24 research outputs found

    Compressed Fingerprint Matching and Camera Identification via Random Projections

    Get PDF
    Sensor imperfections in the form of photo-response nonuniformity (PRNU) patterns are a well-established fingerprinting technique to link pictures to the camera sensors that acquired them. The noise-like characteristics of the PRNU pattern make it a difficult object to compress, thus hindering many interesting applications that would require storage of a large number of fingerprints or transmission over a bandlimited channel for real-time camera matching. In this paper, we propose to use realvalued or binary random projections to effectively compress the fingerprints at a small cost in terms of matching accuracy. The performance of randomly projected fingerprints is analyzed from a theoretical standpoint and experimentally verified on databases of real photographs. Practical issues concerning the complexity of implementing random projections are also addressed by using circulant matrices

    Robustness in blind camera identification

    Get PDF

    Video and Imaging, 2013-2016

    Get PDF

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Learning based forensic techniques for source camera identification

    Get PDF
    In recent years, multimedia forensics has received rapidly growing attention. One challenging problem of multimedia forensics is source camera identification, the goal of which is to identify the source of a multimedia object, such as digital image and video. Sensor pattern noises, produced by imaging sensors, have been proved to be an effective way for source camera identification. Precisely speaking, the conventional SPN-based source camera identification.has two application models: verification and identification. In the past decade, significant progress has been achieved in the tasks of SPN-based source camera verification and identification. However, there are still many cases requiring solutions beyond the capabilities of the current methods. In this thesis, we considered and addressed two commonly seen but less studied problems. The first problem is the source camera verification with reference SPNs corrupted by scene details. The most significant limitation of using SPN for source camera identification.is that SPN can be seriously contaminated by scene details. Most existing methods consider the contaminations from scene details only occur in query images but not in reference images. To address this issue, we propose a measurement based on the combination of local image entropy and brightness so as to evaluate the quality of SPN contained by different image blocks. Based on this measurement, a context adaptive reference SPN estimator is proposed to address the problem that reference images are contaminated by scene details. The second problem that we considered relates to the high computational complexity of using SPN in source camera identification., which is caused by the high dimensionality of SPN. In order to improve identification.efficiency without degrading accuracy, we propose an effective feature extraction algorithm based on the concept of PCA denoising to extract a small set of components from the original noise residual, which tends to carry most of the information of the true SPN signal. To further improve the performance of this framework, two enhancement methods are introduced. The first enhancement method is proposed to take the advantage of the label information of the reference images so as to better separate different classes and further reduce the dimensionality. Secondly, we propose an extension based on Candid Covariance-free Incremental PCA to incrementally update the feature extractor according to the received images so that there is no need to re-conduct training every time when a new image is added to the database. Moreover, an ensemble method based on the random subspace method and majority voting is proposed in the context of source camera identification.to tackle the performance degradation of PCA-based feature extraction method due to the corruption by unwanted interferences in the training set. The proposed algorithms are evaluated on the challenging Dresden image database and experimental results confirmed their effectiveness
    corecore