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Abstract 

 

End-Shape Analysis for Automatic Segmentation of 

Arabic Handwritten Texts 

 

Amani Tariq Jamal, Ph.D.  

Concordia University, 2015  

 

 

Word segmentation is an important task for many methods that are related to document 

understanding especially word spotting and word recognition. Several approaches of word 

segmentation have been proposed for Latin-based languages while a few of them have been 

introduced for Arabic texts. The fact that Arabic writing is cursive by nature and unconstrained 

with no clear boundaries between the words makes the processing of Arabic handwritten text a 

more challenging problem.  

 In this thesis, the design and implementation of an End-Shape Letter (ESL) based 

segmentation system for Arabic handwritten text is presented. This incorporates four novel 

aspects: (i) removal of secondary components, (ii) baseline estimation, (iii) ESL recognition, and 

(iv) the creation of a new off-line CENPARMI ESL database. 

 Arabic texts include small connected components, also called secondary components. 

Removing these components can improve the performance of several systems such as baseline 

estimation. Thus, a robust method to remove secondary components that takes into consideration 

the challenges in the Arabic handwriting is introduced. The methods reconstruct the image based 

on some criteria. The results of this method were subsequently compared with those of two other 

methods that used the same database. The results show that the proposed method is effective. 

Baseline estimation is a challenging task for Arabic texts since it includes ligature, 

overlapping, and secondary components. Therefore, we propose a learning-based approach that 
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addresses these challenges. Our method analyzes the image and extracts baseline dependent 

features. Then, the baseline is estimated using a classifier.  

 Algorithms dealing with text segmentation usually analyze the gaps between connected 

components. These algorithms are based on metric calculation, finding threshold, and/or gap 

classification. We use two well-known metrics:  bounding box and convex hull to test metric-based 

method on Arabic handwritten texts, and to include this technique in our approach. To determine 

the threshold, an unsupervised learning approach, known as the Gaussian Mixture Model, is used. 

Our ESL-based segmentation approach extracts the final letter of a word using rule-based 

technique and recognizes these letters using the implemented ESL classifier. 

 To demonstrate the benefit of text segmentation, a holistic word spotting system is 

implemented. For this system, a word recognition system is implemented. A series of experiments 

with different sets of features are conducted. The system shows promising results.  
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Chapter 1 

 

Introduction  

 

Handwritten texts consist of artificial graphical marks and strokes that are written or carved by 

humans on a surface such as papers, metals, wood, glass, or rocks. The purpose of handwriting is 

to communicate, register, or transfer messages, news, ideas, information, and contracts. 

Handwriting is the basic tool that is used in many different areas and it is a skill that is learned by 

educators. This ability is affected by the educators’ physical characteristics, age, personality, or 

mood. In addition, for the Arabic language, the skill might be affected by the educators’ region, 

since various regions use different calligraphy styles. This explains the variability that is found in 

handwritten texts. The design of general handwriting related systems still remains a big challenge 

and an open problem in the area of pattern recognition and artificial intelligence.  

 Handwritten word segmentation, through the extraction of word units from the text and by 

finding word boundaries, is an essential task for many systems such as recognition and spotting. 

In this thesis, we look into the design and implementation of a system for word segmentation of 

unconstrained handwritten texts with no limitations in their writings such as texts that are not 

written in separate boxes, nor written with special pens, nor written neatly [129]. There are 

numerous challenges in the problem of word segmentation. We discuss these challenges and we 

present new solutions for them. Based on these solutions, new subsystems are developed and tested 

separately.  
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In this chapter, we define some essential concepts of handwritten document analysis in Section 

1.1. The problem statement is given in Section 1.2. We discuss the motivation of our work in 

Section 1.3 while some of the Arabic characteristics are explained in Section 1.4. A brief 

comparison between Arabic and Latin languages is explained in Section 1.5. In Section 1.6, the 

challenges of Arabic handwritten texts segmentation are given and this thesis’ objective is 

summarized in Section 1.7. The proposed approach is presented in Section 1.8 with the rationale 

behind its application along with our overall methodology. In Section 1.9, the contributions of this 

thesis are given. Section 1.10 describes the database used for this research while the outline of this 

thesis is given in Section 1.11.  

 

1.1 Definitions  

The recognition of handwritten texts is divided into offline and online systems. Online recognition 

refers to the techniques that deal with the automatic processing of handwritten texts using digitized 

instruments. In online recognition systems, the temporal information is available. Meanwhile, 

offline systems deal with the text’s image.  

There are some terms in handwritten documents analysis that may overlap with each other. 

Thus, these terms will be explained in detail. When dealing with handwritten word processing, 

these four concepts need to be defined precisely: word segmentation, word recognition, word 

spotting and word extraction or word separation. Word segmentation has two meanings in the 

literature. It may be used to refer to the process of dividing a word into either its characters or sub-

characters. Moreover, word segmentation is used to refer to segmenting a text into words. Word 

recognition is the process of classifying the word from its overall shape. Word spotting, also 

referred to as indexing or searching, is a task to locate a word in a set of documents. Word 

extraction, known as word segmentation, aims at separating the text line into words. In fact, most 

of the authors use the term word segmentation instead of word extraction or word separation [94], 

[83], [73], [100], [144], [159],[95], [68], [121], [139], [133]. Therefore, we call the process of text 

line segmentation into words in this thesis, word segmentation.  

In general, the algorithms dealing with word segmentation can be categorized into gap 

thresholding and metric classification. In the former, the segmentation is based on calculating the 
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distances between adjacent objects called Connected Components (CCs) in a text line and finding 

a threshold to distinguish between inter and intra-word gaps. In the latter, the gaps are classified 

into either inter or intra-word gaps by extracting some features and using classifiers. 

  

1.2 Problem Statement  

Words are the main building blocks in a text. In document understanding applications, the text 

needs to be segmented into word units. In the field of offline unconstrained handwritten document 

analysis, word segmentation is considered as a non-trivial problem to solve. Many difficulties arise 

in handwritten documents, making the segmentation process a challenging task, since word 

segmentation does not have much information about the text.  

 There are two main systems that are affected by the word segmentation’s accuracy, namely 

recognition and spotting. In addition, the performance of these systems has direct effect on some 

applications such as document classification, translation, and scoring. In other words, if the words 

are wrongly segmented, all the systems’ performance that are based on word level will be affected.  

In text recognition, there are two main approaches that address the segmentation problem called 

implicit and explicit. Segmentation and recognition are done simultaneously in implicit 

approaches, while the segmentation task is done before recognition in explicit approaches. These 

two methods, which are also called holistic and character-based approaches, are applied after 

segmenting the documents into words such as the work introduced in [67]. Thus, the output of 

these methods can be thought of as bounding boxes corresponding to each word in the text line 

[68].  

 For word spotting systems, many methods have been introduced for Latin languages and 

they reached promising results after segmenting the documents into words [102]. Two main 

approaches for word spotting, called template matching and shape code mapping, require word 

segmentation before spotting. For Arabic handwritten word spotting, only one work was 

introduced that applied spotting method after segmenting the documents into words [142]. This 

system got a low accuracy since the correct segmentation was low as well. The overall performance 

of correct word segmentation was 60% over only ten writers writing ten documents each.      
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1.3 Motivation  

Arabic is the official language in more than 20 countries. In addition, it is the mother tongue of 

more than 300 million people, and one of the six formal languages in the United Nations [12]. 

Around the world, more than 1 billion Muslims read Arabic because it is their Holy book's 

language. The Arabic script was first documented in 512 AD. More than thirty languages use 

Arabic alphabets; some of them are Farsi, Pashtu, Urdu, and Malawi.  

Handwriting still persists as a mean of information recording and communication in everyday 

life even with current technologies. A huge number of both modern and historical handwritten 

documents have been digitized to analyze, distribute and preserve them. Modern handwritten texts 

include bank cheques, postal addresses, forms, and contracts.  

Extracting all the word images from a handwritten document is an essential pre-processing step 

for two reasons [73]. Firstly, for text recognition methods, which can be categorized into letter-

based and word-based, there is a need to work on pre-extracted word images. Secondly, for word-

spotting or content-based image retrieval techniques, all the word images in the documents are 

required to be pre-segmented properly. Most of the techniques in handwritten document retrieval 

and recognition fail if the texts are wrongly segmented into words. 

Word segmentation is not only an important pre-processing step for word recognition and 

spotting but also for many other methods of Natural Language Processing (NLP). NLP is 

concerned with the interaction between humans and computers. Many areas of NLP require the 

word segmentation from handwritten documents to facilitate some tasks. For example, words need 

to be extracted to improve text-to-speech methods. Automatic summarization, translation, natural 

language understanding, part-of-speech tagging, text-proofing, text simplification, and automated 

essay scoring are researched tasks that deal with extracted words. 

Large databases play an important role for the development of handwriting recognition systems. 

For evaluation, comparison and improvement of such systems, the text labeling (corresponding 

transaction) are expensive and time consuming. Word segmentation can improve ground truthing 

by transcription at the level of individual words.  

Few methods have been proposed for Arabic texts segmentation in comparison to Latin-based 

languages. Arabic word recognition has received considerable attention in the literature. Recently, 

the exploration of Arabic word spotting in handwritten documents has begun [11]. However, only 
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five papers [22], [23], [142], [78], [53] have been published for word extraction from Arabic 

handwritten documents since separating texts into words is challenging due to the enormous 

different Arabic handwriting styles.  

 

1.4 Arabic Characteristics  

It is commonly accepted that segmentation and recognition of Arabic handwritten texts face some 

problems. Most of these difficulties are inherent to the nature of Arabic writing that are discussed 

in this section. Arabic characteristics are: 

 Arabic script is written horizontally from right to left. 

 Arabic script is either cursive or semi-cursive. 

 Arabic alphabet contains 28 basic characters. Each character can have up to four 

distinctive shapes within a word depending on its position (beginning, middle, last, and 

isolated). Figure 1 illustrates the characters and their shapes. 

 In addition to the Arabic alphabet, there are four non-basic characters, which are Hamza, 

Ta-marbota, Alif-maqsoura, and Madaa. In some papers, non-basic characters are 

classified as diacritics. There are different positions for the Hamza character. Hamza can 

be above or below character Alif, on characters Waaw or Alif-maqsoura, or isolated. 

Figure 2 illustrates the different positions of Hamza. Madaa can be situated above 

character Alif. Ta-marbota and Alif-maqsoura come at the end of a word either connected 

or isolated.  

 Six characters cannot be connected from the left. They are Waaw, Alif, Daal, Thaal, Raa, 

Zaay, which we call non-left-connected (NLC) letters in this thesis. Figure 3 shows a word 

that has three different NLC letters. 

 Each word may be composed of one or more Parts of Arabic Words (PAWs). In [126], a 

sub-word is defined "as being a connected entity of one or several characters belonging to 

the word". Figure 4 shows some words with different numbers of PAWs. 
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Name Isolated Beginning Middle End 

Alif  ا ا ا ا 
Baa  ـب ـبــ بـ ب 
Ta ـت ـتـ تـ ت 
Tha ـث ـثـ ثـ ث 
Jeem  ـج ـجـ جـ ج 
Haa ـح ـحـ حـ ح 
Khaa ـخ ـخـ خـ خ 
Daal ـد ـد د د 
Thaal  ـذ ـذ ذ ذ 
Raa ـر ـر ر ر 
Zain  ـز ـز ز ز 
Seen  ـس ـسـ سـ س 
Sheen  ـش ـشـ شـ ش 
Saad ـص ـصـ صـ ص 
Daad  ـض ـضـ ضـ ض 
Taa ـط ـطـ طـ ط 
Daad ـظ ـظـ ظـ ظ 
Ayn  ـع ـعـ عـ ع 
Gayn  ـغ ـغـ غـ غ 
Faa ـف ـفـ فـ ف 
Qaaf ـق ـقـ قـ ق 
Kaaf ـك ـكـ كـ ك 
Laam  ـل ـلـ لـ ل 
Meem  ـم ـمـ مـ م 
Noun ـن ـنـ نـ ن 
Haa ـه ـهـ هـ ه 
Waaw ـو ـو و و 
Yaa ـي ـيـ يـ ي 

 

Figure 1: Arabic character shapes in different positions 
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Figure 2: Hamza's positions 

 

 

 

 

 

Figure 3: An Arabic word with three different NLC letters 

 

 

 

Figure 4: Arabic words with different numbers of PAWs 

(a) One PAW 

(b) Two PAWs 

(b) Three PAWs 
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 A PAW is composed of two parts, the main body and the secondary one which can be 

diacritics, non-basic characters or directional markings. In Figure 5, an illustration of the 

main and secondary bodies of a word is presented. 

 

 

Figure 5: Main and secondary components of an Arabic word 

 

 Diacritics are usually (composed of) one dot, two dots or three dots. Sometimes, two dots 

are written as a dash and three dots like ^ (logical conjunction symbol). Dots can help to 

distinguish the main bodies. In other words, one, two or three dots can differentiate two 

similar main bodies. For example, Daal, and Thaal (Figure 1) have the same main body 

and just one dot makes them have different sounds (constant). Ten characters have one 

dot, three characters have two dots and two characters have three dots. Dots may be placed 

above or under the letter’s main body. Several representations of dots are presented in 

Figure 6. 

 
Figure 6: Some representation of dots 

 

(a) Three connected dots (b) Three isolated dots 

(c) Two connected dots 
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 One of the most important characteristics in Arabic writing is a baseline that is a horizontal 

line used to simplify and organize writing. Character connection usually occurs on this 

line. Figure 7 depicts the location of a baseline of the Arabic word.  

 

Figure 7: A baseline of an Arabic word 

 

 

 A PAWs' characters are normally connected on a baseline, but others can be connected 

vertically, which is common with some combination of characters such as Laam and Alif. 

 Directional markings can be written above or below a character. In Figure 8, there is an 

illustration of all the directional markings. These directional markings may change the 

pronunciation and sometimes the meaning of a word. Figure 9 illustrates two words with 

the same letters and different directional markings, (a) means played, and (b) means toys. 

Directional markings cannot be combined within one character except with the directional 

marking Shadda. 

 

Figure 8: Arabic directional markings 

   
Figure 9: Same Arabic word with different directional markings 

(a) (b) 



 

10 

 

 Cursive Arabic writing has many styles, more than a dozen. The three main calligraphic 

styles are Kufi, Naskh, and Ruqaa. Some people use different calligraphic styles in their 

writing and sometimes within one word. Figure 10 shows some Arabic calligraphic styles. 

 

Figure 10: Some Arabic calligraphic styles 

 

1.5 Latin vs. Arabic 

Generally, in a handwriting recognition process, the word is segmented into characters and then 

the classifier recognizes each character. However, character segmentation is not simple, especially 

in Arabic systems which have to confront many obstacles. The most important distinction among 

offline handwriting recognition methods in different languages is segmentation. It has been noted 

that a large number of recognition mistakes in handwriting recognition system are due to 

segmentation errors [43]. Most of the work in Latin script focused on character segmentation, 

which is considered easy in comparison to other languages. As stated in [30], it is commonly 

accepted that the letter segmentation for Latin cursive writing is still a problem that leads to the 

conclusion that letter segmentation in Arabic needs more research. Hence, researchers avoid letter 

segmentation while applying segmentation-free methods by recognizing the Arabic word as a 

whole. Thus, the words must be extracted before the recognition stage. Table 1 compares some 

aspects between Arabic and English languages to show the difficulties that might arise from such 

characteristics. 
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1.6 Challenges  

There are many challenges in handwritten document segmentation. We can categorize the 

challenges into general problems, and Arabic-related problems. Both Latin and Arabic languages 

face many problems due to the common challenges of handwritten documents. Arabic-related 

problems are caused by some of its distinct characteristics.  

The tasks of offline systems are considered harder than online ones, where the sequences of points 

and writing traces are measured. Offline systems are less accurate since only an image of a script 

is available. Offline systems can be divided into three categories: printed, historical and 

handwritten. Printed-related methods have achieved great accuracy, while most of the historical 

documents also get good performance. The difficulties involved in historical-related systems are 

mainly based on the pre-processing stage, not on segmentation since historical documents are 

usually written neatly considering the importance of the information given in such documents. 

 

Table 1: Arabic vs. English 

 

Characteristics  English Arabic Arabic Example 

Size of character  Similar  No, because of ligature  بند   - بنــــد 

Dotted characters  Only two  15 out of 28   

Number of dots 

change same body 

part 

No Yes  ث -ت   

 

Position of dots 

change same body 

part  

No Yes, Above or below a 

baseline  
 تا    -  يا
 

Shape of letters 

based on location  

Capital,(only names, 

and beginning of 

sentences)  

Small 

beginning,  

middle,  

last,  

and isolated 

 عنصر

 أربعة

 مجمع

  ع

Non-basic characters No  Yes ء  ~   ى  ة   

Variation of shapes 

for the same letter 
(with the same location) 

No Yes, due to the used 

calligraphic styles  

 

 

 

 
 

Different writing 

styles of dots 

No Yes  

 - -  
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However, the systems that deal with handwritten documents like recognition system and 

word spotting are more challenging because of the writing styles’ variation and there is a need to 

perform many pre-processing tasks to improve the accuracy of such systems, one of these pre-

processing tasks is segmenting the texts into words. Figure 11 shows the two types of recognition 

systems: online and offline along with three types of offline systems: printed, historical and 

handwritten. In offline handwriting systems, the main challenge is the individuals’ writing styles. 

Generally, handwritten texts lack the uniform spacing that is normally found in machine-printed 

texts. 

In the Arabic script, one of the major characteristics that differentiates this language from 

Latin-based ones is that twenty-two letters in the Arabic language must be connected on a baseline 

within a word. The remaining six letters cannot be connected from the left, which we call NLC 

letters. In this way, NLC letters separate a word into several parts depending on how many of these 

letters are included in a word. In other words, NLC letters indicate a separation of PAW. A study 

shows that NLC letters represent 33% of the texts [117].  

Arabic texts have two types of spacing, intra-word gaps (gaps between PAWs within a 

word) and inter-word gaps (gaps between words). Intra-word gaps in the Arabic language are 

different from the ones in Latin-based languages. In Latin, intra-word gaps refer to the spaces that 

arise arbitrarily between any successive letters as a result of handwriting styles. In Arabic, in 

addition to the arbitrary spaces between letters as a result of broken PAWs, intra-word gaps are 

the ones between two PAWs, where the word must be disconnected due to NLC letters. This is 

part of the language’s structure. Figure 12 shows intra-word gaps in both English and Arabic 

words. 

In Arabic machine-printed texts, the inter-word gaps are much larger than intra-word gaps 

as illustrated in Figure 13. However, in Arabic handwritten documents, the spacing between the 

two types is mostly the same [26]. This is pointed out in Figure 14 from the CENPARMI cheque 

database [14]. Since the shapes of most of the NLC letters are curved, with the open end to the 

left, they are usually written with long strokes, which shrink the distance between words. 

Sometimes, they caused overlapping, or touching between words. 
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Figure 11: Types of recognition systems 

 

 

 

Figure 12: Intra word gaps 

 

 

 

 
Figure 13: Printed (below) and handwritten (above) Arabic texts 

 

 

Recognition 

System 

Online Offline 

Handwritten  Printed  Historical  

 

Gaps Gaps Gaps 
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Figure 14: Intra and inter-word gaps in Arabic texts 

 

1.7 Objectives  

The existing methods are not adequate for extracting Arabic words from handwritten texts. In word 

recognition and spotting applications, it is very important to achieve high levels of accuracy. This 

research deals with the pre-processing steps and the words extraction of handwritten texts. Our 

main objective is to design an efficient and robust segmentation system to solve real-life and 

industrial problems. This thesis’ research goals are as follows: 

 A survey of offline handwritten word extraction. 

 A review of the difficulties involved in word extraction.  

 Propose a novel scheme for text segmentation based on end shape analysis and 

recognition.   

 A survey of offline isolated handwritten letters recognition. 

 Design a promising supervised learning system for isolated Arabic handwritten letters to 

enhance the segmentation process.  

 A survey of baseline estimation methods for Arabic handwritten texts. 

 A review of the difficulties involved in baseline estimation. 

 Propose a robust baseline estimation method based on learning and feature extraction.   

 Introduce an efficient approach to remove secondary components. 

 Discover a promising supervised learning system for Arabic handwritten words to study 

the impact of word segmentation on word spotting system.  
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In general, we introduce new algorithms and techniques that can improve the accuracy of 

segmentation of Arabic handwritten words. We used all sources of foreground information and the 

knowledge of the language to improve the accuracy of segmentation.   

 

1.8 Proposed Method  

The main difference between our segmentation approach and previous methods is utilizing the 

knowledge of Arabic writing by shape analysis. In [22], [53], and [23], the authors pointed out the 

importance of using the language specific knowledge for Arabic text segmentation. Meanwhile in 

[103], the authors claim that one of the problems of Arabic text segmentation is the inconsistent 

spacing between words and PAWs. Our approach for segmentation is a two-stage strategy: (1) 

metric-based segmentation, and (2) recognition-based segmentation.  

 

1.8.1 Utilizing the Knowledge of Arabic Writing  

In the Arabic alphabet, twenty-two letters out of twenty-eight have different shapes when they are 

written at the end of a word as opposed to the beginning or in the middle. Two non-basic characters 

have different shapes at the end of a word. Therefore, analyzing these shapes can help identify a 

word’s ending. In fact, there are just fourteen main shapes that can be used to distinguish the end 

of a word, since the remaining characters have the same main part but have a different number 

and/or dots’ positions. Only NLC letter shapes are written the same way at the beginning, the 

middle or the end of a word. Therefore NLC letters cannot identify the end of a word. 

Consequently, End-Shape Letters (ESLs) can be categorized into two classes: endWord and non-

endWord. Figure 15 shows the shape of the letter Noon when it is written at the beginning of the 

word, the middle and the end, and this letter is part of endWord class.  

 

 

 

Figure 15: Letter Noon in different positions 

Beginning  Middle   
End 
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1.8.2 Our Overall Methodology 

Our methodology is composed of four main tasks: (1) secondary components removal, (2) baseline 

estimation, (3) metric-based segmentation, and (4) ESL-based segmentation. The input of our 

system is a text line image. The first subsystem aims at preprocessing the image and removing the 

secondary component that is explained in Chapter 2. The output of this subsystem are the main 

components of the text line. The baseline estimation task is described in Chapter 3. This method 

is a learning based approach that aims at determining the position of the baseline of the text line. 

The third subsystem is the first stage of the word segmentation technique which is described in 

Chapter 4. The purpose of this task is to pre-estimate the segmentation points between the words 

based on calculating the distances between the main components. Then the second stage of the 

word segmentation is explained in Chapter 7. The overall methodology is given as a block diagram 

in Figure 16. The details of our methodology are given in Figure 17.  

 

 

Figure 16: Overview of our methodology 

Text line  

Secondary Components Removal  

Metric-based Segmentation  

ESL-based Segmentation  

Segmentation  

Segmented Text  

Baseline Estimation  
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Figure 17: Overall methodology 
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1.9 Contributions  

In this thesis, we present a coherent offline Arabic word segmentation system for multi-writer 

unconstrained scripts. The proposed system aims to solve the problem of lack of boundaries 

between words. The main contributions of this thesis can be summarized as follows:  

 The introduction of a new word segmentation approach based on recognizing the last 

character of PAWs with advanced state-of-the-art technologies.  

 The introduction of a novel learning-based baseline estimation method.  

 The introduction of morphological reconstruction to remove secondary components to 

enhance the above processes.  

 The creation of a new off-line CENPARMI ESL database. 

  

1.10 Database  

The Institute of communications Technology in Germany (IFN) and the École Nationale 

d’Ingénieurs de Tunis in Tunisia (ENIT) have developed an Arabic handwriting database. It 

contains more than 2273 handwritten forms from 411 writers with 26459 handwritten words. Most 

of the participants were familiar with the vocabulary. Each writer was asked to complete five 

forms, where each form contained 60 names. These forms were composed of 946 Tunisian 

town/village names. Some names appear more than 300 times while others were written only 3 

times. Each handwritten word image comes with ground truth information that includes postal 

code, Arabic word in ISO 8859-6 code set, Arabic word as character sequence with shape index, 

number of words, characters and PAWs, baseline, baseline quality, and writer identifier, age, 

profession and writing quality. The database consists of five sets (a, b, c, d, e). Each set contains 

of about 6700 images. Table 2 shows the statistics of images with two and three words.   
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Table 2: Statistics of number of images with two and three words in IFN/ENIT database 
 

Set Two Words Three Words 

Set-a 842 185 

Set-b 880 192 

Set-c 211 21 

Set-d 213 34 

Set-e 178 8 

 

1.11 Thesis Outlines  

This thesis is organized into ten chapters, as described below:  

 In Chapter 2, we discuss the work that has been done on secondary components removal. 

We propose our new approach of secondary component removal using morphological 

reconstruction. Experiments on the proposed method are also presented. The results are 

compared with the existing methods on the same database.  

 In Chapter 3, we describe the previous works on baseline estimation for Arabic texts. We 

propose our own learning-based baseline estimation procedure. Different experiments are 

conducted and the results are presented.   

 In Chapter 4, we review the studies on word segmentation for Latin-based languages. In 

addition, our metric-based segmentation algorithm is explained. The experiments and their 

results are described.  

 In Chapter 5, a literature review is given for Arabic letter recognition methods. We present 

a complete isolated letter recognition system, discussing the different extracted features.  

 In Chapter 6, we explore the created database of Arabic words with all the different shapes 

of the letters.  

 In Chapter 7, we propose our new approach of word segmentation called End-Shape Letter 

Recognition based segmentation. Several experiments have been conducted and the results 

are compared with the metric-based segmentation method.  
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 In Chapter 8, our word recognition system is discussed and the results of extracting 

different features are presented.   

 In Chapter 9, we define word spotting systems. Moreover, the impact of word segmentation 

on word spotting is discussed with the results of word spotting system.  

 Finally, we summarize this thesis in Chapter 10 with some observations and directions for 

future works. 
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Chapter 2 

 

Removal of Secondary Components 

Using Morphological Reconstruction  

 

In this chapter, we start by describing secondary components in Arabic language and the 

importance of their removal. In Section 2.2, the previous methods of secondary components 

removal are explained. Our proposed method, secondary components removal using 

morphological reconstruction, is described in Section 2.3. The experiments and their results are 

provided in Section 2.4. Finally, we conclude this chapter in Section 2.5.  

 

 

2.1 Introduction  

An Arabic word is composed of two parts: (1) main components that represent the primary part of 

the connected or isolated letters, and (2) secondary components (diacritics, dots, strokes, 

directional markings). In this thesis, the secondary components are removed to improve the 

performance of metric-based segmentation and baseline estimation. For metric-based 

segmentation, removing the diacritics can speed up the process by avoiding calculating the 
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coordinates of these strokes that do not have direct influence on the segmentation result(s). In fact, 

one of the problems of text segmentation is the existence of secondary components that overlapped 

in some cases with adjacent words. Several methods of baseline estimation are affected by these 

components such as horizontal projection, principal components analysis, contour following, and 

skeleton based methods. Though, the removal of secondary components avoids both the 

disturbance of the histograms in case of horizontal projection and principal component analysis 

and the error of points’ selection of contour and skeleton based methods. However, many 

algorithms remove the secondary components to facilitate skew correction. Some methods also 

detect the secondary components to extract more features for recognition or spotting systems.  

 

2.2 Related Work  

Several methods have been applied that are based on height, area, positions of the components, 

binarization and thresholding, number of black pixels of each segment, bounding boxing, vertical 

layering, and contour following. The challenge is to apply a method based on the size of the 

connected components where isolated letters and secondary components are written in the same 

size, as seen in Figure 18. Generally, all of these methods are mainly based on the segments’ size. 

None of these algorithms adopt the idea of restoring the words based on a roughly estimated 

baseline. 

 

 

 

 

 

 

Figure 18: Main and secondary components with almost similar dimensions 
 

 

Diacritic 
Letter 
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In [38], the algorithm employs the following contour technique. The biggest segment is 

considered as the main component. Two steps are performed in [105] to remove diacritics. The 

first step filters the components relying on three criteria: size of the bounding boxes, area, and 

vertical layering while the second filter removes diacritics after estimating the baseline. In [32], 

they modified the algorithms proposed in [105]. This algorithm is based on the height, the area 

and the overlapping of the connected components. Chan et al. [41] remove the diacritics by 

binarizing the images. Then with some size and orientation ranges, a threshold was applied to the 

connected components. In [18], the technique is based on counting the number of black pixels of 

each segment and the number of rows included in the segment. The segment that has more than 

half the total number of the black pixels of the entire image is identified as a main component 

while the rest are considered as secondary. This method was applied to isolated characters of five 

different sizes and three fonts. In [104] and [54], the diacritics were removed based on the 

connected component’s size. In [54], thresholds were determined based on empirical study.  

 

2.3 Proposed Method  

All the secondary components are written either below or above the main components, which are 

usually written on the baseline. The baseline occurs below the center of the image. We used this 

fact to extract only the connected components that were located in this position. Since the 

secondary components are concerned with the word image’s middle area, we used a morphological 

reconstruction method by dilation that is based on an estimated baseband.  

 Our method is composed of two steps. At the first step, the secondary components are 

removed based on the components’ sizes. At the second step, a pre-estimation of the baseline is 

calculated then the mask is generated based on the baseline. Finally, the reconstruction of the 

image is performed.  

The reconstruction is a morphological transformation involving two images and structuring 

element that is used to define connectivity. We used 8-connectivity, which is a 3×3 matrix of ones 

with the center defined at coordinates (2,2). Morphological reconstruction processes one image, 

called the marker, based on the characteristics of another image, called the mask. The marker is 

the starting point for the transformation. In fact, the peak of high points in the marker image 



 

24 

 

identifies where the processing begins. The mask image constrains the transformation; hence the 

peaks spread out or dilate while being directed to fit within the mask image. The spreading 

processing continues until a stopping condition is reached. The fast hybrid reconstruction method 

is used [150].  

Let I be the mask and F be the marker that are defined on the same discrete domain D and 

such that F  I. In terms of mapping, this means that;  

 p  D , F(p) = 1  I(p) = 1 

Let I1, I2……..In be the connected components of I. The reconstruction of I from F denoted by 

PI(F) is the union of the connected components I which contains at least one pixel of F  

𝑃𝐼 (𝐹) =  ⋃    𝐼𝑘𝐹∩𝐼𝑘≠0  

 

We process only binary images. The word images are the masks. The marker is a generated 

binary image with the same size as the mask image with  a horizontal line that is located below the 

middle of the image.  

Marker (Image (mean(h):mean(h)+10, w ) ) = 1 

                                 Image = size (Mask) 

where h and w are the image’s height and width . The result of our method is illustrated in Figure 

19.  

We found another advantage in using our method: not only are the secondary components 

removed, but also some strokes were extracted near the edges. These strokes appeared because of 

the low performance of extracting the word image from bank cheques [14] or by the low 

performance of text line segmentation.   

 

2.4 Experimental Result  

We applied our method to the IFN/ENIT Arabic Tunisian city names database [127]. The training 

is done on randomly selected images from set-a. The experiments are conducted on 751 first 

images of set-a as in [32]. We used two metrics: false positives and false negatives. The false 

negatives are identified when the number of secondary components is less than the correct number;  
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Figure 19: Result of our secondary component removal method 

 

 

whereas the false positives are detected when a connected component is misclassified as a 

secondary component instead of a base form (PAW). Since the ground-truth information of the 

secondary components is not included with the IFN/ENIT, a manual evaluation is performed. The 

results were 2.90% false positives and 1.75% false negatives. The algorithm failed when the 

diacritics were touching the main components or the main components were written well above 

(a) Binarization  

(b) After removing secondary components based on size   

(d) Mask Generation  

(e) Result   

(c) Below middle of the image 
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the baseline as illustrated in Figure 20. Table 3 compares our method with the methods from 

Menasri et al [105] and Boukerma et al [32] on IFN/ENIT database. 

 

 

 

Figure 20: Error analysis 

 

 

 

Table 3: Comparison of secondary components removal methods  

 

Method False Positives 

Detection 

False Negatives 

Detection 

Menasri [105] 14.24% 5.32% 

Boukerma [32]  5.72% 7.05% 

Proposed Method [76] 2.90% 1.75% 

 

 

2.5 Conclusions  

We believe that the preprocessing stage can improve both the recognition and the spotting systems. 

In this chapter, a preprocessing method of removing secondary components for Arabic handwriting 

texts is presented. Our proposed method is based on the use of morphological reconstruction. After 

binarizing the image, using state of the art technique, some secondary components were removed 

(a) Touching between 

diacritics and PAW 
(b) PAW written well above 

baseline 
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based on a threshold. Then, an initial estimation of the baseline is calculated to facilitate the mask 

generation. Finally, the image is reconstructed based on the generated mask. The method is 

evaluated by using a standard database and is compared with two previous algorithms.    
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Chapter 3 

 

Learning-based Baseline Estimation  

 

Baseline estimation is an important pre-processing step in Arabic text recognition systems. In this 

chapter, the text baseline’s definition is presented in Section 3.1. The motivation and the concerns 

about this essential preprocessing task are given in Section 3.2. Next, the baseline error 

measurement is included in Section 3.3. The challenges that are related to Arabic writing 

characteristics are described in Section 3.4. The previous work on baseline estimation for both 

Latin and Arabic languages are provided in Section 3.5. In Section 3.6, the database used, the 

generated database for the proposed method and our method are described.  Finally, our 

experiments are also presented in detail in Section 3.7. This chapter is concluded in Section 3.8.  

 

3.1 Baseline Definition  

Arab people use an imaginary line called the baseline, which is the main property in an Arabic 

script, in an un-ruled paper to simplify the actual writing. The baseline concept does not have a 

precise definition, but it can be defined as "the virtual line on which cursive or semi-cursive writing 

characters are aligned and/or joined" [17]. In other words, it is the line at the height where letters 

are connected, so the main bodies are written above it except for the descenders. In fact, the Arabic 
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text can be split vertically into three regions: upper, lower and middle. The main part of the letters, 

loops and their connections are located in the middle region which is part of the baseline position. 

Meanwhile, ascender, descender, dots, and diacritics lie either in the upper or/and lower parts. 

Figure 21 shows the baseline’s main properties.  

 

Figure 21: Main properties of baseline 

 

3.2 Motivation  

In Arabic printed texts, the baseline can be detected easily by finding the row that has the most 

number of black pixels. However, in handwritten texts, this procedure cannot be applied due to the 

extreme variation of writing styles and irregularity in PAW alignment. Baseline estimation is used 

for skew normalization, slope correction, for segmentation [107], and for feature extraction [125], 

[51]. The dots and their positions, which are below or above the baseline, along with word 

descenders and ascenders, can be identified by their baseline positions. Moreover, baseline 

provides important information regarding text orientation as well as the connection points between 

characters. Baseline identification has direct influence on recognition accuracy [117] and 

segmentation performance. The failure of such systems may be caused by inaccurate estimation of 

the baseline. Moreover, some approaches are used in baseline detection as a main key for text line 

separation [120], [29], and [119]. In this thesis, the baseline estimation method is used for metric-

based segmentation and for feature extraction stage of word recognition.  

 

 

 

 

Baseline  

Diacritics  Dots 

Connection 

points Descender Ascender   
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3.3 Baseline Error Measurement 

The baseline error measurement is explained in [126]. To rate the baseline position, they prepared 

a survey with hundreds of Arabic handwritten words from IFN/ENIT database with marked 

baseline positions. Then, a group of Arabic native speakers were asked to tag all baseline positions 

as “excellent”, “acceptable”, and “insufficient”. They observed that the baseline position was 

evaluated as excellent with up to a 5 pixel vertical position error, the baseline position was 

evaluated as acceptable for up to a 7 pixel vertical position error, and when the vertical position 

error is more than 7 pixels the baseline position was evaluated as insufficient. To evaluate our 

algorithm, we have calculated the distance between the estimated baseline with our algorithm and 

the baseline positions in the ground truth. This distance is used for performance evaluation.  

 

3.4 Challenges  

Some characteristics of Arabic writing are challenging for baseline detection. Diacritics, non-basic 

characters and directional markings can either affect the accuracy of baseline estimation, since 

baseline methods are concerned with the main body of the word, or the speed of the process that 

can be affected when removing such strokes. In addition, the variation of baseline within a word 

(between PAWs) has a big effect on baseline methods performance. A short description of some 

of the challenges can be found in [17], [116] and [115]. The challenges that are related to the 

language can be summarized as follows: 

 Secondary components: strokes that have zigzag shapes or long diacritics. (Figure 22(a))  

 Word slope. (Figure 22(b)) 

 Overlapping  

o Inter-overlapping means some characters from different words are overlapped. 

(Figure 22(c)) 

o Intra-overlapping means some characters within a word are overlapped. (Figure 

22(d))  

 Text line length  

o Long text line with misaligned PAWs. (Figure 22(e)) 
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o Short text line with small PAWs. (Figure 22(f))  

 Ligature  

o Long ascenders or descenders. (Figure 22(g))  

o Many ascenders or descenders. (Figure 22(h)) 

o Touching ascenders or descenders. (Figure 22(i))  

 

Some of these challenges are combined, making the problem more challenging e.g. short 

word with slope. In addition, baselines vary among different writers. Most of the proposed methods 

reach satisfactory results for long lines text, but they are not as accurate with lines containing one 

or a few words. Several methods remove secondary components [37], [15] to improve the 

performance of baseline estimation. However, the rest of the challenges are not easy to manipulate 

before baseline estimation.   

 

3.5 Related Works  

Several methods have been proposed for baseline estimation. The various methods of Arabic 

baseline estimation in the literature can be categorized by (a) the basic entity of estimation (text 

line, word, or PAW), (b) the information of the baseline’s representation (e.g. skeleton, contour), 

and (c) the restriction required by the technique.  

In general, baseline estimation techniques can be divided into three main categories: (1) 

statistical distribution methods, (2) geometrical analysis methods, and (3) combination of (1) and 

(2). The first technique is based on the foreground pixels distribution, while the second mainly 

relies on baseline-relevant points’ selection. Arabic baseline detection is gaining more attention 

due to the reasons mentioned earlier about the importance of features that are related to the baseline 

for Arabic texts.  
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Figure 22: Baseline estimation challenges 
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In current, the state of the art methods is Horizontal Projection based approach. This 

method analyses the density histogram by counting the number of foreground pixels for each row,   

while assuming that the maximum number of elements on a horizontal line would include the 

baseline. The first attempt for Arabic baseline estimation by Parhami and Taraghi used the 

horizontal projection in 1981 [45]. In [113], Nagabhushan et al. proposed a piece-wise painting 

schema where black and white blocks are extracted from the text line. After removing dots and 

diacritics, a horizontal projection was calculated for black blocks. Based on maximum horizontal 

projection profile, candidate points were selected. Olivier C. et al. [117] assumed that all the words 

are perfectly horizontal or have a small inclination. They applied horizontal projection while taking 

into account the position of the loops. El-hajj et al. [51] detected the upper and lower baselines 

which are based on horizontal projections. The baseline is detected through iterations of changing 

angles and horizontal projections [15]. The highest peak in the projection, located below the 

middle line, is assigned as the baseline [55]. A horizontal histogram was combined with directional 

features based on a skeletonized PAW [5], [4], and [6]. Several steps have been implemented: 

binarization, connected components extraction, dots and diacritics removal, horizontal projection 

and pre-estimated baseline regions, feature extraction, and baseline detection.   

In [97], the entropy method was applied to measure baseline relevant information. The 

histogram density and corresponding entropy were calculated for each projection. Petchwitz et al. 

proposed an enhanced horizontal projection method [126]. The binary word image was 

transformed into Hough space. The dark regions of this space indicate line directions with black 

pixels on a straight line. The maximum in the Hough space identify the baseline position. Principal 

Component Analysis (PCA) is a statistical procedure to find the directions, called principal 

components, along which a distribution exhibits the greatest variation was used in [37]. The 

baseline estimation was determined according to foreground and background pixels. After angle 

detection and baseline estimation using eigenvector (by choosing the eigenvector with the largest 

eigenvalue), the image is rotated so that this estimated baseline angle lies horizontal. A horizontal 

projection was applied to find the peak as the baseline. The experiments were done with and 

without diacritics. Generally, horizontal projection profile is robust and easy to implement, 

however any statistical approach needs long straight line of text, which is not the case in 

handwritten documents, since the researcher’s assumption is based on that the density of pixels is 

higher around the baseline position. Thus, horizontal projection histogram based methods fail in 
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estimating the baseline with short text line and text having great number of ascenders, descenders 

and large diacritics. Moreover, PAW misalignment caused some errors on baseline estimation.  In 

addition, horizontal projection is very sensitive to skew.   

Various researchers employ word skeletons and word contour processing for baseline 

estimation. Pechwitz et al. [125], and [126] extract many features from word skeleton and 

categorized these features into relevant and irrelevant baseline features. As a consequence, a pre-

estimated baseline region was determined based on the irrelevant features. The relevant baseline 

features that are located in the pre-estimated baseline region are extracted. Finally, a regression 

analysis of the selected features was completed to estimate the final baseline position. Boukerma 

et al. [31] presented an algorithm based on skeletonized PAW processing. Some points are grouped 

based on the aligned trajectory neighborhood direction. Next, many topological conditions were 

applied on the set of points that were found in the first stage to estimate the baseline. In [57], the 

method was based on the contour’s local minimum points. After locating the points where the 

contour changes direction from the lower to the upper of the image, two step linear regressions 

were applied to find the baseline position. Errors would occur with this kind of approach, when 

incorrect points were extracted due to large diacritics or word with small PAWs. Sometimes 

connection points between characters are not laying over the baseline. In fact, complex calculations 

were needed for this time-consuming operation.  

In [32], an algorithm was proposed that combined the different representations of skeleton, 

and contour, with different techniques such as horizontal projection method, linear interpolation, 

and some heuristics. Ziaratban et al. introduced a baseline estimation method using a template 

matching algorithm with a polynomial fitting algorithm [156]. In [49], a Hough transform method 

was applied on main component of PAWs. A data-driven baseline detection was introduced in 

[140]. The main idea is to use data-driven methods trained on local character features to find the 

probable baseline region. Gaussian Mixture Models (GMMs) were used to estimate the likelihood 

of each baseline region. Finally the horizontal projection was applied on this region. Voronoi 

Diagram, defined as “lines that bisect the lines between a center point and its surrounding points”, 

was used in [16]. Edge detection, contour tracing and sampling were used to measure Voronoi 

diagram points. Then, only the horizontal edges were used with rule-based approach.   

 In Latin languages, the horizontal projection method is used to estimate lower, upper and 

baseline for words [33], and [36]. Most studies in the literature use some heuristics based on 
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horizontal projection profile [27], and [69]. Moreover, the horizontal projection that is based on 

contour pixels is proposed in [8], [29], and [152]. The baseline was estimated by maximizing the 

entropy of the horizontal projection histogram [151]. Linear regression is used in different 

approaches. A pseudo convex hull from mathematical morphology with weighted least squares 

was employed [59]. In [66], least square linear regression was applied by Graves et al. [66] and by 

Modolo et al. [34]. Two linear regressions through the minima and maxima were used by Dalal et 

al. [46], and Liwicki et al. [93]. Some researchers use contour based analysis combined with 

heuristics [20], [122], [39], and [40], and others classify the local extrema of contours by a 

multilayer perceptron (MLP) [155], [65], and [24]. A polygons analysis was investigated by 

Bengali [135]. An approach was introduced by Simard et al. [124] to automatically detect a set of 

points and classify them by machine learning techniques. In [70] and [71], an approximating cubic 

splines function was employed. A heuristics approach based on local Extrama was used in [39].   

Since we use IFN/ENIT database for our experiments, Table 4 summarizes the reported 

results of baseline estimation based on this database. The entity refers to the basic unit that is used 

for estimating the baseline. Much information is added to this table, like the number of images 

used for testing, the name of the sets from IFN/ENIT, the word representation such as skeleton or 

contour, the techniques that were applied, the result (“<” refers to the number of pixels below the 

acceptable error range), and the type of error. We classify the errors that are related to baseline 

estimation into two types: (1) density confusion, and (2) miss determined candidate baseline–

relevant points. By density confusion, we refer to the errors that occurred when the techniques are 

mainly based on both the distribution of the foreground pixels in the image, and the assumption 

that the high density is on baseline area. This assumption is true in case of long text line, but it 

does not apply to a word, a few words or short text line. The second type of errors arise when some 

points, considered as indication of the position of the baseline, were wrongly selected, and the 

technique used was based on these candidate points. Table 5 shows the comparisons between the 

previous works on baseline estimation and the challenges of Arabic writing characteristics that 

they are affected by.  
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Table 4: Results of some methods reported in the literature  

 
Method Entity Images Set Representation Technique Result Error 

[31] PAW 2740  a Skeleton 

Contour 

Linear interpolation  < 10 : 69.11 2 

[156] PAW 2700 a  Template matching  < 10 : 85.33 2 

[37] PAW 1000  Skeleton PCA 

Horizontal Projection  

< 7 : 82 1 

[125] Word 26459  Skeleton Linear regression  < 15 : 95 1 

[97] Word  6567 a  Horizontal Projection < 7 : 66.3 1 

Contour Horizontal Projection 

Heuristics  

< 7 : 74.3 1 

Contour Heuristics  

Feature selection 

< 7 : 82.3 2 

Contour Entropy  < 7 : 52 2 

Skeleton Heuristics  < 7 : 87.5 2 

 Hough transform  < 7 : 71 2 

[126] Word   all  Horizontal projection 

Hough space  

< 7 : 82.8  1 

Skeleton  Feature selection  

Linear regression  

< 7 : 87.5 1 
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Table 5: Challenges related to baseline methods  

 

Type Statistical Distribution Geometric Analysis 

       Methods 
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Small dots Yes Yes  Yes No Yes No No No 

Large diacritics  Yes  Yes  Yes  No  Yes   No  Yes  Yes  

Slope  Yes Yes Yes Yes No No No No 

PAW alignment  Yes Yes Yes Yes No No Yes Yes 

Short text  Yes  Yes  Yes  Yes  No  Yes  No  No  

Long text  No  No  No  No  No  Yes  Yes  Yes  

 

3.6 Proposed Method  

We propose a supervised learning method for baseline estimation. We aim to use a learning 

technique in the preprocessing stage instead of relying on geometric heuristics that need expert 

knowledge for designing features while sometimes lacking robustness. On the other hand, learning 

based approaches allow automatic features to be learned from input images. This method is 

depicted in Figure 23. The subsystem is divided mainly into three parts. The first part is related to 

the preprocessing which is concerned with obtaining a compact and reliable representation. The 

second part is related to the feature extraction process while the third is related to the estimation 

process.  
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Figure 23: Proposed method 

3.6.1 Our Method  

The baseline of an Arabic word consistently lies below an image’s middle line [59].  After 

analyzing some images from the IFN/ENIT database [127], we observed that the baseline of the 

words, after cropping and normalization, was roughly between the 30th and 90th row pixels along 

Y axis of the image. Figure 24 shows the baseline’s range. As a consequence, the number of 

baseline classes is limited.  For supervised learning of handwritten words’ baseline positions, we 

need some handwritten words as training samples with their baseline positions. The IFN/ENIT 

database is used since they include the baseline positions in the ground truth. These baselines were 

used to train the classifier. Let W = {w1, w2 …, wn} be a collection of training word samples. F = 

{f1, f2 …, fm} contains baseline-dependent features of a word while B= {b1, b2 …, bj} are the 

baseline classes. Our training model consists of P, a set of baseline-dependent features that include 

the position of the baseline.  

P = {(wi, fi1, fi2, fi3…, fim, bj) | wi is a word, fi1 to fim is a set of features for word i, and bj is the 

position of a baseline} (3) 

where   i = 1…, n, 

   fi1, fi2, fi3…..fim, 

   0 ≤ bj ≤ number of baseline classes. 

First, the secondary components are removed as discussed in Chapter 2. Then, since our 

interest is focused on the rows of an image, the images were only normalized vertically. The 

Feature Extraction   Preprocessing   

Vertical Normalization  

Skeletonization 

HP 

CCH 

HT 

SCs Removal  

Baseline 

Estimation 
Estimated Baseline  

Image 
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normalized image sizes were 128 x M, where M is the original width of the image. After 

normalization, all the images are skeletonized.  

 

 

Figure 24: Baseline range 

 

The performance of the classifier depends on the quality of the features. Some baseline 

dependent features have been extracted to facilitate baseline estimation. The three features that 

have been used are: (1) horizontal projection (HP), (2) centroid of CH, and (3) center of line 

segments using Hough Transform (HT). These features are discussed in detail below. 

 The horizontal projection of an image L is given by: 

𝐻𝑃(𝑖) =  ∑ 𝐿(𝑖, 𝑗) 

where HP(i) is the HP of row i,  

and L(i,j) is the pixel value at (i,j).  

The number of the horizontal histogram features extracted is 128. The HP of an Arabic 

handwritten text image is shown in Figure 25. 

 After extracting the main components, the CH is generated for each main component. 

Then, the center of each CH (CCH) is calculated. Finally, the mean of the centers is given 

below: 

𝐶𝐶𝐻 =  
∑ 𝐶(𝑖)

𝑛
 

where C(i) is the center position of the CH of a main component,  

and n is the number of main components.  

Figure 26 illustrates the center of the CH of each connected component and the mean of 

the centroids.  
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 We extract horizontal line segments using HT method. The HT detect lines using the 

parametric representation of a line:  

ℎ = 𝑥 ∗ cos(𝑡ℎ𝑒𝑡𝑎) + 𝑦 ∗ sin (𝑡ℎ𝑒𝑡𝑎) 

where h is the distance from the origin to the line along a vector perpendicular to the line, 

and theta is the angle between the x-axis and this vector. 

 A parameter space matrix is generated whose rows and columns correspond to h and theta 

values, respectively. After we compute the HT, we find peak values in the parameter space. 

These peaks are represented by horizontal lines in the input image. After identifying the 

peaks in the HT, we find the endpoints of the line segments corresponding to peaks in the 

HT. Figure 27 shows the extracted line segments using Hough transform. After extracting 

the line segments, we calculate the mean of these segments. We use this feature only for 

the second experiment.   

The training and testing models are generated using Support Vector Machine (SVM) that is 

described in Section 5.4. 

 

  

Figure 25: Horizontal projection of text image 

 

 

 

Figure 26: Centroids of convex hulls 
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Figure 27: Line segments using Hough Transform 

3.6.2 Baseline Ground Truth 

The IFN/ENIT database [127] has more information in the ground truth that is not commonly 

found in other databases. It has two special features that are called baseline position and quality 

flag. A pre-baseline positions were estimated for each word image and they are documented in the 

truth file under BLN label (BLN: Y1, Y2) and generated automatically. Then, they are verified 

manually. The baseline position was adjusted during the verification procedure. While verifying 

whether the baseline could not be corrected because of handwriting styles’ variation, the quality 

flag for the baseline was marked as “bad” instead of “acceptable”. In addition, the writing quality 

could be set to “bad”.  This baseline ground truth is very essential because we are able to evaluate 

spontaneously our baseline estimation algorithm on the basis of a quite large database. 

 

3.6.3 Baseline Database Generation  

As mentioned earlier, the baseline positions are documented in the ground truth files. Thus, we use 

this information to generate the database for our baseline estimation method. We conduct two 

types of experiments.  

The first experiment is based on a survey [42], the authors observed that for up to a 5 pixel 

vertical position error, the baseline was evaluated as excellent. Based on this observation, the 

difference between each two consecutive classes is 5 pixels. We divided this experiment into three 

parts based on the number of words per image. Thus, the number of classes varies between 11 and 

14. The images were distributed in the classes based on the baseline position in the ground truth 

after normalization.   
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For the second experiment, we use the midline position to assign each word an image to a 

class. However, we use the range for evaluation. In other words, each word image is included in a 

class based on its midline baseline position.     

 

3.7 Experimental Results 

In the first experiment, which is described in [75], set-a is used for training and set-b for testing. 

Each set in the database is divided into three parts, based on the number of words per image (set-

one, set-two, and set-three), in order to examine the performance of our baseline estimation 

approach based on the number of words per image. Figure 28 shows the distribution of the words 

in the images for set-a, and set-b. In this experiment, the evaluations are divided into three separate 

parts, for each sets, set-one, set-two, and set-three, since each set has different number of classes. 

We found that the fewer number of words, the fewer number of classes. Table 6 summarizes the 

results of our approaches after extracting two features: horizontal projection and centroid of CHs.     

 

 

Figure 28: Distribution of the images with respect to the number of words 
 

In the second experiment, we use set-a, set-b, and set-c for training, and set-d for testing. 

Since we use a midline of the baseline position (not in a range), the number of classes is extended. 

We use the midline position of the baseline instead of the 5 pixel range because some classes might 

be discarded during evaluation. Though, we need more data for training. The database consists of 
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74 classes but some classes have few images that affect the system’s performance. The classes that 

are composed of few images are the ones have text with extremely high or low baseline position. 

The number of training samples is 8827 images, and the testing set contains 871 images. Table 7 

shows the result of our method using 74 classes and two features: horizontal projection, and 

centroid of CHs. Some of the classes contains only 7 images.  

Since most of 74 classes consist of few images, we apply some experiments on the classes 

that that contains lots of images. The total number of these classes is 21 classes. Our method’s 

result in using 21 classes with different extracted features is given in Table 8.  

The baseline ground truth in IFN/ENIT database allows intensive evaluation of baseline 

estimation methods. Our approach uses supervised learning technique that enables us to reach 

acceptable baseline (<=7) in 98.7% of the testing samples. Most of the errors are caused by the 

presence of descenders’ long strokes as seen in Figure 29. Table 9 shows the comparisons between 

several methods that use IFN/ENIT database in their experiments.  

 

 

Table 6: Baseline estimation results of the first experiment 

 

Class  Error in 

pixels 

Percentage  

One 

word 

<=5  47.21  

<=10  90.39  

Two 

words 

<=5 18.15  

<=10 30.70  

Three 

words  

<=5 15.22  

<=10 47.28  
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Table 7: Result of 74 classes 

 

Error in 

pixels 

Percentage  

<=5  74.76  

<=7 82.23  

<=10 89.03  

<=15 94.63  

<=50 100  

 

 

 

 

Table 8: Results of learning-based baseline estimation 

 

Error in 

pixels 

Percentage 

HP 

Percentage 

HP + CCH 

Percentage 

HP +CCH+ 

HT 

<=5  96.10 96.27 96.83 

<=7 98.56 98.7 96.85 

<=10 99.69 99.77 96.86 

<=15 99.98 100 96.86 

<=50 100 100 96.86 
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Table 9: Comparison among baseline estimation methods 

 

Method Used Set/s Used 

images 

Baseline error in pixels  

<=5 <=7 <=10 <=15 <=50 

[31] a 2,240 30.89 -- 69.11 87.19 -- 

[156] a 2,700 74.56 -- 85.33 91.82 -- 

[37] a 1,000 -- 88 -- -- -- 

[97] a 6,567 77.8 82.3 -- -- -- 

[126] a, b, c, d 26,470 76.7 87.5 94.1 97.5 100 

Our 

method 

a, b, c, d 9,698 96.27 98.7 99.77 100 100 

 

 

 

Figure 29: Error of baseline estimation 
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3.8 Conclusions 

After utilizing existing methods for vertical normalization and skeletonization, we applied a 

learning-based method using some baseline relevant features such as horizontal projection with a 

selection of feature points. Although we use a few features, our method shows promising results. 

The future work will include slant correction to examine the effect of such preprocessing in our 

method. In addition, more features can be extracted, like the minimum variance, locating holes, 

rotating the image to find the peak of horizontal histogram, and extracting the features from PAW.  
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Chapter 4 

 

Metric-based Segmentation   

 

In this Chapter, we present the first stage of our proposed methodology: the metric-based 

segmentation method. We apply this method for two reasons. For the first one, our proposed idea 

for segmenting the text that is based on recognizing the final characters cannot be applied on six 

characters, so we need additional procedures to avoid such cases/failures. The second reason is the 

ability to compare our approach to some of the state of the art methods on the same database. We 

discuss the main algorithms that are used to segment the text lines into words in Section 4.1. The 

related work of word segmentation for Latin-based language is presented in Section 4.2. The 

method that we use is explained in Section 4.3, followed by the experiments in Section 4.4. The 

conclusion of this chapter is given in Section 4.5.  

 

 

4.1 Introduction  

A wide variety of word segmentation methods for handwritten documents have been reported in 

the literature. Algorithms dealing with segmentation are mainly based on the analysis of geometric 

relationship of adjacent CCs. The common assumption for word segmentation methods is that a 

pair of adjacent components that are part of the same word are significantly close to each other. In 
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another words, inter-word gaps are much larger than intra-word gaps. In general, the work for the 

problem of word segmentation differs in two aspects [94]: (1) the way the distance is calculated 

between adjacent CCs and (2) the technique used to classify the calculated distances. The 

algorithms that are used can be categorized into metric-based and classifier-based. In the former, 

the threshold is determined to distinguish between gap types [102]. In the latter, the gaps are 

classified into either inter or intra-word gaps based on the extracted features [147].  

 

4.2 Previous Work 

In this section, we review the previous works completed for the two main methods: metric-based 

methods and classifier-based methods. Moreover, we discuss some methods that were applied on 

historical documents. Finally, an overview of the contests that have been organized for handwriting 

segmentation methods with their results is given in Section 4.2.4.  

 

4.2.1 Metric-based Segmentation Approaches  

Some distance metrics were defined in some related works. Threshold is determined based on 

either heuristics or learning techniques. Seni and Cohen [83] were the first to discuss the word 

segmentation problem. Eight distance metrics were presented. These metrics are the bounding box, 

the minimum and average run-length, the Euclidean and several combinations of them which 

depend on heuristics. Mahadevan et al. [98] introduced a new metric called convex hull. This 

metric was compared with the bounding box metric, both run-length and Euclidean metric. Convex 

hull based method showed better performance. Verga et al. [149] incorporated a tree structure 

technique for word extraction. The decision about a gap was taken in terms of both a threshold 

value and its context such as the relative sizes of the gaps’ surroundings. Kim et al. [88] used the 

module that was described in [137]. The work of Marti and Bunke [103] were based on the convex 

hull metric and a threshold for gap classification. The threshold was defined for each text line. 

Louloudis et al. defined a procedure for segmentation that is divided into two steps [94]. In the 

first step, after a slant correction, the distance between adjacent CCs were measured using 
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Euclidean distance. The gaps were classified based on a global threshold in the second step. The 

global threshold was based on the black to white transition in the text line. In [121], they calculated 

what they called SVM-based gap metric to formulate the distance between adjacent CCs. A global 

threshold was used to classify the gap. This method was enhanced in [139]. A normal distribution 

for each class was formulated based on initial classification. Then, the candidate gaps that lie 

around the threshold were reclassified by employing the maximum likelihood criterion. Distances 

between CCs were computed based on the Delaunay graph [90]. A k-mean was used to determine 

the inter and intra-word gap. Louloudis et al. [94] used a combination of two metrics namely, 

convex hulls and Euclidean distance. They make use of the Gaussian mixture theory to model two 

classes. Kurniawan et al. extracted the contour of the words and the threshold is computed from 

median white run-length [102].  

 

4.2.2 Classifier-based Approaches  

Some methodologies use classifiers for the final decision, either between words or within a word. 

In [87], a simple neural network was adopted to determine the segment points. The neural network 

used eight input units, four hidden units and one output unit. Input parameters to the neural network 

were properties of bounding boxes, the center lines of bounding boxes, intervals between center 

lines and height of bounding boxes. Huang et al. [73] presented a work that uses a three-layer 

neural network after extracting eleven features. These features include seven local features such 

as height and width of CCs along with four global features like the average height of CCs. The 

neural network had eleven input units, four hidden units and two output units. Luthy et al. [96] 

considered the problem of segmentation as a recognition task. At each position of a text line, it 

was decided whether the position belonged to a letter or to a space between words. Three 

recognizers based on Hidden Markov Models (HMM) were designed. In [144], after ordering CCs 

in the text line using the horizontal coordinate of their centroid, the initial boundaries were 

estimated by the local minima of the horizontal projection. Then, CCs were grouped into sets based 

of the boundaries. A soft-margin SVM was adopted as a metric for separating between two 

adjacent sets. A global threshold was estimated by using unsupervised learning. In [159], the 

authors make use of the ground truth in terms if an ASCII transcription that is available in IAM 
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database. A HMM recognition system was used to automate, assigning each word in the ASCII 

ground truth the bounding box of the corresponding word. A statistical hypothesis testing method 

was presented by Haji et al [68]. The main idea was to learn the geometrical distribution of words 

within a sentence. A Markov chain and HMM were used. In [147] and [148], they tested five 

different supervised classification learning algorithms with different set(s) of features.   

 

4.2.3 Historical Documents  

Word segmentation was also applied to many types of historical documents. Historical document 

analysis is easier than handwritten document process if efficient binarization methods were applied 

on the manuscripts. Historical documents are written neatly in comparison to free handwriting. 

Manmatha et al. [100] presented a scale space approach. This method was based of blob creation 

that is based on CCs. In order to calculate the blobs, a differential expression based on second 

order partial Gaussian derivatives was used. An algorithm was introduced by Sanchez et al. [133] 

composed of three steps: (1) word candidate initialization using mathematical morphology; (2) 

merging dots and accents to the word box, and (3) punctuation mark splitting. In [60], a technique 

based on CCs labeling was introduced.  

 

4.2.4 Word Segmentation Contests   

Due to the importance of text segmentation, four Handwriting Segmentation Contests were 

organized: ICDAR2007 [63], ICDAR2009 [62], ICFHR2010 [61], and ICDAR2013 [145]. 

Therefore, a benchmarking dataset with an evaluation methodology were created to capture the 

methods’ efficiency. The total number of participants on these competitions was thirty research 

groups with different algorithms. The results of the participated methods are given in Table 10. 

The performance evaluation for the participated methods is based on counting the number 

of matches between the words detected by the algorithm and the words in the ground truth [127]. 

A MatchScore table was used whose values were calculated based on the intersection of the ON 
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pixel sets of the result and the ground truth. Based on a pixel approach, the MatchScore is defined 

as: 

 

𝑀𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒(𝑖, 𝑗) =  
𝑇 (𝐺𝑗  ∩  𝑅𝑖  ∩ 𝐼)

𝑇 ( (𝐺𝑗 ∪ 𝑅𝑖) ∩ 𝐼 )
 

 

where I is the set of all image points, 

Gj is the set of all points inside the j ground truth region, 

Ri is the set of all points inside the i result region,  

T(s) is a function that counts the elements of set s,  

Table MatchScore(i,j) represents the matching results of the j ground truth region and the 

i result region.  

It is considered a one-to-one match only if the matching score is equal to or above a specified 

threshold.  The detection rate (DR), recognition accuracy (RA) and performance metric (FM) are 

defined as follows:  

𝐷𝑅 =
𝑜2𝑜

𝑁
 

𝑅𝐴 =  
𝑜2𝑜

𝑀
 

𝐹𝑀 =  
2 𝐷𝑅 𝑅𝐴

𝐷𝑅 + 𝑅𝐴
 

 

 where N is the count of ground truth elements, 

 M is the count of result elements, 

 o2o the number of one-to-one match. 
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Table 10: Results of the participated methods in segmentation contests in Latin scripts 

Contest  Method M  o2o DR RA FM 

ICDAR2007 BESUS 19091 9114 80.7% 52% 63.3% 

DUTH-ARLAS 16220 9100 80.2% 61.3% 69.5% 

ILSP-LWSeg 13027 11732 90.3% 92.4% 91.3% 

PARC 14965 10246 84.3% 72.8% 78.1% 

UoA-HT 13824 11794 91.7% 87.6% 89.6% 

RLSA 13792 9566 76.9% 74.0% 75.4% 

PROJECTIONS 17820 8048 69.2% 48.9% 57.3% 

ICDAR2009 CASIA-MSTSeg 31421 25938 87.28% 82.55% 84.85% 

CMM 31197 27078 91.12% 86.80% 88.91% 

CUBS 31533 26631 89.62% 84.45% 86.96% 

ETS 30848 25720 86.55% 83.38% 84.93% 

ILSP-LWSeg-09 29962 28279 95.16% 94.38% 94.77% 

Jadavpur Univ 27596 23710 79.79% 85.92% 82.74 % 

LRDE  33006 26318 88.56% 79.74% 83.92% 

PAIS 30560 27288 91.83% 89.29% 90.54% 

ICFHR2010 NifiSoft-a 15192 13796 91.18% 90.81% 91.00% 

NifiSoft-b 15145 13707 90.59% 90.51% 90.55% 

IRISA 14314 12911 85.33% 90.20% 87.70% 

CUBS 15012 13454 88.92% 89.62% 89.27% 

TEI 14667 13406 88.61% 91.40% 89.98% 

ILSP-a 14796 13642 90.17% 92.20% 91.17% 

ICDAR2013 CUBS 23782 20668 87.86% 86.91% 87.38% 

GOLESTAN-a 23322 21093 89.66% 90.44% 90.05% 

GOLESTAN-b 23400 21077 89.59% 90.07% 89.83% 

INMC 22957 20745 88.18% 90.36% 89.26% 

LRDE 23473 20408 86.75% 86.94% 86.85% 

MSHK 21281 17863 75.93% 83.94% 79.73% 

NUS 22547 20533 87.28% 83.94% 89.13% 

QATAR-a 24966 20746 88.19% 83.10% 85.57% 

QATAR-b 25693 20688 87.94% 80.52% 84.07% 

NCSR (SoA) 22834 20774 88.31% 90.98% 89.62% 

ILSP (SoA) 23409 20686 87.93% 88.37% 88.15% 

TEI (SoA) 23259 20503 87.15% 88.15% 87.65 % 
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4.3 Our Method 

In this stage, the procedure is divided into two steps. In the first step, the distance between adjacent 

components was computed using a gap metric while the second step deals with classifying the 

distances either as inter- or intra-word gaps. A writer dependent technique for estimating the 

threshold based on a given documents is considered more accurate than estimating the threshold 

for all the documents. In other words, spaces between words are part of a writing style, so writer 

dependent technique provides better result [94]. Thus, a global threshold across all documents is 

not a perfect solution; but in the case of IFN/ENIT database that is composed of images containing 

some words, we had to use a global threshold.  

 

4.3.1 Distance Computation  

In order to calculate the distance between adjacent components, we use geometrical features of the 

main components. The two gap metrics that are most used in the Latin-based language method of 

word segmentation are Bounding Box (BB) and Convex Hull (CH). The input to this stage is a 

binarized main component. We assume that each main component is either a word or part of a 

word, e.g. PAW, PAW fragment, character, or part of character. This means that the main 

component does not belong to more than one word. All the gaps between adjacent components 

(adjacent to their order) are measured to use them first to identify the threshold for inter- and intra-

word gaps then they are used to classify each gap.  

 

Bounding Box Metric 

BB is composed of the smallest rectangle’s coordinates within which all the points of the main 

component lie. After extracting the main components as shown in Figure 30(a), they are ordered 

from left-to-right. Then, a BB for each component is calculated, as shown in Figure 30(b). Then, 

all the overlapped bounding boxes (OBBs) are merged, Figure 30(c). OBB is defined as a set of 

CCs whose projection profile overlaps in vertical projection. To measure the distance between 

BBs, the minimum horizontal distances between pairs of adjacent BBs or\and BBs are used as seen 

in Figure 30(d).  
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Figure 30: Steps illustration of metric-based segmentation using BBs  

 

 

Convex Hull Metric 

CH specifies the smallest convex polygon that contains the points of the main component. After 

extracting the main components, the CH of each components are generated in Figure 31(a), and 

the extreme points are extracted in Figure 31(b). The start and end points of each CH are identified 

by finding the shortest distance between extreme points. All the overlapped convex hulls (OCH) 

are combined in Figure 31(c). OCH occurs when intervals of start and end points overlap. To 

measure the distance between CHs, Euclidean distance is applied between adjacent CHs or/and 

OCHs in Figure 31(d). The Euclidean distance d between two points is the length of the line 

segment connecting them. The distance between j and q points is measured by:  

 

  

 

  

  

 

(a)  Main components extraction 

(b) Bounding box calculation  

(c) Bounding box merging  

(d) Distance measuring  
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𝑑(𝑗, 𝑞) =  √∑(𝑗𝑖 − 𝑞𝑖)2

𝑛

𝑖=1

 

 

 
 

 

Figure 31: Steps illustration of metric-based segmentation using CHs 

 

 

 

Baseline Dependent Metric 

At this stage the distance between PAWs is calculated based on the baseline position. After 

estimating the baseline that is explained in Chapter 3, the CCs within the baseline range are 

extracted. Then, the BB of each extracted CC is calculated and the overlapping BBs are merged. 

(a) Convex hulls  

(b) Extreme points  

(c) Merge overlapping   

(d) Measure distance    

(e) Segmentation      
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Next, the distance between adjacent BBs based on the baseline position is computed as shown in 

Figure 32. 

  

Figure 32: Steps illustration of metric-based segmentation using Baseline Dependent distance 

4.3.2 Gap Classification  

For a gap classification problem, we apply a novel approach used by G. Louloudis et al. [94]. This 

method is based on unsupervised learning of the already computed distances into two distinct 

classes that represent inter and intra word classes. They adapt the use of Gaussian Mixture Model, 

which is a type of clustering algorithm. A mixture model based clustering is based on the idea that 

each cluster is mathematically represented by a parametric distribution. There are two clusters 

problems, so every cluster is modeled with a Gaussian distribution.  

To calculate the parameter for Gaussian Mixture Model, an iterative technique called 

Expectation Maximization is used. To start this technique, data points are selected randomly to be 

used as the initial means while the covariance matrix for each cluster is set to be equal to the 

covariance of the full training set. Each cluster is given equal prior probability. Expectation 

Maximization technique defines the clusters with two steps. In the first step, the probability that 

each data point p belongs to each cluster is calculated using the following equation:  

(a) Bounding box calculation  

(b) Bounding box merging  

(c) Distance measuring 

(d) Segmentation 
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𝑤𝑗
(𝑝)

=  
𝑔𝑗(𝑥)∅𝑗

∑ 𝑔𝑠(𝑥)∅𝑠
𝑘
𝑠=1

 

 

where wj
(p) is the probability that each data point p belongs to cluster j, 

gj(x) is the multivariate Gaussian for cluster j; the probability of this Gaussian producing     

the input x, 

∅𝑗 is the prior probability of cluster j,  

k is the number of cluster, 

The equation for the probability density fraction of a multivariate Gaussian is  

 

𝑔𝑗(𝑥) =  
1

√(2𝜋)𝑛| ∑ 𝑗|
 𝑒−1/2(𝑥−𝜇𝑗)

𝑇 ∑ (𝑥−𝜇𝑗)−1
𝑗

 

 

where j is the cluster number,  

x is the input vector,  

n is the input vector length,  

∑j is the n×n covariance matrix of cluster j, 

|∑j| is the determinant of the covariance matrix, 

∑j
-1 is the inverse of the covariance matrix.   

 

 In the second step, the cluster means and covariance based on the probabilities calculated 

previously are computed. In other words, it updates the model based on the previous calculated 

probabilities.  The rules for the maximization step are:  

 

∅
𝑗= 

1
𝑚

∑ 𝑤𝑗
(𝑖)𝑚

𝑖=1
 

 

𝜇𝑗 =  
∑ 𝑤𝑗

(𝑖)
 𝑥(𝑖)𝑚

𝑖=1

∑ 𝑤𝑗
(𝑖)𝑚

𝑖=1
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∑  =  
∑ 𝑤𝑗

(𝑖)
 (𝑥(𝑖) − 𝜇𝑗) (𝑥(𝑖) −  𝜇𝑗)𝜏𝑚

𝑖=1

∑ 𝑤𝑗
(𝑖)𝑚

𝑖=1  𝑗
 

 

The prior probability of cluster j, denoted as ∅𝑗, is computed as the average probability a 

data point belongs to cluster j. The equation for 𝜇𝑗 is the average of all data points in the training 

set and each sample is weighted by the probability of belonging to cluster j. In the equation for the 

covariance matrix, each sample’s contribution is also weighed by the probability that it belongs to 

cluster j. Finally, the thresholds for both inter- and intra-word gaps are determined based on each 

cluster’s mean.  

 

4.4 Experiments   

We performed experiments using the IFN/ENIT [127] database. We applied our experiments on a 

subset from each set in the database. We used set-a for training and subsets from set-b, set-c, set-

d, and set-e for testing. We evaluate the performance of our metric-based method manually since 

the ground truth of IFN/ENIT does not include any information on the word level. A tool is 

implemented to simplify evaluating the method manually. This tool outputs three results for each 

set; the accuracy of word segmentation, over and under segmentation errors. The accuracy is based 

on the correct number of extracted words. Over-segmentation occurs when a word is segmented 

to several parts. Under-segmentation occurs when more than one word are merged. Table 11, Table 

12 and Table 13 show the word segmentation results stemming from the metric-based methods. 

Table 11 shows the result of the method that is based on BB, Table 12 shows the result of the 

method based on CH while Table 13 shows the result of the method based on baseline position. 

Table 13 shows only the result of set-d since the testing set of our baseline estimation method 

(Chapter 3) is set-d.   

 In the testing set of BB method, 765 out of 1229 words are extracted correctly. Therefore, 

the system performance is about 62.24 % on overall accuracy. Among error segments, we observe 

that under-segmentation error rate is higher than the over-segment error rate. The correct 

segmentation ranges from 67.34% to 83.12%. Set-e gets the best result in comparison to the other 

sets.   
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For the result of the metric-based method that uses the CH, the performance is lower than 

the method that based on BB. We believe that this low performance occurs because of the 

inconsistency of existing of ascender and descender in Arabic language. In contrast, in Latin-based 

language the use of CH achieved better result than BB.  The accuracy of segmentation using CH 

for the four sets is 31.97 %. The accuracy for the four sets ranges from 24.03% to 46.48%. Over-

segmentation error results when both BB and CH are almost the same; however, the under-

segmentation error result of CH is much higher than the one for BB.  

Our method that is based on the baseline position show a slightly higher performance that 

BB based method. The accuracy of segmentation using baseline position for set-d is 66.4%.  Over 

segmentation is much lower than BB based method. We believe such low performance occur 

because of not considering (missing) descender parts. Comparison of these result will be presented 

in Chapter 7.  

 

 

Table 11: BB results 

 

Set Total number 

of words 

Correct segmentation  Over segmentation  Under segmentation  

# words % # words % # words % 

Set-b 570 331 58.07 49 8.5 190 33.3 

Set-c 227 164  64.31 10 4.4 53 23.3 

Set-d 256 163 63.67 34 13.2 59 23 

Set-e 176 107 60.79 4 2.2 65 36.9 

 

 

Table 12: CH results 

 

Set Total number 

of words 

Correct segmentation  Over segmentation  Under segmentation  

# words % # words % # words % 

Set-b 570 137 24.03 41 7.9 392 68.7 

Set-c 227 86 37.88 10 4.4 131 57.7 

Set-d 256 119 46.48 21 8.2 116 45.3 

Set-e 176 51 28.97 3 1.7 122 69.3 
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Table 13: Baseline dependent result  

  
Set Total number 

of words 

Correct segmentation  Over segmentation  Under segmentation  

# words % # words % # words % 

Set-d 256 170 66.4 75 29.29 11 4.29 

 

4.5 Conclusions 

In this chapter, we present a state of the art method through the comparison of two kinds of metrics, 

BB and CH. The use of BB outperforms the use of CH. Thus, we use BB in the first stage of our 

overall methodology. This method is based on calculating the distances between the CCs. The 

method is tested on a large number of images from IFN/ENIT database. Many errors are occurring 

as there is a lack of boundaries between words. The results of using CHs is much lower than using 

BBs, however this is not the case in Latin-based languages. We believe such a performance occur 

because of the large number of ascenders and descenders in Arabic writing. In addition, we 

introduced the use of a baseline dependent metric. However, we applied it only to set-d since the 

testing set for our learning-based baseline estimation is only applied on set-d. The result of using 

the baseline dependent metric showed better results for set-d in comparison to the performance of 

BB metric with the same set.    

 

 

 

 

 

 

 



 

61 

 

 

 

 

Chapter 5 

 

Isolated Character Recognition System   

 

Character recognition systems contribute to the field of automation process. Isolated character 

recognition is included in many systems such as office automation, postal address processing, 

business and data entry application. In this thesis, isolated character recognition is used to improve 

the performance of text segmentation that is explained in the next chapter.  

In this chapter, we propose a standard recognition system with supervised learning. We 

apply some state-of-the-art techniques for recognition. Figure 33 shows a flowchart of the overall 

method of isolated character recognition system.  A recognition system passes through three main 

stages that are discussed in this chapter: preprocessing, feature extraction and classification. In 

Section 5.1, we discuss some of the previous works of isolated Arabic character recognition. Then, 

we discuss the preprocessing stage, binarization, noise removal, size normalization and 

skeletonization in Section 5.2. The extracted features are described in Section 5.3. We applied 

Support Vector Machine (SVM) as a classifier with a Radial Basis Function (RBF) kernel that is 

described in Section 5.4. In Section 5.5, the database used is provided. The experiments and results 

are presented in Section 5.6. Finally, we summarize the chapter in Section 5.7. 
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Figure 33: Isolated character recognition system 
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5.1 Previous Works  

Previous works on recognition of isolated Arabic characters have been proposed. Some of them 

used only isolated shapes of the characters while others apply their methods on all the four forms 

of the characters (initial, middle, last and isolated). Various approaches have been introduced for 

online and printed systems, but our focus is solely on offline handwritten systems. 

In [7], a system that recognizes the segmented handwritten character was presented. After 

skeletonizing the character, it was converted into a tree structure. A set of fuzzy constrained 

character graph models was designed. These graph models with fuzzily labeled arcs were used as 

prototypes. Some rules were applied to match the character tree to the graph model.  

Sahlol et al. extracted several features from both main and secondary components of the 

characters [132], and [131]. The systems used K-Nearest Neighbor and Support Vector Machine 

for character recognition. The experiments have been conducted on CENPARMI’s isolated 

character database [20]. The recognition results were 82.5% and 89.2 % respectively.  

Neural network have been used in many approaches. A discrete Wavelet transform was 

utilized for Farsi and Arabic character classification [108]. Features were extracted using Haar 

Wavelet. A forward Neural Network using Backpropagation were used for recognition. In [24], a 

Neural Network combined with structural features was applied by extracting features from tracing 

skeletons. Discrete Cosine Transform and Discrete Wavelet Transform were used for feature 

extraction [89]. Artificial Neural Network is used in the classification stage. Dehghan et al. [46] 

utilize Zernike, Pseudo Zernike and Legendre Moments for feature extraction. An unsupervised 

learning was applied using neural network.  

In fact, several methods were based on the characters’ skeleton.  In [3], 96 common features 

were extracted from the main component, secondary component, character skeleton and boundary. 

Then, five different feature selection techniques were applied to choose among the features. A 

structural method with statistical features was proposed in [158]. After thinning the characters, the 

skeleton was segmented into primitives. These primitives were categorized into loops, curves or 

line segments. In addition, some feature points were extracted. The Nearest Neighbor Multi-Layer 

Perceptron with Euclidean distance were used for classification. In [123], each character was 

represented by polygonal based on the extracted contour. The character models were built while 

utilizing the directions and length features of the polygonal approximation. Fuzzy logic and turning 
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angle functions were used in the classification phase. Khedher et al. [85] used approximate stroke 

sequence matching. 

In addition, some techniques extracted the structural features. Five classifiers have been 

tested in [64] with different types of features. The best result obtained was with Linear 

Discriminant Analysis. In [84], two types of features were extracted, called qualitative and 

quantitative features. Quantitative features focus on character height, width, area, and dot numbers. 

Meanwhile, qualitative features include branches, dot positions, connection points, and loops. The 

recognition approach is based on feature matching. In [154], different features were extracted and 

heuristics were applied. Several features have been extracted and analyzed [2].  Features were 

extracted from both the whole image and from the partitioned image [80].   

Different techniques were also proposed for the recognition of isolated characters. In [1], 

the moment features were extracted from the whole character, the main component and the 

secondary components. A multi-objective genetic algorithm was applied to select the most 

efficient feature subsets. Aburas et al. [8] proposed an algorithm for new construction of optical 

character recognition system similar to wavelet compression technique. This algorithm is based 

on that the wavelet compressed image is a decomposition vector that can uniquely represent the 

input image to be correctly reconstructed later at decompression phase.  A. Amin [25] proposed a 

conventional method that relied on hand-constructed dictionaries. The inductive learning was used 

and based on first-order Horn clauses. In [110], the fractal code was used for feature extraction 

and Multilayer perceptron neural network was applied for recognition. Fractal code and wavelet 

transform were used for extracting features while the support vector machine was used for 

classification [111], and [109]. 

Features were extracted from built graph [77]. Dictionary matching was used for 

recognition.  In [34] a statistical approach was applied. The main and secondary components were 

isolated and recognized separately. The moments of the horizontal and vertical projections of the 

main components were calculated. For classification stage, quadratic discriminant functions were 

applied.    
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5.2 Preprocessing  

Preprocessing is a very essential phase in any recognition system since the final result relies on 

this stage. In fact, there are many different tasks for preprocessing and their effects vary depending 

on the data type. In general, preprocessing includes noise removal, skew correction, slant 

detection, baseline estimation, representation and normalization. Our preprocessing stage is 

composed of noise removal, binarization, white space removal, size normalization, and 

skeletonization.   

  

Noise Removal 

Noise is usually caused by faulty memory locations in hardware, transmission in a noisy channel 

or multifunctioning pixels in camera sensors. In general, it is imperative to remove corrupted pixels 

to facilitate many image processing tasks. For Arabic text, noise removal, or more precisely salt 

and peper noise removal, is indispensable, since dots in Arabic language have a huge effect on 

recognition and these types of noise can reduce the systems’s performance.  

  

We apply Median Filtering to remove the noise of the images. The aim of filtering is to diminish 

spurious points as salt and pepper noise. Median Filter is a nonlinear process that preserves edges 

while removing random noise. The main idea is to convolve a predefined mask to assign a value 

to the centered pixel base on its neighborhood pixels. In other words, the output pixel is set to 

median of the neighborhood pixel values. We adopt a window of size 3 × 3. In Figure 34, the 

image before and after noise removal is illustrated.  

 

     
Figure 34: Noise removal  

(a) Before noise removal  (b) After noise removal  

Salt and pepper 

noise  
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Binarization  

In image processing, it is essential to select an adequate threshold to extract text from their 

background. We use Otsu’s [118] method to find the threshold to minimize the intra class variance 

of the black and white pixels. This method assumes that the image contains two classes of pixels 

called foreground and background. The optimum threshold separating those two classes is 

calculated so that their combined spread variance is minimal. Figure 35 shows the character image 

before and after binarization.  

 

Figure 35: Binarization process 
   

 

White Space Removal  

White space around the character in an image does not help in the recognition stage, so this space 

is removed. We use bounding box to remove the white space. The smallest rectangle containing 

the pixels of the character is located. Then, the white space outside the rectangle is eliminated as 

shown in Figure 36.   

  

Figure 36: White space removal 
 

 

 

(a) Before binarization  (b) After binarization  



 

67 

 

Size Normalization  

Before feature extraction, size normalization is considered as an important phase. Each image is 

normalized into two different sizes, 64 x 64 pixels and 128 x 128 pixels, using an aspect ratio 

adaptive normalization strategy [130]. Two different sizes of the image are used for different 

feature extraction processes. 

 

Skeletonization  

For some feature extraction process, the character must be standardized for both the training and 

testing phases. Thus, we apply skeletonization algorithm using Zhang-Suen thinning method [162] 

as explained in Chapter 7. This algorithm removes all the contour pixels except those belonging 

to the skeleton, Figure 37.   

 

Figure 37: Skeletonization 

 

5.3 Feature Extraction 

Classifiers cannot efficiently process the raw images on their own. Thus, feature extraction is 

an important process that aims at reducing the dimensionality of an input data and extract useful 

information. Selection of salient features is one of the primary decisions in designing a recognition 

system to achieve high performance. The features’ classes in the literature on handwritten 

recognition are: a) structural features are intuitive aspects of writing, such as loops, writing 

baseline, ascenders, or turning points, b) statistical features are numerical measures that is 

language independent, and c) a combination of both. Then, those features are converted into 

vectors that are used to calculate a score, which can be either probability or distance, for matching 

the input image with possible interpretation. In this chapter, we investigate many statistical and 

(a) Before skeletonization  (b) After skeletonization  
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structural features by using supervised learning for Arabic character recognition. We extracted 

gradient features and structural features. Several experiments were conducted with different 

features to find the best combination of these features that produces the best results.  

 

Extraction of Gradient Features  

One set of features that we extract is the gradient feature. Gradient features maintain both the 

position and the direction information of the image. In the gradient feature extraction phase, as 

explained in [130], each image of size 128 x 128 pixels is converted into a grayscale image. 

Robert’s filter masks were applied on the images. These masks are shown in Figure 38, below: 

 

 

 

    

 

Figure 38: Robert's Filter Mask for Extracting Gradient Features 
  

Let IM(x, y) be an input image; the horizontal gradient component (gx) and vertical gradient 

component (gy) were calculated as follows: 

𝑔𝑥 = 𝐼𝑀(𝑥 + 1 , 𝑦 + 1) − 𝐼𝑀(𝑥, 𝑦) 

𝑔𝑦 = 𝐼𝑀(𝑥 + 1, 𝑦) − 𝐼𝑀(𝑥, 𝑦 + 1) 

• The gradient strength and direction of each pixel IM(x,y) were calculated as follows: 

Strength: s(x, y) = √𝑔𝑥
2 +  𝑔𝑦

2 

Direction: θ(x, y) = tan-1 (gy / gx) 

Some examples of gradient images are shown in Figure 39, below: 

 

 Figure 39: Gradient features  

(a) Grayscale image  
(b) Gradient strength  (c) Gradient direction   

0 1 

-1 0 

1 0

1 0 -1 
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After calculating the gradient strength and direction for each pixel, the following steps were taken 

in order to calculate the feature vector: 

 

1. The direction of a vector (gx, gy) in the range of [π,-π]. These gradient directions were 

quantized to 32 intervals of π/16 each. 

2. The gradient image is divided into 81 blocks, with 9 vertical blocks and 9 horizontal 

blocks. For each block, the gradient strength is accumulated in 32 directions. By applying 

this step, the total size of the feature set in the feature vector is (9 x 9 x 32) = 2592. 

3. To reduce the size of a feature vector, a 5 x 5 Gaussian filter is applied by down sampling 

the number of blocks from 9 x 9 to 5 x 5. The number of directions is reduced from 32 to 

16 by down sampling the weight vector [1 4 6 4 1]. The size of the feature vector is 400 

(5 horizontal blocks x 5 vertical blocks x 16 directions). 

4. A variable transformation (y = x0.4) is applied on all features to make the distribution of 

features Gaussian-like. 

 

Extraction of Statistical Features  

In addition to the gradient feature, other statistical features are extracted. They are Horizontal 

Projection (HP) which is explained in Section 4.7, along with Vertical Projection (VP) profiles 

which provides the number of black pixels in each column. Moreover, the number of black pixels 

for the whole image is calculated.  

  

Extraction of Structural Features 

Some structural features are extracted, such as the end, and intersection points. For point’s 

extraction, we use the hit-or-miss transform which is the tool used for shape detection. The 

transform of a set of 𝑥 by a structuring element 𝐴 = (𝐴1, 𝐴2) is a set of points 𝑥 such that when 

the origin of 𝐴 coincides with 𝑥, 𝐴1 fits 𝑥 and 𝐴2 fits the complement of 𝑥:  

𝐻𝑀𝑇𝐴(𝑥) = { 𝑥|(𝐴1)𝑥 ⊆ 𝑋 𝑎𝑛𝑑 (𝐴2)𝑥 ⊆  𝑋𝑐} 

 Moreover, the upper profile features were used to capture the outline shape of the top part 

[13]. To extract the upper profile feature, the following steps were followed: 

 Each image is converted into a two-dimensional array. 
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 For each column, the vertical distance is measured from the top of the image to the closest 

black pixel by counting the number of white pixels. 

 

Feature vector 

After extracting the gradient and structural features from each image, all the features were merged 

to make a feature vector size of 468 (400 gradient features, 64 upper profiles, 4 structural features). 

Then, this feature vector is used in the classification phase. 

 

5.4 Recognition 

A Support Vector Machine (SVM) is a technique in the field of statistical learning. SVMs have 

shown to provide good results for both offline and online cursive handwriting recognition [161]. 

In addition, SVM outperformed several other classifiers in [160]. An SVM maps the input space 

non-linearly into a very high dimensional feature space. The aim of SVM is to separate the 

hyperplane optimally with maximal margin. This approach is based on the training data points that 

are located at the margin, called support vectors.  

Given a set of labeled training data (𝑦1, 𝑥1),….(𝑦𝑖, 𝑥𝑖), where 𝑦𝑖 ∈ {-1.1} and 𝑥𝑖 ∈ Rn , an 

SVM tends to solve the following optimization problem:  

𝑚𝑖𝑛𝑤,𝑏,𝜀  
1

2
 ||𝑤||2   +  𝐶 ∑ 𝜀𝑖

𝑙

𝑖=1

 

        subject to               𝑦𝑖 (𝑤𝑇  ∅(𝑥𝑖) + 𝑏) ≥ 1 − 𝜀𝑖 , 𝜀𝑖 ≥ 0  

where ∅ maps the training vectors 𝑥𝑖  to a higher dimensional space, 

𝜀𝑖 are slack variables that permit margin failure,  

C is the parameter that trades off wide margins with a small number of margin failure.     

 We use an open source library for the implementation of SVM called LibSVM [42]. The 

input of LibSVM is a feature matrix and the output is the classification result probabilities. 

LibSVM uses a Radial Basis Function (RBF) kernel for mapping a nonlinear sample into a higher 

sample space. RBF is given by: 

𝐾(𝑥𝑖 , 𝑥𝑗) =  𝑒(−𝛾||𝑥𝑖−𝑥𝑗||2) 
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 where 𝑥𝑖 is the support vector, 

 𝑥𝑗 is the testing data point, 

 𝛾 is the kernel parameter.   

In our experiment, these optimal parameters are chosen by using v-fold cross validation 

via parallel grid search on the validation set. A training model is generated for the whole images’ 

collection with their class labels. 

 

5.5 Database  

An offline Arabic handwritten isolated letter dataset was developed by CENPARMI in 2008 [20]. 

The dataset contains 36 isolated letters. The data were collected in Saudi Arabia and Canada from 

328 Arabic writers of different nationalities, ages, genders, and educational levels or background. 

This database is composed of 12693, 4367, and 4366 training, validation, and testing samples 

respectively.  

 

5.6 Experiments  

Several experiments have been conducted on the above Isolated Arabic handwritten letters dataset. 

For the first experiment, we use all the classes of the basic Arabic characters which consist of 28 

classes. Table 14 shows the recognition rates, which is the correct classification over the total 

number of samples, of using different features. The comparisons between our method with M.T. 

Sahlol et al [132], and [131] conducted on the same database are provided in Table 15. Our results 

were much lower compared to M.T. Sahlol. However, most of the misclassifications were due to 

the confusion between the classes that have the same main shape but with only different diacritics. 

An example of such confusion is given in Figure 40. Such a problem can be solved with adding 

weights to diacritics feature vectors or using multiple classifiers, one of them for diacritics’ 

classification.     

Since our main objective is to recognize the main shapes of the characters, we perform an 

experiment using only these shapes of the character as in [108]. We combine the character’s classes 
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that have the same main shape as shown in Table 16 and there are 14 classes. We perform several 

experiments to obtain the best results as shown in Table 17. In addition, since our concern is with 

only endWord and non-endWord classes which is a two-class problem, we perform an experiment 

based on these two classes, endWord and non-endWord classes. The recognition rate of this 

experiment is 99.49%.  

 

Table 14: Results of our method using all the classes of Arabic characters 

 

Feature 

vector 

Gradient 

feature 

Horizontal 

projection 

Vertical 

projection 

Upper 

profile 

Structural 

features 

Size of 

feature 

vector 

Recognition 

rate 

Fv1 x     416 72.24% 

Fv2 x x    480 71.91% 

Fv3 x x X   480 73.52% 

Fv4 x x X  x 420 72.27% 

Fv5 x  X  x 464 72.63% 

Fv6 x  X x x 468 75.85% 

 

 

Table 15: Comparison between different methods 

 

Method Recognition rate 

[131] 88% 

[132] 89.2% 

Our method 75.85% 
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Figure 40: Confusion between classes 

 

 

 

Table 16: Combined classes 

 

Class Characters  

01  

02  

03  

04  

05  

06  

07  

08  

09  

10  

11  

12  

13  

14  

 

 

 

 

 

 

  ا   أ   إ   آ

 
 ب  ت  ث  ن

 
   ج  ح  خ

 
   د  ذ  ر  ز

 
  س  ش  ص  ض

 
 ط  ظ

 
   ع  غ

 
 ف  ق

 
 ك

 ل

 م

 هـ

 
 و  ؤ

 
   ي  ى  ئ
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Table 17: Experimental results with different features 

 

Feature 

vector 

Gradient 

feature 

Horizontal 

projection 

Vertical 

projection 

Upper 

profile 

Structural 

features 

Size of 

feature 

vector  

Recognition 

rate 

Fv1 x     416 89.97% 

Fv2 x x    480 89.66% 

Fv3 x  X   480 89.51% 

Fv4 x    x 420 90.27% 

Fv5 x   x  464 90.73% 

Fv6 x   x x 468 90.88% 

 

5.7 Conclusions  

In this chapter, we study the previous work of Arabic handwritten isolated character recognition. 

Different sets of commonly used features were tested on isolated characters. In addition, several 

experiments were conducted with different numbers of classes. The combination of Gradient 

features, upper profile, and structural features outperform the other extracted features. 
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Chapter 6 

 

CENPARMI Arabic Database for 

Handwriting Recognition  

 

One of the most important aspects in this thesis is the final shape of the character, either connected 

or isolated. Since many final shapes are not available in the isolated characters dataset, we choose 

to create a new database. This database contains word images that are composed of the shapes of 

all Arabic characters at all positions (beginning, middle and final). This chapter represents the 

work towards developing a new database for offline Arabic handwriting recognition. Section 6.1 

summarizes the existing Arabic databases. The data forms are explained in Section 6.2. In Section 

6.3, the process of extracting the items from the forms is described. Then, an overview of the 

database is given in Section 6.4. In Section 6.5 the ground truth is explained. Finally, the chapter 

is concluded in Section 6.6. 
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6.1 Related Works  

Described in Section 1.8 and used for this thesis, the IFN/ENIT [127] is the most widely used 

database in the Arabic research field. Al ISRA database [79] is composed of sentences, words, 

signature, and digits gathered from 500 students. The database, created by the Linguistic Data 

Consortium, comprises 9693 handwritten pages [146]. The Centre for Pattern Recognition and 

Machine Intelligence (CENPARMI) has developed two Arabic databases. In 2003, Al-Ohali et al. 

[14] created a database for Arabic cheques that includes legal and courtesy amounts. In 2008, 

Alamri et al. [20] developed a database containing digits, dates, numerical strings, words, letters 

and some symbols. AHDB [13] is a database for words in legal amounts and it also contains 

handwritten pages of 100 writers. Khedher et al. [85] developed a database of unconstrained Arabic 

handwritten characters. ADBase is a database of handwritten Arabic digits (Indian) [52]. KHATT 

is the most recent database [99] which consists of 1000 handwritten forms written by 1000 distinct 

writers. In addition, it covers all of the Arabic character shapes. However, we are not aware of any 

database that contains all the shapes of the characters in different positions which are separated 

into classes. Such database can be extremely beneficial for the research of Arabic handwritten texts 

since it can determines the problems of segmentation and recognition more precisely. Moreover, 

this database can facilitate different types of experiments.  

 

6.2 Data Collection 

The form includes 63 words and 10 digits. We tried to find the minimum number of words that 

include all the shapes of the characters in all positions. Table 18 shows all the words that are used 

for each character in each position. Some of them are not in the same position as shown in the 

Table but it is written in the same way. We do not include the isolated characters. We design a 

specific data-entry form to collect these words and digits from Arabic native speakers. One of the 

forms written by one writer is shown in Figure 41. The data is written in light colored boxes to 

facilitate data extraction. In addition, four black boxes were added to the corners of the forms to 

use their coordinates for skew correction, if needed, and to locate target area. We requested some 

personal information from the writers like their gender, age, and whether they are right-handed or  
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Table 18: Letter shapes 

Isolated Beginning Middle End 

 آمال آمال الحبيب ا

 مرفأ مرفأ ألم أ

 -- الإسلام إحسان إ

 مآل مآل آمال آ

 ذئب عنكبوت بخار ب

 كبريت ممتلئ تل ت

 مثلث مثلث ثمرة ث

 ثلج فجر وجه ج

 صحيح ضحى إحسان ح

 فخ بخار خليج خ

 وليد وليد دمشق د

 بذرة بذرة ذئب ذ

 طاهر طاهر زراعة ر

 مزن مزن زراعة ز

ؤولمس سلك س  شمس 

 عش دمشق شمس ش

 شخص بصر صحراء ص

 بيض أخضر ضحى ض

 نفط معطوف طاهر ط

 لفظ مظهر ظفر ظ

 مطلع ملعقة علف ع

 صائغ بغل غيم غ

 سيف شفق فجر ف

 شفق ملعقة قمر ق

 سلك عنب كبريت ك

 بغل ثلج لفظ ل

 ألم شمس محمد م

 لبن عنكبوت نحاس ن

 هذه ه

 

 مظهر

 

 هذه

 وجه

وتعنكب وجه و  عنكبوت 

 قاضي سيف كبريت ي

 الأجهزة -- -- ة

 ملعقة

 ضحى -- -- ى

 ولاء ولاء  ء

 ملأ ملأ الأجهزة لأ

   الإسلام لإ

 الإسلام الإسلام ولاء لا

 مسؤول مسؤول -- ؤ

 ممتلئ بئر ذئب ئ

 المحنة الخبز الحبيب 
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Figure 41: Filled form 
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left-handed. Even though all this personal information is not used in this research, it may be 

significant for other researchers [10]. The forms have been filled in by participants in both cities 

Makkah and Jeddah in Saudi Arabia. We gathered the handwriting samples from 650 writers. 

Participants were asked to write the samples within the box boundaries using a dark pen. 

 

6.3 Data Extraction 

After the forms were filled, digital versions were obtained. We save those images with a resolution 

of 300 Dots per Inch (DPI) and 24 bit color depth. The data extraction process started with the 

removal of red boxes from the forms. After extracting all the samples, a special filter is applied to 

remove salt and pepper noise on each image. Besides the true color images, the forms are saved in 

both gray-scale and binary.  The coordinates of the area for each handwritten element on the true 

color form are located manually. After the red boxes are removed from the true color forms, a 

special program is developed to automate the data extraction process. By taking each box’s 

coordinates, this program extracted the box image in its true color. The images from the same box 

of each form are saved in a unique folder. Once the databases were created in true color images, 

they are converted into greyscale and binary formats. The binary format is used for letters 

extraction. We develop a program to extract the letters manually.  

 

6.4 Database Overview  

Three datasets are created for the word images: true color, gray-scale, and binary formats. The 

forms are stored in uncompressed TIFF-file format. The data is divided into training, validation 

and testing sets with the approximate distributions of 60%, 20%, and 20% respectively. The total 

number of word images is 24,570 used for training, 8,190 for validation and 8,190 for testing. This 

means 390 writers are used for training and the rest for validation and testing. Statistics of this 

word dataset are given in Table 19. Every word image is saved with a name and a number 

indicating its writer. For example, the word image is saved as “ARASHP0001_W001.TIFF”, 

where ARASHP0001 refers to the form’s number, and W001 identify the word’s number in the 
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form. For ESL dataset, we used the binary word images for letter segmentation. Each segmented 

final shape letter is saved in a new image with a form’s number, word’s number, and a letter code 

with its position. In addition, we gather Arabic digits (Indian) for future works. Each form contains 

10 digits, as shown in Table 20.  

 

Table 19: Statistics of letter shapes 

 

Number of writers  Total number of images  Training set Validation set Testing set  

650 47,450 28,470 9,490 9,490  

 

 

 

Table 20: Handwritten Indian Digits 

 

0 1 2 3 4 5 6 7 8 9 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.5 Ground Truth  

In the final structure of our database, each folder, containing handwritten samples, contains the 

ground truth data file for these samples. The ground truth data file includes some information about 

each sample: image name, content, number of CCs, writer’s number, writer’s age, writer’s gender, 

and writer’s handwriting orientation (left-handed or right-handed). An example of the ground truth 

data for Arabic letter shape dataset is given in Table 21.  
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6.6 Conclusions  

This new database can help overcome new challenges in the area of Arabic document analysis and 

recognition. We use the end shape of each letter to improve the segmentation of Arabic texts. For 

future work, all the word images can be segmented into letters in all positions.  

 

 

 

 

Table 21: Example of the ground truth data for Arabic letter shape dataset  

 

Image Name ARASHP0001_W001_TahE01.TIFF 

Content  

Writer No. ARASHP0001 

Item No. W001 

Gender F 

Hand Orientation R 
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Chapter 7   

 

End Shape Letter Recognition-Based 

Segmentation  

 

Our main contribution is discussed in this chapter. As mentioned before, due to the lack of 

differences between the inter- and intra-word gaps, we study the structure of Arabic language. One 

of the most distinguishable characteristics is that most of the letters in the Arabic alphabet have 

different shapes based on the letter’s position within the word. Many letters have different shapes 

at the end of the words. We utilize this fact to facilitate segmenting the texts into words. In Section 

7.1, we discuss the work related to word segmentation for the Arabic language. An overview of 

our approach and the rationale behind its use, is described in Section 7.2. The details of our 

algorithm are given in Section 7.3. The experiment is explained in Section 7.4. In Section 7.5, the 

error analysis of the text segmentation is given. Section 7.6 presents time complexity of the system, 

while the comparison of the results with Arabic text segmentation is provided in Section 7.7. 

Finally, we conclude our work on this aspects in Section 7.8.  
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7.1 Related Works  

Word segmentation is a critical step towards word spotting and text recognition. Many word 

segmentation techniques can be found in the literature.  Nevertheless, it is still a challenging 

problem in handwritten documents considering there is little research on Arabic handwritten texts 

segmentation. Some works used manual segmentation as part of their methodology [69] to apply 

their methods.  

In [29], an online Arabic segmentation method was proposed. The gap types are classified 

based on local and global online features. The fusion of multi-classification decisions was used as 

a post-processing stage to verify the decisions. The method were applied on the sentence dataset 

are collected for online handwriting research. This dataset is collected on tablet PCs from 48 

participants and is composed of 154 documents.  

J. Alkhateeb et al. proposed a method for Arabic handwritten texts segmentation into words 

based on the distances between PAWs and the words [22]. Vertical projection analysis was 

employed to calculate the distances while the statistical distribution was used to find the optimal 

threshold. Bayesian criteria of minimum classification error were used to determine the threshold. 

The technique was applied on a subset of the IFN/ENIT database. The correct segmentation of 

one-word and three-word images was 80.34% and 66.67% respectively.  

In [23], an offline handwritten Arabic texts segmentation technique was introduced. First, 

the CCs of the images were detected based on the baseline. Their bounding boxes were determined. 

These boxes were extended to include the dots and any small CCs. The distances between adjacent 

PAWs were obtained. They assumed that the distance between words is larger than the distance 

between PAWs. Based on that assumption, a threshold approach was used. Two conditional 

probabilities were determined by manually analyzing more than 200 images. A Bayesian 

histogram minimum classification error criterion was used to find the optimal distance.  

M. Kchaou et al applied scaling space to segment Arabic handwritten documents into 

words [78]. The techniques that were used for segmentation were scaling space and feature 

extraction from horizontal and vertical profiles. Two documents written by five writers were used 

in their experiments. Segmentation errors varied between 29.5% and 3.5%. They believe that the 

errors arise from different writer styles, coordinating conjunctions and distances between PAWs.  
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Srihari et al. [142] proposed a segmentation method by extracting several features on both 

sides of a potential segmentation points using a neural network. The process starts with extracting 

CCs. Main and secondary components are merged into groups. Nine features were extracted from 

those groups. The features are: the distance between BB of adjacent groups, widths of adjacent 

groups, character ‘Alif”, minimum distance between CHs, and the ratio between the sums of the 

areas enclosed by the CHs of the individual group to the total area inside the CH enclosing the 

clusters together. The correct segmentation rate is 60% over 10 writers each writing 10 documents. 

The results of these Arabic word segmentation methods is given in Table 22. 

 

Table 22: Results of Arabic word segmentation method 

 

Method No. 

Images 

Image 

 Type 

System 

Type 

Method 

Type 

Result  

[22] 106 IFN/ENIT Offline  Threshold  66-91% 

[23] 200 IFN/ENIT Offline  Threshold  85% 

[142] 100 Document  Offline  Classification  60% 

[78] 5 Document Offline Scaling 71.5-97.5% 

[53] 154 Document Online Classification 82.69 

 

 

7.2 ESL-Based Segmentation   

To distinguish our segmentation approach from previous methods, we utilize the knowledge of 

Arabic writing by recognizing the last letter of PAWs. Some authors pointed out the importance 

of using the language specific knowledge for Arabic texts segmentation [22], [53], [130] and [23]. 

Our approach for segmentation is a two-stage strategy: (1) metric-based segmentation (discussed 

previously in Chapter 4), and (2) ESL based segmentation.  

As known, the Arabic alphabet has twenty-eight letters.  Twenty-two letters have different 

shapes when they are written at the end of a word as opposed to the beginning or in the middle. In 

addition, two extra letters, which are not part of the alphabet, have different shapes at the end of a 



 

85 

 

word. Therefore, recognizing these shapes can help identify the end of a word. Fourteen main 

shapes can be used to find the segment points. The remaining letters have the same main part but 

with different number and/or position of dots. Only NLC letter shapes are written the same way at 

the beginning, the middle or the end of a word. Therefore NLC letters cannot be used to identify 

the end of a word. Consequently, ESLs can be categorized into two classes: endWord and non-

endWord. Figure 42 shows some samples of endWord class letters. In this stage, the main idea is 

to recognize the ESL that helps to specify the word segmentation points. ESL can be isolated or 

connected as part of a PAW. However, the end-shape needs to be detected first before recognition 

can begin. Each step is described in the following sections. Our method is depicted in Figure 43.   

   

 

Figure 42: Some samples of endWord class letters 

7.3 Our Proposed Algorithm for Text Segmentation    

This section presents an automatic segmentation of Arabic texts into words using ESL-based 

approach. A binary image of the text is the input to the algorithm. The main steps of the algorithm 

are given in Figure 43. 

 

Extracting and Labeling Connected Components 

The Connected Components (CCs), consist of connected black pixels of a text image, were 

extracted. The foreground pixels are negated by being assigned a value of 1 while the background 

pixels are assigned with 0. Normally, a PAW is composed of several CCs: a main component, and 

secondary components such as diacritics, and/or directional markings. Therefore, the first main 

step in segmenting an Arabic handwritten word is detecting and labeling its CCs. CC analysis is 

the most efficient approach since the Arabic script consists of several overlapping CCs. The eight-

connected neighboring pixels method is used. At this step, the PAW is extracted from the image 

including both main and secondary components. Then, the secondary components are removed as  

Seen  Haa  Kah  Meem  Noon Dad Faa  
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Figure 43: Block diagram of the proposed method 

Text image  

Extract Main 

Components 

Bounding Box (BB) 

Calculation  

Metric-based 

Segmentation  

ESL Recognition 

System  

Size BB 

< T 

ESL Detection   
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Text Segmentation   

Segmentation Points   

yes 

High 

probability  

no 

no 

PAW Construction   

Skeletonization 
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explained in Chapter 2, and saved in a new image. Next, the main components of PAWs are labeled 

from left to right.   

 

 

Skeletonization  

We apply thinning to facilitate both extracting the starting points and some important features for 

segmentation and tracing the PAW. The Zhang-Suen thinning algorithm [162] takes the Boolean 

image and reduces it to an 8-connected skeleton. In this algorithm, each iteration consists of two 

steps. Four points are removed in the first step: the southeast boundary points, northwest corner 

points, northwest boundary points, and southeast corner points. Let p1, p2…, p8 represent eight 

neighbour pixels of point p. Let B(p) be the number of nonzero eight neighbour pixels of pixel p 

and let A(p) be the number of zero-to-one conversions in the ordered sequence p1, p2…, p8. If p 

is a contour point, then the following four conditions should be satisfied in order to flag the pixel 

p for removal: 

1. 2 ≤ B(p) ≤ 6 

2. A(p) = 1 

3. p1 . p3 . p5 = 0 

4. p3 . p5 . p7 = 0 

The removal of pixel p is delayed until all the pixels of the image are examined by the algorithm. 

In the second step, the contour point p is flagged for removal if the following four conditions are 

satisfied: 

1. 2 ≤ B(p) ≤ 6 

2. A(p) = 1 

3. p1 . p3 . p7 = 0 

4. p1 . p5 . p7 = 0 

After applying the two steps to all the pixels of the image, the resulting image is the skeleton. 
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Bounding Box of Main Components  

The height and width of each main component is computed. This task is used for two purposes. 

The first is for identifying the isolated letter to avoid segmentation of the letter while the second 

is for applying metric-based method to calculate the distance between the BBs between adjacent 

main components to find the segmentation path between words.   

 

ESL Detection  

At this stage, the main purpose is to detect the last letter of a PAW. If the bounding box of the 

main component is bigger than a threshold that is found to be the best value for isolated letter 

tested in CENPARMI isolated letters training set, then the main component is considered as PAW 

that contains more than one letter and thus the PAW must be segmented.   

1. Find the start point 

The starting point is determined by searching the PAW’s image from left-to-right and 

finding the first black pixel and its coordinates.  

2. Trace the main component  

The skeletonized main component is traced. The row and column coordinates of the black 

pixels of the main component are saved in a two element vector.  

3. Determine the segmentation points 

The main component is traced until a change occurs in the traced component by finding 

the local minima or local maxima depending on the starting points if it is an ascender or 

descender.    

4. PAW Construction  

Based on the coordinates of the segmented main component, all the secondary components 

above and below this component are extracted. A PAW image is constructed by combining 

the main and secondary components, and saved in a new image.  

5. Recognition   

After extracting the isolated letter or determining the segmentation point, the PAW image 

is constructed and passed to ESL recognition system. If the recognition probability of the 

segmented PAW is low, the third step is repeated in order to find a new segment point. 
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PAW Construction  

If the BB’s size is less than a threshold T, the isolated letter (PAW) is constructed based on the 

coordinates of the isolated main component. The threshold are based on studying a large number 

of isolated letters samples. An isolated letter is constructed by combining the main and secondary 

components.     

  

ESL Recognition 

At this stage, either the detected ESL of the PAW or the isolated letter is sent to an ESL recognizer. 

This recognizer classifies the end-shapes of the PAWs and isolated letters. We use both the 

CENPARMI Arabic isolated letter database and our new set (ESLs) while the SVM is used for 

classification. We used parts of both ESLs and isolated letters to accelerate the training and testing 

processes.  

 

Segmentation  

We consider two approaches for segmentation: 1) metric-based, and 2) ESL-based. The metric-

based technique is based on the distance between two adjacent bounding boxes of the main 

components. The ESL recognition method depends on the class of the detected letter and its 

probability.  

 

Algorithm  

Given a text image T, let {mc} be the sequence of all the extracted main components from T, such 

that for any two main connected components mci and mci+1, mci is on the left of mci+1. Let {sc} be 

the sequence of the extracted secondary components from T, for j = 1….n. In addition, the 

bounding box is calculated for each mci and denoted as bbi. The output is a list of segmentation 

points. 

 

mc ← extracted main components(T) 

sc ← extracted secondary components(T)  
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for all mci ∈ mc and all bbi ∈ bb do  

 

 if bbi  < Threshold    then  

 PAW ← ConstructPAW(mci, scj)  

 [Class, Probability] ← Recognize(PAW) 

else  

find starting point  

    repeat  

Trace(mci)  

find local minima or local maxima  

SMC ← Segment(mci) 

PAW ← ConstructPAW(SMC, scj)  

[Class, Probability] ← Recognize(PAW) 

                 until Probability is high   

 end if  

Distance ← DistanceBetweenBB(bbi,bbi+1) 

DetermineSegmentationPoints(Distance, Class, Probability) 

end for  

   

7.4 Experiments 

We perform several experiments using the IFN/ENIT [127] database. These experiments have 

been conducted to test different sets of features, sets of training samples and sets of thresholds. 

Figure 44 illustrates the steps of our algorithm.   

An initial experiment is conducted to test the main idea of our approach. The first 

experiment conducted is based on Arabic isolated letters so that it can be used to find the segment 

points. As mentioned before, the letters used as identification of segmentation can be in two forms: 

isolated or connected (part of PAW). If it is part of PAW, detection of ESL is needed for 

recognition. We use only the CENPARMI Arabic isolated letters database which is a subset of the 

ESL.  
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Figure 44: Steps of text segmentation algorithm 

  

(a) Input image  

(b) Main components extraction   

(d) Distance calculation   

(g) Text segmentation     

(c) Bounding Box calculation  

(e) ESL segmentation 

   
 Distance calculation   

(f) PAWs Construction  

   

 Distance calculation   
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The CENPARMI isolated Arabic letters database is composed of only the isolated shapes 

of the letters (which is a subset of the final shape letters). In addition, there is no available database 

that has all the shapes of the letters in their final positions that are connected. Thus, we use only 

CENPARMI database in this preliminary experiment. We used the IFN/ENIT images that can be 

segmented with the isolated letters and are composed of two and three words [74]. This set contains 

a total of 440 unique names. We used set-a for training and subsets from set-b, set-c, set-d, and 

set-e for testing. The total numbers of training and testing samples are 50 and 285 respectively. 

Table 23 shows the word segmentation results of metric-based and ESL-based methods.  

 

Table 23: Results of metric-based and ESL-based methods using subsets of IFN/ENIT  

 

Set # images Metric-based ESL-based 

Set-b 50 67.34% 82.00% 

Set-c 82 68.29% 84.15% 

Set-d 77 83.12% 85.61% 

Set-e 76 71.05% 86.84% 

 

 

The second experiments are done on all the IFN/ENIT images that contain two to four 

words. Set-a is used for training while set-b, set-c, set-d, and set-e are used for testing. In this 

experiment, the ESL database, which is described in Chapter 6, is used. This database is composed 

of both isolated and connected end shape letters. The total number of images for testing is 998. 

The results of our method are given in Table 24.  
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Table 24: Results of our algorithm of text segmentation algorithm 

 

Set Total 

images 

# 

images 

number 

words 

Correct 

segmentation  

Over 

segmentation  

Under 

segmentation  

#words % # words % # word % 

Set-b 329 100 223 196 87.89 13 5.8 14 6.26 

200 460 412 89.37 14 3.04 34 7.39 

300 688 624 83.2 17 2.47 47 6.83 

329 771 596 85.3 20 2.5 155 20.1 

Set-c 230 100 220 194 88.18 6 2.7 20 9.09 

200 429 371 86.48 18 4.19 40 9.32 

230 491 420 85.53 20 4.07 51 10.38 

Set-d 244 100 222 196 88.28 4 1.8 22 9.9 

200 445 375 84.27 14 3.15 56 12.58 

244 535 421 78.69 17 3.17 97 18.13 

Set-e 186 100 203 163 80.3 12 5.91 28 13.79 

186 379 307 80.1 29 7.72 43 11.34 

7.5 Error analysis  

Two types of errors are produced by our system: under and over segmentation. Each type of error 

is caused by a number of reasons. We describe below the causes of each type.  

Under Segmentation: 

 When the distance between bounding boxes is small and ESL belongs to non-endWord 

class. (Figure 45.a) 

 When endWord class letter is written like beginning or middle letter, or unfamiliar shapes. 

Our ESL datasets does not contain such shapes  (Figure 45.b)  

 When completely overlapping components do not belong to any PAW, and PAW 

construction error occurs. (Figure 45.c )  

 Error of segmenting ESL. (Figure 45.d )  

Over Segmentation:  

 Some non-endWord class letters are written similarly to endWord class ones due to writing 

styles. (Figure 45.e)  

 When a PAW is broken, confusion between classes occurs. (Figure 45.f)  

 Unclear images. (Figure 45.g) 
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Figure 45: Some common sources of errors 

nonEndWord class letter  

Two letters  
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7.6 Time Complexity 

All experiments were conducted on a system with 8.0 GB RAM, Intel(R) Core(TM) i7-3632QM 

CPU @ 2.20GHz 2.20GHz, Windows 8.1 OS, 64-bit operating system, x64-based processor and 

MATLAB code. The system under study is divided into four main procedures; namely secondary 

components removal, baseline estimation which includes baseline dependent feature extraction, 

metric-based segmentation that includes metric calculation and ESL-based segmentation which 

includes ESL detection and recognition. Table 25 shows the time complexity for the proposed 

system (time in seconds). The time complexity is calculated per segmentation point decision for 

both metric-based and ESL-based segmentation methods for randomly selected images. The 

results show that the metric-based approach operates at several times faster than the speed of the 

ESL-based approach. For the ESL-based approach, most of the time is consumed by segmentation 

and classification.   

Table 25: Time complexity of the systems in seconds 

 

Image Metric-based ESL-based  

Image#1 0.00013 60.796477 

Image#2 0.000127 44.61412 

Image#3 0.00024 58.289716 

 

7.7 Comparison of Results with Arabic Text 

Segmentation  

To enable consistent evaluation, we compare our Arabic handwritten text segmentation with the 

system that uses the same database, and applied on 200 randomly selected images from set-d that 

are composed of one to four words. The two systems presented in [22] and [23], with which we 

compare our system, are based on a threshold approach. In [22], vertical projection analysis was 

applied to calculate the distances between PAWs and words. To find the optimal threshold, 

Bayesian criteria of minimum classification error was used. In [23], the distances between 
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bounding boxes was employed. The threshold was determined by manually analyzing more than 

200 images. However, the training set was not determined. In addition, these approaches conducted 

their tests on the images that are composed of one and more than one words. The comparison 

between our algorithm with these two methods is provided in Table 26. 

 

Table 26: Comparisons of methods of Arabic handwritten text segmentation 

 

Method Number of images Correct segmentation rate 

[23] 200 85% 

[22] 106 79.66% 

Our method 200 89.65% 

 

7.8 Conclusions   

In this chapter, we introduce a methodology for segmenting handwritten texts into distinct words. 

The main novelty of the proposed approach is to utilize the knowledge of Arabic writing. This 

method is based on recognizing the ESL of the PAWs which help to find the segment points. After 

calculating the width of the bounding box of each PAW, the need of PAW segmentation is 

determined. If the width does not exceed the threshold, this means that the PAW is an isolated 

letter. On the other hand, if the width is more than a threshold, the ESL detection process begins 

until the ESL is recognized. Based on the recognition result of the ESL and the metric-based 

distance, as explained in Chapter 4, the segmentation point is identified.  From our experimental 

results, it is shown that the proposed method outperforms existing methods for Arabic text 

segmentation conducted previously on the IFN/ENIT database. Most of the errors are caused by 

either NLC letters or the broken PAWs.  
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Chapter 8 

  

Arabic Handwritten Word Recognition  

 

Generally, in a handwriting recognition process, the word is segmented into characters and then 

the classifier recognizes each character. However, character segmentation is not simple, especially 

in Arabic systems which have to confront many obstacles. Hence, researchers avoid letter 

segmentation and choose to apply segmentation-free methods or holistic approaches. In fact, Word 

recognition can be divided into word-based and character-based. Word-based recognition systems 

aim at identifying the word from its global shape without either explicit or implicit segmentation, 

and it is called segmentation-free. Character-based approaches can be categorized into 

segmentation-based and recognition-based. In the former, the input image is partitioned into sub-

images, which can be classified. In the latter, unit segmentation is a by-product of recognition 

process and the segmentation and recognition are accomplished simultaneously. In this chapter, 

we focus on holistic approaches where the word is modeled as a whole. The aim of this chapter is 

to implement a holistic word recognizer to facilitate word spotting which is discussed in Chapter 

9. In Section 8.1, we discuss some proposed approaches for holistic Arabic word recognition. Our 

method is described in Section 8.2 while the experiments that we conducted using different 

databases are presented in Section 8.3. Finally, we conclude this chapter in Section, 8.4.   
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8.1 Related Works  

Holistic approaches can be divided into two categories: implicit segmentation and segmentation-

free [66]. The disadvantage of using this approach is that the lexicon should be limited. On the 

other hand, the advantage is that they bypass the character segmentation problem. We review only 

segmentation-free approaches applied to Arabic and Farsi scripts in this section.    

Several holistic approaches were applied on Arabic printed text. In [92], the word shape is 

analyzed with a vector of morphological features. This vector is matched against a database which 

is a precomputed vectors from a lexicon of Arabic words. A. Amin used machine learning to 

generate a decision tree for classification [27]. In [140] and [86] each word is transferred into a 

normalized polar image. Then, a two dimensional Fourier transform was applied. The recognition 

is based on the Euclidean distance.  

Few holistic methods have been proposed for offline handwritten words recognition. Three 

of those methods used Farsi whose alphabet was derived from Arabic. These methods used a 

database that consists of about 17,000 images of 198 Iranian city names. In [47], the word 

recognition system is based on fuzzy vector quantization and HMM. HMM was trained by 

modified Baum-Welch algorithm and they achieved 67.19% recognition rate. M. Dehghan et al 

[48] proposed an approach using a discrete HMM and Kohonen self-organizing vector 

quantization. The histogram of chain code direction is used as feature vectors. A 65% correct 

recognition rate was achieved. In addition, B. Vaseghi et al. [163] used a discrete HMM and self-

organizing vector quantization with some preprocessing tasks such as binarization and noise 

removal. The correct recognition rate was 66.42%.  

In [12], CENPARMI Arabic word and IFN/ENIT databases were used to test a holistic 

word recognition system. Several sets of features were tested, including Gradient features, Gabor 

filter features and Frequency features using Discrete Fourier transform. Moreover, two statistical 

classifiers, Modified Quadratic Discriminant Function (MQDF) and Regularized Discriminant 

Analysis (RDA), and one discriminant classifier, Support Vector Machine (SVM) were examined.  
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8.2 Database 

An offline database of Arabic handwritten words was developed by CENPARMI in 2008 [20]. 

The database contains 69 words. The dataset includes weights, measurements, and currencies. The 

data were collected in Saudi Arabia and Canada from 328 Arabic writers of different nationalities, 

ages, genders, and educational levels. This database is composed of 17007, 4485, and 4233 

training, validation, and testing samples respectively.  

 

8.3 Word Recognition System  

Our handwritten word recognition system is similar to our isolated letter recognition system 

described in Chapter 5, with slight modifications.  

8.3.1 Preprocessing   

In the preprocessing stage, we followed the steps that are developed for isolated letter recognition: 

noise removal, binarization, white space removal, size normalization, and skeletonization. In 

addition, the recognition system is examined using slant correction method. However, many 

methods have been introduced for slant correction and applied on the IFN/ENIT database; 

however, they either did not provide the effect of slant correction on recognition, or had a slight 

improvement [132], [114], [157], and [112]. We used the method proposed in [131].  

8.3.2 Feature Extraction   

For the feature extraction phase, in addition to the gradient feature that is computed by Robert 

operator, and explained in Chapter 5, we also test the gradient feature that is computed by Sobel 

operator which has two masks for calculating the horizontal and vertical gradient components that 

are applied in [130]. Figure 46 shows the Sobel masks for extracting gradient features.  
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-1 0 +1  +1 +2 +1 

-2 0 +2  0 0 0 

-1 0 +1  -1 -2 -1 

    

Figure 46: Sobel masks for extracting gradient features 

 

Let I(u,v) an input image, the horizontal gradient component (gx) and vertical gradient component 

(gy) are computed as follows: 

𝑔𝑥 =  I(u − 1, v + 1) +  2I(u, v + 1)  +  I(u + 1, v + 1) −  I(u − 1, v − 1)  −  2I(u, v − 1)  

−  I(u + 1, v − 1)  

𝑔𝑦 =  I(u − 1, v − 1)  +  2I(u − 1, v)  +  I(u − 1, v + 1)  −  I(u + 1, v − 1)  −  2I(u + 1, v)  

−  I(u + 1, v + 1)  

 

 In addition to the structural features that are explained in Chapter 5, more features are 

extracted to improve the performance. These features include the number of holes, number of 

connected components, and number of end points based on the baseline position.  

 

8.3.3 Recognition    

The two optimal parameters are chosen by using v-fold cross validation. The total number of 

feature points is 599 (400 gradient features, 64 horizontal projection, 64 vertical projection, 64 

upper profile, and 7 structural features).   

 

8.4 Experiments and Results   

In our experiments, we extracted the gradient features by using the Sobel filter to compare our 

results with the Robert filter. There is a slight difference in the results and the performance with 

Robert filter is better than Sobel. The comparison in experimental results of both filters is shown 

in Table 27. 
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Table 27: Sobel filter vs. Robert filter 

 

Image size Robert Filter Sobel Filter Upper Profile Results 

128 Χ 128 

 

X   85.79% 

X  X 87.58% 

 X  83.48% 

 X X 83.48% 

64 Χ 64 

 

 X  83.76% 

Χ   86.12% 

X  X 86.77% 

 X X 83.77% 

 

 

Moreover, several experiments are performed to evaluate different sets of features. Table 28 shows 

the results of using horizontal and vertical projection, gradient features, upper profile, and 

structural features. In addition, several features are extracted based on baseline position. 

 

 

Table 28: Comparison of recognition results with different features 

 

 Gradient 

Feature 

Upper 

Profile 

Horizontal 

Projection 

Vertical 

Projection 

Structural 

Features 

Based on 

Baseline 

Recognition 

results 

F1 X X     87.58 

F2 X X X    87.77 

F3 X X  X   87.58 

F4 X X X X   87.41 

F5 X X   X  95.39 

F6 X X   X X 97.86 
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8.5 Comparison with Arabic word recognition system  

We compare our system with a holistic based system that used Modified Quadratic Discriminant 

Function with gradient features [12]. This method was applied on CENPARMI Arabic handwritten 

words. Moreover, it was also conducted using IFN/ENIT in which sets a, b, c, and d used for 

training and set-e for testing. To enable consistent performance evaluation, we perform our 

experiments on the same databases. Table 29 shows the recognition rates by applying these two 

holistic methods to both CENPARMI and IFN/ENIT databases. The approaches that are applied 

on CENPARMI have high recognition rates since it has a relatively small lexicon (69 word 

classes). On the other hand, the methods that are applied on IFN/ENIT database have performed 

poorly because it has a large lexicon (937 word classes).    

 

Table 29: Recognition results using CENPARMI and IFN/ENIT database 

 

Method CENPARMI IFN/ENIT 

[12] 96.89 55.54 

Our system 97.86 65.11 

 

8.6 Conclusions     

Different sets of features are tested on CENPARMI Arabic handwritten words database with a 

lexicon of 69 word classes. The classifier is based on holistic approach.  In addition, several size 

normalization were tested with Robert and Sobel filters.  
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Chapter 9 

 

Impact of Text Segmentation on Word 

Spotting  

 

Word spotting, also called searching or indexing, is the task of detecting words within a document, 

and it is an effective way for document retrieval. Several studies favor word spotting over word 

recognition for word retrieval. Word spotting gained significant attention among researchers. 

Many papers have addressed word spotting based on Latin and Chinese documents. However, few 

studies were proposed for Arabic documents since the nature of Arabic writing is more 

challenging. Our aim of this chapter is to study the impact of text segmentation on word spotting. 

In Section 9.1, we discuss word spotting systems for the Arabic language. Performance evaluation 

metrics of word spotting systems is given in Section 9.2. Our method of Arabic word spotting 

system is described in Section 9.3, while the experiments are provided in Section 9.4. The error 

analysis is discussed in Section 9.5. Finally, the chapter is summarized in Section 9.6.   
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9.1 Word Spotting in the Arabic Language  

Arabic handwritten word spotting systems can be categorized into word-based, PAW-based, and 

character-based. Clustering or segmenting the documents into words is considered the first task in 

many word spotting systems [12]. However, in Arabic scripts, the boundaries between words are 

often non-existent and arbitrary. Thus, only one research attempted to automatically segment the 

Arabic texts into words for a word spotting system [51]. However, they achieved 60% 

segmentation accuracy while another method segmented the texts manually into words [142]. 

Many methods proposed a script independent word spotting system [143], [153], [128], 

and [91]. However, they faced problems with words having the same root. Moreover, they found 

that low performance resulted when applying the system on the Arabic script.   

Since there are no clear boundaries between Arabic words in handwritten documents, many 

methods apply PAW-based approaches. In [134], the PAW is converted into Word Shape Tokens 

(WST) and each PAW was represented by global structural features. Saabni and El-Sana [160] 

used Dynamic Time Wrapping (DTW) and HMM for matching PAWs. Khayyat et al. [80] 

proposed a learning based word spotting system using PAW-model with hierarchical classifiers. 

While in [82], they used a combination of PAW and word models with an ensemble of classifiers. 

In [83], PAWs are recognized separately, then PAW language models were used with the classifier 

to reconstruct words. In [141], a word matching system was implemented by extracting contour 

features from PAWs. Then, each PAW was embedded into Euclidean space while active-DTW 

was used to find the final matching result.   

In addition to PAW-based approaches, segmentation-free methods are applied. Some 

segmentation-free approaches were proposed for Arabic handwritten word spotting, in which the 

segmentation process is embedded within the classification stage. These systems are either based 

on the character-model [153], or an over segmentation [44].  

Word spotting systems have been applied to historical documents. In [106], Euclidean 

distance enhanced by rotation was applied with DTW to measure the similarity between two 

PAWs. E. Syakol et al. [136] and S.A. Shahab et al. [138] proposed a content-based method using 

a codebook. Several features were extracted to represent codes of PAW, characters, or symbols. 

Then distance measure, or similarity matching, was applied to find the final match.   
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However, we believe correct pre-segmentation of the texts into words will improve both 

system speed and performance. Improvement in the speed is achieved by eliminating some pre-

processing tasks such as generating the words, clustering…. etc. Improving the performance is a 

result of including more features (information and outcomes) from the whole word instead of 

PAWs. 

 

9.2 Performance Evaluation   

To evaluate the performance of a word spotting system, two metrics are used: recall and precision 

rates. Recall Rate (RR) measures the ratio of the successful retrieval of the word sample, or the 

actual positives. Precision Rate (PR) is the probability that the retrieved image is the target word. 

These metrics are calculated with the following formulas:  

𝑅𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

where TP (True Positive) is the total number of correctly spotted words, and 

FN (False Negative) is the total number of the target words that are not spotted.  

𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

where FP (False Positive) is the total number of the spotted words that are misrecognized.  

The precision-recall curve is used to calculate the Mean Average Precision (MAP) represented by 

the area under the curve.  

9.3 Method Implemented    

Our word spotting system uses the holistic handwritten word recognition system for recognizing 

the words. After segmenting the text into words, the word spotting system is applied. We apply 

this system to explore the benefit of text segmentation. Our system tries to recognize the target 
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words and reject all the other words with low probability. The extracted features of the target 

(template) image are passed to the system.  

As mentioned earlier, LibSVM generates the classification probability of the tested 

samples. On the basis of these probabilities, the system outputs the classes of the samples. First, 

the system extracts the feature vector. Then, it maps this feature vector into feature space. In the 

feature space, the system finds the closest hyperplane of Class N. If the class of a sample is not 

trained, which means it does not belong to the target words, SVM maps that sample into the closest 

class. 

 In our system, after text segmentation into words, each image goes through the following 

process, as discussed in Chapter 8: 

 Size normalization, 

 Gradient features, 

 Upper profile features, 

 Structural features,  

 Statistical features,  

 Labeling feature vector,  

 The feature vector is sent to holistic handwriting word classifier, and 

 The result is returned in probabilities, we assume this word sample belongs to the class 

with the highest probability. However, if the probability is below a defined threshold, this 

sample is considered as false positive error.    

 

9.4 Experimentation 

To initially evaluate the impact of text segmentation on a word spotting system, two CENPARMI 

handwritten documents were manually segmented into words. The result of the spotting system is 

shown in Table 30. We compared our result with the system that was proposed by M. Al-Khayat 

et al. who used the CENPARMI database. Table 31 shows the results of the systems. Based on the 

results, we can see that the word spotting system after correct text segmentation was able to 

recognize a higher number of target words (86.66% vs. 50%-53%).  
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Table 30: Result of word spotting system after manual segmentation 

  

Total 

Words 

Total 

Targeted 

Words 

True 

Positive 

TP 

True 

Negative 

TN 

False 

Positive 

FP 

False 

Negative 

FN 

99 15 13 66 20 2 

  

 

 

Table 31: Comparisons of results on Word spotting  

 

Method Model Precision Recall 

[80] PAW 84.56% 50% 

[83] PAW 65% 53% 

[82] Word/PAW 84.4% 50% 

 Manual 

experiment  
Word 39.39% 

86.66% 

We test the word spotting system on the IFN/ENIT database since it is the database that 

used for text segmentation. The text images with different names in IFN/ENIT are mixed. In other 

words, they are not separated into different classes. We collected all the images that have common 

words in the same folders. However, the IFN/ENIT is a huge database, it does not have many 

training samples. We only found three classes with more than 50 training samples. So, we manually 

segment three words from 189 images to create three classes. Each class is composed of more than 

40 samples. These samples are segmented from sets a, b, c, and d. Then, these classes are trained 

using an SVM classifier. After text segmentation, word spotting system is applied. Set-e is used 

for word spotting system. The result is given in Table 32.  
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Table 32: Result of word spotting system on IFN/ENIT database 

  

Total 

Words 

Total 

Targeted 

Words 

Total 

candidate 

words 

True 

Positive 

TP 

True 

Negative 

TN 

False 

Positive 

FP 

False 

Negative 

FN 

379 42 368 35 255 73 5 

 

 

9.5 Conclusions 

In this chapter, we explore the benefit of text segmentation by applying word spotting system. We 

achieved 32.4% precision rate and 87.5% recall rate on the IFN/ENIT database. Most of the errors 

occur because of segmentation error. The word spotting accuracy can be improved by working on 

the segmentation error.     
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Chapter 10 

 

Conclusions and Future Works 

 

The purpose of this thesis is to design and implement an ESL-based text segmentation system that 

can overcome lack of the boundary problem which appears in Arabic handwritten texts. Several 

systems for Arabic handwritten texts are proposed and implemented in this thesis, and the results 

are presented.  

 

10.1 Concluding Remarks  

Automatic processing of Arabic handwritten texts is a challenging task. We use the knowledge of 

Arabic language to facilitate text segmentation. In order to achieve satisfactory performance, we 

have designed and implemented several systems. These sub-systems incorporate the process 

essential for an accurate secondary component removal (Chapter 2), learning-based baseline 

estimation (Chapter 3), metric-based segmentation (Chapter 4), ESL recognition system (Chapter 

5), and ESL-based segmentation (Chapter 7). To explore the benefit of text segmentation, we 

implement two systems for word spotting: word recognition system (Chapter 8) along with word 

spotting system (Chapter 9).  

Our method of secondary component removal is based on reconstructing the image on a 

generated mask. This method facilitates both the learning-based baseline estimation approach by 
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removing unneeded pixels, and metric-based segmentation technique by reducing the number of 

calculated BBs. We achieved 2.90% of false positives and 1.75% of false negatives.  

For our learning-based baseline estimation method, we use some state of the art 

preprocessing algorithms to extract several baseline dependent features. These features include 

horizontal projection, centroid of convex hulls and average of horizontal line segments. The 

method shows great result with images containing only one word. Moreover, the performance is 

better when the number of training samples is higher. It reaches 96.27% for <=5 error in pixels.    

 The metric-based segmentation approach, also called threshold-based method, is one of 

the common techniques that are used for text segmentation into words. We use two well-known 

metrics called bounding box and convex hull. For determining the threshold, Gaussian Mixture 

Models is used. Furthermore, we introduce baseline dependent metric that outperforms both the 

methods that applied bounding box and convex hull on set-d.  

  ESL-based segmentation is proposed to solve the lack of boundary that occurs in Arabic 

handwritten texts. This method aims at extracting the last letter of PAWs and recognizing it since 

some Arabic letters identify the end of a word. To enable ESL-based segmentation method, a 

classifier is implemented for recognizing ESLs. In addition, a handwritten word recognition 

system, which is a holistic approach such that the segmentation of the words into letters is not 

required, is used for word spotting.  

 

10.2 Future Works  

The following sections suggest improvements that can be made to enhance the performance of 

each step involving Arabic handwritten texts segmentation and recognition. The results achieved 

in this thesis encourage further research in several areas.  
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Databases  

As part of the future work, the algorithms will be applied to other databases such as KHATT. More 

written ESLs need to be extracted in order to improve the recognition rate of ESLs to deal with a 

variety of handwriting styles. The system described in this thesis is applied on a database written 

by 411 writers. For recognition system, two datasets are used, one was written by 360 participants 

and the other was written by 650 participants. Increasing the database’s samples will improve 

training the system since it will include different handwriting styles which allow more features to 

be developed.  

 

Pre-processing  

For the removal of secondary components, some diacritics based on the size need to be removed 

since some of them are near the mask. For baseline estimation method, we need a larger database 

to apply our method on one word image that can reach better results than the images that contain 

more than one word. In addition, more baseline dependent features need to be extracted. We will 

study the effect of slant correction on the images.  

 

Feature extraction  

More features can be added and tested. Adding different types of features may improve the 

recognition results that lead to better segmentation results. Moreover, feature selection needs to be 

examined to accelerate the recognition system.    

 

Classification  

The classification can be improved by testing different classifiers and by using hierarchical or 

multiple classifiers. Using separate classifiers for diacritics may avoid the confusion that occurs 

with letters that have the same main part with a different number or positions of diacritics. Also, 

applying weights on some features can avoid such confusion.  
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Segmentation    

In our system, improving ESL-based segmentation and recognition performance can improve text 

segmentation performance. Experiments with different gap metrics as well as different threshold 

types may yield significant improvement.    
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