8 research outputs found

    Extraction of aspects from Online Reviews Using a Convolution Neural Network

    Get PDF
    The quality of the product is measured based on the opinions gathered from product reviews expressed on a product. Opinion mining deals with extracting the features or aspects from the reviews expressed by the users. Specifically, this model uses a deep convolutional neural network with three channels of input: a semantic word embedding channel that encodes the semantic content of the word, a part of speech tagging channel for sequential labelling and domain embedding channel for domain specific embeddings which is pooled and processed with a Softmax function. This model uses three input channels for aspect extraction. Experiments are conducted on amazon review dataset. This model achieved better result

    Embarrassingly Simple Unsupervised Aspect Extraction

    Get PDF

    Embarrassingly Simple Unsupervised Aspect Extraction

    Get PDF
    We present a simple but effective method for aspect identification in sentiment analysis. Our unsupervised method only requires word embeddings and a POS tagger, and is therefore straightforward to apply to new domains and languages. We introduce Contrastive Attention (CAt), a novel single-head attention mechanism based on an RBF kernel, which gives a considerable boost in performance and makes the model interpretable. Previous work relied on syntactic features and complex neural models. We show that given the simplicity of current benchmark datasets for aspect extraction, such complex models are not needed. The code to reproduce the experiments reported in this paper is available at https://github.com/clips/catComment: Accepted as ACL 2020 short pape

    A Simple and Effective Self-Supervised Contrastive Learning Framework for Aspect Detection

    Full text link
    Unsupervised aspect detection (UAD) aims at automatically extracting interpretable aspects and identifying aspect-specific segments (such as sentences) from online reviews. However, recent deep learning-based topic models, specifically aspect-based autoencoder, suffer from several problems, such as extracting noisy aspects and poorly mapping aspects discovered by models to the aspects of interest. To tackle these challenges, in this paper, we first propose a self-supervised contrastive learning framework and an attention-based model equipped with a novel smooth self-attention (SSA) module for the UAD task in order to learn better representations for aspects and review segments. Secondly, we introduce a high-resolution selective mapping (HRSMap) method to efficiently assign aspects discovered by the model to aspects of interest. We also propose using a knowledge distilling technique to further improve the aspect detection performance. Our methods outperform several recent unsupervised and weakly supervised approaches on publicly available benchmark user review datasets. Aspect interpretation results show that extracted aspects are meaningful, have good coverage, and can be easily mapped to aspects of interest. Ablation studies and attention weight visualization also demonstrate the effectiveness of SSA and the knowledge distilling method

    Aspect extraction on user textual reviews using multi-channel convolutional neural network

    Get PDF
    Aspect extraction is a subtask of sentiment analysis that deals with identifying opinion targets in an opinionated text. Existing approaches to aspect extraction typically rely on using handcrafted features, linear and integrated network architectures. Although these methods can achieve good performances, they are time-consuming and often very complicated. In real-life systems, a simple model with competitive results is generally more effective and preferable over complicated models. In this paper, we present a multichannel convolutional neural network for aspect extraction. The model consists of a deep convolutional neural network with two input channels: a word embedding channel which aims to encode semantic information of the words and a part of speech (POS) tag embedding channel to facilitate the sequential tagging process. To get the vector representation of words, we initialized the word embedding channel and the POS channel using pretrained word2vec and one-hot-vector of POS tags, respectively. Both the word embedding and the POS embedding vectors were fed into the convolutional layer and concatenated to a one-dimensional vector, which is finally pooled and processed using a Softmax function for sequence labeling. We finally conducted a series of experiments using four different datasets. The results indicated better performance compared to the baseline models

    Commonsense Knowledge in Sentiment Analysis of Ordinance Reactions for Smart Governance

    Get PDF
    Smart Governance is an emerging research area which has attracted scientific as well as policy interests, and aims to improve collaboration between government and citizens, as well as other stakeholders. Our project aims to enable lawmakers to incorporate data driven decision making in enacting ordinances. Our first objective is to create a mechanism for mapping ordinances (local laws) and tweets to Smart City Characteristics (SCC). The use of SCC has allowed us to create a mapping between a huge number of ordinances and tweets, and the use of Commonsense Knowledge (CSK) has allowed us to utilize human judgment in mapping. We have then enhanced the mapping technique to link multiple tweets to SCC. In order to promote transparency in government through increased public participation, we have conducted sentiment analysis of tweets in order to evaluate the opinion of the public with respect to ordinances passed in a particular region. Our final objective is to develop a mapping algorithm in order to directly relate ordinances to tweets. In order to fulfill this objective, we have developed a mapping technique known as TOLCS (Tweets Ordinance Linkage by Commonsense and Semantics). This technique uses pragmatic aspects in Commonsense Knowledge as well as semantic aspects by domain knowledge. By reducing the sample space of big data to be processed, this method represents an efficient way to accomplish this task. The ultimate goal of the project is to see how closely a given region is heading towards the concept of Smart City

    Mining Social Media and Structured Data in Urban Environmental Management to Develop Smart Cities

    Get PDF
    This research presented the deployment of data mining on social media and structured data in urban studies. We analyzed urban relocation, air quality and traffic parameters on multicity data as early work. We applied the data mining techniques of association rules, clustering and classification on urban legislative history. Results showed that data mining could produce meaningful knowledge to support urban management. We treated ordinances (local laws) and the tweets about them as indicators to assess urban policy and public opinion. Hence, we conducted ordinance and tweet mining including sentiment analysis of tweets. This part of the study focused on NYC with a goal of assessing how well it heads towards a smart city. We built domain-specific knowledge bases according to widely accepted smart city characteristics, incorporating commonsense knowledge sources for ordinance-tweet mapping. We developed decision support tools on multiple platforms using the knowledge discovered to guide urban management. Our research is a concrete step in harnessing the power of data mining in urban studies to enhance smart city development
    corecore