22 research outputs found

    Adaptive Kalman Filter Based on Evolutionary Algorithm and Fuzzy Interference System

    Get PDF
    This is a survey paper.The performance of the Kalman filter (KF), which is Algoritstandard as an outstanding implementation for dynamic system state estimation, greatly depends on its parameter R, called the measurement noise covariance matrix. . However, it’s dif?cult to obtain the accurate value of R before the ?lter starts, and the value of R is possible to change with the measurement environment once the ?lter is working. To solve this difficulty, a new parameter adaptive Kalman ?lter is proposed in this paper. In this new Kalman ?lter, the initial value of R is of?ine determined by Evolutionary hm (EA), and the value of R determined by EA is online updated by Fuzzy Inference System (FIS). The new adaptive Kalman ?lter proposed in this paper (HYdGeFuzKF) has a stronger adaptableness to time-varying measurement noises than regular Kalman ?lter (RegularKF)

    Neuro-Fuzzy Prediction for Brain-Computer Interface Applications

    Get PDF

    Evolving Large-Scale Data Stream Analytics based on Scalable PANFIS

    Full text link
    Many distributed machine learning frameworks have recently been built to speed up the large-scale data learning process. However, most distributed machine learning used in these frameworks still uses an offline algorithm model which cannot cope with the data stream problems. In fact, large-scale data are mostly generated by the non-stationary data stream where its pattern evolves over time. To address this problem, we propose a novel Evolving Large-scale Data Stream Analytics framework based on a Scalable Parsimonious Network based on Fuzzy Inference System (Scalable PANFIS), where the PANFIS evolving algorithm is distributed over the worker nodes in the cloud to learn large-scale data stream. Scalable PANFIS framework incorporates the active learning (AL) strategy and two model fusion methods. The AL accelerates the distributed learning process to generate an initial evolving large-scale data stream model (initial model), whereas the two model fusion methods aggregate an initial model to generate the final model. The final model represents the update of current large-scale data knowledge which can be used to infer future data. Extensive experiments on this framework are validated by measuring the accuracy and running time of four combinations of Scalable PANFIS and other Spark-based built in algorithms. The results indicate that Scalable PANFIS with AL improves the training time to be almost two times faster than Scalable PANFIS without AL. The results also show both rule merging and the voting mechanisms yield similar accuracy in general among Scalable PANFIS algorithms and they are generally better than Spark-based algorithms. In terms of running time, the Scalable PANFIS training time outperforms all Spark-based algorithms when classifying numerous benchmark datasets.Comment: 20 pages, 5 figure

    A new data-driven neural fuzzy system with collaborative fuzzy clustering mechanism

    Full text link
    © 2015 Elsevier B.V. In this paper, a novel fuzzy rule transfer mechanism for self-constructing neural fuzzy inference networks is being proposed. The features of the proposed method, termed data-driven neural fuzzy system with collaborative fuzzy clustering mechanism (DDNFS-CFCM) are; (1) Fuzzy rules are generated facilely by fuzzy c-means (FCM) and then adapted by the preprocessed collaborative fuzzy clustering (PCFC) technique, and (2) Structure and parameter learning are performed simultaneously without selecting the initial parameters. The DDNFS-CFCM can be applied to deal with big data problems by the virtue of the PCFC technique, which is capable of dealing with immense datasets while preserving the privacy and security of datasets. Initially, the entire dataset is organized into two individual datasets for the PCFC procedure, where each of the dataset is clustered separately. The knowledge of prototype variables (cluster centers) and the matrix of just one halve of the dataset through collaborative technique are deployed. The DDNFS-CFCM is able to achieve consistency in the presence of collective knowledge of the PCFC and boost the system modeling process by parameter learning ability of the self-constructing neural fuzzy inference networks (SONFIN). The proposed method outperforms other existing methods for time series prediction problems

    Dynamics Model Abstraction Scheme Using Radial Basis Functions

    Get PDF
    This paper presents a control model for object manipulation. Properties of objects and environmental conditions influence the motor control and learning. System dynamics depend on an unobserved external context, for example, work load of a robot manipulator. The dynamics of a robot arm change as it manipulates objects with different physical properties, for example, the mass, shape, or mass distribution. We address active sensing strategies to acquire object dynamical models with a radial basis function neural network (RBF). Experiments are done using a real robot's arm, and trajectory data are gathered during various trials manipulating different objects. Biped robots do not have high force joint servos and the control system hardly compensates all the inertia variation of the adjacent joints and disturbance torque on dynamic gait control. In order to achieve smoother control and lead to more reliable sensorimotor complexes, we evaluate and compare a sparse velocity-driven versus a dense position-driven control scheme

    Fuzzy Transfer Learning Using an Infinite Gaussian Mixture Model and Active Learning

    Full text link
    © 2018 IEEE. Transfer learning is gaining considerable attention due to its ability to leverage previously acquired knowledge to assist in completing a prediction task in a related domain. Fuzzy transfer learning, which is based on fuzzy system (especially fuzzy rule-based models), has been developed because of its capability to deal with the uncertainty in transfer learning. However, two issues with fuzzy transfer learning have not yet been resolved: choosing an appropriate source domain and efficiently selecting labeled data for the target domain. This paper proposes an innovative method based on fuzzy rules that combines an infinite Gaussian mixture model (IGMM) with active learning to enhance the performance and generalizability of the constructed model. An IGMM is used to identify the data structures in the source and target domains providing a promising solution to the domain selection dilemma. Further, we exploit the interactive query strategy in active learning to correct imbalances in the knowledge to improve the generalizability of fuzzy learning models. Through experiments on synthetic datasets, we demonstrate the rationality of employing an IGMM and the effectiveness of applying an active learning technique. Additional experiments on real-world datasets further support the capabilities of the proposed method in practical situations
    corecore