5,396 research outputs found

    Implementation of a model based fault detection and diagnosis for actuation faults of the Space Shuttle main engine

    Get PDF
    In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults

    Real-time fault diagnosis for propulsion systems

    Get PDF
    Current research toward real time fault diagnosis for propulsion systems at NASA-Lewis is described. The research is being applied to both air breathing and rocket propulsion systems. Topics include fault detection methods including neural networks, system modeling, and real time implementations

    A Fault Tolerant System for an Integrated Avionics Sensor Configuration

    Get PDF
    An aircraft sensor fault tolerant system methodology for the Transport Systems Research Vehicle in a Microwave Landing System (MLS) environment is described. The fault tolerant system provides reliable estimates in the presence of possible failures both in ground-based navigation aids, and in on-board flight control and inertial sensors. Sensor failures are identified by utilizing the analytic relationships between the various sensors arising from the aircraft point mass equations of motion. The estimation and failure detection performance of the software implementation (called FINDS) of the developed system was analyzed on a nonlinear digital simulation of the research aircraft. Simulation results showing the detection performance of FINDS, using a dual redundant sensor compliment, are presented for bias, hardover, null, ramp, increased noise and scale factor failures. In general, the results show that FINDS can distinguish between normal operating sensor errors and failures while providing an excellent detection speed for bias failures in the MLS, indicated airspeed, attitude and radar altimeter sensors

    A distributed fault-detection and diagnosis system using on-line parameter estimation

    Get PDF
    The development of a model-based fault-detection and diagnosis system (FDD) is reviewed. The system can be used as an integral part of an intelligent control system. It determines the faults of a system from comparison of the measurements of the system with a priori information represented by the model of the system. The method of modeling a complex system is described and a description of diagnosis models which include process faults is presented. There are three distinct classes of fault modes covered by the system performance model equation: actuator faults, sensor faults, and performance degradation. A system equation for a complete model that describes all three classes of faults is given. The strategy for detecting the fault and estimating the fault parameters using a distributed on-line parameter identification scheme is presented. A two-step approach is proposed. The first step is composed of a group of hypothesis testing modules, (HTM) in parallel processing to test each class of faults. The second step is the fault diagnosis module which checks all the information obtained from the HTM level, isolates the fault, and determines its magnitude. The proposed FDD system was demonstrated by applying it to detect actuator and sensor faults added to a simulation of the Space Shuttle Main Engine. The simulation results show that the proposed FDD system can adequately detect the faults and estimate their magnitudes

    Sensor failure detection system

    Get PDF
    Advanced concepts for detecting, isolating, and accommodating sensor failures were studied to determine their applicability to the gas turbine control problem. Five concepts were formulated based upon such techniques as Kalman filters and a screening process led to the selection of one advanced concept for further evaluation. The selected advanced concept uses a Kalman filter to generate residuals, a weighted sum square residuals technique to detect soft failures, likelihood ratio testing of a bank of Kalman filters for isolation, and reconfiguring of the normal mode Kalman filter by eliminating the failed input to accommodate the failure. The advanced concept was compared to a baseline parameter synthesis technique. The advanced concept was shown to be a viable concept for detecting, isolating, and accommodating sensor failures for the gas turbine applications

    Characterization of Model-Based Detectors for CPS Sensor Faults/Attacks

    Full text link
    A vector-valued model-based cumulative sum (CUSUM) procedure is proposed for identifying faulty/falsified sensor measurements. First, given the system dynamics, we derive tools for tuning the CUSUM procedure in the fault/attack free case to fulfill a desired detection performance (in terms of false alarm rate). We use the widely-used chi-squared fault/attack detection procedure as a benchmark to compare the performance of the CUSUM. In particular, we characterize the state degradation that a class of attacks can induce to the system while enforcing that the detectors (CUSUM and chi-squared) do not raise alarms. In doing so, we find the upper bound of state degradation that is possible by an undetected attacker. We quantify the advantage of using a dynamic detector (CUSUM), which leverages the history of the state, over a static detector (chi-squared) which uses a single measurement at a time. Simulations of a chemical reactor with heat exchanger are presented to illustrate the performance of our tools.Comment: Submitted to IEEE Transactions on Control Systems Technolog

    Sensor failure detection for jet engines using analytical redundance

    Get PDF
    Analytical redundant sensor failure detection, isolation and accommodation techniques for gas turbine engines are surveyed. Both the theoretical technology base and demonstrated concepts are discussed. Also included is a discussion of current technology needs and ongoing Government sponsored programs to meet those needs

    A comparative analysis of fault detection schemes for stochastic continuous-time dynamical systems

    Get PDF
    This paper addresses a comparative analysis of the existing schemes for fault detection in continuous-time stochastic dynamical systems. Such schemes prove to be efficient when dealing with specific types of fault functions; on the other hand, they show very different performance sensitivity when dealing with new fault profiles and system noise. The study suggests the use of a combined scheme, supervised by a high level decision rule set

    Distributed Fault Diagnosis of Interconnected Nonlinear Uncertain Systems

    Get PDF
    Fault diagnosis is crucial in achieving safe and reliable operations of interconnected control systems. This dissertation presents a distributed fault detection and isolation (FDI) method for interconnected nonlinear uncertain systems. The contributions of this dissertation include the following: First, the detection and isolation problem of process faults in a class of interconnected input-output nonlinear uncertain systems is investigated. A novel fault detection and isolation scheme is devised, and the fault detectability and isolability conditions are rigorously investigated, characterizing the class of faults in each subsystem that are detectable and isolable by the proposed distributed FDI method. Second, a distributed sensor fault FDI scheme is developed in a class of interconnected input-output nonlinear systems where only the measurable part of state variables are directly affected by the interconnections between subsystems. A class of multimachine power systems is used as an application example to illustrate the effectiveness of the proposed approach. Third, the previous results are extended to a class of interconnected input-output nonlinear systems where both the unknown and the measurable part of system states of each subsystem are directly affected by the interconnections between subsystems. In this case, the fault propagation effect among subsystems directly affects the unknown part of state variables of each subsystem. Thus, the problem considered is more challenging than what is described above. Finally, a fault detection scheme is presented for a more general distributed nonlinear systems. With a removal of a restrictive limitation on the system model structure, the results described above are extended to a class of interconnected nonlinear uncertain systems with a more general structure. In addition, the effectiveness of the above fault diagnosis schemes is illustrated by using simulations of interconnected inverted pendulums mounted on carts and multi-machine power systems. Different fault scenarios are considered to verify the diagnosis performances, and the satisfactory performances of the proposed diagnosis scheme are validated by the good simulation results. Some interesting future research work is also discussed
    • …
    corecore