17,102 research outputs found

    Probabilistic Modeling Paradigms for Audio Source Separation

    Get PDF
    This is the author's final version of the article, first published as E. Vincent, M. G. Jafari, S. A. Abdallah, M. D. Plumbley, M. E. Davies. Probabilistic Modeling Paradigms for Audio Source Separation. In W. Wang (Ed), Machine Audition: Principles, Algorithms and Systems. Chapter 7, pp. 162-185. IGI Global, 2011. ISBN 978-1-61520-919-4. DOI: 10.4018/978-1-61520-919-4.ch007file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04Most sound scenes result from the superposition of several sources, which can be separately perceived and analyzed by human listeners. Source separation aims to provide machine listeners with similar skills by extracting the sounds of individual sources from a given scene. Existing separation systems operate either by emulating the human auditory system or by inferring the parameters of probabilistic sound models. In this chapter, the authors focus on the latter approach and provide a joint overview of established and recent models, including independent component analysis, local time-frequency models and spectral template-based models. They show that most models are instances of one of the following two general paradigms: linear modeling or variance modeling. They compare the merits of either paradigm and report objective performance figures. They also,conclude by discussing promising combinations of probabilistic priors and inference algorithms that could form the basis of future state-of-the-art systems

    Deep Remix: Remixing Musical Mixtures Using a Convolutional Deep Neural Network

    Full text link
    Audio source separation is a difficult machine learning problem and performance is measured by comparing extracted signals with the component source signals. However, if separation is motivated by the ultimate goal of re-mixing then complete separation is not necessary and hence separation difficulty and separation quality are dependent on the nature of the re-mix. Here, we use a convolutional deep neural network (DNN), trained to estimate 'ideal' binary masks for separating voice from music, to perform re-mixing of the vocal balance by operating directly on the individual magnitude components of the musical mixture spectrogram. Our results demonstrate that small changes in vocal gain may be applied with very little distortion to the ultimate re-mix. Our method may be useful for re-mixing existing mixes

    Nonlinear Models Using Dirichlet Process Mixtures

    Full text link
    We introduce a new nonlinear model for classification, in which we model the joint distribution of response variable, y, and covariates, x, non-parametrically using Dirichlet process mixtures. We keep the relationship between y and x linear within each component of the mixture. The overall relationship becomes nonlinear if the mixture contains more than one component. We use simulated data to compare the performance of this new approach to a simple multinomial logit (MNL) model, an MNL model with quadratic terms, and a decision tree model. We also evaluate our approach on a protein fold classification problem, and find that our model provides substantial improvement over previous methods, which were based on Neural Networks (NN) and Support Vector Machines (SVM). Folding classes of protein have a hierarchical structure. We extend our method to classification problems where a class hierarchy is available. We find that using the prior information regarding the hierarchical structure of protein folds can result in higher predictive accuracy

    Homoclinic snaking of localized states in doubly diffusive convection

    Get PDF
    Numerical continuation is used to investigate stationary spatially localized states in two-dimensional thermosolutal convection in a plane horizontal layer with no-slip boundary conditions at top and bottom. Convectons in the form of 1-pulse and 2-pulse states of both odd and even parity exhibit homoclinic snaking in a common Rayleigh number regime. In contrast to similar states in binary fluid convection, odd parity convectons do not pump concentration horizontally. Stable but time-dependent localized structures are present for Rayleigh numbers below the snaking region for stationary convectons. The computations are carried out for (inverse) Lewis number \tau = 1/15 and Prandtl numbers Pr = 1 and Pr >> 1

    Nonlinear transport effects in mass separation by effusion

    Full text link
    Generalizations of Onsager reciprocity relations are established for the nonlinear response coefficients of ballistic transport in the effusion of gaseous mixtures. These generalizations, which have been established on the basis of the fluctuation theorem for the currents, are here considered for mass separation by effusion. In this kinetic process, the mean values of the currents depend nonlinearly on the affinities or thermodynamic forces controlling the nonequilibrium constraints. These nonlinear transport effects are shown to play an important role in the process of mass separation. In particular, the entropy efficiency turns out to be significantly larger than it would be the case if the currents were supposed to depend linearly on the affinities
    • …
    corecore