5 research outputs found

    On Temporal and Separation Logics

    Get PDF
    International audienceThere exist many success stories about the introduction of logics designed for the formal verification of computer systems. Obviously, the introduction of temporal logics to computer science has been a major step in the development of model-checking techniques. More recently, separation logics extend Hoare logic for reasoning about programs with dynamic data structures, leading to many contributions on theory, tools and applications. In this talk, we illustrate how several features of separation logics, for instance the key concept of separation, are related to similar notions in temporal logics. We provide formal correspondences (when possible) and present an overview of related works from the literature. This is also the opportunity to present bridges between well-known temporal logics and more recent separation logics

    Expressive Completeness of Separation Logic With Two Variables and No Separating Conjunction ∗

    Get PDF
    We show that first-order separation logic with one record field restricted to two variables and the separating implication (no separating conjunction) is as expressive as weak second-order logic, substantially sharpening a previous result. Capturing weak secondorder logic with such a restricted form of separation logic requires substantial updates to known proof techniques. We develop these, and as a by-product identify the smallest fragment of separation logic known to be undecidable: first-order separation logic with one record field, two variables, and no separating conjunction

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Separating Graph Logic from MSO

    No full text
    Abstract. Graph logic (GL) is a spatial logic for querying graphs introduced by Cardelli et al. It has been observed that in terms of expressive power, this logic is a fragment of Monadic Second Order Logic (MSO), with quantification over sets of edges. We show that the containment is proper by exhibiting a property that is not GL definable but is definable in MSO, even in the absence of quantification over labels. Moreover, this holds when the graphs are restricted to be forests and thus strengthens in several ways a result of Marcinkowski. As a consequence we also obtain that Separation Logic, with a separating conjunction but without the magic wand, is strictly weaker than MSO over memory heaps, settling an open question of Brochenin et al.
    corecore