83 research outputs found

    A System for Bangla Handwritten Numeral Recognition

    Get PDF
    Colloque avec actes et comité de lecture. internationale.International audienceThis paper deals with a recognition system for unconstrained off-line Bangla handwritten numerals. To take care of variability involved in the writing style of different individuals, a robust scheme is presented here. The scheme is mainly based on new features obtained from the concept of water overflow from the reservoir as well as topological and structural features of the numerals. The proposed scheme is tested on data collected from different individuals of various background and we obtained an overall recognition accuracy of about 92.8% from 12000 data

    A System for Bangla Handwritten Numeral Recognition

    Get PDF
    International audienceThis paper deals with a recognition system for unconstrained off-line Bangla handwritten numerals. To take care of variability involved in the writing style of different individuals, a robust scheme is presented here. The scheme is mainly based on new features obtained from the concept of water overflow from the reservoir as well as topological and structural features of the numerals. The proposed scheme is tested on data collected from different individuals of various background and we obtained an overall recognition accuracy of about 92.8% from 12000 data

    A System for Bangla Handwritten Numeral Recognition

    Get PDF
    Colloque avec actes et comité de lecture. internationale.International audienceThis paper deals with a recognition system for unconstrained off-line Bangla handwritten numerals. To take care of variability involved in the writing style of different individuals, a robust scheme is presented here. The scheme is mainly based on new features obtained from the concept of water overflow from the reservoir as well as topological and structural features of the numerals. The proposed scheme is tested on data collected from different individuals of various background and we obtained an overall recognition accuracy of about 92.8% from 12000 data

    Adaptive Algorithms for Automated Processing of Document Images

    Get PDF
    Large scale document digitization projects continue to motivate interesting document understanding technologies such as script and language identification, page classification, segmentation and enhancement. Typically, however, solutions are still limited to narrow domains or regular formats such as books, forms, articles or letters and operate best on clean documents scanned in a controlled environment. More general collections of heterogeneous documents challenge the basic assumptions of state-of-the-art technology regarding quality, script, content and layout. Our work explores the use of adaptive algorithms for the automated analysis of noisy and complex document collections. We first propose, implement and evaluate an adaptive clutter detection and removal technique for complex binary documents. Our distance transform based technique aims to remove irregular and independent unwanted foreground content while leaving text content untouched. The novelty of this approach is in its determination of best approximation to clutter-content boundary with text like structures. Second, we describe a page segmentation technique called Voronoi++ for complex layouts which builds upon the state-of-the-art method proposed by Kise [Kise1999]. Our approach does not assume structured text zones and is designed to handle multi-lingual text in both handwritten and printed form. Voronoi++ is a dynamically adaptive and contextually aware approach that considers components' separation features combined with Docstrum [O'Gorman1993] based angular and neighborhood features to form provisional zone hypotheses. These provisional zones are then verified based on the context built from local separation and high-level content features. Finally, our research proposes a generic model to segment and to recognize characters for any complex syllabic or non-syllabic script, using font-models. This concept is based on the fact that font files contain all the information necessary to render text and thus a model for how to decompose them. Instead of script-specific routines, this work is a step towards a generic character and recognition scheme for both Latin and non-Latin scripts

    Advances in Character Recognition

    Get PDF
    This book presents advances in character recognition, and it consists of 12 chapters that cover wide range of topics on different aspects of character recognition. Hopefully, this book will serve as a reference source for academic research, for professionals working in the character recognition field and for all interested in the subject

    A novel image matching approach for word spotting

    Get PDF
    Word spotting has been adopted and used by various researchers as a complementary technique to Optical Character Recognition for document analysis and retrieval. The various applications of word spotting include document indexing, image retrieval and information filtering. The important factors in word spotting techniques are pre-processing, selection and extraction of proper features and image matching algorithms. The Correlation Similarity Measure (CORR) algorithm is considered to be a faster matching algorithm, originally defined for finding similarities between binary patterns. In the word spotting literature the CORR algorithm has been used successfully to compare the GSC binary features extracted from binary word images, i.e., Gradient, Structural and Concavity (GSC) features. However, the problem with this approach is that binarization of images leads to a loss of very useful information. Furthermore, before extracting GSC binary features the word images must be skew corrected and slant normalized, which is not only difficult but in some cases impossible in Arabic and modified Arabic scripts. We present a new approach in which the Correlation Similarity Measure (CORR) algorithm has been used innovatively to compare Gray-scale word images. In this approach, binarization of images, skew correction and slant normalization of word images are not required at all. The various features, i.e., projection profiles, word profiles and transitional features are extracted from the Gray-scale word images and converted into their binary equivalents, which are compared via CORR algorithm with greater speed and higher accuracy. The experiments have been conducted on Gray-scale versions of newly created handwritten databases of Pashto and Dari languages, written in modified Arabic scripts. For each of these languages we have used 4599 words relating to 21 different word classes collected from 219 writers. The average precision rates achieved for Pashto and Dari languages were 93.18 % and 93.75 %, respectively. The time taken for matching a pair of images was 1.43 milli-seconds. In addition, we will present the handwritten databases for two well-known Indo- Iranian languages, i.e., Pashto and Dari languages. These are large databases which contain six types of data, i.e., Dates, Isolated Digits, Numeral Strings, Isolated Characters, Different Words and Special Symbols, written by native speakers of the corresponding languages

    End-Shape Analysis for Automatic Segmentation of Arabic Handwritten Texts

    Get PDF
    Word segmentation is an important task for many methods that are related to document understanding especially word spotting and word recognition. Several approaches of word segmentation have been proposed for Latin-based languages while a few of them have been introduced for Arabic texts. The fact that Arabic writing is cursive by nature and unconstrained with no clear boundaries between the words makes the processing of Arabic handwritten text a more challenging problem. In this thesis, the design and implementation of an End-Shape Letter (ESL) based segmentation system for Arabic handwritten text is presented. This incorporates four novel aspects: (i) removal of secondary components, (ii) baseline estimation, (iii) ESL recognition, and (iv) the creation of a new off-line CENPARMI ESL database. Arabic texts include small connected components, also called secondary components. Removing these components can improve the performance of several systems such as baseline estimation. Thus, a robust method to remove secondary components that takes into consideration the challenges in the Arabic handwriting is introduced. The methods reconstruct the image based on some criteria. The results of this method were subsequently compared with those of two other methods that used the same database. The results show that the proposed method is effective. Baseline estimation is a challenging task for Arabic texts since it includes ligature, overlapping, and secondary components. Therefore, we propose a learning-based approach that addresses these challenges. Our method analyzes the image and extracts baseline dependent features. Then, the baseline is estimated using a classifier. Algorithms dealing with text segmentation usually analyze the gaps between connected components. These algorithms are based on metric calculation, finding threshold, and/or gap classification. We use two well-known metrics: bounding box and convex hull to test metric-based method on Arabic handwritten texts, and to include this technique in our approach. To determine the threshold, an unsupervised learning approach, known as the Gaussian Mixture Model, is used. Our ESL-based segmentation approach extracts the final letter of a word using rule-based technique and recognizes these letters using the implemented ESL classifier. To demonstrate the benefit of text segmentation, a holistic word spotting system is implemented. For this system, a word recognition system is implemented. A series of experiments with different sets of features are conducted. The system shows promising results

    Learning-Based Arabic Word Spotting Using a Hierarchical Classifier

    Get PDF
    The effective retrieval of information from scanned and written documents is becoming essential with the increasing amounts of digitized documents, and therefore developing efficient means of analyzing and recognizing these documents is of significant interest. Among these methods is word spotting, which has recently become an active research area. Such systems have been implemented for Latin-based and Chinese languages, while few of them have been implemented for Arabic handwriting. The fact that Arabic writing is cursive by nature and unconstrained, with no clear white space between words, makes the processing of Arabic handwritten documents a more challenging problem. In this thesis, the design and implementation of a learning-based Arabic handwritten word spotting system is presented. This incorporates the aspects of text line extraction, handwritten word recognition, partial segmentation of words, word spotting and finally validation of the spotted words. The Arabic text line is more unconstrained than that of other scripts, essentially since it also includes small connected components such as dots and diacritics that are usually located between lines. Thus, a robust method to extract text lines that takes into consideration the challenges in the Arabic handwriting is proposed. The method is evaluated on two Arabic handwritten documents databases, and the results are compared with those of two other methods for text line extraction. The results show that the proposed method is effective, and compares favorably with the other methods. Word spotting is an automatic process to search for words within a document. Applying this process to handwritten Arabic documents is challenging due to the absence of a clear space between handwritten words. To address this problem, an effective learning-based method for Arabic handwritten word spotting is proposed and presented in this thesis. For this process, sub-words or pieces of Arabic words form the basic components of the search process, and a hierarchical classifier is implemented to integrate statistical language models with the segmentation of an Arabic text line into sub-words. The holistic and analytical paradigms (for word recognition and spotting) are studied, and verification models based on combining these two paradigms have been proposed and implemented to refine the outcomes of the analytical classifier that spots words. Finally, a series of evaluation and testing experiments have been conducted to evaluate the effectiveness of the proposed systems, and these show that promising results have been obtained

    Pattern detection and recognition using over-complete and sparse representations

    Get PDF
    Recent research in harmonic analysis and mammalian vision systems has revealed that over-complete and sparse representations play an important role in visual information processing. The research on applying such representations to pattern recognition and detection problems has become an interesting field of study. The main contribution of this thesis is to propose two feature extraction strategies - the global strategy and the local strategy - to make use of these representations. In the global strategy, over-complete and sparse transformations are applied to the input pattern as a whole and features are extracted in the transformed domain. This strategy has been applied to the problems of rotation invariant texture classification and script identification, using the Ridgelet transform. Experimental results have shown that better performance has been achieved when compared with Gabor multi-channel filtering method and Wavelet based methods. The local strategy is divided into two stages. The first one is to analyze the local over-complete and sparse structure, where the input 2-D patterns are divided into patches and the local over-complete and sparse structure is learned from these patches using sparse approximation techniques. The second stage concerns the application of the local over-complete and sparse structure. For an object detection problem, we propose a sparsity testing technique, where a local over-complete and sparse structure is built to give sparse representations to the text patterns and non-sparse representations to other patterns. Object detection is achieved by identifying patterns that can be sparsely represented by the learned. structure. This technique has been applied. to detect texts in scene images with a recall rate of 75.23% (about 6% improvement compared with other works) and a precision rate of 67.64% (about 12% improvement). For applications like character or shape recognition, the learned over-complete and sparse structure is combined. with a Convolutional Neural Network (CNN). A second text detection method is proposed based on such a combination to further improve (about 11% higher compared with our first method based on sparsity testing) the accuracy of text detection in scene images. Finally, this method has been applied to handwritten Farsi numeral recognition, which has obtained a 99.22% recognition rate on the CENPARMI Database and a 99.5% recognition rate on the HODA Database. Meanwhile, a SVM with gradient features achieves recognition rates of 98.98% and 99.22% on these databases respectivel

    The rectification and recognition of document images with perspective and geometric distortions

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore