5 research outputs found

    Robust Deep Learning Based Framework for Detecting Cyber Attacks from Abnormal Network Traffic

    Get PDF
    The internet's recent rapid growth and expansion have raised concerns about cyberattacks, which are constantly evolving and changing. As a result, a robust intrusion detection system was needed to safeguard data. One of the most effective ways to meet this problem was by creating the artificial intelligence subfields of machine learning and deep learning models. Network integration is frequently used to enable remote management, monitoring, and reporting for cyber-physical systems (CPS). This work addresses the primary assault categories such as Denial of Services(DoS), Probe, User to Root(U2R) and Root to Local(R2L) attacks. As a result, we provide a novel Recurrent Neural Networks (RNN) cyberattack detection framework that combines AI and ML techniques. To evaluate the developed system, we employed the Network Security Laboratory-Knowledge Discovery Databases (NSL-KDD), which covered all critical threats. We used normalisation to eliminate mistakes and duplicated data before pre-processing the data. Linear Discriminant Analysis(LDA) is used to extract the characteristics. The fundamental rationale for choosing RNN-LDA for this study is that it is particularly efficient at tackling sequence issues, time series prediction, text generation, machine translation, picture descriptions, handwriting recognition, and other tasks. The proposed model RNN-LDA is used to learn time-ordered sequences of network flow traffic and assess its performance in detecting abnormal behaviour. According to the results of the experiments, the framework is more effective than traditional tactics at ensuring high levels of privacy. Additionally, the framework beats current detection techniques in terms of detection rate, false positive rate, and processing time

    An Architecture for Blockchain-based Collaborative Signature-based Intrusion Detection System

    Get PDF
    Collaborative intrusion detection system (CIDS), where IDS hosts work with each other and share resources, have been proposed to cope with the increasingly sophisticated cyberattacks. Despite the promising benefits such as expanded signature databases and alert data from multiple sites, trust management and consensus building remain as challenges for a CIDS to work effectively. The blockchain technology with built-in immutability and consensus building capability provides a viable solution to the issues of CIDS. In this paper, we introduce an architecture for a blockchain-enabled signature-based collaborative IDS, discuss the implementation strategy of the proposed architecture and developed a prototype using Hyperledger and Snort. Our preliminary evaluation on a bench mark showed the proposed architecture offers a solution by addressing the issues of trust, data sharing and insider attacks in the network environment of CIDSs. The implications and limitations of this study are also discussed

    Towards Efficient Intrusion Detection using Hybrid Data Mining Techniques

    Get PDF
    The enormous development in the connectivity among different type of networks poses significant concerns in terms of privacy and security. As such, the exponential expansion in the deployment of cloud technology has produced a massive amount of data from a variety of applications, resources and platforms. In turn, the rapid rate and volume of data creation in high-dimension has begun to pose significant challenges for data management and security. Handling redundant and irrelevant features in high-dimensional space has caused a long-term challenge for network anomaly detection. Eliminating such features with spectral information not only speeds up the classification process, but also helps classifiers make accurate decisions during attack recognition time, especially when coping with large-scale and heterogeneous data such as network traffic data. Furthermore, the continued evolution of network attack patterns has resulted in the emergence of zero-day cyber attacks, which nowadays has considered as a major challenge in cyber security. In this threat environment, traditional security protections like firewalls, anti-virus software, and virtual private networks are not always sufficient. With this in mind, most of the current intrusion detection systems (IDSs) are either signature-based, which has been proven to be insufficient in identifying novel attacks, or developed based on absolute datasets. Hence, a robust mechanism for detecting intrusions, i.e. anomaly-based IDS, in the big data setting has therefore become a topic of importance. In this dissertation, an empirical study has been conducted at the initial stage to identify the challenges and limitations in the current IDSs, providing a systematic treatment of methodologies and techniques. Next, a comprehensive IDS framework has been proposed to overcome the aforementioned shortcomings. First, a novel hybrid dimensionality reduction technique is proposed combining information gain (IG) and principal component analysis (PCA) methods with an ensemble classifier based on three different classification techniques, named IG-PCA-Ensemble. Experimental results show that the proposed dimensionality reduction method contributes more critical features and reduced the detection time significantly. The results show that the proposed IG-PCA-Ensemble approach has also exhibits better performance than the majority of the existing state-of-the-art approaches

    Sequence Covering for Efficient Host-Based Intrusion Detection

    Get PDF
    International audienceThis paper introduces a new similarity measure, the covering similarity, that we formally define for evaluating the similarity between a symbolic sequence and a set of symbolic sequences. A pair-wise similarity can also be directly derived from the covering similarity to compare two symbolic sequences. An efficient implementation to compute the covering similarity is proposed that uses a suffix tree data-structure, but other implementations, based on suffix array for instance, are possible and possibly necessary for handling large scale problems. We have used this similarity to isolate attack sequences from normal sequences in the scope of Host-based Intrusion Detection. We have assessed the covering similarity on two well-known benchmarks in the field. In view of the results reported on these two datasets for the state of the art methods, and according to the comparative study we have carried out based on three challenging similarity measures commonly used for string processing or in bioinformatics, we show that the covering similarity is particularly relevant to address the detection of anomalies in sequences of system call
    corecore