and P ∈ DImap, this is enough to give

an admissible polygonal collar. In any other case, we have to take the intersection of the
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generated dilated polygon with the half spaces H1j and H2j , defined as

H1j :=

z ∈ R2
∣∣∣ (z− x∗j )

>


0 −1

1 0

 x∗j − x1j

||x∗j − x1j ||

 ≥ 0

 (A.7)

H2j :=

z ∈ R2 | (z− x∗j )
>


0 −1

1 0

 x2j − x∗j
||x2j − x∗j ||

 ≥ 0

 (A.8)

i.e., the half spaces defined by hyperplanes passing through the center x∗j and vertex x1j , and

the center x∗j and vertex x2j respectively. The resulting polygon is guaranteed to be convex,

but might intersect with triangles in VP that will succeed j in the purging transformation.

To solve that problem, we can take the difference of this polygon with all triangles that will

succeed j in the purging transformation (except for its parent p(j)), decompose the final

resulting polygon into its convex pieces using a variant of Keil’s algorithm [98] (implemented

in the C++ library CGAL [188] and in the Python package poly_decomp [153]), and use

as Qj the convex piece that includes Qj , as prescribed by Definitions 7.3, 7.5 and 7.7. The

whole procedure is shown in Algorithm A.1.
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Appendix B

Derivations

B.1 Calculation of Dxξ

We can calculate

∂[Dxh]11

∂x
=

M∑
j=1

[
2σj

∂νj
∂x

+ 2(νj − 1)
∂σj
∂x

+ 2(x− x∗j )
∂σj
∂x

∂νj
∂x

+(x− x∗j )σj
∂2νj
∂x2

+ (x− x∗j )(νj − 1)
∂2σj
∂x2

]
(B.1)

∂[Dxh]11

∂y
=

M∑
j=1

[
σj
∂νj
∂y

+ (νj − 1)
∂σj
∂y

+ (x− x∗j )
∂σj
∂y

∂νj
∂x

+ (x− x∗j )σj
∂2νj
∂x∂y

+(x− x∗j )
∂σj
∂x

∂νj
∂y

+ (x− x∗j )(νj − 1)
∂2σj
∂x∂y

]
(B.2)

∂[Dxh]12

∂x
=

M∑
j=1

[
σj
∂νj
∂y

+ (x− x∗j )
∂σj
∂x

∂νj
∂y

+ (x− x∗j )σj
∂2νj
∂x∂y

+(νj − 1)
∂σj
∂y

+ (x− x∗j )
∂σj
∂y

∂νj
∂x

+ (x− x∗j )(νj − 1)
∂2σj
∂x∂y

]
(B.3)
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∂[Dxh]12

∂y
=

M∑
j=1

[
2(x− x∗j )

∂σj
∂y

∂νj
∂y

+ (x− x∗j )σj
∂2νj
∂y2

+(x− x∗j )(νj − 1)
∂2σj
∂y2

]
(B.4)

∂[Dxh]21

∂x
=

M∑
j=1

[
2(y − y∗j )

∂σj
∂x

∂νj
∂x

+ (y − y∗j )σj
∂2νj
∂x2

+(y − y∗j )(νj − 1)
∂2σj
∂x2

]
(B.5)

∂[Dxh]21

∂y
=

M∑
j=1

[
σj
∂νj
∂x

+ (y − y∗j )
∂σj
∂y

∂νj
∂x

+ (y − y∗j )σj
∂2νj
∂x∂y

+(νj − 1)
∂σj
∂x

+ (y − y∗j )
∂σj
∂x

∂νj
∂y

+ (y − y∗j )(νj − 1)
∂2σj
∂x∂y

]
(B.6)

∂[Dxh]22

∂x
=

M∑
j=1

[
σj
∂νj
∂x

+ (νj − 1)
∂σj
∂x

+ (y − y∗j )
∂σj
∂x

∂νj
∂y

+ (y − y∗j )σj
∂2νj
∂x∂y

+(y − y∗j )
∂σj
∂y

∂νj
∂x

+ (y − y∗j )(νj − 1)
∂2σj
∂x∂y

]
(B.7)

∂[Dxh]22

∂y
=

M∑
j=1

[
2σj

∂νj
∂y

+ 2(νj − 1)
∂σj
∂y

+ 2(y − y∗j )
∂σj
∂y

∂νj
∂y

+σj(y − y∗j )
∂2νj
∂y2

+ (y − y∗j )(νj − 1)
∂2σj
∂y2

]
(B.8)

In the expressions above, we use elements of the Hessians

∇2σj(x) =η′′(βj(x))(∇βj(x))(∇βj(x))> + η′(βj(x))∇2βj(x) (B.9)

∇2νj(x) =
3ρj

||x− x∗j ||5
(x− x∗j )(x− x∗j )

> − ρj
||x− x∗j ||3

I (B.10)
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Eventually we can calculate vDxξ

[
cosψ sinψ

]>
, used in (6.25), as follows

vDxξ

cosψ

sinψ

 =
(α1β1 + α2β2)v

||e(x, ψ)||2 (B.11)

with

α1 =− ([Dxh]21 cosψ + [Dxh]22 sinψ) (B.12)

α2 =[Dxh]11 cosψ + [Dxh]12 sinψ (B.13)

β1 =
∂[Dxh]11

∂x
cos2 ψ +

(
[Dxh]11

∂y
+

[Dxh]12

∂x

)
sinψ cosψ +

∂[Dxh]12

∂y
sin2 ψ (B.14)

β2 =
∂[Dxh]21

∂x
cos2 ψ +

(
[Dxh]21

∂y
+

[Dxh]22

∂x

)
sinψ cosψ +

∂[Dxh]22

∂y
sin2 ψ (B.15)

B.2 Inductive Computation of the Diffeomorphism at Execu-

tion Time

From the description of the diffeomorphism hI in Section 7.3, we see that hI is constructed

in multiple steps by composition. Therefore, we can compute the value of hI(x) at x ∈ FImap
inductively, by setting hI0 (x) = x and computing hIk (x) = hIk,k−1 ◦hIk−1(x), with k spanning

all triangles in VP for all known obstacles P in both DImap and BImap, and hIk,k−1 given either

in (7.18) or (7.28). We can then see that, due to Lemma 7.4, hIk,k−1 can be generally written

in the following form

hIk,k−1(x) =σk,k−1(x)
[
x∗k,k−1 + νk,k−1(x)(x− x∗k,k−1)

]
+ (1− σk,k−1(x))x (B.16)

with the switch σk,k−1 (see (7.15), (7.23)), deforming factor νk,k−1 (see (7.16), (7.24), (7.25))

and center of the transformation x∗k,k−1 (see Definitions 7.2, 7.4, 7.7) depending on the

particular triangle being purged.
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We can, therefore, set Dxh
I
0 := I, compute

Dxh
I
k,k−1 = (νk,k−1(x)− 1) (x− x∗k,k−1)∇σk,k−1(x)>

+ σk,k−1(x)(x− x∗k,k−1)∇νk,k−1(x)>

+ [1 + σk,k−1(x) (νk,k−1(x)− 1)] I (B.17)

and use the chain rule to write

Dxh
I
k =

(
Dxh

I
k,k−1 ◦ hIk−1(x)

)
·Dxh

I
k−1 (B.18)

Finally, since (7.49) requires partial derivatives of Dxh
I , we can follow a similar pro-

cedure and the chain rule to compute the partial derivatives ∂[DxhIk ]ml
∂[x]n

, as functions of
∂[DxhIk−1]ml

∂[x]n
and

∂[DxhIk,k−1]ml
∂[x]n

∣∣∣
hIk−1(x)

, after initially setting all partial derivatives to zero:

∂[DxhI0 ]ml
∂[x]n

= 0, with the indices m, l, n ∈ {1, 2}. Namely:

∂[Dxh
I
k ]ml

∂[x]n
=

2∑
r=1

([
Dxh

I
k,k−1 ◦ hIk−1(x)

]
mr
·

· ∂[Dxh
I
k−1]rl

∂[x]n

+ [Dxh
I
k−1]rl

2∑
s=1

[Dxh
I
k−1]sn·

·
∂
[
Dxh

I
k,k−1

]
mr

∂[x]s

∣∣∣
hIk−1(x)

 (B.19)
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where, from (B.17), we can compute

∂
[
Dxh

I
k,k−1

]
mr

∂[x]s
= (νk,k−1 − 1)

∂σk,k−1

∂[x]r
δms

+ ([x]m − [x∗k,k−1]m)
∂σk,k−1

∂[x]r

∂νk,k−1

∂[x]s

+ (νk,k−1 − 1)([x]m − [x∗k,k−1]m)
∂2σk,k−1

∂[x]r∂[x]s

+ ([x]m − [x∗k,k−1]m)
∂σk,k−1

∂[x]s

∂νk,k−1

∂[x]r

+ σk,k−1
∂νk,k−1

∂[x]r
δms

+ σk,k−1([x]m − [x∗k,k−1]m)
∂2νk,k−1

∂[x]r∂[x]s

+ σk,k−1
∂νk,k−1

∂[x]s
δmr + (νk,k−1 − 1)

∂σk,k−1

∂[x]s
δmr (B.20)

by using elements of the Hessians ∇2σk,k−1,∇2νk,k−1.
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Appendix C

Proofs

C.1 Proofs of Results in Chapter 3

Proof of Lemma 3.1. In the global frame, define rx := x∗ − x = d cos(φ + ψ), ry := y∗ −

y = d sin(φ + ψ), with φ = arctan2(x∗BF ). Since the goal does not move, we see that

ṙx = −ẋ = −v cosψ and ṙy = −ẏ = −v sinψ. On the other hand, we see from Fig. 3.10 that

φ+ ψ = arctan
(
y∗BF − y
x∗BF − x

)
= tan−1

(
ry
rx

)
⇒ φ̇+ ω =

1

d2
(ṙyrx − ṙxry) =

v

d
sinφ

⇒ φ̇ =
v

d
sinφ− ω

from the definitions above. Also, since d =
√
r2
x + r2

y, we can easily derive ḋ =
ṙxrx+ṙyry

d =

−v cosφ. Focusing now on the robot’s body frame, we can see that x∗BF = d cosφ and

y∗BF = d sinφ, so that by differentiation ẋ∗BF = ḋ cosφ−dφ̇ sinφ and ẏ∗BF = ḋ sinφ+dφ̇ cosφ.

Simple substitution of ḋ and φ̇ from above yields ẋ∗BF = −v + ω y∗BF and ẏ∗BF = −ω x∗BF
and this concludes the proof.
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C.2 Proofs of Results in Chapter 4

Proof of Lemma 4.1. (i) We know that x lies in the interior of LFL(x) by construction.

We also see that ||x−xoffset(x)|| = |ρx(θm)−r| = ρx(θm)−r = d(x, ∂F) < ε. Therefore,

x also lies in the interior of Dw(x) and, hence, in the interior of LFw(x).

(ii) From the construction of LFL(x), we know that d(x, ∂LFL(x)) = 1
2(ρx(θm) − r).

Therefore, in fact, Hnw(x) is one the half spaces whose intersection constructs LFL(x).

Its generating hyperplane corresponds to the obstacle Ok ∈ O of minimum distance

from x and intersects Dw(x) at two points, as can be shown by simple substitution

in (4.9). On the other hand, Assumption 4.1 and the choice of ε in (4.10), show that this

is the only hyperplane that intersects Dw(x) and belongs to the boundary of LFL(x)

and this concludes the proof.

(iii) Since tw(x) = Jnw(x), it is not hard to verify that ||xp(x) − xoffset(x)|| = ε, which

shows that xp(x) lies on the boundary of Dw(x). Since (xp(x) − xh(x)) · nw(x) =

1
2 [ε− (ρx − r)] = 1

2(ε − d(x, ∂F)) > 0, we get that xp(x) belongs to the half space

Hnw(x). Since in (ii) we proved that LFw(x) = Dw(x) ∩ Hnw(x), we conclude that

xp(x) lies on the boundary of LFw(x).

Proof of Proposition 4.1. (i) Let Oj ∈ O denote the obstacle which the robot follows.

Since ρx(θm) corresponds to the minimum distance of x from Oj , we can write

ρx(θm) = ||x−ΠOj (x)||

nw(x) =
x−ΠOj (x)

||x−ΠOj (x)||

Since metric projections onto closed convex sets (such as Oj) are known to be piecewise

continuously differentiable [115, 175], we conclude that both ρx(θm) and nw(x) are

piecewise continuously differentiable functions of x. Now from (4.14) and since nw(x) =
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J tw(x) we can write

u(x) = k

[( ε
2

+ r − ρx(θm)
)
nw(x) + a

ε
√

3

2
Jnw(x)

]
(C.1)

Therefore, we conclude that the wall following law u(x) is piecewise continuously

differentiable as a composition of piecewise continuously differentiable functions.

(ii) Since piecewise continuously differentiable functions are also locally Lipschitz [36],

and since locally Lipschitz functions defined on a compact domain are also globally

Lipschitz, we conclude that u(x) is Lipschitz continuous using (i). The existence,

uniqueness and continuous differentiability of its flow follow directly from this property.

(iii) This follows directly from the form of the wall following law in (C.1), since the coeffi-

cient corresponding to tw(x) = Jnw(x) can never be zero.

(iv) From Lemma 4.1, we know that for any x ∈ F , the wall following local free space

LFw(x) is a closed convex subset of F , which is collision-free (as a subset of LFL(x))

and contains both x and xp(x). Hence, −k(x−xp(x)) ∈ TxF is either interior directed

or at worst tangent to the boundary of F and this concludes the proof.

(v) Similarly, we see that for any x ∈ F satisfying d(p, ∂F) = ε, the choice of ε in (4.10)

implies that there is a unique obstacle j = arg min
i
d(x, Oi) such that −k(x−xp(x)) ∈

TxF is interior directed to the set
{
p ∈ R2 | d(p, Oj) < ε

}
and, hence, interior directed

to the set
{
p ∈ R2 | d(p, ∂F) < ε

}
. Similar reasoning leads to the conclusion that{

p ∈ R2
∣∣∣ d(p, ∂F) > ε

2

}
is positively invariant under the wall following law, since for

d(x, ∂F) = ρx(θm)− r = ε
2 , (C.1) gives u(x) ‖ tw(x) and this concludes the proof.

Proof of Proposition 4.2. Suppose this is not true. Then there exists tc > 0 such that

l = arg min
i
d(xtc , Oi) 6= k and d(xtc , ∂F) < ε.1 This implies that d(xtc , ∂F) = d(xtc , Ol)−r,

1Here we slightly abuse the notation, since Ol could as well correspond to the boundary of the workspace
∂W. The analysis still holds, because of the particular bounds provided for ε in (4.10).
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which gives d(xtc , Ol) < r + ε < 1
2d(Ok, Ol) from the choice of ε. Hence, from the triangle

inequality, we have

d(xtc , Ok) ≥ d(Ok, Ol)− d(xtc , Ol)

>
1

2
d(Ok, Ol)

≥ 1

2
η

> (r + max
j
ρj) + ε

> r + ε

from (4.10). Therefore, we get that d(xtc , Ok) > r + ε. From the assumptions, we have

d(x0, ∂F) = d(x0, Ok)−r < ε, which implies d(x0, Ok) < r+ε. Since d(xt, Ok) is continuous,

as the composition of the distance function to a subset of R2 with the continuous flow xt,

we can use the Intermediate Value Theorem to deduce that there exists a time tm ∈ (0, tc)

such that d(xtm , Ok) = r + ε. From the choice of ε in (4.10), this implies that

d(xtm , Ok) <
1

2
η (C.2)

so that d(xtm , ∂F) = d(xtm , Ok)− r = ε, violating the assumption that d(xt, ∂F) < ε for all

t > 0 and leading to a contradiction.

Proof of Theorem 4.1. The fact that, under the wall following law in (4.13), the robot follows

the boundary of a unique obstacle follows readily from Proposition 4.2, the continuity of the

flow and the positive invariance of
{
p ∈ R2 | d(p, ∂F) < ε

}
as derived in Proposition 4.1.

Finally, from (C.1), notice that

u(x) · tw(x) = a
ε
√

3

2
(C.3)

which implies that |σ(x)| ∈ (0, 1] and sign(σ(x)) = sign(a). Since u(x) · tw(x) expresses the

component of u(x) along the tangent to the obstacle boundary tw(x), is always nonzero and
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does not change sign, we conclude that the robot will follow the boundary of the obstacle

clockwise or counterclockwise, depending on a. The rest of the claims derive immediately

from Proposition 4.1.

Proof Sketch of Theorem 4.3. Positive invariance of F is guaranteed from [7] with the par-

ticular choice of LFv(x),LFω(x). The existence, uniqueness and continuous differentiability

of the flow are guaranteed through the piecewise continuous differentiability of the vector

field, similarly to the proof of Proposition 4.1-(ii). We can also prove the positive invariance

of the set {p ∈ W | d(p, ∂F) < ε} by the particular selection of xp(x), as in Proposition 4.1-

(v). The only problem, unique to differential drive robots, is that the robot orientation

might not originally be aligned with xp(x). However, since the robot is not allowed to move

backwards (from (4.16)), the angular control law in (4.17) with x∗ = xp(x) will force the

robot to turn towards xp(x) in finite time and continue following that direction onwards.

C.3 Proofs of Results in Chapter 5

Proof of Lemma 5.1. It is shown in [44] that the extended local sets RS(x0, r, α) are open.

Now consider a point u ∈ Uρ(·)(S). Then, by definition, there exists a y ∈ S, a direction

ζ ∈ NP (S;y)∩B (0, 1) and a real t ∈ [0, ρ(y)] such that u = y+ tζ. This shows that u also

belongs in the set RS(y, ρ(y), α) for some α > 0, and concludes the proof.

Proof of Theorem 5.1. The proof is almost identical to the proof of Theorem 4.1. The only

difference here is that the wall following law is not piecewise continuously differentiable but

just locally Lipschitz. This, however, does not change its basic properties. The key in the

proof is the requirement that min ρOi > r+ε for each Oi. Since it is shown in Proposition 4.1

that
{
p ∈ W

∣∣∣ ε2 < d(p, ∂F) < ε
}
is positively invariant under the flow of the wall following

law, we are guaranteed that the robot will never exit Uρ(·)(S), which ensures local Lipschitz

continuity of the vector field.
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C.4 Proofs of Results in Chapter 6

C.4.1 Proofs of Results in Section 6.2

Proof of Lemma 6.2. Since both the switches σj and the deforming factors νj are smooth, for

j = 1, . . . ,M , the only technical challenge here is introduced by the fact that the number

M of discovered star-shaped obstacles in Fmap is not constant and changes as the robot

navigates the workspace.

Notice from (6.6) that all the derivatives of ηj used in the construction of the switch σj

for any j are zero if and only if ηj is zero. Therefore, in order to guarantee smoothness of h,

we just have to ensure that when a new obstacle k is added to the semantic map, the value

of σk will be zero. This follows directly from the assumption that the sensor range R is

much greater than εk, which implies that when obstacle k is discovered, the robot position

x will lie outside the set {q ∈ Fmap | 0 ≤ βk(q) < εk} and therefore the value of σk will be

zero.

Proof of Proposition 6.1. First of all, the map h is smooth as shown in Lemma 6.2. There-

fore, in order to prove that h is a C∞ diffeomorphism, we will follow the procedure outlined

in [131], also followed in [164], to show that

1. h has a non-singular differential on Fmap

2. h preserves boundaries, i.e., h(∂jFmap) ⊂ ∂jFmodel, j ∈ {0, . . . ,M +N}.2

3. the boundary components of Fmap and Fmodel are pairwise homeomorphic, i.e.,

∂jFmap ∼= ∂jFmodel, j ∈ {0, . . . ,M +N}.

We begin with property 1. Using Lemma 6.1 and observing from (6.7) and (6.8) that

a switch σk, k ∈ {1, . . . ,M} is zero if and only if its gradient ∇σk is zero, we observe

from (6.13) that Dxh is either the identity map (which is non-singular) or depends only a

single switch σk, k ∈ {1, . . . ,M} when 0 ≤ βk(x) < εk. In that case, we can isolate the k-th
2Here we denote by ∂jF the j-th connected component of the boundary of F (that corresponding to Õj),

with ∂0F the outer boundary of F .
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term in (6.13) and write the map differential as

Dxh = Dxhk = [1 + σk(x)(νk(x)− 1)] I + (x− x∗k)
[
σk(x)∇νk(x)>

+(νk(x)− 1)∇σk(x)>
]

= [1 + σk(x)(νk(x)− 1)] I + (x− x∗k)

[
− ρkσk(x)

||x− x∗k||3
(x− x∗k)

>

+η′k(βk(x))(νk(x)− 1)∇βk(x)>
]

(C.4)

From this expression, we can find with some computation

tr(Dxhk) =[1 + σk(x)(νk(x)− 1)] + (1− σk(x))

+ η′k(βk(x))(νk(x)− 1)(x− x∗k)
>∇βk(x) (C.5)

However, we know that
σk(x)− 1

σk(x)
≤ 0 < νk(x) (C.6)

since 0 < σk(x) ≤ 1, giving 1 + σk(x)(νk(x)− 1) > 0. Also, η′k(βk(x)) < 0 by construction

(since βk(x) < εk), νk(x) − 1 < 0 and (x − x∗k)
>∇βk(x) > 0 in the set {x ∈ Fmap | 0 ≤

βk(x) < εk}, because of Assumption 6.1-(c). Therefore, we get tr(Dxhk) > 0 for all x such

that 0 ≤ βk(x) < εk. Also, since Fmap ⊂ R2, we can similarly compute

det(Dxhk) = g′k(βk(x))(νk(x)− 1)[1 + σk(x)(νk(x)− 1)](x− x∗k)
>∇βk(x)

+ (1− σk(x))[1 + σk(x)(νk(x)− 1)] (C.7)

which leads to det(Dxhk) > 0 for all x such that βk(x) < εk. Since det(Dxhk) > 0

and tr(Dxhk) > 0, we conclude that Dxhk has two strictly positive eigenvalues in the set

{x ∈ Fmap | 0 ≤ βk(x) < εk}. Since this is true for any k ∈ {1, . . . ,M}, it follows that Dxh

has two strictly positive eigenvalues in Fmap and, thus, is non-singular in Fmap.

Next, pick a point x ∈ ∂jFmap for any j ∈ {0, . . . ,M + N}. This point could lie on

the outer boundary of Fmap, on the boundary of one of the N unknown but visible convex
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obstacles, or on the boundary of one of the M star-shaped obstacles. In the first two cases,

we have h(x) = x, while in the latter case

h(x) = x∗k +
ρk

||x− x∗k||
(x− x∗k) (C.8)

for some k ∈ {1, . . . ,M}, sending x to the boundary of the k-th disk in Fmodel. This shows

that we always have h(x) ∈ ∂jFmodel and, therefore, the map satisfies property 2.

Finally, property 3 derives from above and the fact that each boundary segment ∂jFmap
is an one-dimensional manifold, the boundary of either a convex set or a star-shaped set,

both of which are homeomorphic to the corresponding boundary ∂jFmodel.

C.4.2 Proofs of Results in Section 6.3

Proof of Proposition 6.2. Since h is just the identity transformation away from any star-

shaped obstacle and the control law u guarantees collision avoidance in that case, as shown

in [7], it suffices to show that the robot can never penetrate any star-shaped obstacle, i.e.,

for any xc such that βk(xc) = 0 for some k ∈ {1, . . . ,M}, we have u(xc)
>∇βk(xc) ≥ 0. For

such a point xc, we get from (6.10) and (6.13)

Dxh(xc) = Dxhk(xc) = [1 + σk(xc)(νk(xc)− 1)] I + (xc − x∗k)
[
σk(xc)∇νk(xc)>

+ (νk(xc)− 1)∇σk(xc)>
]

= [1 + σk(xc)(νk(xc)− 1)] I

+ (xc − x∗k)

[
− ρkσk(xc)

||xc − x∗k||3
(xc − x∗k)

>

+η′k(βk(xc))(νk(xc)− 1)∇βk(xc)>
]

=
ρk

||xc − x∗k||
I + (xc − x∗k)

[
− ρk
||xc − x∗k||3

(xc − x∗k)
>

+η′k(βk(xc))(νk(xc)− 1)∇βk(xc)>
]

(C.9)
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since σk(xc) = 1. Since Fmap ⊂ R2, we can explicitly compute the inverse of the 2x2 matrix

Dxhk(xc) from its four elements [Dxhk(xc)]11, [Dxhk(xc)]12, [Dxhk(xc)]21, [Dxhk(xc)]22 as

Dxhk(xc)
−1 =

1

det(Dxhk(xc)))

 [Dxhk(xc)]22 −[Dxhk(xc)]12

−[Dxhk(xc)]21 [Dxhk(xc)]11

 (C.10)

and after some simple computations, we can eventually find

[Dxhk(xc)]
−>∇βk(xc) =

ρk (xc − x∗k)
>∇βk(xc)

||xc − x∗k||3 det(Dxhk(xc)))
(xc − x∗k) (C.11)

On the other hand,

u(xc) = −k [Dxhk(xc)]
−1
(
h(xc)−ΠLF(h(xc))(xd)

)
(C.12)

Since xc belongs to the boundary of the obstacle k, then by construction of the diffeomor-

phism, h(xc) will belong to the boundary of the disk with radius ρk centered at x∗k and the

associated hyperplane [7] will be tangent to that disk at h(xc). Therefore, the projected

goal ΠLF(h(xc))(xd) will belong to the halfspace defined by the outward normal vector from

x∗k to h(xc) at h(xc) and we have

u(xc) = [Dxhk(xc)]
−1 t(xc) (C.13)

with t(xc)
>(h(xc) − x∗k) ≥ 0. Since by construction of the diffeomorphism h(xc) = x∗k +

ρk
xc−x∗k
||xc−x∗k||

, we derive that

t(xc)
>(xc − x∗k) ≥ 0 (C.14)

Using the above results, we see that

u(xc)
>∇βk(xc) =

[
[Dxhk(xc)]

−>∇βk(xc)
]>

t(xc)

=
ρk (xc − x∗k)

>∇βk(xc)
||xc − x∗k||3 det (Dxhk(xc))

(xc − x∗k)
>t(xc) ≥ 0 (C.15)
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using (C.14) and the fact that (xc − x∗k)
>∇βk(xc) > 0, since xc belongs to the boundary of

a star-shaped obstacle [164].

Proof of Lemma 6.3. The proof of this lemma derives immediately from [7, Propositions

5,11], from which we can infer that the set of stationary points of the vector field Dxh ·u(x),

defined on Fmodel, is {xd}
⋃{sj}j∈{1,...,M}⋃N

i=1 Gi, with xd being a locally stable equilibrium

of Dxh · u(x) and each other point being a nondegenerate saddle, since [7, Assumption 2]

is satisfied for the obstacles in Fmodel by construction. To complete the proof, we just

have to note that the index of an isolated zero of a vector field does not change under

diffeomorphisms of the domain [78].

Proof of Proposition 6.3. Consider the smooth Lyapunov function candidate V (x) =

||h(x)− xd||2, justified by the fact that h(xd) = xd by construction of the diffeomorphism,

since we have assumed that βj(xd) > εj for all j ∈ {1, . . . ,M}. Using (6.16)

dV

dt
=2(h(x)− xd)

>(Dxh)ẋ = −2k(h(x)− xd)
> (h(x)−ΠLF(h(x))(xd)

)
=− 2k

(
h(x)−ΠLF(h(x))(xd) + ΠLF(h(x))(xd)− xd

)> (
h(x)−ΠLF(h(x))(xd)

)
=− 2k||h(x)−ΠLF(h(x))(xd)||2

+ 2k
(
xd −ΠLF(h(x))(xd)

)> (
h(x)−ΠLF(h(x))(xd)

)
≤− 2k||h(x)−ΠLF(h(x))(xd)||2 ≤ 0 (C.16)

since h(x) ∈ LF(h(x)), which implies that

(
xd −ΠLF(h(x))(xd)

)> (
h(x)−ΠLF(h(x))(xd)

)
≤ 0 (C.17)

since either xd = ΠLF(h(x))(xd), or xd and h(x) are separated by a hyperplane passing

through ΠLF(h(x))(xd). Therefore, similarly to [7], using LaSalle’s invariance principle we

see that every trajectory starting in Fmap approaches the largest invariant set in {x ∈

Fmap | V̇ (x) = 0}, i.e. the equilibrium points of (6.16). The desired result follows from

Lemma 6.3, since xd is the only locally stable equilibrium of our control law and the rest
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of the stationary points are nondegenerate saddles, whose regions of attraction have empty

interior in Fmap.

Proof of Proposition 6.4. Note that the jacobian of h will be given by

Dxh =

Dxh 02×1

Dxξ
∂ξ

∂ψ

 (C.18)

Since we have already shown in Proposition 6.1 that Dxh is non-singular, it suffices to show

that ∂ξ
∂ψ 6= 0 for all x ∈ Fmap × S1. From (6.20) we can derive

∂ξ

∂ψ
=

det(Dxh)

||e(x)||2 (C.19)

Therefore, we immediately get that ∂ξ
∂ψ 6= 0 for all x ∈ Fmap × S1 since det(Dxh) 6= 0 and

||e(x)|| 6= 0 for all x ∈ Fmap, because Dxh is non-singular on Fmap. This implies that Dxh

is non-singular on Fmap × S1.

Next, we note that ∂
(
Fmap × S1

)
= ∂Fmap×S1, since S1 is a manifold without bound-

ary. Similarly, ∂
(
Fmodel × S1

)
= ∂Fmodel × S1. Hence, we can easily complete the proof

following a similar procedure with the end of the proof of Proposition 6.1.

Proof of Theorem 6.2. We have already established that ||e(x)|| and ∂ξ
∂ψ are nonzero for

all x ∈ Fmap × S1 in the proof of Proposition 6.4, which implies that v and ω can have

no singular points. Also notice that ||e(x)||, ∂ξ
∂ψ and Dxξ

[
cosψ sinψ

]>
are all smooth.

Hence, the uniqueness and existence of the flow generated by control law (6.26) can be es-

tablished similarly to [7] through the flow properties of the controller in [12] (that we use

here in (6.27)) and the facts that metric projections onto moving convex cells are piecewise

continuously differentiable [115, 175] and the composition of piecewise continuously differ-

entiable functions is piecewise continuously differentiable and, therefore, locally Lipschitz

[36].

Positive invariance of Fmap×S1 can be proven following similar patterns with the proof of

Proposition 6.2. Namely, it suffices to show that the robot can never penetrate an obstacle,
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i.e., for any placement (xc, ψc) such that βk(xc) = 0 for some index k ∈ {1, . . . ,M}, we

definitely have

∇βk(xc)>
vc cosψc

vc sinψc

 ≥ 0 (C.20)

for any ψc ∈ S1. We know from (6.22) that

vc cosψc

vc sinψc

 = [Dxh(xc)]
−1

v̂c cosϕc

v̂c sinϕc

 (C.21)

Therefore

∇βk(xc)>
vc cosψc

vc sinψc

 =∇βk(xc)>
[Dxh(xc)]

−1

v̂c cosϕc

v̂c sinϕc




=
(

[Dxh(xc)]
−>∇βk(xc)

)> v̂c cosϕc

v̂c sinϕc


=

ρk (xc − x∗k)
>∇βk(xc)

||xc − x∗k||3det(Dxh(xc))
(xc − x∗k)

>

v̂c cosϕc

v̂c sinϕc

 (C.22)

using (C.11). Hence, using the results from Proposition 6.2, we see that positive invariance

of Fmap × S1 under law (6.26) is equivalent to positive invariance of Fmodel × S1 under

law (6.27), which is guaranteed from [7, Proposition 12].
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Finally, consider the smooth Lyapunov function candidate V (x) = ||h(x)− xd||2. Then

dV

dt
=2(h(x)− xd)

>(Dxh)ẋ

=2v (h(x)− xd)
>(Dxh)

cosψ

sinψ


=2v(h(x)− xd)

>

cos ξ(x)

sin ξ(x)



=− 2k(h(x)− xd)
>

cos ξ(x)

sin ξ(x)


cos ξ(x)

sin ξ(x)


> (

h(x)−ΠLF(h(x))∩H‖(xd)
)

=− 2k(h(x)− xd)
>
(
h(x)−ΠLF(h(x))∩H‖(xd)

)

since

cos ξ(x)

sin ξ(x)


cos ξ(x)

sin ξ(x)


>

is just the projection operator on the line defined by the vector

[
cos ξ(x) sin ξ(x)

]>
, with which

(
h(x)−ΠLF(h(x))∩H‖(xd)

)
is already parallel. Following

this result, we get
dV

dt
≤ −2k

∣∣∣∣∣∣h(x)−ΠLF(h(x))∩H‖(xd)
∣∣∣∣∣∣2 ≤ 0 (C.23)

since, similarly to the proof of Proposition 6.3, we have

(
xd −ΠLF(h(x))∩H‖(xd)

)> (
h(x)−ΠLF(h(x))∩H‖(xd)

)
≤ 0 (C.24)

Therefore, using LaSalle’s invariance principle, we see that every trajectory starting in

Fmap × S1 approaches the largest invariant set in {(x, ψ) ∈ Fmap × S1 | V̇ (x) = 0} =

{(x, ψ) ∈ Fmap × S1 |h(x) = ΠLF(h(x))∩H‖(xd)}. At the same time, we know from (6.27)

that h(x) = ΠLF(h(x))∩H‖(xd) implies v = 0. From (6.26), for v = 0, we get that ω will be
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zero at points where ω̂ is zero, i.e. at points (x, ψ) ∈ Fmap × S1 where

− sin ξ(x)

cos ξ(x)


>(

h(x)−
ΠLF(h(x))∩HG(xd) + ΠLF(h(x))(xd)

2

)
= 0 (C.25)

Therefore the largest invariant set in {(x, ψ) |h(x) = ΠLF(h(x))∩H‖(xd)} is the set of points

x = (x, ψ) where the following two conditions are satisfied

h(x) = ΠLF(h(x))∩H‖(xd) (C.26)− sin ξ(x)

cos ξ(x)


>(

h(x)−
ΠLF(h(x))∩HG(xd) + ΠLF(h(x))(xd)

2

)
= 0 (C.27)

Using a similar argument to [7, Proposition 12], we can, therefore, verify that the set of

stationary points of law (6.26) is given by

{xd} × (−π, π]

⋃(q, ψ)
∣∣∣q ∈ {h−1(sj)}j∈{1,...,M}

N⋃
i=1

Gi,

− sin ξ(q, ψ)

cos ξ(q, ψ)


>

(q− xd) = 0

 (C.28)

using (6.17). We can then invoke a similar argument to Proposition 6.3 to show that xd

locally attracts with any orientation ψ, while any configuration associated with any other

equilibrium point is a nondegenerate saddle whose stable manifold is a set of measure zero,

and the result follows.

C.5 Proofs of Results in Chapter 7

C.5.1 Proofs of Results in Section 7.3

Proof of Lemma 7.1. With the procedure outlined in Appendix A.1, the only points where

γji and δji are not smooth are vertices of Qji and Qji respectively. Therefore, with the

definition of σδji as in (7.14) and the use of the smooth, non-analytic function ζ from (7.11),
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we see that σδji is smooth everywhere, since x∗ji does not belong in FImap,ji and δji is exactly

0 on the vertices of Qji . Therefore, σji can only be non-smooth on the vertices of Qji
except for x∗ji (i.e., on the vertices of the triangle ji), and on points where its denominator

becomes zero. Since both σγji and σδji vary between 0 and 1, this can only happen when

σγji (x) = 1 and σδji (x) = 0, i.e., only on x1ji and x2ji . The fact that σji is smooth

everywhere else derives immediately from the fact that σδji is a smooth function, and σγji
is smooth everywhere except for the triangle vertices.

Proof of Lemma 7.2. From Lemma 7.1, we already know that the switch σji is smooth away

from the vertices of ji. On the other hand, the singular points of the deforming factor νji are

the solutions of the equation (x−x∗ji)
>nji = 0 and, therefore, lie on the hyperplane passing

through x∗ji with normal vector njiand, due to the construction of Qji as in Definition 7.3, lie

outside of Qji and do not affect the map FImap,ji . Hence, the map hIji is smooth everywhere

in FImap,ji , except for the vertices of the triangle ji, as a composition of smooth functions

with the same properties.

Proof of Proposition 7.1. First of all, the map hIji is smooth everywhere except for the ver-

tices of the triangle ji, as shown in Lemma 7.2. Therefore, in order to prove that hIji is a

C∞ diffeomorphism away from the triangle vertices x1ji ,x2ji ,x3ji , we follow the procedure

outlined in [131], also followed in [164], to show that

1. hIji has a non-singular differential on FImap,ji except for x1ji ,x2ji ,x3ji .

2. hIji preserves boundaries, i.e., h
I
ji

(∂kFImap,ji) ⊂ ∂kFImap,p(ji), with k spanning both the

indices of familiar obstacles J ID , J IB as well as the indices of unknown obstacles JC ,

and ∂kF the k-th connected component of the boundary of F with ∂0F the outer

boundary of F .

3. the boundary components of FImap,ji and FImap,p(ji) are pairwise homeomorphic, i.e.,

∂kFImap,ji ∼= ∂kFImap,p(ji), with k spanning both the indices of familiar obstacles J ID ,

J IB as well as the indices of unknown obstacles JC .
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We begin with Property 1 and examine the space away from the triangle vertices x1ji , x2ji ,

x3ji . The case where σδji is 0 (outside of the polygonal collar Qji) is not interesting, since

hIji defaults to the identity map and Dxh
I
ji

= I. When σδji is not 0, we can compute the

jacobian of the map as

Dxh
I
ji = (νji(x)− 1) (x− x∗ji)∇σji(x)>

+ σji(x)(x− x∗ji)∇νji(x)>

+ [1 + σji(x) (νji(x)− 1)] I (C.29)

For the deforming factor νji we compute from (7.16)

∇νji(x) = −

(
x1ji − x∗ji

)>
nji[(

x− x∗ji

)>
nji

]2nji (C.30)

Note that we interestingly get

(
x− x∗ji

)>∇νji(x) = −νji(x) (C.31)

From (C.29) it can be seen that Dxh
I
ji

= A + uv> with A = [1 + σji(x) (νji(x)− 1)] I,

u = x− x∗ji and v = (νji(x)− 1)∇σji(x) + σji(x)∇νji(x).

Due to the fact that 0 ≤ σji(x) ≤ 1 and 0 < νji(x) < 1 in the interior of an admissible

polygonal collar Qji (see Definition 7.3), we get 1 + σji(x) (νji(x)− 1) > 0. Hence, A is

invertible, and by using the matrix determinant lemma and (C.31), the determinant ofDxh
I
ji

can be computed as

det(Dxh
I
ji) = detA + (detA)v>A−1u

= [1 + σji(x) (νji(x)− 1)] ·

·
[
(1− σji(x)) + (νji(x)− 1) (x− x∗ji)

>∇σji(x)
]

(C.32)
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Similarly the trace of Dxh
I
ji
can be computed as

tr(Dxh
I
ji) = [1 + σji(x) (νji(x)− 1)] + (1− σji(x))

+ (νji(x)− 1) (x− x∗ji)
>∇σji(x) (C.33)

Also, by construction of the switch σji , we see that ∇σji(x) = 0 when σji(x) = 0. Hence,

using the above expressions, we can show that det(Dxh
I
ji

), tr(Dxh
I
ji

) > 0 (and therefore

establish that Dxh
I
ji

is not singular in the interior of Qji , since FImap,ji ⊆ R2) by showing

that (x− x∗ji)
>∇σji(x) < 0 when σji(x) > 0, where

∇σji(x) =
σδji (x)[

σγji (x)σδji (x) +
(

1− σγji (x)
)]2∇σγji (x)

+
σγji (x)

(
1− σγji (x)

)
[
σγji (x)σδji (x) +

(
1− σγji (x)

)]2∇σδji (x) (C.34)

with

∇σγji (x) =


−

µγjiσγji (x)

(εji − γji(x))2∇γji(x), γji(x) < εji

0, γji(x) ≥ εji
(C.35)

∇σδji (x) =


µδjiσδji (x)

αji(x)2
∇αji(x), δji(x) > 0

0, δji(x) ≤ 0

(C.36)

and αji(x) := δji(x)/||x− x∗ji ||. Therefore, it suffices to show that when σji(x) > 0:

(x− x∗ji)
>∇γji(x) > 0 (C.37)

(x− x∗ji)
>∇αji(x) < 0 (C.38)

Following the procedure outlined in Appendix A.1 for generating implicit functions for

polygons, it can be seen that the implicit function γji , describing the exterior of the quadri-
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lateral Qji , can be written as

γji(x) = ¬ ((γ1ji(x) ∧ γ2ji(x)) ∧ (γ3ji(x) ∧ γ4ji(x))) (C.39)

with the negation (¬) and conjunction (∧) operators defined as in (A.3) and (A.4) respec-

tively, and γ1ji , γ2ji , γ3ji , γ4ji the hyperplane equations describing Qji defined as follows

γ1ji(x) := (x− x∗ji)
>n1ji ,n1ji := Rπ

2

x∗ji
−x1ji

||x∗ji−x1ji
|| (C.40)

γ2ji(x) := (x− x∗ji)
>n2ji ,n2ji := Rπ

2

x2ji
−x∗ji

||x2ji
−x∗ji ||

(C.41)

γ3ji(x) := (x− x3ji)
>n3ji ,n3ji := Rπ

2

x3ji
−x2ji

||x3ji
−x2ji

|| (C.42)

γ4ji(x) := (x− x3ji)
>n4ji ,n4ji := Rπ

2

x1ji
−x3ji

||x1ji
−x3ji

|| (C.43)

We therefore get

∇γji = −
(

1− γ1ji∧γ2ji√
(γ1ji∧γ2ji )2+(γ3ji∧γ4ji )2

)
∇(γ1ji ∧ γ2ji)

−
(

1− γ3ji∧γ4ji√
(γ1ji∧γ2ji )2+(γ3ji∧γ4ji )2

)
∇(γ3ji ∧ γ4ji) (C.44)
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with

∇(γ1ji ∧ γ2ji) =

(
1− γ1ji√

γ21ji
+γ22ji

)
∇γ1ji

+

(
1− γ2ji√

γ21ji
+γ22ji

)
∇γ2ji

=

(
1− γ1ji√

γ21ji
+γ22ji

)
n1ji

+

(
1− γ2ji√

γ21ji
+γ22ji

)
n2ji (C.45)

∇(γ3ji ∧ γ4ji) =

(
1− γ3ji√

γ23ji
+γ24ji

)
∇γ3ji

+

(
1− γ4ji√

γ23ji
+γ24ji

)
∇γ4ji

=

(
1− γ3ji√

γ23ji
+γ24ji

)
n3ji

+

(
1− γ4ji√

γ23ji
+γ24ji

)
n4ji (C.46)

It is then not hard to show that (x−x∗ji)>∇(γ1ji∧γ2ji) = γ1ji∧γ2ji . The term corresponding

to (γ3ji ∧ γ4ji) is more complicated, but we can follow a similar procedure to get

(x− x∗ji)
>∇(γ3ji ∧ γ4ji) = γ3ji ∧ γ4ji

−
(

1− γ3ji√
γ23ji

+γ24ji

)
(x∗ji − x3ji)

>n3ji

−
(

1− γ4ji√
γ23ji

+γ24ji

)
(x∗ji − x3ji)

>n4ji

< γ3ji ∧ γ4ji (C.47)

since (x∗ji−x3ji)
>n3ji > 0 and (x∗ji−x3ji)

>n4ji > 0, because Qji is convex. Therefore, using

the facts that (x−x∗ji)
>∇(γ1ji ∧ γ2ji) = γ1ji ∧ γ2ji and (x−x∗ji)

>∇(γ3ji ∧ γ4ji) < γ3ji ∧ γ4ji ,
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we can get the desired result using (C.44) as follows

(x− x∗ji)
>∇γji(x) >− ((γ1ji ∧ γ2ji) ∧ (γ3ji ∧ γ4ji))

=¬((γ1ji ∧ γ2ji) ∧ (γ3ji ∧ γ4ji))

=γji(x) > 0 (C.48)

The proof of (C.38) follows similar patterns. Here, we focus on δji . The external

polygonal collar Qji can be assumed to have n sides, which means that we can write

δji = ((δ1ji ∧ δ2ji) ∧ . . . ∧ δnji). Following the procedure outlined above for the proof

of (C.37), we can expand each term in the conjunction individually and then combine them

to get

(x− x∗ji)
>∇δji(x) < δji(x) (C.49)

We also have

∇αji(x) = ∇
(

δji(x)

||x− x∗ji ||

)

=
||x− x∗ji ||∇δji(x)− δji(x)

x−x∗ji
||x−x∗ji ||

||x− x∗ji ||2
(C.50)

which gives the desired result using (C.49)

(x− x∗ji)∇αji(x) =
(x− x∗ji)∇δji(x)− δji(x)

||x− x∗ji ||
< 0 (C.51)

This concludes the proof that hIji satisfies Property 1.

Next, we focus on Property 2. Pick a point x ∈ ∂kFImap,ji . This point could lie:

1. on the outer boundary of FImap,ji and away from Pi

2. on the boundary of one of the |JC | unknown but visible convex obstacles

3. on the boundary of one of the (|J ID |+ |J IB | − 1) familiar obstacles that are not Pi
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4. on the boundary of Pi but not on the boundary of the triangle ji

5. on the boundary of the triangle ji

In the first four cases, we have hIji(x) = x, whereas in the last case, we have

hIji(x) = x∗ji +

(
x1ji − x∗ji

)>
nji(

x− x∗ji

)>
nji

(x− x∗ji) (C.52)

It can be verified that
(
hIji(x)− x1ji

)>
nji = 0, which means that x is sent to the shared

hyperplane between ji and p(ji) as desired. This shows that we always have hIji(x) ∈

∂kFImap,p(ji) and the map satisfies Property 2.

Finally, Property 3 derives from above and the fact that each boundary segment

∂kFImap,ji is an one-dimensional manifold, the boundary of either a convex set or a poly-

gon, both of which are homeomorphic to S1 and, therefore, the corresponding boundary

∂kFImap,p(ji).

Proof of Lemma 7.3. The proof follows similar patterns with the proof of Lemma 7.1. With

the procedure outlined in Appendix A.1, the only points where γri and δri are not smooth

are vertices of Qri and Qri respectively. Therefore, with the definition of σδri as in (7.22)

and the use of the smooth, non-analytic function ζ from (7.11), we see that σδri is smooth

everywhere, since x∗i does not belong in F̂Imap and δri is exactly 0 on the vertices of Qri .

Therefore, σri can only be non-smooth on the vertices of Qri (i.e., on the vertices of the

triangle ri), and on points where its denominator becomes zero. Since both σγri and σδri

vary between 0 and 1, this can only happen when σγri (x) = 1 and σδri (x) = 0, which is

not allowed by Definition 7.5, requiring Qri ⊂ Qri . The fact that σri is smooth everywhere

else derives immediately from the fact that σδri is a smooth function, and σγri is smooth

everywhere except for the triangle vertices.

Proof of Proposition 7.2. The proof follows similar patterns with that of Proposition 7.1.

As shown in Lemma 7.5, the map ĥI is smooth in F̂Imap away from any sharp corners.
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Therefore, we need to focus again on the Massey conditions [131] and show that

1. ĥI has a non-singular differential on F̂Imap away from any sharp corners.

2. ĥI preserves boundaries, i.e., ĥI(∂kF̂Imap) ⊂ ∂kFImodel, with k spanning both the

indices of familiar obstacles J ID , J IB as well as the indices of unknown obstacles JC .

3. the boundary components of F̂Imap and FImodel are pairwise homeomorphic, i.e.,

∂kF̂Imap ∼= ∂kFImodel, with k spanning both the indices of familiar obstacles J ID , J IB as

well as the indices of unknown obstacles JC .

We begin with Property 1 and examine the space away from any sharp corners in F̂Imap.

By construction of the polygonal collars Qri and the definition of ĥI in (7.28), we see that

ĥI is either the identity map (which implies that Dxĥ
I = I), or depends only on a single

switch σrk . In that case, we can isolate the k-th term of the map jacobian to write

Dxĥ
I = Dxĥ

I |k = (νrk(x)− 1) (x− x∗k)∇σrk(x)>

+ σrk(x)(x− x∗k)∇νrk(x)>

+ [1 + σrk(x) (νrk(x)− 1)] I (C.53)

It is then straightforward to follow exactly the same procedure outlined in the proof of

Proposition 7.1 and show that det(Dxĥ
I |k), tr(Dxĥ

I |k) > 0 for all x ∈ F̂Imap away from

sharp corners.

Next, we focus on Property 2. Pick a point x ∈ ∂kF̂Imap. This point could lie

1. on the outer boundary of F̂Imap, but not on a root triangle corresponding to an obstacle

Pi ∈ BImap

2. on the boundary of one of the JC unknown but visible convex obstacles

3. on the outer boundary of F̂Imap and on a root triangle corresponding to an obstacle

Pi ∈ BImap, or

4. on the boundary of one of the |J ID | root triangles corresponding to obstacles in DImap
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In the first two cases, we have ĥI(x) = x, in the third case we have ĥI(x) ∈ ∂0FImodel = ∂Fe
by construction of (7.23) and (7.25), while in the last case

ĥI(x) = x∗k +
ρk

||x− x∗k||
(x− x∗k) (C.54)

for some k ∈ J ID , sending x to the boundary of the k-th disk in FImodel. This shows that we

always have ĥI(x) ∈ ∂kFImodel and the map satisfies Property 2.

Finally, Property 3 derives from above and the fact that each boundary segment ∂kF̂Imap
is an one-dimensional manifold, the boundary of either a convex set or a triangle, both of

which are homeomorphic to S1 and, therefore, the corresponding boundary ∂kFImodel.

C.5.2 Proofs of Results in Section 7.4

Proof of Lemma 7.6. The proof of this lemma derives immediately from [7, Propositions

5,11] and Assumption 7.5, from which we can infer that the set of stationary points of the

vector field Dxh
I ·uI(x), defined on FImodel, is {hI(xd)}

⋃{si}i∈J ID ⋃{Gk}k∈JC , with hI(xd)

being a locally stable equilibrium ofDxh
I ·uI(x) and each other point being a nondegenerate

saddle, since [7, Assumption 2] is satisfied for the obstacles in FImodel from Assumption 7.1.

To complete the proof, we just have to note that the index of an isolated zero of a vector

field does not change under diffeomorphisms of the domain [78].

Proof of Proposition 7.4. Consider the smooth Lyapunov function candidate V I(x) =
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||hI(x)− hI(xd)||2. Using (7.40) and writing y = hI(x) and yd = hI(xd), we get

dV I

dt
=2(y − yd)

>(Dxh
I)ẋ

=− 2k(y − yd)
> (y −ΠLF(y)(yd)

)
=− 2k

(
y −ΠLF(y)(yd) + ΠLF(y)(yd)− yd

)>
(
y −ΠLF(y)(yd)

)
=− 2k||y −ΠLF(y)(yd)||2

+ 2k
(
yd −ΠLF(y)(yd)

)> (
y −ΠLF(y)(yd)

)
≤− 2k||y −ΠLF(y)(yd)||2 ≤ 0 (C.55)

since y ∈ LF(y), which implies that

(
yd −ΠLF(y)(yd)

)> (
y −ΠLF(y)(yd)

)
≤ 0 (C.56)

since either yd = ΠLF(y)(yd), or yd and y are separated by a hyperplane passing through

ΠLF(y)(yd). Therefore, similarly to [7], using LaSalle’s invariance principle we see that every

trajectory starting in FImap approaches the largest invariant set in {x ∈ FImap | V̇ I(x) = 0},

i.e. the equilibrium points of (7.40). The desired result follows from Lemma 7.6, since xd is

the only locally stable equilibrium of our control law and the rest of the stationary points

are nondegenerate saddles, whose regions of attraction have empty interior in FImap.

Proof of Proposition 7.5. Note that the jacobian of hI will be given by

Dxh
I

=

Dxh
I 02×1

Dxξ
I ∂ξI

∂ψ

 (C.57)

Since we already have from Corollary 7.3 that Dxh
I is non-singular, it suffices to show that
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∂ξI

∂ψ 6= 0 for all x ∈ FImap × S1. From (7.43) we can derive

∂ξI

∂ψ
=

det(Dxh
I)

||e(x)||2 (C.58)

Therefore, we immediately get that ∂ξI

∂ψ 6= 0 for all x ∈ FImap × S1 since det(Dxh
I) 6= 0

and ||e(x)|| 6= 0 for all x ∈ FImap, because Dxh
I is non-singular on FImap. This implies that

Dxh
I is non-singular on FImap × S1.

Next, we note that ∂
(
FImap × S1

)
= ∂FImap×S1, since S1 is a manifold without bound-

ary. Similarly, ∂
(
FImodel × S1

)
= ∂FImodel × S1. Hence, we can easily complete the proof

following a similar procedure with the end of the proofs of Propositions 7.1 and 7.2 to show

that hI preserves boundaries, and the boundaries of FImap×S1 and FImodel×S1 are pairwise

homeomorphic.

Proof of Theorem 7.2. We have already established that ||e(x)|| and ∂ξI

∂ψ are nonzero for all

x ∈ FImap×S1 in the proof of Proposition 7.5, which implies that v and ω can have no singular

points. Also notice that ||e(x)||, ∂ξI

∂ψ and Dxξ
I
[
cosψ sinψ

]>
are all smooth away from

corners in FImap × S1. Hence, the uniqueness and existence of the flow generated by control

law (7.54) can be established similarly to [7] through the flow properties of the controller in

[12] (that we use here in (7.55)) and the facts that metric projections onto moving convex

cells are piecewise continuously differentiable [115, 175], and the composition of piecewise

continuously differentiable functions is piecewise continuously differentiable and, therefore,

locally Lipschitz [36].

Next, as shown in (7.45), the vector field B(ψ)uI on FImap × S1 is the pullback of the

complete vector field B(ϕ)vI , guaranteed to retain FImodel×S1 positively invariant under its

flow as shown in [7], under the smooth change of coordinates hI away from sharp corners in

FImap×S1. This shows that the freespace FImap×S1 is positively invariant under law (7.54).

Finally, consider the smooth Lyapunov function candidate V I(x) = ||hI(x)−hI(xd)||2.
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Then, by writing y = hI(x) and yd = hI(xd), we get

dV I

dt
=2(y − yd)

>(Dxh
I)ẋ

=2vI (y − yd)
>(Dxh

I)

cosψ

sinψ


=2v̂I(y − yd)

>

cos ξI(x)

sin ξI(x)



=− 2kv(y − xd)
>

cos ξI(x)

sin ξI(x)


cos ξI(x)

sin ξI(x)


>

(
y −ΠLF(y)∩H‖(yd)

)
=− 2kv(y − yd)

>
(
y −ΠLF(y)∩H‖(yd)

)

since

cos ξI(x)

sin ξI(x)


cos ξI(x)

sin ξI(x)


>

is just the projection operator on the line defined by the vec-

tor
[
cos ξI(x) sin ξI(x)

]>
, with which

(
y −ΠLF(y)∩H‖(yd)

)
is already parallel. Following

this result, we get
dV I

dt
≤ −2kv

∣∣∣∣∣∣hI(y)−ΠLF(y)∩H‖(yd)
∣∣∣∣∣∣2 ≤ 0 (C.59)

since, similarly to the proof of Proposition 7.4, we have

(
yd −ΠLF(y)∩H‖(yd)

)> (
y −ΠLF(y)∩H‖(yd)

)
≤ 0 (C.60)

Therefore, using LaSalle’s invariance principle, we see that every trajectory starting in

FImap × S1 approaches the largest invariant set in {(x, ψ) ∈ FImap × S1 | V̇ I(x) = 0} =

{(x, ψ) ∈ FImap × S1 |hI(x) = ΠLF(hI(x))∩H‖(h
I(xd))}. At the same time, we know

from (7.55) that hI(x) = ΠLF(hI(x))∩H‖(h
I(xd)) implies vI = 0. From (7.54), for vI = 0,

we get that ωI will be zero at points where ω̂I is zero, i.e. at points (x, ψ) ∈ FImap × S1
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where − sin ξI(x)

cos ξI(x)


> (

hI(x)− yd,G(hI(x), ξI(ψ)
)

= 0 (C.61)

with the angular local goal yd,G defined as in (7.57). Therefore the largest invariant set in

{(x, ψ) |hI(x) = ΠLF(hI(x))∩H‖(h
I(xd))} is the set of points x = (x, ψ) where the following

two conditions are satisfied

hI(x) = ΠLF(hI(x))∩H‖(h
I(xd)) (C.62)− sin ξI(x)

cos ξI(x)


> (

hI(x)− yd,G(hI(x), ξI(ψ))
)

= 0 (C.63)

Using a similar argument to [7, Proposition 12], we can, therefore, verify that the set of

stationary points of law (7.54) is given by

{xd} × (−π, π]

⋃(q, ψ)
∣∣∣q ∈ {(hI)−1(si)}i∈J ID

⋃
k∈JC

Gk,

− sin ξI(q, ψ)

cos ξI(q, ψ)


>

(q− xd) = 0

 (C.64)

using (7.41). We can then invoke a similar argument to Proposition 7.4 to show that xd

locally attracts with any orientation ψ, while any configuration associated with any other

equilibrium point is a nondegenerate saddle whose stable manifold is a set of measure zero,

and the result follows.

Proof of Lemma 7.7. We can show this by contradiction. Assume that the robot is in mode

I and two guards GI,I∪I1 and GI,I∪I2 , indexed by two different subsets I1 6= I2, each

playing the role of Iu in (7.31), nevertheless overlap, GI,I∪I1 ∩ GI,I∪I2 6= ∅. That means

that there exists at least one state x ∈ FI , such that x ∈ GI,I∪I1 and x ∈ GI,I∪I2 , for
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two nonempty sets I1, I2 with I ∩ I1 = ∅, I ∩ I2 = ∅. Since I1 6= I2 by assumption,

this implies that there exists at least one index i that is contained in one of these index

sets, but is not contained in the other. Without loss of generality, assume that i ∈ I1

and i /∈ I2. We immediately arrive at a contradiction, since the requirement x ∈ GI,I∪I2

requires B (x, R) ∩ P̃NP\(I∪I2) = ∅, but we know that the requirement x ∈ GI,I∪I1 implies

B (x, R) ∩ P̃i 6= ∅ with P̃i ∈ P̃NP\(I∪I2).

Proof of Lemma 7.8. If the system is in the terminal mode I = NP , according to Defini-

tion 7.8, then finite time escape through the boundary of the hybrid domain is not possible,

since the vector field uI leaves its domain positively invariant under its flow, as described

in Theorem 7.1. For I 6= NP , the only way in which the flow can escape is through the

boundary of an obstacle P̃ /∈ {P̃i}i∈I , since uI guarantees safety only against familiar ob-

stacles in I and any unknown obstacles encountered along the way. We are going to show

that this cannot happen by contradiction. Assume that at time t0 the robot is at x0 ∈ FI ,

and at time t1 > t0 it crosses the boundary of an obstacle P̃ /∈ {P̃i}i∈I . This means that the

robot travels distance d > 0 between t0 and t1 in mode I, without triggering a transition

to another hybrid mode I ′ that includes P̃ (and therefore guarantees safety against it by

Theorem 7.1), which is impossible since the sensor footprint has a positive radius R and

B (xt, R) would have hit P̃i at some time t < t1 before colliding with it.

Moreover, the restriction of the reset map in each separate mode is just the identity

transform, which, by the argument made above, implies that the discrete transition itself is

never blocking, assuming that the initial condition lies in the freespace F . This is because

F ⊆ FI for all modes I ∈ 2NP .

Finally, hybrid ambiguity is avoided by the construction of the guard in (7.31); if the

robot at a position x− in the interior of the domain is in mode I at time t− before a

discrete transition and in mode I ′ at time t+ after the transition, we are guaranteed that

the sensor footprint B (x+, R) after the transition does not intersect any obstacle P̃i with

i /∈ I ′. This implies that x+ lies in the interior of the domain and away from the guard, and

the application of the reset map provides the unique extension to the execution.
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Proof of Theorem 7.3. As stated in Section 7.4.1, the hybrid system described in the tuple

H has 2|NP | modes. Unique piecewise continuous differentiability of the flow derives imme-

diately by the unique continuous differentiability of the control law UI , defined in (7.40)

for each separate mode I, as summarized in Theorem 7.1. Moreover, positive invariance

derives from the first part of the proof of Lemma 7.8, which guarantees that the hybrid flow

cannot escape from the hybrid domain through a point on the boundary of the domain in

the complement of the guard, or the guard itself.

For stability, we note that each mode (indexed by I ∈ 2NP ) is associated with a candidate

Lyapunov function V I(x) = ||hI(x) − hI(xd)||2, as shown in the proof of Proposition 7.4.

Moreover, also by the results of Proposition 7.4, xd is the unique asymptotically stable

equilibrium of each control vector field UI , thus, almost every execution that remains in

mode I for all future time has a trajectory that asymptotically approaches the goal. Then,

the key for the proof is the observation that once the robot exits a mode defined by I, it

can never re-enter it. This is because the robot stores information in its semantic map and

this knowledge can only be incremental; in the worst case, the robot will explore all familiar

obstacles in the environment, and stay in mode I = NP for all following time.

Based on this observation, we notice that the collection of functions {V I | I ∈ 2NP} are

Lyapunov-like, in the sense of [32, Definition 2.2], for all time their corresponding mode is

active, since they never reset. We complete the proof by invoking [32, Theorem 2.3], which

states that if a collection of Lyapunov-like functions for a hybrid system are associated with

corresponding vector fields that share the same equilibrium, then the hybrid system itself is

Lyapunov stable around this equilibrium.

C.6 Proofs of Results in Chapter 8

Proof of Proposition 8.1. We follow similar patterns to the proof of Proposition 7.1. We first

need to show that the functions σji , νji : FImap,ji → R are smooth away from the polygon

vertices, none of which lies in the interior of FImap,ji . We begin with σji . First of all, with

the procedure outlined in Appendix A.1, the only points where γji and δji are not smooth
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are vertices of Qji and Qji respectively. Therefore, by defining σji as in (7.15), we get that

σji can only be non-smooth on the vertices of Qji except for x∗ji (i.e., on the vertices of the

polygon ji), and on points where its denominator becomes zero. Since both σγji and σδji

vary between 0 and 1, this can only happen when σγji (x) = 1 and σδji (x) = 0, i.e., only

on x1ji and x2ji . The fact that σji is smooth everywhere else derives immediately from the

fact that σδji is a smooth function, and σγji is smooth everywhere except for the polygon

vertices.

On the other hand, the singular points of the deforming factor νji , defined in (7.16), are

the solutions of the equation (x−x∗ji)
>nji = 0, which lie on the hyperplane passing through

x∗ji with normal vector nji and, due to the construction of Qji as in Definition 8.2, lie

outside of Qji and do not affect the map FImap,ji . Hence, the map hIji is smooth everywhere

in FImap,ji , except for the vertices of the polygon ji, as a composition of smooth functions

with the same properties.

Now, in order to prove that hIji is a C∞ diffeomorphism away from the vertices of

ji, we follow the procedure outlined in [131], also followed in [164] and in the proof of

Proposition 7.1, to show that

1. hIji has a non-singular differential on FImap,ji except for the vertices of polygon ji.

2. hIji preserves boundaries, i.e., h
I
ji

(∂kFImap,ji) ⊂ ∂kFImap,p(ji), with k spanning both the

indices of familiar obstacles J ID , J IB as well as the indices of unknown obstacles JC ,

and ∂kF the k-th connected component of the boundary of F with ∂0F the outer

boundary of F .

3. the boundary components of FImap,ji and FImap,p(ji) are pairwise homeomorphic, i.e.,

∂kFImap,ji ∼= ∂kFImap,p(ji), with k spanning both the indices of familiar obstacles J ID ,

J IB as well as the indices of unknown obstacles JC .

We begin with Property 1 and examine the space away from the vertices of ji. The case

where σδji is 0 (outside of the polygonal collar Qji) is not interesting, since h
I
ji
defaults to the

identity map and Dxh
I
ji

= I. When σδji is not 0, we can follow the same procedure outlined
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in the proof of Proposition 7.1 to establish that it suffices to show that when σji(x) > 0:

(x− x∗ji)
>∇γji(x) > 0 (C.65)

(x− x∗ji)
>∇αji(x) < 0 (C.66)

Following the procedure outlined in Appendix A.1 for the implicit representation of

polygonal obstacles and assuming that the polygon Qji has m sides, we can describe Qji
with the implicit function γji = ¬ ((γ1ji ∧ γ2ji) ∧ . . . ∧ γmji), with the companion R-function

[176] of the logic negation for a function x defined as ¬x := −x, the companion R-function

of the logic conjunction ∧ for two functions x1, x2 defined as x1∧x2 := x1 +x2− (xp1 + xp2)
1
p ,

and γkji the k-th hyperplane equation describing Qji , given as γkji(x) := (x − xkji)
>nkji .

Note here that the first two hyperplanes γ1ji and γ2ji pass through the center x∗ji , i.e., we

can write γ1ji(x) = (x− x∗ji)
>n1ji and γ2ji(x) = (x− x∗ji)

>n2ji . Based on this observation,

it is easy to derive the following expression for any x that satisfies σji(x) > 0

(x− x∗ji)
>∇(γ1ji ∧ γ2ji) = γ1ji ∧ γ2ji (C.67)

We can then similarly compute

∇ ((γ1ji ∧ γ2ji) ∧ γ3ji) =

(
1− γ3ji√

(γ1ji∧γ2ji )2+γ23ji

)
∇γ3ji

+

(
1− γ1ji∧γ2ji√

(γ1ji∧γ2ji )2+γ23ji

)
∇(γ1ji ∧ γ2ji)

and observe that (x − x∗ji)
>∇γ3ji = (x − x3ji)

>∇γ3ji − (x∗ji − x3ji)
>∇γ3ji = γ3ji − (x∗ji −

x3ji)
>n3ji < γ3ji , which implies that (x− x∗ji)

>∇ ((γ1ji ∧ γ2ji) ∧ γ3ji) < (γ1ji ∧ γ2ji) ∧ γ3ji .

We can repeat this step inductively for all hyperplanes comprising Qji to show that

(x− x∗ji)
>∇ ((γ1ji ∧ γ2ji) ∧ . . . ∧ γmji) <

((γ1ji ∧ γ2ji) ∧ . . . ∧ γmji)
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The last step is to apply the negation induced by the R-function and arrive at the desired

result:

(x− x∗ji)
>∇γji(x) > γji(x) ≥ 0 (C.68)

The proof of (C.66) follows similar patterns. Here, we focus on δji . The external

polygonal collar Qji can be assumed to have n sides, which means that we can write

δji = ((δ1ji ∧ δ2ji) ∧ . . . ∧ δnji). Following the procedure outlined above for the proof

of (C.65), we can expand each term in the conjunction individually and then combine them

to get

(x− x∗ji)
>∇δji(x) < δji(x) (C.69)

We also have

∇αji(x) = ∇
(

δji(x)

||x− x∗ji ||

)

=
||x− x∗ji ||∇δji(x)− δji(x)

x−x∗ji
||x−x∗ji ||

||x− x∗ji ||2
(C.70)

which gives the desired result using (C.69)

(x− x∗ji)∇αji(x) =
(x− x∗ji)∇δji(x)− δji(x)

||x− x∗ji ||
< 0 (C.71)

This concludes the proof that hIji satisfies Property 1.

Next, we focus on Property 2. Pick a point x ∈ ∂kFImap,ji . This point could lie:

1. on the outer boundary of FImap,ji and away from Pi

2. on the boundary of one of the |JC | unknown but visible convex obstacles

3. on the boundary of one of the (|J ID |+ |J IB | − 1) familiar obstacles that are not Pi

4. on the boundary of Pi but not on the boundary of the polygon ji

5. on the boundary of the polygon ji
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In the first four cases, we have hIji(x) = x, whereas in the last case, we have

hIji(x) = x∗ji +

(
x1ji − x∗ji

)>
nji(

x− x∗ji

)>
nji

(x− x∗ji) (C.72)

It can be verified that
(
hIji(x)− x1ji

)>
nji = 0, which means that x is sent to the shared

hyperplane between ji and p(ji) as desired. This shows that we always have hIji(x) ∈

∂kFImap,p(ji) and the map satisfies Property 2.

Finally, Property 3 derives from above and the fact that each boundary segment

∂kFImap,ji is an one-dimensional manifold, the boundary of either a convex set or a poly-

gon, both of which are homeomorphic to S1 and, therefore, the corresponding boundary

∂kFImap,p(ji).

Proof of Theorem 8.1. We first focus on the proof of (the more specific) part 2 of Theo-

rem 8.1 and follow similar patterns with the proof of Theorem 7.1. First of all, the vector

field uI is Lipschitz continuous since vI(y) is shown to be Lipschitz continuous in [9] and

y = hI(x) is a smooth change of coordinates away from sharp corners. Therefore, the vector

field uI generates a unique continuously differentiable partial flow. To ensure completeness

(i.e., absence of finite time escape through boundaries in FImap) we must verify that the

robot never collides with any obstacle in the environment, i.e., leaves its freespace positively

invariant. However, this property follows directly from the fact that the vector field uI on

FImap is the pushforward of the complete vector field vI through (hI)−1, guaranteed to in-

sure that FImodel remain positively invariant under its flow as shown in [9], away from sharp

corners on the boundary of FImap. Therefore, with I = NP the terminal mode of the hybrid

controller, the freespace interior FImap is positively invariant under (8.1).

Next, we focus on the critical points of (8.1). As shown in Lemma 7.6, with I = NP the

terminal mode of the hybrid controller:
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1. The set of stationary points of control law (8.1) is given as

{xd}
⋃
{(hI)−1(si)}i∈J ID

⋃
{Gk}k∈JC

where

si = x∗i − ρi
hI(xd)− x∗i
||hI(xd)− x∗i ||

(C.73a)

Gk =
{
q ∈ FImap

∣∣∣d(q, Ck) = r, κ(q) = 1
}

(C.73b)

with

κ(q) :=
(q−ΠCk

(q))>(q− hI(xd))

||q−ΠCk
(q)|| · ||q− hI(xd)||

2. The goal xd is the only locally stable equilibrium of control law (8.1) and all the other

stationary points {(hI)−1(si)}i∈J ID
⋃{Gk}k∈JC , each associated with an obstacle, are

nondegenerate saddles.

Consider the smooth Lyapunov function candidate V I(x) = ||hI(x) − hI(xd)||2. Us-

ing (8.1) and writing y = hI(x) and yd = hI(xd), we get

dV I

dt
=2(y − yd)

>Dxh
I ẋ

=− 2k(y − yd)
> (y −ΠLF(y)(yd)

)
=− 2k

(
y −ΠLF(y)(yd) + ΠLF(y)(yd)− yd

)>
(
y −ΠLF(y)(yd)

)
=− 2k||y −ΠLF(y)(yd)||2

+ 2k
(
yd −ΠLF(y)(yd)

)> (
y −ΠLF(y)(yd)

)
≤− 2k||y −ΠLF(y)(yd)||2 ≤ 0 (C.74)

since y ∈ LF(y), which implies that

(
yd −ΠLF(y)(yd)

)> (
y −ΠLF(y)(yd)

)
≤ 0 (C.75)
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since either yd = ΠLF(y)(yd), or yd and y are separated by a hyperplane passing through

ΠLF(y)(yd). Therefore, similarly to [9], using LaSalle’s invariance principle we see that every

trajectory starting in FImap approaches the largest invariant set in {x ∈ FImap | V̇ I(x) = 0},

i.e. the equilibrium points of (8.1). The desired result follows directly from the fact that

xd is the only locally stable equilibrium of our control law and the rest of the stationary

points are nondegenerate saddles, whose regions of attraction have empty interior in FImap,

as discussed above.

Next, we focus on the more general part 1 of Theorem 8.1. Since the target now moves,

we compute the time derivative of V I , using (C.75), as

dV I

dt
=2(y − yd)

> [Dxh
I(x) · ẋ−Dxh

I(xd) · ẋd
]

=− 2k(y − yd)
> (y −ΠLF(y)(yd)

)
− 2(y − yd)

>ẏd

≤− 2k||y −ΠLF(y)(yd)||2 − 2(y − yd)
>ẏd

If (y − yd)
>ẏd > 0, then the desired result

dV I

dt
≤ 0 is immediately derived. On the

other hand, if ||ẏd|| ≤ k
||y −ΠB(y,0.5d(y,∂FImodel))

(yd)||2

||y − yd||
, then we use the Cauchy-Schwarz

inequality −2(y − yd)
>ẏd ≤ 2||y − yd|| ||ẏd|| to write

dV I

dt
≤− 2k||y −ΠLF(y)(yd)||2 + 2||y − yd|| ||ẏd||

≤ − 2k||y −ΠLF(y)(yd)||2

+ k ||y −ΠB(y,0.5d(y,∂FImodel))
(yd)||2 (C.76)

Note here that by construction of the convex local freespace in the model space LF(y) as

in [9, Eqn. (25)], which guarantees that the distance of y to the boundary of LF(y) is
d(y,∂FImodel)

2 , we get that B
(
y, 0.5 d(y, ∂FImodel)

)
⊂ LF(y).

We need to distinguish between two cases:

259



1. If yd ∈ B
(
y, 0.5 d(y, ∂FImodel)

)
, then:

ΠB(y,0.5d(y,∂FImodel))
(yd) = yd

and ||y − ΠB(y,0.5d(y,∂FImodel))
(yd)|| = ||y − yd||. Moreover, since

B
(
y, 0.5 d(y, ∂FImodel)

)
⊂ LF(y), ||y − ΠLF(y)(yd)|| = ||y − yd||. From (C.76), we

now immediately get that

dV I

dt
≤ −k||y − yd||2 ≤ 0

2. If yd /∈ B
(
y, 0.5 d(y, ∂FImodel)

)
, then ||y − ΠB(y,0.5d(y,∂FImodel))

(yd)|| =
d(y,∂FImodel)

2 ≤

||y−ΠLF(y)(yd)||, since B
(
y, 0.5 d(y, ∂FImodel)

)
⊂ LF(y). The desired result dV I

dt ≤ 0

is now derived from (C.76) by simple substitution.

C.7 Proofs of Results in Chapter 9

Proof of Proposition 9.1. To show this result it suffices to show that eventually the accepting

condition of the NBA is satisfied, i.e., the robot will visit at least one of the final NBA

states qF infinitely often. Equivalently, as discussed in Section 9.2.2, it suffices to show that

accepting edges (qB, q
′
B) ∈ E , where qB, q′B ∈ V are traversed infinitely often.

First, consider an infinite sequence of time instants t = t0, t1, . . . , tk, . . . where tk+1 ≥ tk,

so that an edge in G, defined in Section 9.2.2, is traversed at every time instant tk. Let e(tk) ∈

E denote the edge that is traversed at time tk. Thus, t yields the following sequence of edges

e = e(t0), e(t1), . . . , e(tk) . . . where e(tk) = (qB(tk), qB(tk+1)), qB(t0) = qaux
B , qB(tk) ∈ V,

and the state qk+1
B is defined based on the following two cases. If qB(tk) /∈ VF , then the

state qB(tk+1) is closer to VF than qB(tk) is, i.e., dF (qB(tk+1),VF ) = dF (qB(tk),VF ) − 1,

where dF is defined in (9.7). If qB(tk) ∈ VF , then qB(tk+1) is selected so that an accepting

edge originating from qB(tk) is traversed. By definition of qB(tk), the ‘distance’ to VF
decreases as tk increases, i.e., given any time instant tk, there exists a time instant t′k ≥ tk
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so that qB(t′k) ∈ VF and then at the next time instant an accepting edge is traversed.

This means that e includes an infinite number of accepting edges. This sequence e exists

since, by assumption, there exists an infinite sequence of manipulation actions that satisfies

φ. Particularly, recall that by construction of the graph G, the set of edges in this graph

captures all NBA transitions besides those that (i) require the robot to be in more than

one region simultaneously or (ii) multi-hop NBA transitions that require the robot to jump

instantaneously from one region of interest which are not meaningful in practice. As a result,

if there does not exist at least one sequence e, i.e., at least one infinite path in G that starts

from the initial state and traverses at least one accepting edge infinitely often, then this

means that there is no path that satisfies φ (unless conditions (i)-(ii) mentioned before are

violated).

Assume that the discrete controller selects NBA states as discussed in Section 9.2.3. To

show that the discrete controller is complete, it suffices to show that it can generate a infinite

sequence of edges e as defined before. Note that the discrete controller selects next NBA

states that the robot should reach in the same way as discussed before. Also, by assumption,

the environmental structure and the continuous-time controller ensure that at least one of

the candidate next NBA states (i.e., the ones that can decrease the distance to VF ) can

be reached. Based on these two observations, we conclude that such a sequence e will be

generated, completing the proof.

261



Appendix D

Accompanying Software

This Appendix briefly describes developed software packages, implementing algorithms pre-

sented in this thesis.

D.1 Software Package doubly_reactive_matlab

This package is a MATLAB-ROS implementation of the doubly-reactive, sensor-based hom-

ing algorithm for Minitaur, using a LIDAR and range-only target localization, as presented

in Chapter 3. The software package can be found here: https://github.com/KodlabPen

n/doubly_reactive_matlab.

The doubly-reactive operations and the functions included in the package are based on [6]

and [7]. The ROS wrapper for the PulsON P440 and P410 ultra-wideband radios from Time

Domain, used to extract range measurements from the robot to the goal, and publishing the

/minitaur/ranges/ranges ROS topic can be found here: https://github.com/vvasilo

/pulson_ros.

D.1.1 Preliminaries

The main script is ros_doubly_reactive.m, while startupROS.m needs to be run first for

initialization.

The script assumes an active ROS master on the robot and published topics streaming

IMU data (/minitaur/imu), proprioceptive speed estimates (/minitaur/speed), distance
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to target (/minitaur/ranges/ranges) and LIDAR data (/minitaur/scan). A joystick is

assumed to be connected to the desktop computer and used to stop the behavior.

The node publishes the desired robot behavior to /minitaur/set_cmd, and the desired

linear and angular speed of the robot to /minitaur/set_twist.

D.1.2 Tuning and Use

The commands, joystick buttons and collision avoidance, control, particle filter and twist

filtering parameters are tuned in lines 29-76 of ros_doubly_reactive.m.

D.2 Software Package semnav

This package can be used for doubly reactive navigation with semantic feedback, using

C++ and ROS, as presented in Chapters 7 - 8. The software package can be found here:

https://github.com/KodlabPenn/semnav.

The doubly-reactive operations in the model space are based on [6] and [7]. It has been

tested with Ubuntu 18.04 and ROS Melodic, on three different robots: Turtlebot, Ghost

Robotics Minitaur and Ghost Robotics Spirit.

D.2.1 Hardware Setup

The package assumes that the robot possesses:

1. a LIDAR sensor, for estimating distance to unknown obstacles.

2. a way of generating a semantic map of its surroundings with familiar obstacles (see

details in Semantic SLAM interfaces below).

3. a way of generating its own odometry estimate.

These three inputs are given as topics in the navigation_* launch files (see below).

D.2.2 Prerequisites

Note the following:

• For our experiments, we use the ZED Mini stereo camera. A resolution of
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720HD@60Hz works well with an NVIDIA TX2 or an NVIDIA Xavier (make sure

to enable maximum performance first by running: sudo nvpmodel -m 0).

• For reading a Hokuyo LIDAR sensor, we use the urg_node package, found here: http:

//wiki.ros.org/urg_node.

• For LIDAR downsampling, we use the (forked and modified) laser_scan_sparsifier

package (found here: https://github.com/vvasilo/scan_tools/tree/indigo/l

aser_scan_sparsifier), included in scan_tools (found here: https://github

.com/vvasilo/scan_tools). This package depends on csm (found here: https:

//github.com/AndreaCensi/csm) which must be installed first.

• We use the robot_localization package (found here: http://wiki.ros.org/robot

_localization) for fusing odometry inputs from multiple sources.

• We use Boost Geometry (https://www.boost.org/doc/libs/1_70_0/libs/geomet

ry/doc/html/index.html) for basic operations with planar polygons, which must be

already installed in the user’s system.

• For more advanced computational geometry operations, we use the CGAL library. See

here for installation instructions: https://www.cgal.org/download.html.

• We implement the ear clipping triangulation method in C++ using the earcut.hpp

package, included here: https://github.com/KodlabPenn/semnav/blob/master/i

nclude. For the Python implementation, we use the tripy package, included here:

https://github.com/linuxlewis/tripy.

• Except for the ROS Python packages (already included with ROS), the following

Python packages are also needed: shapely, scipy and numpy.

• For properly using the visualization functionalities in visualization.py, we need the

Python modules matplotlib and imagemagick.
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• For benchmark experiments with Vicon, the motion_capture_system package is used,

found here: https://github.com/KumarRobotics/motion_capture_system.

The user can install all the prerequisites, by first independently installing the ZED SDK

(https://www.stereolabs.com/developers/), and then running the following commands:

sudo apt-get install ros-melodic-urg-node ros-melodic-robot-localization

sudo apt-get install python-shapely python-scipy python-numpy libcgal-dev

cd ~/catkin_ws/src

git clone https://github.com/stereolabs/zed-ros-wrapper.git

git clone https://github.com/AndreaCensi/csm.git

git clone https://github.com/vvasilo/scan_tools.git

git clone https://github.com/KumarRobotics/motion_capture_system.git

catkin build csm

catkin build

pip install tripy

D.2.3 Installation

Once all the prerequisites above are satisfied, the user can install the package with:

cd ~/catkin_ws/src

git clone https://github.com/vvasilo/semnav.git

cp -r semnav/extras/object_pose_interface_msgs .

catkin build

D.2.4 Semantic SLAM Interfaces

This package needs an external Semantic SLAM engine, which is not included by de-

fault. However, any such engine can be used. The only restriction is associated

with the type of messages used, i.e., the semantic map has to be given in a specific

way. In our implementation, these messages are included in a separate package called

object_pose_interface_msgs. We include pointers to the necessary message formats in

the extras folder. We provide the semantic map in the form of a SemanticMapObjectArray
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message. Each SemanticMapObject in the array has a classification and pose element,

as well as a number of 3D keypoints.

Using semslam_polygon_publisher.py, we project those keypoints on the horizontal

plane of motion, and republish the semantic map object with a CCW-oriented polygon2d

element (i.e., the projection of this 3D object on the 2D plane). To do so, we use a pre-defined

object mesh, given in the form of a .mat file. The mesh_location for all objects is defined

in the associated tracking_* launch file (see below), and we include examples for different

objects here: https://github.com/KodlabPenn/semnav/blob/master/extras/meshes.

Note that if the user knows the 2D polygon directly, the above procedure is not necessary

- only the polygon2d element of each SemanticMapObject is used for navigation.

D.2.5 Types of Files and Libraries

To use the code on a real robot, the user needs to launch one of each type of launch files

below:

• The files with name bringup_* launch the sensors for each corresponding robot. For

example, the file bringup_turtlebot.launch launches:

1. the stereo camera launch file (zed_no_tf.launch).

2. the Vicon launch file (if present).

3. the Kobuki node to bring up Turtlebot’s control.

4. the urg_node node for the Hokuyo LIDAR sensor.

5. the laser_scan_sparsifier node for downsampling the LIDAR data.

• The files with name tracking_* launch the tracking files needed for semantic naviga-

tion. For example, the file tracking_turtlebot_semslam_onboard.launch launches:

1. the corresponding semantic SLAM launch file from the semantic SLAM package.

2. the necessary tf transforms (e.g., between the camera and the robot and between

the LIDAR and the robot) for this particular robot.
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3. the semslam_polygon_publisher.py node that subscribes to the output of the

semantic SLAM and publishes 2D polygons on the plane.

• The files with name navigation_* launch the reactive controller. For example, the

file navigation_turtlebot_onboard.launch launches the main navigation node for

Turtlebot, which subscribes to:

1. the local odometry node (in this case provided directly by the ZED stereo cam-

era).

2. the LIDAR data, after downsampling.

3. the 2D polygons from semslam_polygon_publisher.py.

4. necessary tf updates to correct local odometry as new updates from the semantic

SLAM pipeline become available.

We also include a debugging launch file, that communicates with fake LIDAR, odometry

and semantic map publishers (see here: https://github.com/KodlabPenn/semnav/blob/

master/launch/navigation_debug.launch).

D.3 Software Package semnav_matlab

This package communicates with the Python scripts of the semnav package, to simulate

doubly reactive navigation with semantic feedback in MATLAB, as presented in Chapters 7

- 9. The software package can be found here: https://github.com/KodlabPenn/semnav_m

atlab.

The doubly-reactive operations in the model space are based on [6] and [7]. Except

for diffeomorphism-based navigation, the simulation also includes support for RRT-X [143],

adapted from an implementation that can be found here: https://github.com/rahul-sb/

RRTx.

D.3.1 Prerequisites

Note the following:
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• The user needs to make sure that semnav is downloaded (not necessarily installed).

• The user needs to open the startup script (found here: https://github.com/Kodla

bPenn/semnav_matlab/blob/master/startup.m) and:

1. modify the Python path (path_python_ubuntu or path_python_mac) depending

on whether the operating system is Ubuntu or Mac.

2. modify the path to semnav (path_semnav_ubuntu or path_semnav_mac) depend-

ing on whether the operating system is Ubuntu or Mac.

3. (Mac users might also need to specify the path_packages variable.)

• The user needs to run startup.m to load Python and semnav.

• If it doesn’t already exist, the user needs to make a folder called multimedia.

D.3.2 Running the Simulation

In order to run the simulation, the user needs to make a scenario. Many examples of

scenarios are included in the corresponding scenario.m file, found here: https://github

.com/KodlabPenn/semnav_matlab/blob/master/demo/scenario.m. We suggest copying

one of them and modifying it appropriately. Scenario parameters and their meaning are

described near the top of the file.

The user also needs to add/modify the plot options corresponding to the scenario number

in option.m. The default settings should work well. Following that:

1. In order to run the diffeomorphism-based doubly reactive navigation scheme, the user

needs to call demoDiffeo with the number of the corresponding scenario. We also

include vectorField.m if the user needs to see the generated vector field, assuming

no prior memory for the robot.

2. In order to run RRT-X, the user needs to call demoRRT with the number of the corre-

sponding scenario.

268

https://github.com/KodlabPenn/semnav_matlab/blob/master/startup.m
https://github.com/KodlabPenn/semnav_matlab/blob/master/startup.m
https://github.com/KodlabPenn/semnav_matlab/blob/master/demo/scenario.m
https://github.com/KodlabPenn/semnav_matlab/blob/master/demo/scenario.m


Both files include several parameters (flagSaveVideo, flagSaveGif, flagSaveFigure)

that can be set to 1 or 0 to toggle output. All generated multimedia files are saved in the

multimedia folder. We also include a jobs.m file for multiple simulation jobs.
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