974 research outputs found

    Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus, and Minor-Free Graphs

    Full text link
    A (1 + eps)-approximate distance oracle for a graph is a data structure that supports approximate point-to-point shortest-path-distance queries. The most relevant measures for a distance-oracle construction are: space, query time, and preprocessing time. There are strong distance-oracle constructions known for planar graphs (Thorup, JACM'04) and, subsequently, minor-excluded graphs (Abraham and Gavoille, PODC'06). However, these require Omega(eps^{-1} n lg n) space for n-node graphs. We argue that a very low space requirement is essential. Since modern computer architectures involve hierarchical memory (caches, primary memory, secondary memory), a high memory requirement in effect may greatly increase the actual running time. Moreover, we would like data structures that can be deployed on small mobile devices, such as handhelds, which have relatively small primary memory. In this paper, for planar graphs, bounded-genus graphs, and minor-excluded graphs we give distance-oracle constructions that require only O(n) space. The big O hides only a fixed constant, independent of \epsilon and independent of genus or size of an excluded minor. The preprocessing times for our distance oracle are also faster than those for the previously known constructions. For planar graphs, the preprocessing time is O(n lg^2 n). However, our constructions have slower query times. For planar graphs, the query time is O(eps^{-2} lg^2 n). For our linear-space results, we can in fact ensure, for any delta > 0, that the space required is only 1 + delta times the space required just to represent the graph itself

    Counting Triangulations and other Crossing-Free Structures Approximately

    Full text link
    We consider the problem of counting straight-edge triangulations of a given set PP of nn points in the plane. Until very recently it was not known whether the exact number of triangulations of PP can be computed asymptotically faster than by enumerating all triangulations. We now know that the number of triangulations of PP can be computed in O(2n)O^{*}(2^{n}) time, which is less than the lower bound of Ω(2.43n)\Omega(2.43^{n}) on the number of triangulations of any point set. In this paper we address the question of whether one can approximately count triangulations in sub-exponential time. We present an algorithm with sub-exponential running time and sub-exponential approximation ratio, that is, denoting by Λ\Lambda the output of our algorithm, and by cnc^{n} the exact number of triangulations of PP, for some positive constant cc, we prove that cnΛcn2o(n)c^{n}\leq\Lambda\leq c^{n}\cdot 2^{o(n)}. This is the first algorithm that in sub-exponential time computes a (1+o(1))(1+o(1))-approximation of the base of the number of triangulations, more precisely, cΛ1n(1+o(1))cc\leq\Lambda^{\frac{1}{n}}\leq(1 + o(1))c. Our algorithm can be adapted to approximately count other crossing-free structures on PP, keeping the quality of approximation and running time intact. In this paper we show how to do this for matchings and spanning trees.Comment: 19 pages, 2 figures. A preliminary version appeared at CCCG 201

    Better Tradeoffs for Exact Distance Oracles in Planar Graphs

    Full text link
    We present an O(n1.5)O(n^{1.5})-space distance oracle for directed planar graphs that answers distance queries in O(logn)O(\log n) time. Our oracle both significantly simplifies and significantly improves the recent oracle of Cohen-Addad, Dahlgaard and Wulff-Nilsen [FOCS 2017], which uses O(n5/3)O(n^{5/3})-space and answers queries in O(logn)O(\log n) time. We achieve this by designing an elegant and efficient point location data structure for Voronoi diagrams on planar graphs. We further show a smooth tradeoff between space and query-time. For any S[n,n2]S\in [n,n^2], we show an oracle of size SS that answers queries in O~(max{1,n1.5/S})\tilde O(\max\{1,n^{1.5}/S\}) time. This new tradeoff is currently the best (up to polylogarithmic factors) for the entire range of SS and improves by polynomial factors over all the previously known tradeoffs for the range S[n,n5/3]S \in [n,n^{5/3}]

    The First Order Definability of Graphs with Separators via the Ehrenfeucht Game

    Get PDF
    We say that a first order formula Φ\Phi defines a graph GG if Φ\Phi is true on GG and false on every graph GG' non-isomorphic with GG. Let D(G)D(G) be the minimal quantifier rank of a such formula. We prove that, if GG is a tree of bounded degree or a Hamiltonian (equivalently, 2-connected) outerplanar graph, then D(G)=O(logn)D(G)=O(\log n), where nn denotes the order of GG. This bound is optimal up to a constant factor. If hh is a constant, for connected graphs with no minor KhK_h and degree O(n/logn)O(\sqrt n/\log n), we prove the bound D(G)=O(n)D(G)=O(\sqrt n). This result applies to planar graphs and, more generally, to graphs of bounded genus.Comment: 17 page

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Spanners for Geometric Intersection Graphs

    Full text link
    Efficient algorithms are presented for constructing spanners in geometric intersection graphs. For a unit ball graph in R^k, a (1+\epsilon)-spanner is obtained using efficient partitioning of the space into hypercubes and solving bichromatic closest pair problems. The spanner construction has almost equivalent complexity to the construction of Euclidean minimum spanning trees. The results are extended to arbitrary ball graphs with a sub-quadratic running time. For unit ball graphs, the spanners have a small separator decomposition which can be used to obtain efficient algorithms for approximating proximity problems like diameter and distance queries. The results on compressed quadtrees, geometric graph separators, and diameter approximation might be of independent interest.Comment: 16 pages, 5 figures, Late

    Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth

    Get PDF
    We give a fixed-parameter tractable algorithm that, given a parameter kk and two graphs G1,G2G_1,G_2, either concludes that one of these graphs has treewidth at least kk, or determines whether G1G_1 and G2G_2 are isomorphic. The running time of the algorithm on an nn-vertex graph is 2O(k5logk)n52^{O(k^5\log k)}\cdot n^5, and this is the first fixed-parameter algorithm for Graph Isomorphism parameterized by treewidth. Our algorithm in fact solves the more general canonization problem. We namely design a procedure working in 2O(k5logk)n52^{O(k^5\log k)}\cdot n^5 time that, for a given graph GG on nn vertices, either concludes that the treewidth of GG is at least kk, or: * finds in an isomorphic-invariant way a graph c(G)\mathfrak{c}(G) that is isomorphic to GG; * finds an isomorphism-invariant construction term --- an algebraic expression that encodes GG together with a tree decomposition of GG of width O(k4)O(k^4). Hence, the isomorphism test reduces to verifying whether the computed isomorphic copies or the construction terms for G1G_1 and G2G_2 are equal.Comment: Full version of a paper presented at FOCS 201
    corecore