1,287 research outputs found

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended

    Distributed coding of endoscopic video

    Get PDF
    Triggered by the challenging prerequisites of wireless capsule endoscopic video technology, this paper presents a novel distributed video coding (DVC) scheme, which employs an original hash-based side-information creation method at the decoder. In contrast to existing DVC schemes, the proposed codec generates high quality side-information at the decoder, even under the strenuous motion conditions encountered in endoscopic video. Performance evaluation using broad endoscopic video material shows that the proposed approach brings notable and consistent compression gains over various state-of-the-art video codecs at the additional benefit of vastly reduced encoding complexity

    VLSI Implementation of a Cost-Efficient Loeffler-DCT Algorithm with Recursive CORDIC for DCT-Based Encoder

    Get PDF
    This paper presents a low-cost and high-quality; hardware-oriented; two-dimensional discrete cosine transform (2-D DCT) signal analyzer for image and video encoders. In order to reduce memory requirement and improve image quality; a novel Loeffler DCT based on a coordinate rotation digital computer (CORDIC) technique is proposed. In addition; the proposed algorithm is realized by a recursive CORDIC architecture instead of an unfolded CORDIC architecture with approximated scale factors. In the proposed design; a fully pipelined architecture is developed to efficiently increase operating frequency and throughput; and scale factors are implemented by using four hardware-sharing machines for complexity reduction. Thus; the computational complexity can be decreased significantly with only 0.01 dB loss deviated from the optimal image quality of the Loeffler DCT. Experimental results show that the proposed 2-D DCT spectral analyzer not only achieved a superior average peak signal–noise ratio (PSNR) compared to the previous CORDIC-DCT algorithms but also designed cost-efficient architecture for very large scale integration (VLSI) implementation. The proposed design was realized using a UMC 0.18-μm CMOS process with a synthesized gate count of 8.04 k and core area of 75,100 μm2. Its operating frequency was 100 MHz and power consumption was 4.17 mW. Moreover; this work had at least a 64.1% gate count reduction and saved at least 22.5% in power consumption compared to previous designs

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    A spectral multi-resolution image encoding network

    Get PDF
    After a short introduction into traditional image transform coding, multirate systems and multiscale signal coding the paper focuses on the subject of image encoding by a neural network. Taking also noise into account a network model is proposed which not only learns the optimal localized basis functions for the transform but also learns to implement a whitening filter by multi-resolution encoding. A simulation showing the multi-resolution capabilitys concludes the contribution

    LOW BITRATE HYBRID SECURED IMAGE COMPRESSION FOR WIRELESS IMAGE SENSOR NETWORK

    Get PDF
    Wireless image sensor networks are capable of sensing, processing and transmitting the visual data along with the scalar data and have attainedwide attention in sensitive applications such as visual surveillance, habitat monitoring, and ubiquitous computing. The sensor nodes in the network are resource constrained in nature. Since the image data are huge always high computational cost and energy budget are levied on the sensor nodes. The compression standards JPEG and JPEG 2000 are not feasible as they involve complex computations. To stretch out the life span of these nodes,it is required to have low complex and low bitrate image compression techniques exclusively designed for this platform. The complicated scenarioof wireless sensor network in processing and transmitting image data has been addressed by a low complex hybrid secured image compression technique using discrete wavelet transform and Bin discrete cosine transformation. Â

    JPEG-like Image Compression using Neural-network-based Block Classification and Adaptive Reordering of Transform Coefficients

    Get PDF
    The research described in this thesis addresses aspects of coding of discrete-cosinetransform (DCT) coefficients, that are present in a variety of transform-based digital-image-compression schemes such as JPEG. Coefficient reordering; that directly affects the symbol statistics for entropy coding, and therefore the effectiveness of entropy coding; is investigated. Adaptive zigzag reordering, a novel versatile technique that achieves efficient reordering by processing variable-size rectangular sub-blocks of coefficients, is developed. Classification of blocks of DCT coefficients using an artificial neural network (ANN) prior to adaptive zigzag reordering is also considered. Some established digital-image-compression techniques are reviewed, and the JPEG standard for the DCT-based method is studied in more detail. An introduction to artificial neural networks is provided. Lossless conversion of blocks of coefficients using adaptive zigzag reordering is investigated, and experimental results are presented. A versatile algorithm, that generates zigzag scan paths for sub-blocks of any dimensions using a binary decision tree, is developed. An implementation of the algorithm based on programmable logic devices (PLDs) is described demonstrating the feasibility of hardware implementations. Coding of the sub-block dimensions, that need to be retained in order to reconstruct a sub-block during decoding, based on the scan-path length is developed. Lossy conversion of blocks of coefficients is also considered, and experimental results are presented. A two-layer feedforward artificial neural network trained using an error-backpropagation algorithm, that determines the sub-block dimensions, is described. Isolated nonzero coefficients of small significance are discarded in some blocks, and therefore smaller sub-blocks are generated
    • …
    corecore