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ABSTRACT

Zhang, Qi. Ph.D.in Engineering, Department of Electrical Engineering, Wright State Uni-
versity, 2013. Distributed Fault Diagnosis of Interconnected Nonlinear Uncertain Systems

Fault diagnosis is crucial in achieving safe and reliable operations of interconnected con-
trol systems. This dissertation presents a distributed fault detection and isolation (FDI)
method for interconnected nonlinear uncertain systems. The contributions of this disserta-
tion include the following: First, the detection and isolation problem of process faults in a
class of interconnected input-output nonlinear uncertain systems is investigated. A novel
fault detection and isolation scheme is devised, and the fault detectability and isolability
conditions are rigorously investigated, characterizing the class of faults in each subsystem
that are detectable and isolable by the proposed distributed FDI method. Second, a dis-
tributed sensor fault FDI scheme is developed in a class of interconnected input-output
nonlinear systems where only the measurable part of state variables are directly affected by
the interconnections between subsystems. A class of multimachine power systems is used
as an application example to illustrate the effectiveness of the proposed approach. Third,
the previous results are extended to a class of interconnected input-output nonlinear sys-
tems where both the unknown and the measurable part of system states of each subsystem
are directly affected by the interconnections between subsystems. In this case, the fault
propagation effect among subsystems directly affects the unknown part of state variables of
each subsystem. Thus, the problem considered is more challenging than what is described
above. Finally, a fault detection scheme is presented for a more general distributed non-
linear systems. With a removal of a restrictive limitation on the system model structure,
the results described above are extended to a class of interconnected nonlinear uncertain
systems with a more general structure.

In addition, the effectiveness of the above fault diagnosis schemes is illustrated by using
simulations of interconnected inverted pendulums mounted on carts and multi-machine

power systems. Different fault scenarios are considered to verify the diagnosis performances,

iii



and the satisfactory performances of the proposed diagnosis scheme are validated by the

good simulation results. Some interesting future research work is also discussed.
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Chapter 1

Introduction

Rapid progress in information technology is changing almost every aspect of how people
live their lives. In the last decade, peoples’ ability to access information has been greatly
enhanced by significant improvements in computer hardware, software, and telecommuni-
cations. As an integration of the fast developing information technology and the traditional
control technology, networked control systems have been applied in a broad range of areas
in industry. Such systems are composed of a great number of locally distributed and dy-
namically interacting control components, including control units, sensors, and actuators.
The information (sensor data, control signals, ect.) exchange among these control system
components is accomplished via a communication network or direct interconnections. The
primary advantages of distributed systems over the traditional centralized control systems
include improved control performance, low cost, reduced computation resource require-
ments, reduced wiring or communication bandwidth requirements, simple installation and
maintenance, and system agility. However, compared with tradition control systems, such
distributed systems are more vulnerable to system faults, since the effect of a catastrophic
failure in one subsystem will be quickly propagated to other subsystems due to interconnec-
tions or communications. In order to achieve reliable and safe operations of such distributed
systems, the design of intelligent fault diagnosis technologies is a crucial step in the devel-

opment of networked control system.



Recently, there have been significant research activities in the development of new method-
ologies of fault diagnosis in distributed networked control systems. However, most of these
methods are based on a centralized architecture. In practice, due to the constraints on
computational capabilities, wiring, and/or communication bandwidth, it is very difficult
to address the problem of diagnosing faults in interconnected distributed systems using a
centralized architecture. Also, limited research work has been done in the area of the fault
diagnosis of distributed systems, in particular for distributed nonlinear uncertain systems
This dissertation is motivated by the above significant issues. The research objective is
to investigate the problem of distributed fault detection and isolation for interconnected
nonlinear uncertain systems. The overall organization of the dissertation is as follows:
Chapter 2 presents a general introduction of networked control system and reviews the
state of art of automated fault diagnosis techniques for distributed control systems.
Chapter 3 presents a distributed detection and isolation method for process faults in a
class of interconnected nonlinear uncertain systems. A fault detection and isolation (FDI)
component is designed for each subsystem in the interconnected system. A novel fault
detection and isolation scheme is devised, and the fault detectability and isolability condi-
tions are rigorously investigated, characterizing the class of faults in each subsystem that
are detectable and isolable by the proposed distributed FDI method. Moreover, the stabil-
ity and learning capability of the local adaptive fault isolation estimators designed for each

subsystem is established. This chapter is based on the following paper:

e X. Zhang and Q. Zhang, ”Distributed fault diagnosis in a class of interconnected
nonlinear uncertain systems,” International Journal of Control , vol. 85, no. 11, pp.

1644 -1662, 2012.

Chapter 4 presents a distributed sensor FDI scheme for a class of interconnected nonlin-
ear systems, where only the measurable part of the state variables are directly affected by
the interactions between subsystems. A multimachine power system is used as an illustra-

tive example of the general method. In the multimachine power system, each generator



is interconnected with other generators through a transmission network. In the proposed
distributed FDI scheme, a local FDI component is designed for each generator excitation
system in the power system based on local measurements and certain communicated infor-
mation from other FDI components associated with generators that are directly intercon-
nected to the local generator. A fault detection and isolation scheme is developed and some
of its properties, such as the fault detectability and isolability conditions are rigorously

investigated. This chapter is based on the following paper:

e Q. Zhang and X. Zhang, ”Distributed Sensor Fault Detection and Isolation for multi-
machine Power systems” , International Journal of Robust and Nonlinear Control |

(under minor revision)

Chapter 5 presents a distributed sensor FDI method for a class of interconnected nonlinear
uncertain systems. This chapter extends the results described in Chapter 4 by considering
interconnected nonlinear systems where both the unknown part and the measurable parts of
system states of each subsystem are directly affected by the interconnections. This chapter

is based on the following paper:

e Q. Zhang and X. Zhang, ”Distributed sensor fault detection and isolation in a class of
interconnected nonlinear uncertain systems”, IFAC Annual Reviews in Control, vol.

37, Issue 1, pp. 170-179, 2013.

Chapter 6 presents a distributed fault detection method for a class of interconnected
nonlinear uncertain systems. This chapter extends previous results by considering more
general nonlinear systems. Under certain assumptions, a distributed fault detection method
is developed, and adaptive threshold for fault detection is derived, ensuring robustness
with respect to interconnections among subsystems and modeling uncertainty. Moreover,
the fault detectability conditions are rigorously investigated, characterizing the class of
detectable process faults and sensor faults in each subsystem. This chapter is based on the

following paper:



e Q. Zhang and X. Zhang, ” A distributed detection scheme for process faults and sen-
sor faults in a class of interconnected nonlinear uncertain systems,” the 2012 IEEE
Conference on Decision and Control , Maui, Hawaii, pp. 586-591, 2012. (Also in the

preparation of submission to IEEE Transactions on Automatic Control)

Chapter 7 includes some concluding remarks and some discussion of future research di-

rections as described.



Chapter 2

Literature Review: Research

Motivation

In this chapter, a general introduction of networked control system is first presented. Then,
an overview of the field of fault diagnosis is given, and some important concepts and defi-
nitions are introduced. In addition, we review some existing research work focusing on the
areas of fault detection and isolation of distributed linear and nonlinear systems, respec-

tively. Then, the research objectives of this dissertation are presented.

2.1 Introduction of Networked Control System

The networked control systems (NCS) are a class of spatially distributed control systems
where all the system components (sensors, actuators and controllers) exchange information
through a shared bandwidth, limited digital communication network [27, 7, 73]. As shown
in Fig. 2.1, all the nodes in NCS (i.e., sensors, actuators and controllers) can be connected
to each other through a communication network, and the complexity and cost of design and
operation of the control systems can be significantly reduced [27, 30, 67, 44]. Moreover,
since NCS have a flexible architecture and enhanced agility, with adding or removal of

sensors, actuators or controllers in the overall system, low cost and reliable installation and



maintenance can be achieved.

Plant sese Plant

Sensor Actuator Sensor Actuator

Network

\4
Controller Controller

Figure 2.1: Typical Structure of Networked Control System.

In recent years, the area of NCS is attracting more and more attention, and there have been
many applications of networked control system in different areas of the engineering field.
Examples of such systems including automotive control systems [53, 38, 16], distributed
jet engine control [1], cooperative control of a team of unmanned vehicles [45], haptics
collaboration over the Internet [29, 31, 59], power generation and distribution systems [25],
and water transport networks [13], etc.

In order to get more insight into the networked control system concept, the networked
control system architecture of the Volvo XC90 [38] shown in Fig. 2.2 is considered as an
illustrative example. The embedded distributed vehicle control system is considered as a
networked control system composed of different types of subsystems (i.e., the electrical con-
trol units (ECUs) as shown in Table 2.1) and different types of communication networks.

Specifically, the power train and chassis ECUs (e.g., TCM, ECM, BCM, etc) exchange the



information through a CAN bus (represented by red line) with a communication rate of 500
kbps. The body electronics ECUs (e.g., DDM, PDM, CCM, etc) are interconnected with
each other via another type of CAN bus (represented by light blue line) with a communica-
tion rate of 125 kbps. In addition, the media oriented system transport (MOST) networks
(represented by dark blue lines) connects the infotainment and telematics ECUs, and the
slave nodes are connected into the corresponding ECU through local interconnect networks

(LINs) which are denoted by dashed black lines.

CAN 500kbps -

ATM

CAN 125kbps

Figure 2.2: Distributed control architecture for the Volvo XC90.



Table 2.1 ECUs in the networked control system architecture of the Volvo XC90 [38]

Powertrain and chassis Body electronics
TCM Transmission control module CEM Central electronic module
ECM Engine control module SWM Steering wheel module
BCM Brake control module DDM Driver door module
BSC Body sensor cluster REM Rear electronic module
SAS Steering angle sensor CCM Climate control module
SUM Suspension module PDM Passenger door module

AUD Audio module

Infotainment /Telematics

MP1,2 Media player 1 and 2 ICM Infotainment control
PHM Phone module UEM Upper electronic module
MMM Multimedia module DIM Driver information module
SUB Subwoofer AEM Auxiliary electronic module

ATM Antenna tuner module

Recently, significant research work has been done in area of NCS. Most of the results focus
on the control problem [75], including

(1) Control of networks: in order to achieving efficient utilization of network resources of
NCS, the problem of network resources scheduling is investigated([64, 10, 74]).

(2) Control over networks: because the data of all nodes of NCS is exchanged through unre-
liable communication links, a lot of work has been done in designing of feedback strategies
adapted to NCS, while maintaining system stability or good control performance([23, 68,
12]).

(3) Multi-agent systems: some research work has been devoted to analyzing how network
architecture and interactions between subsystems influence global control goals ([54, 55, 46]).

In order to achieve reliable and safe operations of NCS, the design of fault diagnosis and



accommodation schemes is also a crucial step. However, there has been limited research
work on fault diagnosis of networked control system. Thus, the study of fault diagnosis
and accommodation of NCS needs to be considered as one of the key future directions for
networked control systems research.

In the last two decades, there have been significant research activities in the design and
analysis of fault diagnosis and accommodation schemes ( [3, 5, 24, 36, 22| ). However,
most of these existing methods consider traditional centralized control systems. Thus, the
distributed fault diagnosis problem has attracted significantly increasing attention in recent

years.

2.2 Overview of Automated Fault Diagnosis

A fault is defined as an unpermitted deviation of at least one characteristic property of a
variable from an acceptable behavior. It may lead to a malfunction or failure of the system.
The faults in the system can generally be classified into three types: component faults,

actuator faults, and sensor faults.

1. A component fault typically represents a fault which leads to changes in the normal
system dynamics. It can be modeled as an additive component fault or multiplicative
component fault [24]. An additive component fault causes changes in the system
outputs independent of known inputs. A multiplicative component fault is expressed
as changes in plant parameters in a process. For example, in a vehicular electric power
generation and storage system, damaged diodes in the rectifier in the alternator results

in a component fault [80].

2. An actuator fault represents the discrepancies between the input command of an
actuator and its actual output. For instance, in an aircraft control system, control

surface damage can be considered as an actuator fault [33].

3. A sensor fault represents the deviation between the measured and the actual value of

a plant’s output variable.



Actuator faults and sensor faults are commonly modeled as additive faults in the system.
Also, according to the time profiles of faults, faults can be classified as follows:

(i) abrupt fault , i.e., step-like change.

(ii) incipient faults. The magnitude of an incipient fault develops over a period of time.
They are often modeled as a drift or time-varying change in the parameters of a system.
(iii) intermittent fault. In a system, the symptoms of an intermittent fault only show up at
some time intervals or operating conditions, not all the time.

The fault diagnosis procedure monitors the system and generates information about the
abnormal behavior of its components. In general, fault detection, fault isolation and fault
identification are the three main steps of the fault diagnosis procedure [5]. The occurrence
of a fault in a monitored system can be determined in the fault detection stage. The step
of fault isolation ensures that we are able to retrieve some information about the fault such
as fault type or location, and fault identification determines the size or nature of the fault.
Next, we introduce some important properties for evaluating the performance of fault di-
agnosis schemes, including robustness, fault detectability and isolability.

(i) Robustness is the ability of the scheme to operate in the presence of noise, disturbance,
and modeling errors, with few false alarms.

(ii) Detectability and isolability are characterized by the class of faults which can be suc-
cessfully detected and isolated. A successful fault diagnosis scheme should be able to detect

and isolate faults of reasonably small sizes.

2.3 Fault Diagnosis Methods of Distributed Linear Systems

Early research work in the area of fault diagnosis of distributed system focuses on linear
systems [61, 28, 52]. The overlapping decomposition techniques proposed in [34] is used to
decompose a large scale linear system into subsystems sharing some common state variables.
Multiple decentralized observers are designed based on the subsystems, and differences

between the same state as estimated by the different observer can be used to isolate the

10



fault. In [58, 45], a decentralized detection filter method is presented to estimate the states
of the distributed linear system, and the absence of modeling uncertainty is assumed.

Recently, some research work [49, 50| have considered detection of malicious attacks in
cyber-physical systems modeled as distributed linear systems. Cyber-physical systems is a
class of distributed system consisting of physical processes of each subsystem as well as
communication networks among all the subsystems. There are many examples of cyber-
physical systems in industry, such as power generation and distribution networks, computer
networks, sensor networks, and energy efficient buildings. Such distributed systems are
vulnerable to malicious attacks in the communication link among subsystems, for example,
the Davis-Besse nuclear plant suffered the SQL Slammer worm attack in January 2003 [42],
and the StuxNet computer worm [17] attacked Iran’s nuclear facilities in June 2010. As an
example, a differential-algebraic model of the ith cyber- physical subsystem under attack is

represented as follows [50]:

E;z;i(t) = Ajxi(t) + Z Aijl'j(t) + Bg,uk, (1), (2.1)
JEN;
yi(t) = Cizi(t) + Druk,(t) ,, (2.2)

where z;(t) € R} and y;(t) € R* are the state vector and the output vector of the ith
subsystem, respectively, and ux, represents the K;th type of attack on the system dynamics
or sensor outputs. N; are the neighbors of the ith subsystem, A;, Bg,, Dk, and C; are
known matrices with appropriate dimensions, and the matrix FE; is possibly singular.

Based upon a waveform relaxation technique [43, 8], in [11, 49, 50, 51], a distributed fault
detection filter is proposed for each subsystem to detect any fault that may occur in the
corresponding subsystem. Also, the attack isolation problem for a certain class of cyber-
physical system has been considered in [49, 50], where a bank of distributed fault isolation
estimators are designed for each subsystem to identify a fault defined in a fault set. Specif-
ically, for the ith subsystem described in (2.2), the interconnections between subsystems

(i.e. Z A;jz(t) ) is treated as an unknown input, and a bank of unknown input observers
JEN;

11



are designed. Thus, the residual of each unknown input observer is insensitive to the inter-
connection term, and only sensitive to attacks in the ith subsystem. An isolation scheme
is proposed to identify both the subsystem where actual fault occurred and the particular

type of fault in that subsystem.

2.4 Fault Diagnosis Methods of Distributed Nonlinear Sys-

tems

In recent years, the area of distributed fault diagnosis of interconnected nonlinear system has
attracted significantly increasing attention [20, 72, 18, 48, 19, 86, 4]. Consider a nonlinear
dynamic system composed of M interconnected subsystems. A general system model is

given by the following differential equations, for¢ = 1,--- , M

;= filws, w) + gi(x, wiug) + 05 (25, ui, t) + Bie(t — Tox) i, us)
yi = Cixi+ Biy(t — Toy)bi(t)

(2.3)

where z; € R, u; € ™, y; € R4 and = € R are the local state vector, input
vector, and output vector of the ith subsystem (n; > [;), and state vector of the overall
system, respectively, f; : 5™ x R™ — R™ represents the local nominal dynamics, g; :
R x R™i x R™ — R represents the interconnection effect, n; : R x ™ x RT — R
is the modeling uncertainty. The term [, (t — To.)¢i(xi,u;) denotes the changes in the
dynamics of the ith subsystem due to the occurrence of a process fault in the local subsystem.
Specifically, the vector [;; characterizes the time profile of a process fault occurring at
some unknown time 7p,, and ¢;(z;,u;) represents the nonlinear process fault function. The
changes in the dynamics of ith subsystem caused by a sensor fault are characterized by
the term S, (t — Toy)0i(t). Specifically, the vector 6;(t) denotes a time-varying bias on
measurements caused by a sensor fault, and 3;, represents the time profile of the sensor
fault, where T, is the sensor fault occurrence time.

In recent research work of the fault diagnosis of nonlinear distributed systems, the inter-
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connection function g; is often assumed to be partially known or satisfy certain conditions.
For instance, the interconnection term is assumed to be linear in [45, 58], and the intercon-
nection term is assumed to satisfy lipschitz conditions in [72]. In [20, 19, 47, 18, 48, 4], an
on-line neural approximation model is used to estimate the interconnection term g;, and an
upper bound of the network approximation error is assumed to be known.

In [20, 18, 19], the overlapping decompositions strategy is applied to detect faults in large-
scale nonlinear systems. The distributed system is decomposed into sets of interconnected
subsystems sharing certain state variables. Based on the measurable local state and the
transmitted variables from the neighboring subsystem, a local fault detector is designed for
each subsystem. The interconnection between neighboring subsystems is approximated by
the neural network and the approximation information is sent to the local fault detector
in each subsystem. Moreover, a specially designed consensus-based estimator is used to
make the diagnoser reach a common decision about the variables which are affected by
faults. However, it is assumed that all the state variables are measurable. Additionally,
the unknown interconnection term is approximated by a linearly parameterized adaptive
approximator, and a bound on the approximation error is assumed to be known.

In [72], the sliding mode observer is used to address the problem of decentralized actuator
fault detection and estimation for a class of nonlinear large-scale systems. A sliding mode
observer is developed together with an appropriate coordinate transformation to find the
sliding mode dynamics. Then, an equivalent output error injection is used to estimate the
decentralized fault. The modeling uncertainty is assumed to have a certain structure and
a non-linear bound. In [72], the modeling uncertainty is assumed to be structured with a
known distribution matrix. Certain conditions on the uncertainty distribution matrix are
assumed to allow decoupling the effect of modeling uncertainty. Also, the upper bound
on the modeling uncertainty is assumed to satisfy a Lipschitz condition. When the above
conditions are satisfied, [72] provides a powerful method for fault estimation. However, the
modeling uncertainties in many practical systems are often unstructured. Additionally, the

fault estimation method presented in [72] does not necessarily allow the isolation of faults
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affecting the same state equation.

2.5 Research Motivation

In order to achieve safe and reliable operations of interconnected nonlinear controls systems
at all times, despite the possible occurrence of faulty behaviors in some subsystems, the
design of FDI schemes is a crucial step. First, an occurrence of any fault in any subsystem
needs to be detected as early as possible. Then, fault isolation schemes are required to
determine the particular fault type/location. Because of the fault effect propagation among
subsystems, multiple subsystems may be affected by a fault in a local subsystem. Thus, a
hierarchical fault isolation architecture needs to be considered in the FDI schemes, including
: 1) determining the faulty subsystem where the fault actually occurred among the set of
all subsystems. 2) determining the type of the fault among a set of known (or partially
known) possible fault types in the faulty subsystem.

The distributed fault detection and isolation methods introduced in Section 2.4 are very
interesting. However, the FDI problem for a general interconnected nonlinear uncertain
systems remains open.

As described above, in the literature of fault diagnosis of distributed nonlinear systems, some
research work considered the system with full-state measurements [20, 18, 19]. However,
in practice, only a part of the states are available. As a result, it is important to consider
the FDI problem of input-output systems with partial state measurements. Moreover, some
research work assume the absence of modeling uncertainty (e.g., [58]) or structured modeling
uncertainty (e.g., [72]). In the case of structured models of the modeling uncertainty, in
order to achieve robustness, it is often assumed that the uncertainty distribution matrix
satisfies certain rank conditions. Based on such assumptions, we can derive a system which
is decoupled from the modeling uncertainties, but remain sensitive to the faults by using
a suitable state transformation. However, the modeling uncertainty in many of practical

systems are unstructured, thus, it is necessary to address the problem of unstructured
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modeling uncertainty. Additionally, most of the research work introduced in Section 2.4
only focus on the fault detection problem of the distributed nonlinear systems. There are
very limited results investigating the fault isolation problem of the distributed nonlinear
systems.

The idea of using adaptive and learning techniques for fault diagnosis and accommodation
has been proposed in (see, for instance, [39, 83, 37, 66, 70, 6]). However, most of these
methods are based on a centralized fault diagnosis architecture. In practice, due to con-
straints on computational capabilities and communication bandwidth, it is very difficult to
address the problem of diagnosing faults in interconnected systems using a centralized archi-
tecture. Thus, in this dissertation, fault diagnosis schemes with a distributed architecture
are considered.

The first research objective of this dissertation is to investigate the detection and isola-
tion problem of process faults in a class of interconnected input-output nonlinear systems
with unstructured uncertainty. In such systems, it is assumed that system states of each
subsytem can be decomposed into an unknown part and a measurable part by a state trans-
formation, and the mearuable part of states may be directly affected by a set of process fault
types which are partially known. Our goal is detect and identify which one has actually
occurred in a faulty subsystem. In the proposed distributed FDI architecture, a FDI com-
ponent is designed for each subsystem in the interconnected system. For each subsystem, its
corresponding local FDI component is designed by utilizing local measurements and certain
communicated information from neighboring FDI components associated with subsystems
that are directly interconnected to the particular subsystem under consideration. A novel
fault detection and isolation scheme is developed and some of its properties, such as the
fault detectability and isolability conditions are rigorously investigated.

The second research objective of this dissertation is to study the sensor FDI problem for
a class of interconnected input-output nonlinear systems with an unstructured modeling
uncertainty. Because the effect of a faulty sensor in a subsystem may be propagated to other

interconnected subsystems, distributed sensor FDI is a challenging problem, and our goal
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is determining the faulty subsystem where the sensor fault actually occurred. A distributed
sensor FDI scheme is developed for a class of interconnected nonlinear systems where only
the measurable part of state variables are directly affected by the interactions between
subsystems. A class of multimachine power systems is used as an application example to
illustrate the effectiveness of the proposed method, and the method can be easily extended
to other systems with the similar model structure. In the multimachine power system,
each generator is interconnected with other generators through a transmission network,
and it is assumed that the system state in each generator excitation control system can be
decomposed into an unknown part and a measurable part. In the proposed distributed FDI
scheme, a local FDI component is designed for each generator excitation system in the power
system based on local measurements and certain communicated information from other
FDI components associated with generators which are directly interconnected to the local
generator. A fault detection and isolation scheme is developed and some of its properties,
such as the fault detectability and isolability conditions are rigorously investigated.

The third research objective of this dissertation is to extend the above results on sensor fault
diagnosis by considering a class of interconnected input-output nonlinear systems, where
both the unknown part and the measurable part of system states of each subsystem are
directly affected by the interconnection between subsystem. In this case, a fault propaga-
tion effect among subsystems directly affects the unknown part of state variables of each
subsystem. Thus, the problem considered is more challenging than what is described above.
The fourth research objective of this dissertation is to consider the fault detection problem
of more general distributed nonlinear systems. In the research work described above, it is
assumed that the nonlinear system model satisfies certain structural assumptions. Specif-
ically, it is assumed that the system state in each subsystem can be decomposed into an
unknown part and a measurable part, with the unknown part assumed to be stable and
not directly affected by faults. Under this task, we significantly extend the above research
work by removing these restrictive limitations on system model structure and fault ef-

fects. Under certain assumptions, a distributed fault detection method is developed for a
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class of interconnected nonlinear uncertain systems with a more general system structure.
In the distributed detection scheme, a fault detection component is associated with each
subsystem. Adaptive thresholds for fault detection are derived, ensuring robustness with re-
spect to interconnections among subsystems and modeling uncertainty. Moreover, the fault
detectability conditions are rigorously investigated, characterizing the class of detectable

process faults and sensor faults in each subsystem.
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Chapter 3

Distributed Process Fault
Detection and Isolation in

Interconnected Nonlinear Systems

A centralized FDI methodology for nonlinear uncertain systems has been developed in
[83, 84]. The chapter significantly extends the previous results by developing a distributed
FDI scheme for a class of interconnected nonlinear uncertain systems. The class of faults
considered are nonlinear process faults which directly affect the dynamics of a particular
subsystem and includes both abrupt and incipient faults, including components faults and
actuator faults described in Section 2.2. Because of the interactions among subsystems and
the limitation of information that is available for each subsystem, the problem of distributed
FDI is very challenging. In the presented distributed FDI architecture, a fault diagnostic
component is designed for each subsystem in the interconnected system by utilizing local
measurements and certain communicated information from neighboring FDI components
associated with its directly interconnected subsystems. Each local FDI component consists
of a fault detection estimator (FDE) and a bank of nonlinear adaptive fault isolation estima-

tors (FIEs), where each FIE is associated with a type of potential nonlinear fault associated
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with the corresponding subsystem. Once a fault is detected in a particular subsystem, then
the corresponding local FIEs are activated for the purpose of determining the particular
type of fault that has occurred in the subsystem.

In the fault isolation scheme, a set of adaptive thresholds are designed in order to evaluate
residuals generated from each FIE, and we can eliminate the possibility of the occurrence
of a particular fault based on the fact that at least one of the residual components of the
corresponding isolation estimator exceeds its threshold in finite time. Thus, if all but one
of the faults are excluded, then a successful fault isolation can be achieved. In addition,
a concept ’fault mismatch function’ is applied in describing the similarity degree of two
faults. If two faults are not sufficiently different, then they can not be isolated by using the
proposed FDI method.

The distributed FDI method is presented with an analytical framework aiming at char-
acterizing its important properties. Specifically, the analysis focuses on: (i) derivation of
adaptive thresholds for distributed fault detection and fault isolation, ensuring the robust-
ness property with respect to interactions among interconnected subsystems and modeling
uncertainty; (ii) investigation of fault detectability and isolability conditions, characteriz-
ing the class of faults in each subsystem that are detectable and isolable by the proposed
method; (iii) investigation of stability and learning capability of local adaptive fault isolation
estimators designed for each subsytem.

The chapter is organized as follows. In Section 3.1, the problem of distributed FDI for a
class of interconnected nonlinear uncertain systems is formulated. Section 3.2 describes
the distributed FDI architecture and the design of local FDI component for each subsystem
in the interconnected system. The design of adaptive thresholds for distributed fault isola-
tion in each subsystem is presented in Section 3.4. Section 3.5 analyzes several important
properties of the distributed FDI method, including fault detectability, fault isolability,
and stability and learning capability of the adaptive fault isolation estimators. To illus-
trate the effectiveness of the diagnostic method, some simulation results of an example of

interconnected inverted pendulums mounted on carts is presented in Section 3.6.
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3.1 Problem Formulation

Consider a nonlinear dynamic system composed of M interconnected subsystems with the

dynamics of the ¢th subsystem, ¢ = 1,--- | M, being described by the following differential

equation
Go= Aizi+ Gz w) + oilzi, uis t) + Bi(t — To) Eifi(zi, us)
+ 30500 gz, 2, i wg) + dig (23, 25, wiy )] (3.1)
Yi = Cizi

where z; € R, u; € R™ , and y; € R are the state vector, input vector, and output
vector of the ith subsystem (n; > [;), respectively, (; : "™ x R™i — R ¢; : R™ x R M X
Rt = R, fi o R xR R d;j and h;j @ R x R x M R o= ] are smooth

vector fields. Specifically, the model given by

ini = Aizni + Glani, wi)

yni = Cizng

is the known nominal model of the 7th subsystem with (; being the known nonlinearity. The
vector field ¢; in (3.1) represents the modeling uncertainty of the ith subsystem, and (3;(t —
To) E; fi(zi, u;) denotes the changes in the dynamics of ith subsystem due to the occurrence
of a fault in the local subsystem. Specifically, 5;(t — Tp) is a step function representing
the time profile of a fault which occurs at some unknown time Ty (i.e., 5;(t — Tp) = O if
t < Ty, and B;(t — To) = 1if t > Tp), fi(2i,u;) is a nonlinear fault function, and Ej; is a
fault distribution matrix. Additionally, the vector fields h;; and d;; represent the direct
interconnection between the ith subsystem and the jth subsystem. Specifically, h;; is the
known part of direct interconnection, while d;; is the unknown part of the interconnection.
It is noted that likely many functions h;; and d;; are identically zero in an interconnected
system (i.e., many subsystems do not directly influence subsystem i). Moreover, h;; = 0
and d;; = 0 because the interconnection terms are only defined between two subsystems.

Assumption 3.1 The constant matrices E; € R"*% and C; € Ri*™ with ¢; < l; are of
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full column rank and satisfies the condition rank(C;E;) = q;. Additionally, all the invariant
zeros of the system (A;, E;, C;) are in the left half plane.
Then, under Assumption 3.1, for ¢ = 1,--- , M, there exists a change of coordinates z; =

[z} 5T = Tz with ;1 € RMi—l) and x5 € R, such that [72]

0
o T'F;, = , Where E;9 € Rlixdi
E;

° C’iTi_l = [0 Cj], where C; € Rt*li is orthogonal.
Therefore, in the new coordinate system, the system model (3.1) is in the form of
T = Anza + At + pin (@i, ui) + in (@, ui, t)
M
+Z [Hzlj(xla Ty, Ug, uj) + Dzlj(xla Tj, Uj, u])}
j=1
dio = Apwi + Auxio + pio (i, i) + dia(i, wis t) + Bi(t — To) Ein fi(wi, ug) (3:2)

M
—I—Z |:H12](CCZ, Ty Uiy ’LLj) + D%(SL‘Z, Ty Uiy u])}
j=1

yi = Ciz,
Ain A pi1 bi1 H}
where ' ' = ,—Z—%Aij—;;_la ' = ,—FLC’H ' = 1;Pi, Y = ,Ith”,
Aiz  Ai pi2 iz H?
DL
and " = Tid;j. Let us define Z;, 4;, and y; as the vectors comprising of the
D2
J

state variables, input signals, and output variables of those subsystems that have nonzero

unknown interconnection terms Dilj and D?j with respect to subsystem i, respectively. Then,
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by allowing a more general structure of the fault function, we have

M
b = Anmi+ Apvi + pa (s w) + 0o (@ By, 0, 0) + Y HL (20,25, 0, )
=
Ty = Apzia + Auzio + pio(zi, w) + mio(xs, T, u, U, t) + Bi(t — To) fis, uq) (33)
\ .
+> HZ (i, w5, 0, )
=
yi = Ciza,

M M
where 71 2 i1 + ZDilj, Ni2 = dio + ZD%-, and f; : R x ™ — RY is a smooth
vector field represengi:nlg the unstructured ilf)iﬂinear fault function in each subsystem under
consideration, Clearly, (3.2) is a special case of (3.3) with f;(z;, u;) = Eifi.
To formulate the fault isolation problem, it is assumed that there are IV; types of faults in

the fault set associated with the ith subsystem, ¢ = 1,--- , M. Specifically, the unknown

fault function f;(x;,u;) in (3.3) is assumed to belong to a finite set of fault types given by

4

7 {fil(x,-,ui), szi(:ci,u,-)}. (3.4)

Each fault type f?, s=1,---,N;, is in the form of

1>

i) 2 [(03) g o), 03,00) g ()] (35)

where pr(t), p = 1,---,l;, characterizing the unknown fault magnitude, is a parameter

vector assumed to belong to a known compact and convex set ©7) (i.e., 07,(t) € 67,

vt > 0),
and g;, is a known smooth vector field representing the functional structure of the sth fault
affecting the pth component of state vector x;o of the ith subsystem. For instance, in the
case of a leakage fault [83], 67 (¢) characterizes the size of the leakage in a tank, and g;,
represents the functional structure of the fault affecting each state equation.

The fault isolation problem formulated above is motivated by practical considerations. In

many engineering applications, based on the historical data and past experiences, the system
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engineers often have a reasonably good idea of the types of faults that may occur in a
particular system. Although different faults have possibly different nonlinear effects on the
system dynamics, for a given type of fault, the uncertainty is often the magnitude of the
fault. In [83], a well-known fault diagnosis benchmark example, the three-tank system, has
been considered to motivate the definition of the fault set described by (3.2) and (3.3).
The objective of this chapter is to develop a robust distributed fault detection and isolation
scheme for the class of interconnected nonlinear uncertain systems that can be transformed
into (3.3). It is worth noting that the case of a new fault, which doesn’t belong to the fault
set (3.4), can also be determined based on the presented FDI method, if its fault functional
structure is sufficiently different (as quantified in Section 3.5.2). Throughout the paper, the
following assumptions are made:

Assumption 3.2 The functions n;1 and n;o in (3.3), representing the unstructured modeling

uncertainty, are unknown nonlinear functions of x;, Z;, u;, u;, and t, but bounded,

min (i, T wa, g, 6)] < in (Y, Uy v Uy £), - mia (i, T wa, Uy )] < Moy, U i, U 1)

(3.6)

where the the bounding functions ;1 and ;5 are known and uniformly bounded in the cor-

responding compact sets of admissible state variables, inputs, and outputs with appropriate

dimensions, respectively.

Assumption 3.3 The system state vector x; of each subsystem remains bounded before

and after the occurrence of a fault, i.e., x;(t) € Lo, ¥t > 0.

Assumption 3.4 The nonlinear terms p;1 (x;, u;) and p;a(z;, u;) in (3.3) satisfy the following

inequalities: Yu; € U; and Vx;, ; € X;,

IN

|pit (@i, ui) — pin (&i, u4)| oit|zi — 2] (3.7)

|pi2(zi,wi) — pio(Tiswi)| < oia(yi, wi, &) |wi — &4 (3.8)

where o;1 is a known Lipschitz constant, o;o(-) is a known function that is uniformly
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bounded, X; C R™ and U; C R are compact sets of admissible state variables and inputs,
respectively.

Assumption 3.5 The interconnection terms H}j and Hfj satisfy the following condition,
ie., Vxj, T; € X},

‘Hzlj(xu xj: Ug, u]) - Hz:‘lj(j;u i.ju Uy, ’LL])’

IN

vijl; — ] (3.9)

| (i, @, ui,u5) — HY (8, &5 us,u5)] <095 (Wi, wi, ug) @y — &5 (3.10)

where ’yz-lj is a known Lipschitz constant, and 'y?j is a known and uniformly bounded func-
tion.

Assumption 3.6 The rate of change of each fault parameter vector 6;,(t) in (3.5) (s =
1,--+,N;, p = 1,--+,l;) is uniformly bounded, i.e., lﬁf(t)\ < «f for all t > 0, where
0:(t) 2 ( fl(t))T, cee (Gfli (t))T}T, and o is a known constant.

Assumption 3.7 The fault function f(x;, u;) satisfy the following condition, i.e., Vx;, &; €
Xj

L5 (i us) = f7 (@) <0 o) (Y, wi) |2 — 24 (3.11)

where w; is a known and uniformly bounded function.

Assumption 3.2 characterizes the class of modeling uncertainty under consideration, in-
cluding various modeling errors in the system’s local dynamics (i.e., ¢;1 and ¢;2) and the
unknown part of interconnection between subsystems (i.e., Dilj and ng). The bounds on
the unstructured modeling uncertainty are needed in order to be able to distinguish be-
tween the effects of faults and modeling uncertainty (see [83, 84]). For instance, in the
aircraft engine fault diagnosis application considered in [65], the modeling uncertainty is
the deviation of the actual engine dynamics from a nominal engine model representing the
dynamics of a new engine, which results from normal engine component degradation during
its service life. Such normal component degradation can be modeled by small changes in

certain engine component health parameters (e.g., efficiency and flow capacity of the fan,
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compressor, and turbine). Therefore, the bounding function on the modeling uncertainty
(i.e., M1 and 7;2) can be obtained by using the knowledge of possible normal degradation
of these health parameters during a number of flights under the worst case scenario [56].
Additionally, it is worth noting that the modeling uncertainty considered in this paper is
unstructured, while distributed fault diagnosis methods in the literature often assume the
absence of modeling uncertainty (e.g., [58]) or structured modeling uncertainty (e.g., [72]).
In the case of structured models of the modeling uncertainty, in order to achieve robustness,
it is often assumed that certain rank conditions are satisfied by the uncertainty distribution
matrix. On the other hand, the utilization of structured uncertainty with additional as-
sumptions on the distribution matrix may allow the design of FDI schemes that completely
decouple the fault from the modeling uncertainty.

Assumption 3.3 requires the boundedness of the state variables before and after the occur-
rence of a fault in each subsystem. Hence, it is assumed that the distributed feedback control
system is capable of retaining the boundedness of the state variables of each subsystem even
in the presence of a fault. This is a technical assumption required for well-posedness since
the distributed FDI design under consideration does not influence the closed-loop dynamics
and stability. The design of distributed fault-tolerant controllers is beyond the scope of this
chapter. However, it is important to note that the proposed distributed FDI design does
not depend on the structure of the distributed controllers.

Assumption 3.4 characterizes the type of known nonlinearities of the nominal system dy-
namics under consideration. Specifically, it is assumed p;1(x;,u;) is Lipschitz in u;, and
pia(x;, u;) satisfies inequality (3.8). Note that condition (3.8) is more general than the
Lipschitz condition (in this special case, o2 is a constant).

Assumption 3.5 requires the interconnection term H;; between subsystems to satisfy a Lip-
schitz type of condition. Several examples of distributed nonlinear systems with Lipschitz
interconnection terms have been considered in literature (see, for instance, the automated
highway system [58, 62], interconnected inverted pendulums [32, 63]), and large-scale power

systems [25]). Note that H;; is a function of unknown state vectors x; and ;.
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In Assumption 3.6, known bounds on the rate of change of the fault magnitude 67(¢) are
assumed. In practice, the rate bounds o can be set by exploiting some a prior: knowledge
on the fault developing dynamics. Note that the cases of abrupt faults and incipient faults
are both covered by the fault model B;(t — Tp)f; under consideration. Specifically, the
fault time profile function f;(t — Tp) is a step function modeling abrupt characteristics
of the fault, and the fault magnitude 67(¢) represents the (possibly time-varying) fault
magnitude. For instance, in the case of foreign object damage to the fan of an aircraft
engine, the function 5;(t — Tp) models the sudden and immediate effect of the damage, and
07 (t) captures the possibly time-varying development of the fault magnitude following the
initial sudden damage. In the specifical case of abrupt faults, we can simply set o = 0
(i.e., 07 is a vector of constants), and the function S;(t — T) models the abrupt behavior
of the fault.

Assumption 3.7 assumes the fault function f; satisfies the condition given by (3.11). This
is needed for the design and analysis of the distributed adaptive FDI algorithm, since the
fault function f; is also a function of the unknown state variables x;. In the special case that

the fault is a function of measurable output y; and known input w;, we simply have @] = 0.

Remark 3.1 An interesting distributed fault estimation method was developed in [72]
based on sliding mode observer techniques. The approach in [72] assumes a known bound
on the fault function and utilizes a structured model of modeling uncertainty with additional
assumptions on the distribution matrices of the modeling uncertainty, which allows com-
pletely decoupling faults from modeling uncertainty. In this chapter, we consider a different
problem of distributed fault isolation for nonlinear systems with different fault models and
unstructured modeling uncertainty based on adaptive estimation techniques. The objective
is to detect the occurrence of any faults and to determine if one of the faults in the fault
set (3.4) or a new fault that doesn’t belong to (3.4) has occurred. In addition, in previous
papers [82, 84], fault diagnosis schemes for nonlinear systems utilizing a centralized archi-

tecture were developed. In this research work, the problem of distributed fault diagnosis for
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interconnected nonlinear systems is investigated. With the interconnection terms Hl-lj and
Hfj among subsystems (see (3.3)) and the presence of unstructured modeling uncertainty,
the design and analysis of distributed fault diagnosis methods is much more challenging

than centralized fault diagnosis methods.

3.2 Distributed Fault Detection and Isolation Architecture

The distributed FDI architecture is comprised of M local FDI components, with one FDI
component designed for each of the M subsystems. The objective of each FDI component is
to detect and isolate faults in the corresponding local subsystem. Specifically, each local FDI
component consists of a fault detection estimator (FDE) and a bank of N; nonlinear adaptive
fault isolation estimators (FIEs), where Nj is the number of different nonlinear fault types in
the fault set F; associated with the corresponding ith subsystem (see (3.4)), i =1,---, M.
Under normal conditions, each local FDE monitors the corresponding local subsystem to
detect the occurrence of any fault. If a fault is detected in a particular subsystem ¢, then
the corresponding NN; local FIEs are activated for the purpose of determining the particular
type of fault that has occurred in the subsystem.

The FDI architecture for each subsystem follows the generalized observer scheme (GOS)
architectural framework well-documented in the fault diagnosis literature [3, 5]. The dis-
tributed nature of the presented FDI method can be better understood if compared with
the conventional centralized FDI architecture. For M interconnected subsystems, Nj +
Ny + --- + Ny estimators are needed at the server node in the case of centralized FDI
architecture. With the presented distributed FDI architecture, IV; estimators are needed
at the ¢th subsystem. Hence, the computation is distributed across the subsytems in the

network.
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3.3 Distributed Fault Detection Method

In this section, we investigate the distributed fault detection method, including the designs
of each local FDE for residual generation and the corresponding adaptive thresholds for
residual evaluation.

3.3.1 Distributed Fault Detection Estimators

Based on the subsystem model described by (3.3), the FDE for each local subsystem is

chosen as:
M
A A —1 A 172 &
T = AnZa + AnC; yi+Pi1($ian)+§ H5 (24, 2, wiy ug)
P

M
- N . N . . 3.12
Tip = AZa + Aulio + pio(Ti,wi) + Li(yi — i) + ZH%(% Tj, Ui, u ) (3.12)
i=1

9 = CiZa,

where Z;1, Z;2, and g; denote the estimated local state and output variables of the ith subsys-
. . el . . LA DN -
tem,i = 1,---, M, respectively, L; € R%*l is a design gain matrix, #; = [(#1)7 (C; y) )T,

2 [(#1)" (C'j_lyj)—r}—r (here Z;; is the estimate of state vector x;; of the jth in-

and Z;
terconnected subsystem). The initial conditions are 4;1(0) = 0 and #;3(0) = C; 'y;(0). It
is worth noting that the distributed FDE (3.12) for the ith subsystem is constructed based
on local input and output variables (i.e., u; and y;) and the communicated information ;
and u; from the FDE associated with the jth interconnected subsystem. Note that many
distributed estimation and diagnostic methods in literature allow certain communication
among interconnected subsystems (see, e.g., [58, 60, 72, 20, 45]).

~ AN “ - AN N . .
For each local FDE, let ;1 = z;1 — Z;1 and T, = x;2 — Z;2 denote the state estimation

. A N . .
errors, and g; = y; — ¥; denote the output estimation error. Then, before fault occurrence
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(i.e., for t < Tp), by using (3.3) and (3.12), the estimation error dynamics are given by

i = Aadi + pa(@iw) — pin (T4, wi) + i
M
+Z [Hllj(xz, Ty Usg, Uj) — Hl-lj(i'i, .f?j, Uy, U,J)] (3.13)
j=1
Tio = Audiio + AT + pio(xi, wi) — pia(Fi,u:) + Miz
M
—1—2 [Hfj(xi,xj, Ui, Uj) — Hfj(ici,:f:j,ui,Uj)] (3.14)
=1
Gi = Ci(zia — Zi2) = Ciaa, (3.15)

= A . . .
where A,y = Ajy — L;C;. Note that, since C; is nonsingular, we can always choose L; to

make A;4 stable.

3.3.2 Adaptive Thresholds for Distributed Fault Detection

Next, we will investigate the design of adaptive thresholds for distributed fault detection in
each subsystem. The following Lemma will be needed in the subsequent analysis:

Lemma 3.1 [35]. Let p(t), q(t) : [0,00) — R. Then
p(t) < —ap(t) +q(t), Vt=to=0

implies that

t
pt) < e tt)p(tg) + / e~ Ng(r)dr, Vt>1t5>0
to

for any finite constant a.

Then, a bounding function on the state estimation error vector
[(F10) ", -, @), -, @) '] (3.16)

before fault occurrence ( i.e., for 0 < ¢t < Tp) can be obtained. Specifically, we have the
following results:

Lemma 3.2. Consider the system described by (3.3) and the fault detection estimator
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described by (3.12). Assume that there exists a symmetric positive definite matrix P; €

Ru—t)x(ni=b) " for j = 1,--- , M, such that,
1. the symmetric matrix

yAN
R; = —A\Pi — PAj1 — 2P,P; — 2041||Pi||I > 0, (3.17)

where I is the identity matrix;

2. the matrix Q € RM*M whose entries are given by

Qi = . . o (3.18)
_|’Pi’|7ij_||Pj|’7jiv i#Fj, =1, M,

is positive definite, where ’yl-lj and 7]1-1- are the Lipschitz constants introduced in (3.9).

Then, for 0 < t < Ty, the state estimation error vector ¥1(t) defined by (3.16) satisfies

the following inequality:

#1]? < Voe = TR /te‘c(t”)i_‘ *dr (3.19)
! - )\mzn(P) 2)\mzn(P) 0 i—1 it ’ ’

. A . A = .
where the matrix P = diag{ Py, - , Py}, the constant ¢ = A\pin(Q)/Amaz(P), and Vj is a
positive constant to be defined later on.
Proof: For the ith subsystem, let us consider a Lyapunov function candidate V; =

#;1 " PiZ;1. The time derivative of V; along the solution of (3.13) is given by

M

Vi = &) (ALP + Pidi)Ea + 28] Py + 283 Y [H (2, 5, wi,uy) — HY (23,25, w3, u))]
j=1

+ 28 P, [pit (i, i) — pir (23, w3)] - (3.20)
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Note that

Tri1 — {i"l .f'l
z;— & = s =7 . (3.21)
Tjo — Cj_lyj 0

Therefore, based on (3.9) and (3.21), we have
M M
2\ Py [H (i, wjywiyug) — Hy(80, &5,wi,u)] <0 20dal - ([P vl — 2]
j=1 j=1
M
= 2[|B Z%‘lﬂiiﬂ |zl (3.22)
j=1
Moreover, based on (3.7) and (3.21), we obtain

28] P; [pir (i, wi) — pir(&i,wi)] < 2@ - ||Pil| oa |z — 4]

= 2[&a| - [Pl oir [Zaa]
= & [200]|Bi||I] % . (3.23)
Additionally, we have
~T ~ ~T - 1 2
2z P < 2Pizallna| < 2253 PiPiEa + glmal”. (3.24)

By using (3.20), (3.22), (3.23) and (3.24), we obtain

. M 1

Vi <& | AL P+ PAin + 2P P + 204 | P I} T+ 202l D vilaal ]+ Sl (3.25)

j=1
Based on (3.17) and the inequality 7} RiZi1 > Amin(Ri)|%i1]?, where A\pin(R;) is the mini-
mum eigenvalue of R;, we obtain:
M 1
Vi < =Auin(Ri) [Za* + 20| Bil] Y vl 1E] + glmal® (3.26)

=1

Now, let us consider the following overall Lyapunov function candidate for the intercon-
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nected system: V = Zf\il V, = Zf‘il T Pi#;1 = & P%1, where P = diag{Py, -+, Py}
Therefore, from (3.26) and (3.18), we have

M
V< Z min( |$11| —|—ZZQ||PH%J\1’11||$11\ +Z |7711|
=1

i=1 j=1
|Z11]
N _ . |Z1 M g
= —[lzul 1@ -+ |2a]]@ _ +Z§|m1|2
: i=1
ol |

IN

where the matrix Q is defined by (3.18). By using the Rayleigh principle (i.e., Apin(P)|Z1]?
V(t) < Amaz(P)|Z1|? ) and the definition of V (¢), we have

M
. 1
V< = Ain |$1|2+Z i V+Z n112=—cV+z;2|m1|2.
1=

where Z; and the constant ¢ are defined in (3.16) and Lemma 3.2, respectively. Now, based

on Lemma 3.1, it can be easily shown that

1 [t M
V(t) < V(0)e® + 3 /0 e g [P dr
=1

Note that we can always choose a positive constant Vj such that V(0) < Vy. Thus, based on
the definition of V'(¢) and the Rayleigh principle, the proof of (3.19) can be immediately con-
cluded.

Remark 3.2: It is also worth noting that a necessary condition for (3.17) is that A;; is
Hurwitz. In addition, note that the linear matrix inequality (LMI) toolbox can be used
to find a feasible solution to the matrix inequalities (3.17) and (3.18). Specifically, the

following procedure can be adopted:

e By using the Schur complements, the nonlinear inequalities —A;Pi — P, Ay —2P,P; —
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201 ||Pi|| I > 0 can be converted to a LMI form as

— AP — P A — 200161 V2P

>0 (3.27)
V2P, I
and
gl P
>0, (3.28)
PGl

where ¢; is a positive constant. Then, a suitable solution of P; can be obtained by

solving (3.27) and (3.28) using the LMI toolbox.

e For the matrix P; found in the above step, the matrix @ defined in (3.18) is verified.

If @ is positive definite, the solution of F; is valid.

Now, we analyze the output estimation error g;(¢) (see (3.15)) of the ith subsystem. For

0 <t < Tp, the solution of (3.14) is given by

¢ ¢
Tio(t) = / et (=T) [ A (1) + N2 (s, Tj, wi, Uy, t)| dr +/ M) o (i, ui) — pia (4, u)] dr
0 0

/ Az4tTZ 2w,y uiy ) — HE (2,85, w5, u5)] dr .

7=1
. . . ~ A ~
Therefore, for each component of the output estimation error, i.e., ip(t) = CipZia(t), p =
1,---,1;, where Cj, is the pth row vector of matrix Cj;, by applying the triangle inequality,
we have
' ) M
0 —
J#i

¢ )
+ / CipeAM(t_T) [AisZi1 + ni2] dT
0

t _
+ / Cipe 7 [pia (i, u5) — pia(@i, wi)] dr| (3.29)
0
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Based on (3.8), (3.10), and (3.21), we have

\Hz-(xi,xj,ui, Uj) — H2

i (T B, uis ug)|

IN

Vi 1 %1 (3:30)

|pio (i, wiy ) — pio(Ti,us)| < oi(Yiuis Ti1) [Za -
Therefore, by using (3.29) and (3.30), we obtain

t M
0 < iy [ (1Al + a2l + sl + 3l (30)
j=1

where k;, and \;, are positive constants chosen such that ]CipeAi4t\ < ki/pe*)‘il’t (since Ajy
is stable, constants k;;, and \;p satisfying the above inequality always exist [35]). By letting

0i = [’Yzlv R 71‘2(@_1)’ H-AZ?)H + 052, ’71‘(1‘4_1)’ T 771'2M}T7 (332)

(that is, the components of p; are given by g = || Aiz|| + 02, and g;; = %2]- for j # i), the

inequality (3.31) can be rewritten as

t M
Dip(t)| < k‘ip/o e (=) [Z&jﬁjﬂ + |77i2|] dr
j=1
t
< k'ip/ e () [|Qi| 21| + 771;2] dr. (3.33)
0
Now, based on (3.33) and (3.19), we obtain
t
0] < by | el x(r) + (330
where "
- M
A Vbe—ct 1 t (=) o
x(t) = + /e U |71 | dr . (3.35)

Therefore, based on the above analysis, we have the following
Distributed Fault Detection Decision Scheme: The decision on the occurrence of a

fault (detection) in the ith subsystem is made when the modulus of at least one component of
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the output estimation error (i.e., Uip(t)) generated by the local FDE exceeds its corresponding

threshold v,(t) given by

vip(t) = kzp/o “AwltmT UQz|X( ) + iz |dr. (3.36)

The fault detection time Ty is defined as the first time mstant such that |Gip(Ta)| > vip(Ta),

for some Ty > Ty and somep € {1,--- ,1;}, that is, Ty = 2 inf U {t>0: |Gip(t)] > vip(t)}.
The above design and analysis is summarized by the follovvin_g1 technical result:

Theorem 3.1 (Robustness): For the interconnected nonlinear uncertain system described
by (3.3), the distributed fault detection method, characterized by FDE (3.12) and adaptive
thresholds (3.36) designed for each local subsystem, ensures that each residual component
Yip(t) generated by the local FDEs remains below its corresponding adaptive threshold v;,(t)
prior to the occurrence of a fault (i.e., for t < Tp).

Remark 3.3 It is worth noting that v;,(t) given by (3.36) is an adaptive threshold for
fault detection, which has obvious advantage over a constant one. Moreover, the threshold
Vip(t) can be easily implemented using linear filtering techniques [83]. Additionally, the
constants Vp in (3.35) is a (possibly conservative) bound for the unknown initial conditions
V(0). However, note that, since the effect of this bound decreases exponentially (i.e., it
is multiplied by e~), the practical use of such a conservative bound will not significantly

affect the performance of the distributed fault detection algorithm.

3.4 Distributed Fault Isolation Method

3.4.1 Distributed Fault Isolation estimators

As described above, each local FDI component consists of a FDE and a bank of FIEs. Now,
assume that a fault is detected in the ith subsystem at some time T; accordingly, at t = Ty
the FIEs in the local FDI component designed for the ¢th subsystem are activated. Each

FIE is designed based on the functional structure of one potential fault type in the local
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subsystem. Specifically, the following NV; nonlinear adaptive estimators are used as isolation

estimators: for s = 1,---, N;,
M
As 4 -l (S . L(as A 0 o
5 = Aady + AeCy yi + pa (3, w) + E H5 (35,35, ui, uy)
=1

T = Awih - Audly + (@] u) + Ly — 57) + f(37 i, 07) + 076

M

E 2(45 2. 4 s
+ Hij(xivxj7u27uj)
j=1

(3.37)

QF = A%+ G55, uy)

(2

~S — o]
Yy, = Cixm,

where &7}, 27,, and y; denote the estimated state and output variables provided by the
sth local FIE, respectively, L} € Rlixli is a design gain matrix (for simplicity of presenta-
tion and without loss of generality, we let L = L;), &7 2 ()7 (C; ') T]T, and 25 2
= [(B:) g (@s ), -+, (03,)Tg8, (5 u0)

provides the adaptive structure for approximating the unknown fault function f7(z;,u;)

[(ﬁ%jl)T (Cj—lyj)T]T. The function ff(ff,uzaéf)

described by (3.5), and éfp (it = 1,---,M, and p = 1,---,l;) is the adjustable param-
eter vector. The initial conditions are Zf,(Ty) = 0, 23,(Ty) = 0, and Q(Ty) = 0. It
is noted that, according to (3.5), the fault approximation model ff is linear in the ad-
justable weights éf Consequently, the gradient matrix G7 (&7, u;) 29 ff (@, u, éf) / 8«9;9 =
diag [(g5 (25, wi)) T, -+, (93, (2%,u;)) "] does not depend on 6. Note that the distributed
FIEs (3.37) for each local subsystem are constructed based on local measurements (i.e., u;
and y;) and the communicated information Z; and w; from the FDI component associated
with the jth directly interconnected subsystem.

The adaptation in the isolation estimators arises due to the unknown fault magnitude 0; 2
[(Hfl)T’ e (Gfli)T}T. The adaptive law for adjusting éf is derived using the Lyapunov
synthesis approach (see for example [35]). Specifically, the learning algorithm is chosen as

follows

0; = Poy {m;TqT y} (3.38)
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where g7 () 2 yi(t) — g (t) denotes the output estimation error generated by the sth FIE
for the local subsystem, I' > 0 is a symmetric, positive-definite learning rate matrix, and
Pes is the projection operator restricting éf to the corresponding known set ©F (in order
to guarantee stability of the learning algorithm in the presence of modeling uncertainty, as
described in [35, 15]).

The distributed fault isolation decision scheme is based on the following intuitive principle: if
fault s occurs in the ith subsystem, ¢ = 1,--- | M, at time Ty and is detected at time Ty, then
a set of adaptive threshold functions {ufp(t), p=1,---,l;;s=1,---,N;} can be designed
for the matched sth isolation estimator of the ith subsystem, such that each component of
its output estimation error satisfies [J;,(t)] < uj,(t), for all t > T,. Consequently, such
a set of adaptive thresholds ,ufp(t) with s = 1,--- , N; can be associated with the output
estimation error of each local isolation estimator. In the fault isolation procedure, if, for a
particular local isolation estimator r € {1,---, N;}\{s}, there exists some p € {1,---,[;},
such that the pth component of its output estimation error satisfies |g;,(t)| > pj,(t) for
some finite time ¢t > Ty, then the possibility of the occurrence of fault r can be excluded.
Based on this intuitive idea, the following fault isolation decision scheme is devised:
Distributed Fault Isolation Decision Scheme: If, for each r € {1,--- , N;}\{s}, there
exist some finite time t" > Ty and some p € {1,--- ,1;}, such that |g},(t")| > pi,(t"), then
the occurrence of fault s in the ith subsystem is concluded.

Remark 3.4 It is worth noting that the presented FDI method is capable of identifying not
only faults defined in the partially unknown fault class F (see (3.4)) but also the case of new
faults that do not belong to F (in this case, at least one component of the residuals generated
by each FIE would exceed its threshold). In addition to the output estimation error, the
parameter estimation 9f might also provide some information for fault isolation. However,
note that a necessary condition to ensure that the parameter estimation éf converges to its
actual value 67 is the persistency of excitation of signals (see [35, 15]), which is in general too

restrictive in many practical applications. Here we do not assume persistency of excitation.
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3.4.2 Adaptive Thresholds for Distributed Fault Isolation

The threshold functions pj,(¢) clearly play a key role in the proposed distributed fault
isolation decision scheme. The following lemma provides a bounding function for each
component of the output estimation error of the matched sth local isolation estimator in
the case that fault s occurs in the ith subsystem.

Lemma 3.3 If fault s in the ith subsystem is detected at time T, where s € {1,---, N;}
and i € {1,--- , M}, then for all t > T,, each component of the output estimation error

¥;,(t) associated with the matched sth local isolation estimator satisfies

t ~
T (D] < Kip /T e D o3 x(7) + i+ || Q5] ] dr + kipwine™ 0T 4 |(Ci,08) T 167
d
(3.39)

(1>

where §;,(t) 2 Yip(t) — 0;,(t), p =1, -+ i, x(t) is given in (3.35), 03 (t) éf(t) — 07(t)

represents the fault parameter vector estimation error, w;o is a positive constant satisfying
|35 (Tq)] < wio, and g; is defined later on..

Proof: Denote the state estimation error of the sth local isolation estimator for the ith
subsystem by Z7, (t) 2 xin (t) —&f (t) and 5 (¢) 2 zio(t) — & (t). By using (3.37) and (3.3),
in the presence of fault s in the ith subsystem, the state estimation error of the matched

sth local FIE satisfies, for t > Ty,

SLU% = Aili'fl + ni1 + pin (f% Uz) - pil(i‘f, Uz)
M
+Z [Hzlj(l‘l, T, Us, Uj) — Hzlj(if, i‘j, Uy, ’LLJ)] (3.40)
j=1
B = AuFsh + Az + nia + pio(@i,wi) — pia (&5, wi) + f2 (w0, w) — f7(35,ui, 65)

. M
— 07 + ) [HY (i, wiyu) — HY (8, 85, u,u5)] (3.41)
j=1
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where A;y is defined in (3.14). Note that

Fi(wiw) — f(@5,w) = GS(wi,w)0; — Gi(5,u:)0; + G (35, u;)0; — G5 (25, u;)0;

= @) — (@5 w) — G5(E5, u)b; . (3.42)

By using G$(23,u;) = QF — Ay Q¢ (see (3.37)), we have

s d, .- ) ,
i = Au (5 + Q107 + A +mi2 — (00 + piales,w) — i w) — 365
M
+Z [H (i, @, u,u5) — HYE (85, 85,us,u5)| + f (i, w) — f7(85,us) -

Jj=1

. _e A L . .
By letting =7, = ¥}, + Qf&z, the above equation can be rewritten as

Ty = AuTh+ At + Z xwxjv Ui, Uj) — ng(ﬁ:fa i’jauivuj)} + @iy us) — f77 (27, wi)
j=1
+pin (T, u7) — iz (5, uz) + mio — QO (L) - (3.43)

The solution of (3.43), for ¢ > Ty, is given by

t _ t
TH(t) = /T eAiat=T) {«41'353?1 + Mi2 — Qfaf] dr +/T AT oo (i, wi) — pio(E5,uq)) dr
d d

/ Al Z xzax]vu%u]) Hizj('%?’ij’ui’uj)] dr
Ty

Jj=1

t _
b [ A e asow) = £ u)dr AT (). (3.44)
Ty

By using (3.37), (3.3), and the definition of Z},(t), each component of the output estimation

error is given by:

Gip(t) = Cipia(t) = Cip (250) — 365 . (3.45)

Now, based on (3.44) and (3.45), as well as Assumptions 3.2, 3.4 and 3.5, after following

some similar reasoning logic as reported in the derivation of the adaptive thresholds for
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fault detection (see (3.21), (3.30), and (3.31)), it can be shown that

t M ~
¢Vl [HAm 35 + 7 + a2 + Zﬁjm]m (€)1
j=1

t
+hy [ el [o—izuﬂ;r n wfli'fl!]df T e T 5, (7))
Ty

0] <k /

Ty

where the constants k;, and \;, are defined in (3.31). using Z; as defined in (3.16) respec-
tively,

_ A
0; = {77?15 Ty ’72'2(1'_1); ||~/47/3H + g0 + Wf, 77;2(2‘4_1)) U ”YZZM]T’ (346)

we have

t ~
G5O <k [ D |gi] [31] + 72+ of[[QF]] ] dr + [(Cip25) T1105] + kipe™ w70 |255(Ty))

Ty

Note that (3.40) is in the same form as (3.13). Thus, by using the results of Lemma 3.2

(i.e., (3.39)), the above inequality becomes
LA Xip(t=T. T4
|@fp(t)|§kip/T e D |ai] x + iz + oS|I ] dr + Kiplzhy (Ta)le™ =T 4 |(Cp23) T 167
d

Where x is defined by (3.35). Now, inequality (3.39) follows directly from the initial condi-
tion 25, (Ty) = 0, Q3 (Ty) = 0, and |z5,(Ty)| < wiz.

|
Although Lemma 3.3 provides an upper bound on the output estimation error of the sth
local estimator for subsystem 4, the right-hand side of (3.39) cannot be directly used as
a threshold function for fault isolation, because éf (t) is not available (we do not assume
the condition of persistency of excitation as described in Remark 3.4) . However, since

S

¢, we have

the estimate éf belongs to the known compact set © k

07 — éf(t)‘ < ki(t) for a

suitable 7 (t) depending on the geometric properties of set ©7 (see [82, 83]). Hence, based
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on the above discussions, the following threshold function is chosen:

t
tip(t) =kz‘p/T e M g5 x + iz + || ] dr + Kipwize ™ #=Ta) 4 (Cyp Q) T K5 (1) -
d

(3.47)

Remark 3.5 Note that the adaptive threshold ufp(t) can be easily implemented on-line
using linear filtering techniques [82, 83]. The constant bound w;o is a (possibly conservative)
bound for the unknown initial conditions x},(7;). However, note that, since the effect of

—din(t=Ta) ' the practical use of

this bound decreases exponentially (i.e., it is multiplied by e
such a conservative bound will not affect significantly the performance of the distributed
fault isolation algorithm.

Remark 3.6 As we can see, the adaptive threshold function described by (3.47) is influenced
by several sources of uncertainty entering the fault isolability problem, such as modeling
uncertainty (i.e., n;1, 7i2), fault parametric uncertainty «, unknown fault development rate
o, and unknown initial conditions (i.e., Vo and wyo). Intuitively, the smaller the uncertainty
(resulting in a smaller threshold ff,(¢)), the easier the task of isolating the faults. On the
other hand, as clarified in Section 3.5.2, the capability to isolate a fault depends not only
on the threshold ufp(t), but also on the degree that the types of faults in each subsystem

are mutually “different”.

3.5 Analytical Properties of the Distributed FDI Method

As is well known in the fault diagnosis literature, there is an inherent tradeoff between
robustness and fault sensitivity. In this section, we analyze the fault sensitivity property of
the the distributed fault diagnosis method, including fault detectability and isolability. In
addition, the stability and learning capability of the adaptive fault isolation estimators are

also investigated.
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3.5.1 Fault Detectability Condition

The following theorem characterizes (in a non-closed form) the class of faults that are
detectable by the proposed distributed fault detection method.

Theorem 3.2 (Fault Detectability): For the distributed fault detection method de-
scribed by (3.12) and (3.36), suppose that fault s occurs in the ith subsystem at time Ty,

where s € {1,--- ,N;} and i € {1,--- , M}. Then, if there exist some time instant Ty > Tp

and some p € {1,--- ,1;}, such that the fault function f;(x;,u;) satisfies
Tu _
Cipe™ T fi(ay(7), wi(7))dr| > 2vip(Ta) (3.48)
To

the fault will be detected at time t = Ty, i.e., |Gip(Ty)| > vip(Ta).
Proof: In the presence of a fault (i.e., for ¢t > Tj), base on (3.3) and (3.12), the dynamics

. . . A N -~ A ~ .
of the state estimation error T;1 = ;1 — Z;1 and T;o = T;0 — T satisfies

M
T = Ap®a +nin+ Z 901,96‘],%,“]) Hz'lj(i'iav%jauiauj)}
j=1
+pit (i, wi) — pin(Zi, uq) (3.49)
M
i’iQ = -Az4x12 + AizTi1 + mi2 + Bifi + Z 53@7 x]7u17u]) Hfj(@ivijauiv u])]
7j=1
+ pia(wi, ui) — pia(Zis i) (3.50)

. . . ~ A ~
Therefore, for each component of the output estimation error, i.e., §i(t) = CipZia(t),

p=1,---,l;, we have
t _
Uip(t) = / Cipe =) (A3 + mia + By fiwi, ui)] dr
/ C e-A14(t T) [p’LZ(x“ uz) 107,2('7;277’%)] dT

Ay (t— 2 a A
/C eAia(t=7) E xl,x],uz,uj) Hij(:zi,mj,ui,uj)] dr.
J=1

Note that (3.49) is in the same form as (3.13). Therefore, from Lemma 3.2, we have
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|Z1(t)| < x(t), where x(t) is defined in (3.35). Then, by applying the triangle inequality
and (3.30), we obtain:

t _ t
|Tip(t)] > ‘/o Cipe 1B, fi(ai, ui)dr _kip/o 6Aip(t7)[|’«4i3\||@'1\ + |nizl
M
—i—Z’yin’ijl‘ + 0'1‘2‘@1’:|d7'

=1

t _ t
> ‘/ Cipe T B, fy (i, u;)dr —kip/ G_Aip(t_T)[|Qi|X+ﬁi2}dT , (3.51)
0 0

where p; is defined in (3.32). By substituting (3.36) into (3.51), we have

Tip(t)] > ' /0 Cipe =7 B, fi(i(7), wi (7)) dr| — vip(t) (3.52)

Based on the property of the step function j;, if there exists Ty > Tp, such that condition
(3.48) is satisfied, then it is concluded that |g;,(Tq)| > vip(Tq), i.e., the fault is detected at
time t = Ty.

Remark 3.7 Note that the integral on the left-hand side of (3.48) represents the filtered
fault function. In qualitative terms, the fault detectability theorem states that if the mag-
nitude of the filtered fault function on the time interval [Ty, T,] becomes sufficiently large,
then the fault in the ith subsystem can be detected. The result also shows that if a fault

function f;(x;,u;) changes sign over time then it may be difficult (or impossible) to detect.

3.5.2 Fault Isolability Analysis

For our purpose, a fault in each subsystem is considered to be isolable if the distributed
fault isolation scheme is able to reach a correct decision in finite time. Intuitively, faults
are isolable if they are mutually different according to a certain measure quantifying the
difference in the effects that different faults have on measurable outputs and on the estimated

quantities in the isolation scheme. To quantify this concept, we introduce the fault mismatch
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function between the sth fault and the rth fault in the ith subsystem, for i =1,--- , M:

>

Pp(t) = Cip (207 — 9507) | (3.53)
where r,s = 1,--- ,N;,r # sand p = 1,--- ,1;. From a qualitative point of view, hf;;(t)
can be interpreted as a filtered version of the difference between the actual fault function
G307 and its estimate G:é: associated with the rth local isolation estimator whose structure
does not match the actual fault s in the local subsystem. Recalling that each local FIE
is designed based on the functional structure of one of the nonlinear faults in the fault
class associated with the local subsystem. Consequently, if fault s occurs, its estimate G’;éf
generated by FIE r is determined by the structure of FIE 7, which in turn is determined
by fault r. Therefore, the fault mismatch function hjj (t), defined as the ability of the rth
local FIE to learn fault s in the local subsystem, offers a measure of the difference between
fault s and fault r associated with the local subsystem.

The following theorem characterizes the class of isolable faults in each subsystem:
Theorem 3.3 Consider the distributed fault isolation scheme described by (3.37) and
(3.47). Suppose that fault s (s = 1,---,N;), occurring in the ith subsystem at time Ty,
is detected at time T;. Then, fault s is isolable if, for each r € {1,--- , N;}\{s}, there
exist some time t" > Ty and some p € {1,--- ,1;}, such that the fault mismatch function

hi (") satisfies

CAGIETY|

Tu
+ [(Cip ) T|KE + 2winkipe @ —Ta) (3.54)

t'r'
e D gilx + min ] dr + kip/T e =D ag]|0F]] + af||0f]] |dr
d

Proof: Denote the state estimation errors of the rth local isolation estimator for subsystem

i by Z7,(t) 2 zi(t) — 25, (t) and T, () 2 xio(t) — @ (t). By using (3.37) and (3.3), in the

7
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presence of fault s in the ith subsystem, for t > T, we have

iy o= Aadl + palw) — pin (8], w) + na
M
+Z [Hzlj (aci, Ty Uy Uj) - I‘IllJ (i‘:, .f}j, Uj, uj)] (3.55)
=1
M
By = Audly+ AsEy + i+ Y [HY (@i, w5, w0, u) — HY (8], £5,u,05)] + pio (@i, us)
=1

(&, )+ G (i, i) 05 — G (85, 1) + G (85, i )05 — G (37, g 0} — 707(3.56)

By substituting G$(2%,u;) = Qf — Ay Q and G7 (27, u;) = QF — A Q) into (3.56), we

obtain

1y = Aus (7 007~ 0307) + Ay + o — 007 — (07— 307)

M
Y [HY (i, g, i, ug) — H (27,35, ui,u5)] + pia(i, i) — pia(, ;)

7j=1
i (i, wi) — f7 (2, ui) -
By defining z},(t) 2 ZT,(t) + QUOT — Q267, the above equation can be rewritten as follows

170

M

=T =T ~r 2 2 (a7 A sps

Tip = AuTi + Aisliy + E [Hz‘j($ia$j,“ivuj) - Hij(:Ei’xjvui’uj)] + mi2 — 276;
j=1

+pia(wi, wi) — pao (27, wi) + fi (@i, wg) — f7 (27, uq) . (3.57)

The pth component of the output estimation error generated by the rth local FIE for

subsystem i (i.e., g7, (t) 2 Yip(t) — 95, (t), p = 1,--- ;) is given by
Tip(t) = CipTia(t) = Cip(@ia(t) — Q07 + Q307) = CipTia(t) + hij (1).
By applying the triangle inequality, we have
|9ip (D) = b ()] = [CipTia ()] - (3.58)
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Note that (3.57) is in a similar form as (3.43). Therefore, by using (3.57) and (3.58) and

by following similar reasoning logic reported in the proof of Lemma 3.3, we have

v

t ) ) _— )
) = )= [ Gyt [rmx(f) T Il + [0%62] } dr — |Cipe T |2y (T)].
d

t

v

|y ()] = Fip / e A=) [!@iIX(T) + [72] + 192°67] } dr — kipe T 4y (1)

Ty

Now by taking into account the corresponding adaptive threshold uj,(t) given by (3.47) we
can conclude that, if condition (3.54) is satisfied at time ¢ = ¢", we obtain |7, (t")| > pg,(t"),
which implies that the possibility of the occurrence of fault r in subsystem 4 can be excluded
at time t =t¢".

|
Remark 3.8 According to the above theorem, if, for each r € {1,---, N;}\{s}, the fault
mismatch function A (") satisfies condition (3.54) for some time ¢" > 0, then the pth
component of the output estimation error generated by the rth FIE of subsystem ¢ would
exceed its corresponding adaptive threshold at time ¢ = ", i.e., [7;,(t")| > pi,(t"), hence
excluding the occurrence of fault r in subsystem i. Therefore, Theorem 3.3 characterizes
(in a non-closed form) the class of nonlinear faults that are isolable in each subsystem by

the proposed robust distributed FDI scheme.

3.5.3 Stability and Learning Capability

We now investigate the stability and learning properties of the adaptive fault isolation esti-
mators, which are described by the following result:

Theorem 3.4 Suppose that fault s, occurring in the ith subsystem, is detected at time Ty,
where s € {1,--- ,N;} and i € {1,--- ,M}. Then, the distributed fault isolation scheme

described by (3.37), (3.38) and (3.47) guarantees that,

e for each local fault isolation estimator q, ¢ = 1,---, N;, the estimate variables &, (t),

29, (), and 09(t) are uniformly bounded;
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e there exist a positive constant k; and a bounded function f_f (t), such that, for all finite
time ty > Tg, the output estimation error of the matched sth local isolation estimator

satisfies

t t
/f 155 ()2t < Ri—|—2/f & (1)t (3.59)

Ty Ty

Proof. Let us first address the signal boundedness property. The state estimation error

. ~ A

and output estimation error of the gth FIE for the ith subsystem are defined as 7}, () =
o ~ A “ I RVAN N . .

zit(t) — 24 (1), T (t) = mio(t) — 2% (t), and g7 = y;(t) — gl (t), respectively. By using (3.37)

and (3.3), for ¢ > Ty, the output estimation error is g = C;Z),, and the state estimation

error satisfies

= Audd +na+ pia (@) — pa (28 w;)
M
3 [HY (@, @, u5,05) — HY (@, @5, u,u5)] (3.60)
=1
i, = Audly + AisZh 4 nio + pio(ziw) — pio(BL ) + G (i, w) 07 — GE (25, u;)05

G (@S, u)05 — GI(E7, u;)07 — Q007

M
—{—Z [H,L-Qj(.’Ei,.’L'j,ui, Uj) — H%(i’g,:i'j, Ui,Uj)] . (3.61)
j=1

By substituting G#(2%,u;) = QF — A4Qf and G¥(2%,u;) = QF — AyuQ? (see (3.37)) into

1>

(3.61), and by defining 7%, = 7%, — Q265 + Q707 we obtain

171

rl = Auzl + ATl + pi(wi,w) — pi(@w) + f7 (i w) — F7 (@, w) + iz
M
—I—Z [HZQJ(.%Z, Lj, Ug, Uj) — HZQJ(.@Z, @j, g, uj)] — QZSQZS . (3.62)
=1

Note that (3.60) is in the same form as (3.13). Therefore, based on the results of Lemma 3.2
(ie., (3.39)) and Assumptions 3.2 and 3.3, we have 2} € Lo, Tj1 € Loo, and & € L.
Additionally, based on similar reasoning logic as report in the proof of Lemma 3.2 (see
(3.30)), we know that pio(wi, u;) — pi2(29,w;) , HZ (2,25, i, uj) — HZ (22,35, ui,u ) , and

1] )
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fi(zi,ui) — f7(25,u;) are bounded. Moreover, due to the use of parameter projection (see
(3.38)), we have éf € L. Furthermore, because 72, 27, and Gf are bounded (Assumption
3.2 and Assumption 3.6) and A4 is a stable matrix, by using (3.62) we can obtain z%, € L.
Owing to the definition of :Eg, we conclude that 5}% € Ly, and ig € L. This concludes the
first part of the theorem.

Now, let us prove the second part of the theorem concerning the learning capability of the
local FIE in the case that it matches the occurred sth fault in the local subsystem, i.e.,
g = s. In this case, the solution of (3.62) can be written as Zf,(t) = & (¢)+&5(t), Vi > Ty,

where & and &}, are the solutions of the following differential equations, respectively,

M
5= Aull + Al + pio(zi,wi) — pio(E5,w) + Z [Hfj(xz’, g, i, ug) — H (25, &5, Ui’uj)]
=
iz + 5 (e wi) — (85 u) — Q505 &54(Ty) =0

.1'82 = -'Zli4fis2= §ir(Ty) = 735(Ta) = 235 (Ta) -

Using the definition of Z5,, we have &5, = £, (t) + £5(t) — Q67 Therefore,

5i (1) = Ciy = Gilgn (1) + €x(0)] — C0; (3.63)
Now, consider a Lyapunov function candidate V; = i (62)? + [ 1Cigs (1) 2dr. The time

derivative of V; along the solution of (3.38) is given by V; = £0:Pe« {T°Q:TC/ 5} —
|Ci5|? — %0}’0{"’ Clearly, since 6 € ©°, when the projection operator P is in effect, it
always results in smaller parameter errors that will decrease V; [35, 82]. Therefore, by using

(3.63) and completing the squares, we obtain

Vi < )Gl - (Ciehlt - 036

FS 171
~s\ T ~3 s s s |2 1 NSNS
= (7)) (=7 + Ci&y + Ci&h) — |Cikh|” — ﬁgi‘gi
~s|2
Y; s 1 Ns| NS
< BT el + om0 (364

48



1
2

_ A ~

Let & 2 (|Cigal? + £1631165)
. _ _ - _ A

obtain f;ﬁ gE) 2 dt < R + QI%: €5 (t)[? dt, where R; = sup,,>7,{2[Vi(Ta) — Vi(ts)]}-

By integrating (3.64) from ¢t = Ty to t = tf, we

|
Theorem 3.4 guarantees the boundedness of all the variables involved in the local adaptive
FIEs in the case that a fault is detected in the corresponding subsystem. Moreover, the
performance measure given by (3.59) shows that the ability of the matched local isolation
estimator to learn the post-fault system dynamics is limited by the extended Lo norm of
gf (t), which, in turn, is related to the modeling uncertainties 7;; and 72, the parameter

estimation error éf, and the rate of change of the time-varying bias ;.

3.6 Simulation Results

In this section, a simulation example of interconnected inverted pendulums mounted on
carts [32] shown in Figure 3.1 is given to illustrate the effectiveness of the distributed FDI

algorithm.

m.l m,l
9, Uy
w [Tk
j M
00 ¢ 00

—1 = 1y

Figure 3.1: Interconnected inverted pendulums mounted on carts

Specifically, we consider two identical inverted pendulums mounted on carts, which are
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connected by springs and dampers. Fach cart is linked by a transmission belt to a drive

wheel driven by a DC motor. As described in [32], the equations of motion are

(M + m)@h + F¢1/}1 + mldycosdy — ml(§1)25im91 = wuy+ 81
JUy + Fydq — mlgsind, + mlzﬁlcosﬁl = 0
(M + m)@bz + Fdﬂb + mldacosty — ml('ﬁz)Qsinﬁg = ug+ So

JUy + Fydy — mlgsinds + mwgcosﬁg = 0

where, in each subsystem, 1; (i = 1,2) is the position of the cart, ¢; is the angle of the
pendulum, wu; is the input force, respectively. The interconnection forces due to springs
and dampers are s = k(1 — ¥1) + c(tb2 — 1), s2 = k(11 — ¥2) + c(¥1 — t)2), where k
and ¢ are the spring constant and the damping constant, respectively. Additionally, J is
the moment of inertial, M is the mass of the cart, m is rod mass, [ is rod length, g is the
gravitational acceleration, Fyy and F, are the friction coefficients. The model parameters
are: M = 5kg, m = 0.535kg, J = 0.062kgm?, | = 0.365m, F = 6.2kg/s, Fy = 0.09 kg m?
and g = 9.8m/s?, k =1, and ¢ = 0.02.

For each subsystem, we assume the cart position (¢;), pendulum angle (¢;), and pendulum
angular velocity (191) are measurable. By using a change of coordinates defined by z; =

(201 2io zig zia] | = Ty[thi 9 i 0;] T with

—-1.5 0 1 0.3175/cos¥;
1 0 0 0
T (3.65)
0 10 1
0 0 0 1
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a system state space model is obtained as

Z.'il —1.5 —-2.25 0 O Zil Cﬂ(zi,ui)
22 1 1.5 0 0 22 Gio(ziy u;)
T = ST | 4 by i+ dgB.66)
Zig 0 0 01 233 0
| Zia | |0 0 0 0] | zia ]| [ Galziiu) |
I Zi1
01 00
Zi2
Yi = 0010 )
Zi3
00 01
- | Zi4 |

where the nominal nonlinear dynamics are (;5 = %ﬁm,
2,

ml(cos 2;3)?(Fyziy — mlgsin z;3) — 0.3175(m + M)(Fyz;4 — mglsin z;3)

G = cos zi3[J (M + m) — (ml cos z;3)?]
0.4763z; 0.3175z;4 sin z;
+ 4 + 14 5 3
COS 2;3 (COS Zz’3)
¢ ml cos 23 [ml(zi4)2 sin zi3 — (Fy + ¢)(zi1 + 1.522 — 0.3175254) — kzio + ul]
4 =

(mlcos zi3)? — J(M +m)
(M + m)(Fyziy — mglsin z;3)
(mlcos ziz)? — J(M +m)

and the known interconnection term is

mlcoszizlkzjo + c(zj1 + 1.5zj2 — 0.3175z;4)]

hi; =10 0 O
I (mlcosziz)? — J(M +m)

Note that the effects of modeling uncertainty (i.e., ¢; and d;;) have been included in the
above model. Specifically, two sources of modeling uncertainty are considered: (i) up to
80% inaccuracy in the friction constant Fy (corresponding to ¢; in (3.66) and (3.1)); (ii)
up to 10% inaccuracy in the spring constant k in the interconnection force (corresponding

to dij in (366) and (31))
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In addition, the following two types of faults are considered in each subsystem:

1. An actuator fault. A simple multiplicative actuator fault by letting u; = @; + 0}u; is
considered, where ; is the nominal control input in the non-fault case, and 91-1 €[-1 0]
is the unknown fault magnitude. For instance, the case 6} = 0 represents the normal
operation condition, while the case 921 = —1 corresponds to a complete failure of
the actuator. Hence, based on the system and fault models given by (3.66) and

(3.5), the actuator fault can be described by f} 2 [0 0 6lg}(zi,w)]", where

1 _ lu; i 1
9 = (mlcorsnzg)g(isj(?\/[—i-m) and 01 € [_1 0]

2. A process fault causing extra abnormal friction applied to the cart. Specifically, as a
result of the fault, the viscous friction constant F; increases by up to three times of its

nominal value. Then, the fault function is in the form of f? 2 [0 0 62¢2(2)]", where

2 3mlFy, z;1 cos zi3
9i = (ml cos z;3)2—J(M-+m)

and 02 € [~1 0] represents significance of extra friction.

Clearly, the above system model is in the form of (3.3) with x;; = 21, 22 = [2i2 2i3 zid] |,
pi1 = Git, pi2 = [Gi2 0 Q4]T, and H;; = h;;. Also, it can be easily seen that Assumptions

3.2-3.7 are satisfied. Specifically, based on the change of coordinates defined above, we have

0.8 Fyyiz[ml(cos yi2)? — 0.3175(M + m)]
cos yio[J(M + m) — (ml cos y;2)?]

)

i1 =

|0.8(M + m)Fyyiz| + [0.1kml cos yia(yj1 — yi)

s J(M +m) — (ml cos yiz)? ’
1 _ 1 2 _ cml | cos y12| 2 cml | cos ya2| o
Y21 = Y2 = 0, 72 = J(M+m)—(mlcosyi2)? and Y21 = J(M+m)—(ml cos ya2)?’ oip = 0 and
___ (Fytoyml|cosya| 1 2 3miFy| cos z;3|
Ti2 = J(M+m)—(mlcosyiz)?> i 0, and @; = J(M+m)—(mlcoszi3)? *
The initial condition of each cart-pendulum subsystem is set to #; = [0 0 0 0]". For

simplicity, the input to each subsystem consists of two parts: a stabilizing part based on
state feedback design and a sinusoidal signal causing each subsystem to deviate from steady-
state linear dynamics. In the simulation, the actual modeling uncertainties used are: (i)
40% inaccuracy in the friction constant Fy; (ii) 8% inaccuracy in the spring constant k in

the interconnection force.
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The gain matrix L; of the estimators is chosen such that the poles of matrix A;4 are
located at -1.7 , -2.5 and -2.2, respectively. Consequently, the related design constants are
kivn = kio = kis = 1, \j1 = —1.7, Aio = —2.5 and \;3 = —2.2. Additionally, we choose the
matrix P = [0.50; 00.5] (i.e., P, = 0.5, see Lemma 3.2). Thus, @ = [1 0;0 1], which
results in ¢ = 2. The learning rate of the adaptive algorithm for fault parameters estimation
in the FIE1 and FIE2 is set to 1 and 0.1, respectively.

First, we consider an an actuator fault (fault type 1, as defined in section 3.2 ) in subsystem
1. Figure 3.2 and Figure 3.3 show the fault detection results when a partial actuator
fault with 6} = —0.25 occurs to subsystem 1 at Ty = 5 second. Note that, since the
dynamics of z;3 in each subsystem is not affected by the faults or modeling uncertainty
under consideration, we only focus on the residuals and thresholds associated with y;; and
¥i3. As can be seen from Figure 3.3, both the residuals generated by FDE 2 (i.e., local
FDE associated with subsystem 2) always remain below their thresholds, while the residual
associated with y;3 generated by FDE 1 (i.e., the local FDE designed for subsystem 1)
almost immediately exceeds its threshold after fault occurrence (see Figure 3.3). Therefore,
the actuator fault in subsystem 1 is timely detected. Then, the two local FIEs associated
with subsystem 1 are activated to determine the particular fault type that has occurred.
Selected fault isolation residuals and the corresponding thresholds generated by the two local
FIEs for subsystem 1 are shown in Figure 3.4. It is obvious that the residual associated with
y13 generated by local FIE 2 exceeds the threshold at approximately ¢t = 5.88 second, while
both residuals generated by local FIE 1 always remain below their thresholds, indicating
the isolation of fault fi (i.e., actuator fault in subsystem 1). It is worth noting that for local
FIE 2, only the residual and threshold associated with 313 are shown, since it is sufficient
to exclude the possibility of occurrence of fZ based on the presented fault isolation decision
scheme. In addition, Figure 3.5 and Figure 3.6 show the actuator fault effect on the angle
and the angle velocity of the subsystem 1.

As another illustrative example, we consider a process fault causing extra abnormal friction

applied to the cart in the second subsystem. Figure 3.7 and Figure 3.8 show the simulation
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Figure 3.2: The case of an actuator fault in subsystem 1: fault detection residuals (solid and
blue line) associated with y11 and y13 and their thresholds (dashed and red line) generated
by the local FDE for subsystem 1.
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Figure 3.3: The case of an actuator fault in subsystem 1: the fault detection residuals
(solid and blue line) associated with y9; and yo3 and their thresholds (dashed and red line)
generated by the local FDE for subsystem 2.
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Figure 3.4: The case of an actuator fault in subsystem 1: selected fault isolation residuals
(solid and blue line) and their thresholds (dashed and red line) generated by the two local
FIEs associated with subsystem 1.

results of fault detection when such a fault with 63 = —0.5 occurs to the second subsystem at
To = 5 second. Figure 3.9 shows the results of fault isolation. Again, the fault is successfully
detected and isolated.

Moreover, a completely unknown fault is considered in subsystem 1. Specifically, as a result

of the fault, the dynamics of the angle velocity is affected by a sinusoidal signal. Then, the
A

funknoum =
i

fault function is in the form of [0 0 cos(t)]". Figure 3.10 and Figure 3.11
show the fault detection results when this unknown fault occurs to subsystem 1 at Ty =5
second. As can be seen from Figure 3.11, both the residuals generated by FDE 2 (i.e., local
FDE associated with subsystem 2) always remain below their thresholds, while the residual
associated with y;3 generated by FDE 1 (i.e., the local FDE designed for subsystem 1) almost
immediately exceeds its threshold after fault occurrence (see Figure 3.10). Therefore, the
unknown fault in subsystem 1 is timely detected. Then, the two local FIEs associated with
subsystem 1 are activated to determine the particular fault type that has occurred. Selected
fault isolation residuals and the corresponding thresholds generated by the two local FIEs

for subsystem 1 are shown in Figure 3.12 and Figure 3.13. It is obvious that the residuals

in both FIEs exceed the corresponding thresholds. Thus, based on the isolation logic, the

95



angle of cartl
0.04 T

fault free
003F N |'T' 7 actuator fault

0.02

0.01

-0.01p

-0.02

-0.03

-0.04

0 5 10 15 20
time(second)

Figure 3.5: The case of an actuator fault in subsystem 1: the signal of the angle in the fault
free case (solid and blue line) and the signal of the angle in the actuator fault case (dashed
and red line) of subsystem 1.
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Figure 3.6: The case of an actuator fault in subsystem 1: the signal of the angle velocity in
the fault free case (solid and blue line) and the signal of the angle velocity in the actuator
fault case (dashed and red line) of subsystem 1.
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Figure 3.7: The case of a process fault in subsystem 2: fault detection residuals (solid and

blue line) associated with y11 and y13 and their thresholds (dashed and red line) generated
by the local FDE for subsystem 1.
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Figure 3.8: The case of a process fault in subsystem 2: the fault detection residuals (solid and

blue line) associated with y21 and y23 and their thresholds (dashed and red line) generated
by the local FDE for subsystem 2.
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Figure 3.9: The case of a process fault in subsystem 2: selected fault isolation residuals
(solid and blue line) and their thresholds (dashed and red line) generated by the two local
FIEs associated with subsystem 2.

possibilities of the occurrence of the two predefined faults are excluded, the decision of the

occurrence of an unknown type fault which is not included in the fault set is made.
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Figure 3.10: The case of a complete unknown fault in subsystem 1: fault detection residuals
(solid and blue line) associated with y11 and y13 and their thresholds (dashed and red line)
generated by the local FDE for subsystem 1.
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Figure 3.11: The case of a complete unknown fault in subsystem 1: the fault detection
residuals (solid and blue line) associated with y21 and yo3 and their thresholds (dashed and
red line) generated by the local FDE for subsystem 2.

99



FIE1(y11)
0.1

residual
threshold

0.05

residual
threshold

20
time (second)

Figure 3.12: The case of a complete unknown fault in subsystem 1: selected fault isolation
residuals (solid and blue line) and their thresholds (dashed and red line) generated by FIE
1 associated with subsystem 1.
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Figure 3.13: The case of a complete unknown fault in subsystem 1: selected fault isolation
residuals (solid and blue line) and their thresholds (dashed and red line) generated by FIE
2 associated with subsystem 1.

60



Chapter 4

Distributed Sensor Fault Detection
and Isolation in Multimachine

Power Systems

The distributed fault diagnosis scheme presented in Chapter 3 only considers the process
faults in a class of distributed nonlinear systems. In real world applications, the reliable
operations of interconnected control systems also greatly rely on the health of sensors. For
instance, a sensor fault may lead to poor tracking performance, or even affect the stability of
the overall distributed system, since the fault effect may be propagated to other subsystems
through interconnections. Moreover, a faulty sensor output may also cause wrong diagnostic
and prognostic decisions, resulting in mistaken replacement of system components or mission
abortion. Hence, sensor fault diagnosis is a critical issue in distributed interconnected
control systems.

This chapter presents a distributed sensor FDI scheme for a class of interconnected non-
linear systems, where only the measurable part of the state variables are directly affected
by the interconnections between subsystems. A multimachine power systems is used as

an application example. The general theory can be easily extended to other systems with
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the similar model structure. In a multimachine power systems, each generator is inter-
connected with other generators through a transmission network, where the interactions
between directly interconnected generators are nonlinear. Because of the interconnection
among generators and the limited sensor data that are available for each local system, the
problem of distributed sensor FDI is very challenging. In the proposed distributed FDI
architecture, a fault diagnostic component is designed for each generator in the intercon-
nected system by exploiting local measurements and suitable communicated information
from neighboring FDI components associated with its directly interconnected generators.
In each FDI component, adaptive thresholds for distributed FDI are derived, ensuring ro-
bustness with respect to nonlinear interconnection and unstructured modeling uncertainty
under certain conditions. Furthermore, the fault detectability and isolability properties are
investigated, characterizing the class of sensor faults that are detectable and isolable by
the distributed FDI method. In addition, the stability and learning capability of the local
adaptive fault isolation estimators designed for each generator is derived. A simulation ex-
ample of a two-machine power system is used to illustrate the effectiveness of the proposed
method.

The chapter is organized as follows. In Section 4.1, the problem of distributed FDI for
multimachine power systems is formulated. Section 4.2 describes the distributed FDI ar-
chitecture, the design of adaptive thresholds for distributed fault detection and isolation
in each generator, and the fault detectability of the distributed sensor FDI method. Sec-
tion 4.3 analyzes several important properties of the distributed fault isolation method,
including fault isolability, stability and learning capability. To illustrate the effectiveness of
the diagnostic method, some simulation results using the example of a two-machine power

system are presented in Section 4.4.

62



4.1 Problem Formulation

We consider a multimachine power system consisting of M generators interconnected through
a transmission network. A complete model of each generator includes the mechanical equa-
tions describing the motion of the generator rotor, the generator electrical equations repre-
senting the dynamics of the generator windings, and the electrical equations describing the
interconnections between the generator and the transmission network. Based on the classic
dynamic model of power systems given in [2], a model for the ith generator with excitation
control in the multimachine power system can be described by the following equations (see

25, 26)):

1. Mechanical Equations

Si = Wi, (41)

| D, w
W = —Z—Hliwi + T]%(Pmio — P.;) + d;, (42)

2. Generator electrical dynamics:

63



3. Electrical equations:

Egi = E;i‘*‘(xdi—a?;li)fdia
Ep = kegug,

M
Py = Y EyE,Bisin(5; — ),
M
Qei = _ZEqiquBij COS(51' - 5]'),
Iy = Z Bij cos(0; — 6;),

I = Z B;jsin(d; — 0;),

Eqi = xadzIf'u

Vi = \/(E;Z- — wyilai)? + (v 0q0)%

The notation for the above generator model, given in the Appendix A, is the same as in
[25].

In this chapter, we focus on the sensor fault FDI problem of the excitation loop of each
generator in the multimachine power system. Thus, by using the direct feedback linearizable

compensation for the power system as in [26], we obtain

51' = W
Wi = —%wi = op, AL
APel = N Tioz APEZ + doz vfz + EQZZE B Sln qZZE B COS 6])WJ:I ’

where w; is the relative speed of the ith generator, §; is the power angle of the ith generator,
and AP,; = P.; — Ppio with P,; being the electrical power and P,,;o being the mechanical
input power, respectively. Since only the excitation loop is under consideration, P is a

constant. By defining the state vector as z; = [z :c;g 1T = [w; 6; AP,])T with z;; = w;,
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Tio = [0; APei]T and by assuming the states §; and AP,; to be measurable, we can obtain

a model of the excitation loop of the ith generator, i =1,--- , M as follows:
i1 = Apzi + At + di(z,u,t)
M
o = Aiszin + Auzip + G Tv/ﬂ + mi (@i, ui, t) + GiZ’Yijhij(l'ip ;) (4.4)
doi -
7=1
yi = xip+ Bi(t —T;)0i(t),
where vp; € R and y; € R? represent the control input and output, respectively, A;; = —2%}2_,
Aiz = [0 %], Az = [1 = EZBu]", Aw = [0 0;0 — -], Gi = [0 1]T. The

doi
term Gy;jhi; represents the direct interconnection between the ith generator and the jth

generator. Specifically, h;;(x;, ;) 2 E;iE;jBij sin(d; — 6;) — E;Z»E;jBij cos(d; — d;)xj1, and
7ij is a constant with a value of either 1 or 0 (i.e., if the jth generator is directly connected
to the ith generator, then v;; = 1. Otherwise, v;; = 0). Note that, 7;; = 0 because the
interconnection term is only defined between two generators.

The functions d; and 7; in (4.4) represent the modeling uncertainties, and S;(t — T;)0;(t)
denotes a sensor bias fault [81, 79]. Specifically, 5;(t — T;) is a step function representing
the time profile of the sensor fault which occurs at some unknown time 7;, and the vector
0;(t) € R? represents the unknown time-varying sensor bias affecting the output of the
ith generator. Therefore, the sensor fault can be either an abrupt or incipient one. It is
assumed that only one of the M generators possibly has faulty sensors at a given time.
The objective of this chapter is to develop a robust distributed sensor bias FDI scheme for
multimachine power systems that can be represented by (4.4). Specifically, the distributed
FDI algorithm detects the occurrence of a sensor fault and determines the particular gen-

erator with faulty sensors. Throughout the chapter, the following assumptions are made:
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Assumption 4.1. The functions d; and n; in (4.4), representing the unstructured modeling

uncertainty, are unknown nonlinear functions of z;, u;, and t, but bounded,

|di (i, ui, 1) < di(ys, i, t), |min (i, w, £)] < Tan (s, wis £), Imia (i, wa, )] < Tz (ys, wis t)
(4.5)
where n;1 and n;s represent the first and the second component of n;, respectively, and the the
bounding functions d; , 7;1 , and 75 are known and uniformly bounded in the corresponding
compact sets of admissible state variables, inputs, and outputs with appropriate dimensions,
respectively.
Assumption 4.2. The state vector x; of each subsystem remains bounded before and after
the occurrence of a fault, i.e., z;(t) € Lo, Vt > 0.
Assumption 4.3. The rate of change of the possible time-varying sensors bias is uniformly
bounded. i.e., |0;(t)| < «; for all t > 0, where o is a known positive constant.
Assumption 4.1 characterizes the class of modeling uncertainty under consideration. The
bound on the modeling uncertainty is needed in order to be able to distinguish between
the effects of faults and modeling uncertainty (see [83, 84]). The modeling uncertainty in
the multimachine power system can be a variety of sources affecting the dynamics of each
machine, such as a consistent load change, increase of the mechanical input power in each
machine, or parametric uncertainties. For instance, the disturbance effect on the power
system frequency is considered in [25].
Assumption 4.2 requires the boundedness of the state variables before and after the oc-
currence of a fault in each subsystem. Hence, it is assumed that the distributed feedback
control system is capable of retaining the boundedness of the state variables of each sub-
system even in the presence of a sensor fault. This is a technical assumption required for
well-posedness since the distributed FDI design under consideration does not influence the
closed-loop dynamics and stability. The design of distributed fault-tolerant controllers is be-
yond the scope of this paper. However, it is important to note that the proposed distributed

FDI design does not depend on the structure of the distributed controllers.
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Assumption 4.3 gives a known bound on the rate of change of the sensor fault magnitude
0;(t). In practice, the rate bound «a; can be set by exploiting some a priori knowledge on the
fault developing dynamics. Note that both abrupt fault and incipient fault are considered
in the paper for multimachine power systems. Specifically, the fault time profile function
Bi(t — T;) is a step function modeling abrupt characteristics of the sensor bias, and the
fault magnitude 0;(t) represents the (possibly time-varying) sensor bias magnitude. In the
specifical case of abrupt faults, we can simply set o; = 0 (i.e., 6; is a vector of constants).
Remark 4.1. Note that the FDI method presented in this chapter can be easily extended
to other nonlinear systems, where the interconnections only directly affect the measurable

part of the state vector. Specifically, it can be extended to a general system model described

as follows:
Zin = Ajza + Ainzio + Vi1 (vi, wi) + i (2, wi, t)
M
Zio = Apzin + Aiziz + pia(2is wi) + Vi (yi, wi) + mi2 (25, ui, t) + ZHij(zj’ ui) - (4.6)
j=1
Ys = CiZZ‘Q + Bz(t - TO)Hi(t> ’

where [zle zg]T, u;, and y; are the state vector, input vector, and output vector of
the ith subsystem, respectively, 1;1, pi2 and ;2 represent nonlinearities, 7;1(z;, u;, t) and
ni2(%i, us, t) represent modeling uncertainties, and H;j;(2;,u;) represents the interconnec-
tion from the jth directly interconnected subsystem, A;1, A2, Ais, A;4 and C; are known

matrices with appropriate dimensions, and 6; represents a sensor fault.

4.2 Distributed Fault Detection and Isolation Architecture

The distributed FDI architecture is made of M local FDI components, with one FDI compo-
nent designed for each of the M generators. Specifically, each local FDI component consists
of a FDE and a nonlinear adaptive FIE. Under normal conditions, each local FDE monitors
the corresponding local generator to detect the occurrence of any fault. If a sensor fault is

detected, then the FIEs are activated for the purpose of isolating the particular generator
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where the sensor fault has actually occurred.

The FDI architecture for each generator follows the generalized observer scheme (GOS)
architectural framework well-documented in the fault diagnosis literature [3, 5]. The dis-
tributed nature of the presented FDI method can be better understood if compared with
the conventional centralized FDI architecture. For M interconnected generators, M + 1
estimators are needed at the server node in the case of centralized FDI architecture. More-
over, each generator needs to transmit data to the server node. With the distributed FDI
architecture, only a pair of local FDE and FIE is needed at the ith generator. Hence,
the computation is distributed in the network. Additionally, data communication is only
required among the FDI components associated with generators that are directly intercon-
nected.

In order to get a deeper insight into the distributed FDI architecture described above, we
refer to Figure 4.1. For the sake of simplicity, an example of three interconnected generators
is considered. Without loss of generality, we assume that there exit direct interconnections
in two pairs of generators (i.e., generators 1 and 2, and generators 2 and 3). Thus, the
distributed FDI architecture consists of three local FDI components, and the information
exchange is conducted between FDI components 1 and 2, and FDI components 2 and 3,

respectively.

4.2.1 Distributed Fault Detection Method

In this section, we describe the distributed fault detection method, including the design of
each local FDE for residual generation and adaptive thresholds for residual evaluation.

Based on the generator model described by (4.4), the FDE for each local generator is chosen

as:
i1 = Aada + Ay
. M
Tio = Ao+ Auli + G vai + Li(yi — 9:) + GiZ%’jhzj(f@'» j) (4.7)
doi .
7j=1

Yy = T2
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Figure 4.1: Example of distributed FDI architecture for three interconnected generators.

where Z;1, Z;2, and g; denote the estimated local state and output variables of the ith
generator, ¢ = 1,---, M, respectively, L; is an estimator gain, Z; = [Zi1 yiT ]T, and
Z; 2 21 ij]T ( here #j; is the estimate of state variable z;; of the jth interconnected
generator). The initial conditions are #;1(0) = 0 and #;2(0) = w,;(0). It is worth noting
that the local FDE (4.7) for the ith generator is constructed based on local input and
output variables (i.e., vy; and y;) and certain communicated information from the FDE
associated with the jth directly interconnected generator (for instance, Z;). Note that
this structure is consistent with several others in the literature on distributed estimation
and diagnosis in which information exchanges among subsystems are considered (see, e.g.,
[58, 60, 72, 20, 21]).

For each local FDE, let Z;; = Ti1 — Ti1 and T 2 ;0 — o denote the state estimation
errors, and ¢; 2 1; — ¥; denote the output estimation error, respectively. Then, before fault

occurrence (i.e., for 0 < t < T;), by using (4.4) and (4.7), the estimation error dynamics are
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given by

T = An®p+d; (4.8)
M

Tio = AuZip + AizTi + GiZ%’j (hij (s, 25) — hij (T, 25)] + ns (4.9)
J=1

Ui = Tig — Tizg = Tig (4.10)

where A4 2 Ais — L;. Specifically, the estimate gain matrix L; € R2*? can be chosen to
make A;y = diag{—\;1, —\i2} with the positive scalars \;; and ;2. By using (4.8) and

(4.5), and by applying the triangle inequality, we obtain

t
7] < wioeAnt + / AN gy (g, g, )7 (4.11)
0

where w;g is a constant bound for |z;1(0)], such that |Z;1(0)| = |x;1(0)] < wip (Note &;1(0) =
0).

Now, we analyze the output estimation error y;(t) (see (4.10)) of the ith generator. For
0 <t < T;, based on (4.9), we know the estimation errors of ¢; and AP,; (i.e. Z;2) is given

by

t M
Tio(t) = /06“4"4“_7){«4%@1(7)+Gz’2%j[hz‘j(wi(7)a$j(7))—hz'j(iz'(T),i'j(T))]

J=1

+ni(2i (1), wi(1), 7) }dr .

Note that for the interconnection effect from the jth directly connected generator, we have

’

|hij (@i, 25)—hij (24, 25)| = |Egi Eq;Bij cos(yin—yj1)(xj1—251)| < [Ey By Bij cos(yin—yi1)l %] -

Therefore, based on the system model (4.4), for each component of the output estimation
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error, (i.e., §ip(t),p =1, 2), we have

G ()] < fy e 2D (3| + ) dr < g e4“("/*7)(%( )+ Mi1)dr,

|Gia(t)] < fo e N7 [IEQBulxz( + Tia(T +Z%;\Eq1Eq]B cos(yir (1) — yjn (7)) x; (1) | d,
(4.12)

where

t
Xi(t) é wi0€A“t + / eA“(t_T)Ji(yi, u,‘,T)dT ,i = 1, 2, -+ M. (4.13)
0

Therefore, based on the above discussions, we have the following

Distributed Fault Detection Decision Scheme: The decision on the occurrence of a
fault (detection) in the ith generator is made when the modulus of at least one component
of the output estimation error (i.e., §;ip(t), p =1, 2 ) generated by the local FDE exceeds its

corresponding threshold v;,(t) given by

4

vi1(t) Jo e (g + i) dr

M
A / _
vio(t) = [y e telteT [Eq%Bii Xi + iz + Z%g\EqZEQJB cos(yi1 — yj1)| x5 | dT
j=1
(4.14)
where x;(t) and x;(t) are defined by (4.13). The fault detection time Ty is defined as the

first time instant such that |§ip(Ty)| > vip(Tq), for some Ty > T; and some p € {1, 2}, that
2

. A ~
is, Ty = inf U {t>0: |7ip(t)] > vip(t)} .
p=1
Remark 4.2. Note that v;,(t) given by (4.14) is an adaptive threshold for fault detection,
which has obvious advantage over a constant one. Moreover, the threshold v;,(t) can be

easily implemented using linear filtering techniques [83].

4.2.2 Fault Detectability Condition

The following theorem characterizes (in a non-closed form) the class of sensor faults that
are detectable by the proposed distributed fault detection method.

Theorem 4.1 (Fault Detectability ): For the distributed fault detection method de-
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scribed by (4.7) and (4.14), suppose that a sensor fault occurs in the ith subsystem at
time T;, where i € {1,--- ,M}. Then, if there exist some time instant Ty > T; and some

p € {1, 2}, such that the sensor bias 0; satisfies the following condition

‘ / e M=) (0, A j — CipLi)0idr + 03
71

Ty
Gip el T)Z%J |qu q]BU$]1|+‘qu qj ij|)|0i1|d7—

T; j=1
Ty
> 2wp<Td>+/ TGy (1 = A7)
T;
+GZPZFYU‘Eq1 q]BZ]|( ’COS(yil_yjl)DXj dT? (415)
7j=1

where 0;, is the pth component of 0;, CZ»; € N2 is a constant vector with all entries being 0
except the pth entry (taking the value of 1), and Gy, is the pth component of G; defined in
(4.4), then the sensor fault will be detected at time t = Ty, i.e., |Gip(Tu)| > vip(Ta)-

Proof: In the presence of a sensor fault (i.e., for ¢ > T;) in the ith generator, base on (4.4)
and (4.7), the dynamics of the state estimation error Z; = T;1 — i1 and Ty = Tio — Tj0

of the ith FDE satisfies

T = An%a — ABib +d; (4.16)

M
Fio = A+ AnFin +n — LiBibi + GiYy_vij [hij(wi, ;) — hij (84, 85)] . (4.17)

j=1
Let & 2 Ti1 — ﬁ—ﬁ,@ﬂ“ from (4.16), we have
. Ao
€ = An& +di — Z2B6;. (4.18)
Air
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Then, based on (4.18) and by using the triangular inequality, we obtain

t t . .
‘fz(t)’ S wioeA“t + / eA“(t_T)cL(yi, Ug T)d’l' + ‘ / €'A“(t_7) jﬂ ,Bzesz
0 0 il

A; B
< xi(t) + ‘T;Biai“l — eAunlt=T)y (4.19)
il

where a; and x;(t) are defined in Assumption 4.3 and (4.13), respectively.
Now, let us consider the output estimation error. For the second component of the output

estimation error ( i.e., ¥i2 = yi2 — Ui2), based on (4.17) and (4.4), we have

Ui2(t) = CiaZi + BiCi20;
¢ M
= / e N2 (=) [ - E;%Bii Ti1 + iz — CiaLiBi0; + Z%’j (hij (@i, 25) — hij(Zi, 25)] | dT
0

j=1
+5iCi20; .

. .. . AL ) . . .
By using the definition of &; (i.e., § = Ty — ﬁ—ﬁﬁﬂl) and applying again the triangular

inequality, we have

2
19 N1 [ _ B2 4 (LR DA o 0 dr 4 iCint
.%2 qi u{z"’_( A'l 72 7,)61 7,] T+/B7, 204
M
_/ e —Xig(t—T) 7712"‘2%]“%] l"z:xj) hij(i'iajjﬂ)dT
7j=1

(t— E BquQ
/ Ai(t=7) — CioL;) Bibidr + B;Ci20;

t
_ —Xi2(t=") | g2 B | 1£:1d
Azl /(; € ‘ qr ’L’LH&’ T

—/0 e~ Ri2(t=T) 772+nyw\hw (24, 25) — hij(#, 25)])dr . (4.20)
Jj=1

For the interconnection effect from the jth FDE, we have

hij(wi, z5) — hij(2i, 25) = quEqJBzg [cos(yin — Bibi1 — yj1)zi1 — cos(yi1 — yj1)&;1]

+E By Bij[sin(yin — Bifi1 — yjn) — sin(ya — yjn)].  (4.21)
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The first term of the right hand side of (4.21) can be rewritten as follows:

EqZEQJBzJ [cos(yir — Bifir — yj1)zj1 — cos(yir — yj1)Z41]
= —E,E,;Bijlcos(yi — Biflin — yj1)zj1 — cos(yin — yj1 )1 + cos(y — Biflin — yj1)aj1
—cos(yi1 — Bifi — yj1)41]

= quEq]B { cos(yi1 — Bitlin — yj1)Tj1 + [cos(yi1 — Bifi1 — yj1)

— COS(yﬂ — yﬂ)].@jl} . (4.22)

Note that | cos(yi1 — Bifi1 —yj1) —cos(yi1 —yj1)| < [Bibi] and |sin(y;1 — Bibi1 —yj1) —sin(yi —
yj1)| < |Bifi]. Thus, based on (4.21) and (4.22), we have

|hij (i, 25) — hij (83, 35)] < | By B Bigl (1E51] + 80| |2511) + [ BBy Bisl 180l . (4.23)
Based on (4.23), (4.20) and (4.19), we have

*Alz(t ) E B”Alz T \R.0. 0.
|y22 ’ > Al 22L7,)5197,d7'+,67,922

—/ el T>\E;%Bur|A Bl (1 = 4T dr
0

/ Aia(t— T)Z’y” ’qu quz]$j1|+|qu qj lj|)|ﬁ29l1‘d7_
_/ e_>‘i2(t_7—) |:|E;%Bzz|X@+nz2+271j|qu qj ij|Xj dr, (424)
0
7=1

where x; and x; are defined in (4.13). Based on the detection threshold given in (4.14), by
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using the property of the step function (;(t — T;), (4.24) can be rewritten as

E 2B Ao
|Gia(t) ‘/ Aia(t=7) .Alu ’ —CiaL;)0;dr + 0,2
T

M
_ / —Aiz(t=7 {yquBul [xz+! 041’( — AN 4 fig + > g | Egi By Bij| x| dr
T; ‘
) i=1

t M
— /Te)\ﬂ(tT)Z’Vij“EqiquBij@jl’+|EqiquBijD ’0¢1‘d7’. (4.25)
i j=1

Additionally, for the first component of output estimation error (i.e., g;1), by following the

similar reasoning logic as reported above, we have

t

. v A

|Gi1(t)] 2‘/ e Mult T)(Tj—cilLi)QidT+9i1
T; 1

[ e D et AR 1A )
T; zl

(4.26)
Based on (4.25) and (4.26), it can be easily seen that if there exists T; > T;, such that
condition (4.15) is satisfied, then it is concluded that |g;,(Ty4)| > vip(Tq), i.e., the fault is
detected at time t = Tj.

O

The above analysis for the general case of incipient faults can be specified to the important
case of abrupt faults. Specifically, we have the following results:
Corollary 4.1: For the distributed fault detection method described by (4.7) and (4.14),
suppose that a constant sensor bias occurs in the ith generator at time T;, where i €
{1,--+- ,M}. Then, if there exist some time instant Ty > T; and some p € {1, 2}, such

that the constant sensor bias 6; satisfies the following conditions:

Nip(Ta) + 2vip(1h)
oip(Ta) ’

10;] > (4.27)
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where

Ao QA Y _T
oip = |S2(AE - L+ D)L - e )
M
T; _ . _ / / N A
_Gip fTide Xi2(Ty T)Z’Yij(‘EqiquBij‘rjl‘ + ‘EqiquBijD ’Cﬂ’d’]’
j=1
A M
T ). _ / ’
Ny = [ple 0TGN "y By By Bigl (1 — [ cos(yin — yjn)|)x; dr
j=1

and I is the identity matrix, then the sensor fault will be detected at time t = Ty, i.e.,
[Gip(Ta)| > vip(Ta)-

Remark 4.3. According to Corollary 4.1, in the case of abrupt sensor faults, if the sensor
bias magnitude 6; is sufficiently large (i.e., it satisfies (4.27)) for some T, > T; , then the
fault will be detected at T,;. Thus, Corollary 4.1 characterizes the class of abrupt sensor
faults that are detectable by the distributed sensor fault detection method.

Remark 4.4. In the presence of a sensor fault in one of the generators of the power system,
the fault effect may be propagated to other FDI components due to their interconnections
through the transmission network. As a result, multiple residuals generated by several local
FDEs may exceed their thresholds, indicating the occurrence of a sensor fault. Clearly,
among a set of interconnected generators, the isolation of the particular generator where
the sensor fault has actually occurred is an important research issue, which is investigated

next.

4.2.3 Distributed Fault Isolation Method

Now, assume that a sensor bias fault occurred in sth generator is detected at some time Ty;

accordingly, at t = Ty, the FIEs are activated. For s = 1,--- , M, the local FIE associated
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with the sth generator is chosen as

-%sl = Asljjsl + ASQ(ys - és) + Qslés (428)

' M
A A A Vfs ~ A A oA

Tso = Agls +Aulo+Gs—— + Ls(ys - ys) + Q00 +G5275jhsj (x& xj)(4-29)
dos j=1

Qsl = Alesl - -As2 (430)

QSQ = As4Qs2 - Ls (431)

gs = Ig+ és y (4.32)

where 41, 52, and ¢s denote the estimated state and output variables provided by the

local FIE, respectively, L, is a design gain matrix (see (4.7)), & 2 (2 (ys — 0577,

A

& o= lgp oy’

, ;1 is from jth FDE, and 0, is the estimated sensor bias provided
by the local isolation estimator. The initial conditions are s (Ty) = 0, Zs2(Ty) = 0,
Q1(Ty) = 0, and Q42(Ty) = 0. Note that the distributed FIE described by (4.28)-(4.32)
for each local generator is constructed based on local measurements (i.e., vys and y,) and
certain communicated information (for instance, &; ) from the FDI component associated
with the jth directly interconnected generator.

The adaptive law for adjusting 0, is derived using the Lyapunov synthesis approach (see,

for example, [35]). Specifically, the learning algorithm is given by
0, = Po. {To(@u2+ 1) i |, (4.33)

where () 2 ys(t) — ys(t) denotes the output estimation error generated by the FIE
associated with the sth generator, I's > 0 is a symmetric, positive-definite learning rate
matrix, and Pg, is the projection operator restricting fs to the corresponding known set
Os (in order to guarantee stability of the learning algorithm in the presence of modeling
uncertainty, as described in [35, 15]), and [ is the identity matrix.

The distributed fault isolation decision scheme is based on the following intuitive principle:

if a sensor fault occurs in the sth generator at time T and is detected at time T}, then a
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set of adaptive threshold functions {psy(t), p =1, 2 } can be designed for the corresponding
local isolation estimator, such that each component of its output estimation error satisfies
|Tsp(t)] < pop(t), forallt > T,. Consequently, such a set of adaptive thresholds pusy(t), with
s =1,---,M, can be associated with the output estimation error of each local isolation
estimator. In the fault isolation procedure, if, for a particular local isolation estimator
r € {1,---,M}\{s}, there exists some p € {1, 2}, such that the pth component of its
output estimation error satisfies |y, (t)| > prp(t) for some finite time ¢t > Ty, then the
possibility of the occurrence of the sensor fault in rth generator can be excluded. Based on
this intuitive idea, we have the following

Distributed Fault Isolation Decision Scheme: If, for each r € {1,--- , M}\{s}, there
exist some finite time t" > Ty and some p € {1, 2}, such that |grp(t")| > prp(t"), then the
occurrence of the sensor bias fault in the sth generator is concluded.

Remark 4.5. Note that the isolation of the faulty generator is conducted locally. In the
distributed FDI architecture (see, for instance, Figure 4.1), a local FIE is associated with
each generator. For a particular local generator, if at least one component of the residual
generated by the local FIE exceed its threshold, then the case of a fault in the local generator
is excluded. On the other hand, if all local FIE residual components remain below their
corresponding thresholds, then the local FDI component determines that the local generator

is faulty.

4.2.4 Adaptive Thresholds for Distributed Fault Isolation

The threshold functions ji4,(t) clearly play a key role in the proposed distributed fault iso-

lation decision scheme. To derive the adaptive threshold, we analyze the output estimation

error of the matched sth local isolation estimator in the case that a sensor bias fault occurs

to the sth generator.

Let us denote the state estimation error of the sth local isolation estimator associated with
A

the sth generator by s (t) 2 xs1(t) — Zs1(t) and Te2(t) = xs2(t) — Ts2(t) and the output

estimation error by s 2 Ys — Us, respectively. By using (4.28)-(4.32) and (4.4), in the
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presence of a sensor fault in the sth generator, for ¢ > T, we have

«%sl - Asli'sl + As29~s - Qslés + ds (434)
532 = As4-is2 + -As3i'sl +ns + Lsés - Qs2és
M
+GSZ’YSJ' [hsj(@s, 5) — haj(Es, 25)] (4.35)
j=1

where Asy is defined in (4.9).

The following lemma provides a bounding function for the output estimation error corre-
sponding to the local isolation estimator associated with the sth generator, in the case that
a sensor fault occurs in this generator.

Lemma 4.1. If a sensor fault in the sth generator is detected at time Ty, where s €
{1,---, M}, then for all t > Ty, the pth component of the output estimation error generated

by the local FIE for the sth generator satisfies

t
|Q5p(t)’ < /T e (t=7) [|08p“453|(ps + |Q104]) + Nsp + |CSst2| Qs
d

M M
+Csp(Y i B BayBsgl x5 + > s (16551 + s )8s1) | dr + wspeer =T
j=1

j=1
+(CopQlsz + Cip) T 165 (4.36)
where
A A . , , .
¢Sj (t) = Eququsj Sln(ysl - yj1> — Eququst?jl COS(ysl — yj1>
VAN ’o / ’ ~ .
1/}5j (t) = EququSj COS(ysl - yjl) + Eququijjl sm(ysl —_ yjl) s

0,(t) 2 0,(t) — 04(t) represents the fault parameter estimation error, 0y is the first com-
ponent of O, ws is a positive constant satisfying |xse(Ty)| < wsa, ng—? € R2 is a constant
vector with all entries being 0 except the pth entry (taking the value of 1), x;(t) is defined
in (4.13),

t
ps(t) = / eAs1(t=7) (Js(ys, Us, T) + |Qsl|as)d7' + cDSgeASl(t_Td) , (4.37)
Ty

and (g is a constant bound satistying |Zs1(Ty)| < @so -
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Proof: Consider the state estimation error Z4; described by (4.34). By substituting Asy =

—Qa1 + Asq1Q4 (see (4.30)) into (4.34) and by letting Zs = Fs1 4+ Qs105, we obtain
fsl = -Asljfsl — Qslés + dS . (438)
Therefore, the solution of (4.38) is given by

t
Tyl = / eAs1(t=7) (ds(zs, us, T) — Qs165)dT + et =Ta) g (Ty) . (4.39)
Ty

By using (4.4), (4.39), Assumption 4.3, the definition of Zs1, and the triangular inequality,
we obtain

|:Z‘sl‘ S |j51’ + |Qslés| § Ps + |Qslés| ) (440)

where p; is defined in (4.37).
Now, let us consider the output estimation error 3. By substituting L, = —ng + Auso
(see (4.31)) into (4.35) and by letting Z s 2 T2 + Qs20s, we obtain

M

i’sQ = ~/Zl84£.82 + »As3i'sl +ns — Qs2és + Gszfysj [hsj(x& ZL‘j) - th(:ﬁm ij)] . (441)
j=1

2

Define each component of the output estimation error generated by the sth FIE as g,

Ysp — Usp, p = 1, 2. By using (4.32), (4.4), and the definition of Zs(t), we have

gjsp(t) = Csp:isg(t) — Cspé?s = Spi‘sQ(t) — (CSPQSQ + Csp)es . (4.42)

Next, let us consider the second component of the output estimation error ( i.e., gs2). Based

on (4.41) and (4.42) as well as Assumptions 4.1 and 4.3, it can be shown that

M

t
’?js2(t)| < / e_/\SQ(t_T) [|Eq2'sBSS| |5Csl| + Ms2 + |Cs2932| Qs + Z%i’hsj(x&xj)
Ty j=1
—hgj(Zs, @j)y] A1 + wepe 2710 L |(CoQ0 + Ci2) T 104] (4.43)
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where wgo is a constant bound for |z (Ty)|, such that |Zs2(Ty)| = |zs2(Ty)| < wso (Note

Zs2(Tq) = 0). Note that in the presence of a sensor fault in the sth generator, we have

hsj(xs, Tj) — hsj(Zs,25) = —Ey By Bsjlcos(yst — 051 — yj1)zj1 — cos(ys1 — 051 — yj1)@j1)

~

+E;3E;stj [Sin(ysl - 051 - yjl) - Sin(ysl - 051 - yjl)]

A~

= _E;SE;stj{[COS(ysl —0s1 — yj1) — cos(ys1 — Os1 — yj1)]2j1

+ cos(ys1 —Os1 —yjl)ffjl}

+E, By Bjsin(ys1 — 051 — yj1) — sin(ys1 — 0s1 — y1)].
Then, after some algebra manipulations, we have

hsj (.les, l‘j) — hsj (Zﬁs, .Cf?j) = —E;SE;stj cos(ysl —(981 —yjl):%jl + ¢sj (COS 931 — COS ésl)

—1[}sj (sin 931 — sin 951) y
where ¢g4; and 1), are given in (4.36). Thus, by using the triangle inequality, we obtain
|hsj (s, 5) — hsj(25, )] < [EgsEq;BsjllZn| + (|¢sj| + 510511 - (4.44)

. PRVANN 1o . . . .
Note that as defined in (4.29), 2; = [Zj ij ] T with 41 being the state estimation provided

by the jth FDE. Therefore, Z;1 in (4.44) satisfies
fjl = Ajlii‘ﬂ +d; . (4.45)

Because (4.45) is in the same form of (4.8), we have |Z;1(t)| < x; (), where x; is defined in

(4.13).
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Based on (4.43), (4.44) and (4.40), we have

t M
‘QSQ(t” S / ei/\SQ(tiT) |:’Equss(ps + ‘Qsles‘) + 7752 + ‘CSQQSQ‘ Qs + E ’Ysj|Eququ5j‘ Xj
Ty

j=1
M ~ ~

+Z%j(|¢8]’| + |1/’sj|)‘981@ dr +wgpe M2 7T) +[(Co2Qs2 + Cs?)T| 0. (4.46)
j=1

Analogously, for the first component of output estimation error (i.e., gs1), by following the

similar reasoning logic as reported above, we have

) < [ 0 et10B+Cua 2l i+ Coaft ) I T
' (4.47)
Now the (4.36) follows directly from (4.46) and (4.47).
O
Although Lemma 4.1 provides a bounding function for the output estimation error corre-
sponding to the local isolation estimator associated with the sth generator, in the case that a
sensor fault occurs in the sth generator, it cannot be directly used as a threshold function for
fault isolation, because 6, (t) is not available (we do not assume the condition of persistency
of excitation in this paper). However, as the estimate 0, belongs to the known compact set

O, we have |6, — Hsp(t)‘ < Kkgp(t), p=1, 2, for a suitable r4(t) 2 [Ks1(t) Ksa(t)]T de-

pending on the geometric properties of set ©; (see, e.g., [84]). Hence, the following threshold

function for fault isolation can be chosen:

t M
psp(t) = / e Aer(t=T) [CspAsISKPS + [Qs1]ks) + Nsp + [CopQlsa| s + GSPZ’YSj|EququSj| Xj
T j=1
M
+GSPZ%J'(’¢SJ| + |7/)sj|)/€s1] dr + wepe Mor(t=Ta) 4 (CspSQep + Cip) | s (4.48)
j=1

Remark 4.6. Note that the adaptive threshold jig,(t) can be easily implemented on-line
using linear filtering techniques (see [83]). The constant bounds wy and wse are (possibly

conservative) bounds for the unknown initial conditions z1(Ty) and z42(Ty), respectively.
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However, note that, since the effect of these bounds decreases exponentially (i.e., wyo is

-Asl(t*Td) 7)\sp(t7Td)

multiplied by e , and wge is multiplied by e , the practical use of such
conservative bounds will not affect significantly the performance of the distributed fault

isolation algorithm.

4.3 Analytical Properties of the Distributed Fault Isolation

Method

As is well known in the fault diagnosis literature, there is an inherent tradeoff between
robustness and fault sensitivity. In this section, we analyze the fault isolability of the
distributed sensor fault diagnosis method. In addition, the stability and learning capability

of the adaptive isolation estimators are also investigated.

4.3.1 Fault Isolability Analysis

For our purpose, a fault in each generator is considered to be isolable if the distributed
fault isolation scheme is able to reach a correct decision in finite time. Intuitively, faults
are isolable if they are mutually different according to a certain measure quantifying the
difference in the effects that different faults have on measurable outputs and on the estimated
quantities in the isolation scheme. To quantify this concept, we introduce the fault mismatch
function [83] between a sensor fault occurred in the sth generator and a sensor fault occurred

in the rth generator:

¢ M
hy? (t) = (CrpQr2+Crp)br —Grp e~ Arp(t=7) Z%j [¢rj(cos ¥7 —cos 0r1)

Ty =

by (sin 0% +sin 0,1)]dr, (4.49)

where ¢,; and v,; are defined in (4.36), r,s = 1,--- , M, r # s, p € {1, 2}, 6,1 is the
first component of ér, and 9% € RM is a vector with only its sth component being non-zero

(i.e., U5 = 051 and 97 = 0), respectively. From a qualitative point of view, h;°(t) can be
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interpreted as a filtered version of the difference between the effect of a sensor fault in the
sth generator on the rth FIE and the estimated sensor fault provided by the rth FIE whose
structure does not match the actual fault scenario. Therefore, the fault mismatch function
hp?(t), defined as the ability of the rth local FIE to learn the effect of the sensor fault in
the sth generator, offers a measure of the difference between the sensor fault occurred in
the sth generator and the sensor fault occurred in the rth generator.

The following theorem characterizes in an implicit way the class of isolable faults in each
generator:

Theorem 4.2. (Fault Isolability) Consider the distributed fault isolation scheme described
by (4.28)- (4.32) and (4.48). Suppose that a sensor fault occurring in the sth generator is
detected at time T,. Then, fault s is isolable if, for each r € {1,--- ,M}\{s}, there exist

some time t" > T, and some p € {1, 2} such that the fault mismatch function hy’(t")

satisfies
t . M
\h;‘s(trﬂ > /T 6)‘”’(tT){‘Crp-Ar3‘ O + 19210 |) + rp + Grp [Z’Yrj‘EqrquBrj’ bel
d j=1
/ / .Asg Ag1 (=T AsQ
+rs| B Eyg Brs| (]A—glas|(1 — eAn(=Ta)y 4 ,ASlgs‘) dr
twpge Are(t=Ta) 4 Lrp(t) - (4.50)

Proof: Denote the state estimation errors of the rth local isolation estimator associated
~ AN N - AN “ .

with the rth generator by Z,1(t) = z,1(t) — Zy1(t) and Zy2(t) = xp2(t) — Zr2(t). By using

(4.28)-(4.32) and (4.4), in the presence of a sensor fault in the sth generator, for t > T, we

have

x;'rl = Arli‘rl + Ar2ér - erér + dr (451)
5&7‘2 = -/Ztr4~%r2 + Ar3Zr1 + Lrér - QTQéT + N
M
+GTZ'77‘]‘ [hrj (377“7 mj) - h?“j (-%7‘7 'i'])] : (452)
j=1
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Then, based on (4.51), by using the same reasoning logic as reported in the proof of

Lemma 4.1 (see (4.38)), we have

557’1 = Arljrl_}'dr (453)

M
557’2 = Ar4jr2 + AT’3:’ET‘1 + nr + GTZ’YT]' [hrj (:L“r, xj) - hrj (i'r, j])] s (454)
=1

N A N A ..
where Z,1 = %1 + 10, and Tpo = Tpo + Q260,. Note that (4.53) is in the same form as

(4.45). Therefore, from the proof of Lemma 4.1 and the definition of Z,;, we obtain
|jr1| < ‘jrly + |Qr1ér‘ < Xr + ‘erér| ) (455)

where x, is defined in (4.13).
M

Now, let us analyze the estimation error of the interconnection term Z’yrj (hyj(zp, z5) —
j=1
hyj(&,,2;)] in (4.52). First, note that in the presence of a sensor fault in the sth generator,
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we have

hrs(xra xs) -

hrs (fijra is)

~

E;TE;SBTS[SiD<yr1 - (ysl - 79?)) - Sin(yrl — 01 — ysl)]
_E(;TE;SBTS[COS(Z/TI - (ysl - 79?))$51 - COS(Z/M - érl - ysl)i'sl]
E;TE;SBTS [Sin(yrl — Ys1 + ﬁi) - Siﬂ(ym - érl - ysl)]

/ / ~

_EqrEqurs{[COS(yrl —Ys1 + 193) - Cos(yrl — 01 — ysl)]i'sl

+ cos(yr1 — yYs1 + 19§)9~Cs1}

[BorEgsBrssin(yrn — ys1) — By BgoBrsst cos(yr1 — ys1)] -
(cos ¥ — cos b,1)

+[E;TE;3BTS cos(yr1 — Ys1) + E;TE;sBrstsl sin(yr1 — ys1)] -
(sin 92 + sin 1) — E;,,E;SBTS cos(yr1 — Ys1 + 95)Ts1
brs(COS VS — COS Oy1 ) + 1y (sin 95+ 5in B,1)

—E;T,E;SBTS cos(Yr1 — Ys1 +95)Ts1 (4.56)

where ¢,s and 1,5 are defined in (4.36).

Second, the estimation error of the interconnection effect from the kth healthy generator,

ke{l,---,M}\{s, r}, can be represented as follows

M M
> veklhen(@r, ) = hor(@e,@8)] = > vk By Egp Bk [Sin(yrl — (yr1 —9%))

k=1
k#s

k=1

k#s

- Sin(yrl - érl - ykl):|
M

- Z Yk Eqr Eqi Br [COS(?/TI = (Yk1 — VR)) T
is

—cos(yr1 — érl - ykl)im] .
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By using a similar reasoning logic reported as in (4.56), we have

M M
Z Yk [Pk (e, ) — B (T, T)] = Z Vrk [gzﬁrk(cos 9% — cosbr1) + Vi (sin g, + sin6,1)
Ks Kzs

_E;TE;kBTk cos(Yr1 — Yr1 + ﬂZ)fkl , (4.57)

where ¢, and 1,4, are defined in (4.36), and ¥} is the kth component of 1* defined in (4.49).

Therefore, based on (4.56) and (4.57), we can obtain

M
Z%"j [hrj (r, “Tj) —hrj (@r, 5&])] = Z%“j [¢Tj (cos 19;' —cos érl) + (sin 19? +sin érl)
— j=1
Eq,,Eq]B  cos(yr1 —yj1 + V3)Tj1]. (4.58)

Then, based on (4.58) and (4.54), we have

M

Tro = ApZpo + Ap3Tr + 1 + GTZ%]-{@J- (cos V] — cos érl) + 1y (sin V] + sin érl)
j=1
EqTEqJB i cos(yr1 — Yj1 + ﬂj)i"jl} . (4.59)
Now, let us consider the pth component of the output estimation error (i.e., g 2 Yrp—Trp)-
By using (4.32), (4.4), and the definition of Z,2(t), we have
grp(t) = Cij;TQ(t) - Crpér = Crpf’rQ(t) - (CTPQT’Q + Crp)ér .
Thus, based on the above equation and (4.59), we can obtain
t M
~ _ —Arp(t—7) . . s 2 (i 29S8 B
Urp(t) = Grp e Z’ym [¢rj(cos ¥ — cos 1) + Py (sin 3 + sin 0,1 )]d7

Ta j=1
t

+/ ei)\rp(tiﬂ-) [CTP'A”B‘%Tl +777’p TPZ’YTJEqrEq]B COS(yTl —Yj1 +19j>jjl]d7—
Ty

—(CrpQr2 + Crp)br + CrpFra(Ty)e™ w@ Ta) (4.60)
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Therefore, based on (4.59) and (4.60), by using the triangle inequality, we can obtain

’?jrp(t” > Ih}}s(t)l - /T e A= T)[|CrpAr3| |Zr1| + Mrp + GT‘pZ%ﬂEqrEqJBTJ’ |~%j1‘ ldr
d ] 1

Fwpge Arr(t=Ta) (4.61)

In the presence of a sensor fault in the sth generator, based on some similar reasoning logic

as reported in the proof of Lemma 4.1 (see (4.45)), and (4.19), we can obtain

52

|Zs1] <Xs+! 22, (1 — e T))+| 0|, (4.62)

sl

and

Zj1] < X5 re{l, Mp\{s}, (4.63)

where Y is defined in (4.13). Therefore, based on (4.61), (4.62), (4.63), and (4.55), we have

t
im0l = o)~ [ e -M“{wrpmguxrﬂn Brl) + 7y
d

+G7"P|:Z’YT‘J‘E(17" qj 7"]'||Xj‘
j=1

+7T8|EqrEquTS’ ( |

AS2 AS T—T5) 52
Aiglasl(]. 1( )+| 519 |) dT

—wyge Mre(t=Ta) (4.64)

Therefore, by taking into account the corresponding adaptive threshold i, given in (4.48)
for the FIE associated with the rth generator, we can conclude that, if condition (4.50) is
satisfied at time ¢ = ¢", we obtain |grp(t")| > prp(t"), which implies that the possibility of
the occurrence of a sensor fault in rth generator can be excluded at time t = ¢".

|
Remark 4.7. According to the above theorem, if, for each r € {1,---, M}\{s}, the
fault mismatch function hy*(t") satisfies condition (4.50) for some time ¢ > 0, then the

pth component of the output estimation error generated by the rth FIE associated with
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the rth generator would exceed its corresponding adaptive threshold at time ¢t = ¢", i.e.,
|Grp(t")| > prp(t"), hence excluding the occurrence of a sensor fault in the rth generator.
Therefore, Theorem 4.2 characterizes (in a non-closed form) the class of sensor faults that

are isolable in each generator by the proposed robust distributed FDI scheme.

4.3.2 Stability and Learning Capability

We now investigate the stability and learning properties of the adaptive fault isolation esti-
mators, which are described by the following result:

Theorem 4.3. (Stability and Learning Capability): Suppose that a sensor fault occurs in
the sth generator at time Ts, where s € {1,--- ,M}. Then, the distributed fault isolation

scheme described by (4.28)-(4.32) and (4.48) guarantees that,

e for each local fault isolation estimator q, ¢ = 1,---, M, the estimate variables &4 (t),

Zgo(t), and éq(t) are uniformly bounded;

e there exist a positive constant ks and a bounded function (s(t), such that, for all finite
time ty > Ty, the output estimation error of the matched sth local isolation estimator

satisfies

[ mora < s [ iGora (4.65)

Ta Ty

Proof: Let us first address the signal boundedness property. The state estimation error and
output estimation error of the FIE for the gth generator are defined as Z4; 2 zq1(t) —Zq (1),
Tgo(t) 2 Zg2(t) — Tq2(t), and gq 2 Yq(t) — 7q(t), respectively. First, let us consider the FIE
associated with sth generator (i.e., ¢ = s). By using the similar reasoning logic as reported

in the proof of Lemma 4.1 (see (4.38) and (4.41)), we have

.i'ql = .Aql.i'ql — quéq + dq (4.66)
M

Tp = AuZe+ Apiq +ng— Qb + GqZ'Yqj [hgj(2g, 75) — hqj(Zq, Z5)] , (4.67)
j=1

_ VAN ~ _ VAN ~
where Tg1 = Zg1 + Qq16, and Tyo = Tgo + Q20
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Since dg, €241 and 9q are bounded (Assumption 4.1 and Assumption 4.3) and A, is stable,
we obtain Z,1 € Lo based on (4.66). Moreover, due to the use of parameter projection
(see (4.33)), we have éq € Lo. Therefore, based on Assumption 4.2 and the definition of
Zq1, we know that 1 € Lo, and Z41 € Lo. Then, based on a similar analysis of the
dynamics of the state estimation error Z;; = xj1 — ;1 of the jth FDE, we have Z1 € Lo
and Zj1 € Loo. Thus, we know ¢4; and 1,; are bounded (see, (4.36)). Additionally, based
on a similar reasoning logic as reported in the proof of Lemma 4.1 (see (4.44)), we know that
and hg; (x4, ;) — hej(&4, %) is bounded. Furthermore, because 74, Q42 and 6, are bounded
(Assumption 4.1 and Assumption 4.3) and A4 is stable, by using (4.67), we can obtain
Zq2 € Loo. Owing to the definition of Z42, we conclude that Z42 € Lo and 242 € L.

Now, let us consider the FIEs associated with healthy generators (i.e., ¢ € {1,--- , M }\{s},).
By using the similar reasoning logic as reported in the proof of Theorem 4.2 (see (4.53) and

(4.54)), we have

i'ql = .Aqli'ql + dq (4.68)
M

T = AquTe2 + Agslqr + g+ GQZ%J‘ [hqj(@g, %) — hgj(Zq, 25)] (4.69)
j=1

where Z41 = Tq1 + quéq and Ty = Tg2 + quéq. Then, based on a similar reasoning logic
as reported above, we can conclude that 9q € Loy, g1 € Lo and 242 € Loo. This concludes
the first part of the theorem.

Now, let us prove the second part of the theorem concerning the learning capability of the
qth FIE in the case that it matches the occurred sensor fault in the sth generator, i.e., ¢ = s.
In this case, the solution of (4.67) can be written as Zsa(t) = (s1(t) +(s2(t), VYt > Ty, where

(s1 and (4o are the solutions of the following differential equations, respectively:

M
Csl = -/Zts4Csl + As?)isl +ns — Q8205 + GsZ’Ysj [hsj(xs’xj) - hsj(jSaCACj)] y Csl (Td) =0

J=1

(o = AsuCoa, Coa(Tu) = s2(Tu) = ws2(Ty) -
(4.70)
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Using the definition of Zs, we have Ts = (1 (t) + (s2(t) — Q420,. Therefore,

gjs(t) = Ts2 — és - [Csl(t) + Cs2(t)] - (952 + I)es . (4~71)

Now, consider a Lyapunov function candidate V; = ﬁ@jés + [ |¢s2(7)|?dr. The time
derivative of V; along the solution of (4.33) is given by V, = F%Qj’P@S {Ds(Qe2+ 1) G5} —
|Cs2|? — Fiséjes Clearly, since 0 € ©4, when the projection operator P is in effect, it always
results in smaller parameter errors that will decrease V; [35, 15]. Therefore, by using (4.71)

and completing the squares, we obtain

) - 3 1 ~r- ~ 3 1 ~r-
Ve < 0] Qa+D"0s = [Cal” = 50,0 = G, (=Fs + Ca + Ce2) — [Gl* — -0, 0s
S S
|gs‘2 2 L s
< s —10,] 6] . 4.72
< = LGl 10016 (4.72)

Let (s = (\C31|2 + F% |0~S|05)% By integrating (4.72) from t = T to t = t;, we obtain
Ji Ba(0) Pt < R+ 2 [ [Cu(t)[ dt, where Ry = sup, o, {2[Va(Ta) = Va(tp)]} -

O
Theorem 4.3 guarantees the boundedness of all the variables involved in the local adaptive
FIE in the case that a sensor fault is detected in the corresponding generator. Moreover, the
performance measure given by (4.65) shows that the ability of the matched local isolation
estimator to learn the post-fault system dynamics is limited by the extended Lo norm of
Cs(t), which, in turn, is related to the modeling uncertainties ds and 7, the parameter
estimation error 5, the rate of change of the time-varying bias 6, and the estimation

error of the interconnection.

4.4 Simulation Results

A two-machine infinite bus power system [25, 26] as shown in Figure 4.2 is used to demon-
strate the effectiveness of the proposed distributed fault detection and isolation method.

The voltage and the angle of the infinite bus are assumed to be constant under all condi-
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tions, and the infinite bus is assumed to absorb infinite power. The parameters of the two

2:1’12

2:1.7]'2

00
00

120

Figure 4.2: A two-machine infinite bus power system [26]

generators and the transmission line are give in Table 4.1.

Table 4.1 System parameters

Generator 1 Generator 2

zq (p-u.) 1.863 2.36
), (pu.) 0.257 0.319
Zaq (p-u.) 1.712 1.712
T, (p-u.) 6.9 7.96
H(s) 4 5.1
D(p.u.) 5 3
ke 1 1
x12(p.u.) 0.55
z13(p-u.) 0.53
T23(p-u.) 0.6
wo(rad/s) 314.159

Based on the parameters given in Table 1, by defining the state variables as z; = [x;1 xg]T =

[wi & APei]—r with ¢ = 1,2, we can obtain a state space model of the system consisting of
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two generators as follows:

—0.625 0 —-39.27 0 0
11 T11 — —
= 1 0 0 + 1 0 | 0.1449 vir+ | 0 hia
T12 1y T12
~EZ2Bi | 0 —0.1449 1 1
010
y1 = x1,
0 0 1
—0.2941 0 —-30.8 0 0
Z21 x21 — —
= 1 0 0 + 1 0 | 0.1256 v+ | 0 hay
T2 " T2
—Eq2322 0 —0.1256 1 1
010
Y2 = T2,
0 0 1

where the interconnection terms hiy and ho; are given by:
hlg(é,w) = E;lE;QBlg sin(51 — (52) — E;lE;QBlg COS((sl — (52)(,«.22

h21 ((5,&)) = E:ﬂE;lBgl sin((52 - (51) - E;2E;1321 COS((52 - (51)&)1 y

and the known variables E‘;i and Bjj;, i, j = 1, 2, can be calculated on-line based on the
machine dynamics [25].

In this two-machine infinite bus power simulation example, two sources of modeling un-
certainty are considered: (i) up to 5% disturbance effect on the power system frequency

(i.e., fi = (1/2m)w;); (ii) up to 5% reduction in the direct axis transient short-circuit time

0.05w;
2

, i1 =0, and 70 = 0'79,526 |vp; — AP;|. The
doi

initial condition of machine 1 and machine 2 are set to x1 = x5 = [0 0 0]". For simplicity,

constant Tcllm-. Therefore, we have d; =

the input to each subsystem consists of two parts: a stabilizing part based on state feedback
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design and a sinusoidal signal causing each subsystem to deviate from steady-state linear
dynamics. In the simulation, the actual modeling uncertainties used are: (i) 4% distur-
bance effect on the power system frequency; (ii) 2% reduction in the direct axis transient
short-circuit time constant T (;m..

The gain matrix L; of the estimators is chosen such that the poles of matrix A;4 are located
at -1.7 and -2.5, respectively. Consequently, the related design constants are \;; = —1.7
and \;p = —2.5. Additionally, in the fault isolation module, FIE1 and FIE2 are two FIEs
which are associated with the first generator and the second generator, respectively. The
learning rates of the adaptive algorithm for fault parameters estimation in FIE1 and FIE2
are 1 and 0.05 for both FIE1 and FIE2.

We consider the case of a constant sensor bias which may occur to one of the two genera-
tors. Figure 4.3 and Figure 4.4 show the fault detection results when a constant bias with
2 = [0.03 0.001]" occurs to the second generator at T» = 5 second. Specifically, the fault
detection residuals (solid line) associated with ¢; and AP; and the corresponding thresh-
olds (dashed line) generated by each local FDE are shown in Figure 4.3 and Figure 4.4,
respectively. As can be seen, the fault is detected almost immediately by each FDE. Then,
the two local FIEs are activated to determine the particular faulty generator. The fault
isolation residuals (solid line) and the corresponding thresholds (dashed line) generated by
the FIE1 and FIE2 are shown in Figure 4.5 and Figure 4.6, respectively. It can be seen
that the residual associated with output AP; generated by FIE 1 (i.e. the FIE associated
with the first generator) exceeds its threshold at approximately ¢ = 6 second. Meanwhile,
both of the two residual components (solid line) generated by FIE 2 always remain below
their thresholds (dashed line), as shown in Figure 4.6. Thus, the sensor fault in the second
generator is correctly isolated.

In addition, the case of a sensor fault 6; = [0.02 0.001]" in the first generator has also
been considered. Specifically, Figure 4.7 and Figure 4.8 show fault detection results when
the fault occurs to the first generator at 17 = 5 second. Figure 4.9 and Figure 4.10 show

the results of fault isolation. Again, the sensor bias is successfully detected and isolated.
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Figure 4.3: The case of a sensor bias in the second generator: the fault detection residuals
(solid and blue line) associated with y11 and 12 and their thresholds (dashed and red line)
generated by the local FDE for the first generator
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Figure 4.4: The case of a sensor bias in the second generator: the fault detection residuals
(solid and blue line) associated with y2; and y22 and their thresholds (dashed and red line)
generated by the local FDE for the second generator
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Figure 4.5: The case of a sensor bias in the second generator: the fault isolation residuals
(solid and blue line) and their thresholds (dashed and red line) generated by local FIE1

associated with the first generator
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Figure 4.6: The case of a sensor bias in the second generator: the fault isolation residuals
(solid and blue line) and their thresholds (dashed and red line) generated by local FIE2

associated with the second generator
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Figure 4.7: The case of a sensor bias in the first generator :
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Figure 4.9: The case of a sensor bias in the first generator: the fault isolation residuals
(solid and blue line) and their thresholds (dashed and red line) generated by the local FIE
1 associated with the first generator.
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Figure 4.10: The case of a sensor bias in the first generator: the fault isolation residuals
(solid and blue line) and their thresholds (dashed and red line) generated by the local FIE
2 associated with the second generator.
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Chapter 5

Distributed Sensor Fault Diagnosis
in a Class of Interconnected

Nonlinear Uncertain Systems

The distributed fault diagnosis schemes for sensor faults in a class of input-output intercon-
nected nonlinear systems have been presented in Chapter 4. In such systems, it is assumed
that the system state in each subsystem can be decomposed into an unknown part and
a measurable part, and there is no interconnection term in the dynamic equation of the
unknown part of states. These assumptions may result in some possibly limiting require-
ments in applications. In this chapter, we extend the results described in Chapter 4 by
considering a class of input-output interconnected nonlinear systems, where both unknown
part and measurable part of system states of each subsystem are directly affected by the
interconnection between other directly interconnected subsystems and this local subsystem.
We are aiming to determine the particular subsystem with faulty sensors in the presence
of propagated fault effect. In the presented distributed FDI architecture, a fault diagnostic
component is designed for each subsystem in the interconnected system by utilizing local

measurements and certain communicated information from neighboring FDI components
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associated with its directly interconnected subsystems. Each local FDI component consists
of a FDE and a nonlinear adaptive FIE. Once a sensor fault is detected, then the FIEs are
activated for the purpose of isolating the particular subsystem where the sensor fault has
actually occurred. In the fault isolation stage, the output estimation error of each FIE is
evaluated with a set of adaptive thresholds, which can be implemented on-line using linear
filtering techniques. The occurrence of sensor fault in a particular subsystem is excluded
if at least one component of the output estimation error associated with the correspond-
ing FIE exceeds its threshold at some finite time. The subsystem with actual local faulty
sensors can be isolated if we can successfully exclude the occurrences of sensor faults for
all subsystems but one. The chapter focuses on the derivation of adaptive thresholds for
distributed sensor fault detection and fault isolation, respectively, ensuring robustness with
respect to interactions among interconnected subsystems and modeling uncertainty. Ad-
ditionally, the fault detectability condition and the stability and learning property of the
distributed adaptive fault isolation method are investigated. An example of interconnected
inverted pendulums mounted on carts is used to illustrate the effectiveness of the proposed
scheme.

The organization of this chapter is as follows In Section 5.1, the sensor FDI problem for a
class of interconnected nonlinear uncertain systems is formulated. Section 5.2 describes the
distributed FDI architecture and the design of local FDI component for each subsystem in
the interconnected system. The design of adaptive thresholds for distributed fault isolation
is presented in Section 5.3. Section 5.4 investigates two important analytical properties of
the distributed FDI method, including the fault detectability condition and the stability
and learning capability of the distributed adaptive fault isolation method. To illustrate the
effectiveness of the FDI method, simulation results of an example of interconnected inverted

pendulums mounted on carts is presented in Section 5.5.
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5.1 Problem Formulation

Consider a nonlinear dynamic system composed of M interconnected subsystems with the
dynamics of the ¢th subsystem, ¢ = 1,--- | M, being described by the following differential

equation

T = A + EiG(wi, wi) + Digi(xi,uis t) + gi(yi, us) + ij\/; hij(xj, ;)
yi = Cixi+ Bi(t — Tp)b;(t)

(5.1)

where z; € R, u; € ®™, and y; € R4 are the state vector, input vector, and output
vector of the ith subsystem (n; > [;), respectively, E; € R"*% and D; € R"*" are constant
matrices, and ¢ : R x R = RE g; 0 Rl x R R, @ 0 B ox R x RE = R

hij : R x R™ = R™ are smooth vector fields. Specifically, the model given by

tni = Aizni + EiG(zni, wi) + gi(yni, wi)

yni = Cizni

is the known nominal model of the ith subsystem with (; and g; being the known nonlinear-
ities. The vector field ¢; in (5.1) represents the modeling uncertainty of the ith subsystem,
and B;(t — Tp)0;(t) denotes a sensor bias fault. Specifically, 8;(t — 1p) is a step function
representing the time profile of the sensor fault which occurs at some unknown time Tjp.
The vector 0;(t) € R' represents the unknown time-varying sensor bias affecting the out-
put of subsystem ¢. Therefore, the sensor fault can be either an abrupt or incipient one.
It is assumed that the sensor fault only occurs to one of the M subsystems at any time.
Additionally, the vector fields h;; represents the direct interconnection between the ith sub-
system and the jth subsystem. Note that h;;(z;, u;) = 0, because the interconnection term
is only defined for two different subsystems. Also, it is noted that likely many functions h;;
are identically zero, since many subsystems may not be directly interconnected.

Assumption 5.1 The constant matrices E; € R%*% D; € R and C; € Rixm

with ¢; < l; are of full column rank and satisfies the conditions of rank(C;E;) = ¢; and
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rank(C;D;) = r;.
Then, under Assumption 5.1, there exists a change of coordinates z; = [zle ziTQ}T = Tix;

with z;; € R %) and 2 € R, such that ([72])

0 0
o T,E;, = , T;D; = , where Ejp € Rli*% and Djs € RlX7i,
E; Di2

. C’iTi_l = [0 Cj], where C; € Rt*l is orthogonal.

Therefore, in the new coordinate system, by considering more general structures of the

system nonlinearity and modeling uncertainty, we have

M
Zin = Ajzi + Ainzio + i (yi, wi) + ZHilj(zja ;)
—1
J S (5.2)
Zio = Aizzin + Aiszio + pio(zi, wi) + Yio(yi, wi) + mi(2i, ug, t) + ZH%(Z]', u;) '
=1
yi = Cizio + Bi(t —Tp)0i(t),
A Ag »in H}
where ‘ ‘ = TiAiT;1, ’ = T;9;, and Y= T;hij, and the smooth
Aiz A Vio HEJ

vector fields pjo : R x R™ — Rb and n; : R x R x R — RY represent the unstructured
system nonlinearity and modeling uncertainty in the z;o state equation, respectively.

The objective of this chapter is to develop a robust distributed sensor bias FDI scheme
for interconnected nonlinear systems that can be transformed into (5.2). Specifically, the
distributed FDI algorithm aims to determine the particular subsystem with faulty sensors.
Throughout this chapter, the following assumptions are made:

Assumption 5.2 The unstructured modeling uncertainty, represented by n; in (5.2), is an

unknown nonlinear function of z;, u;, and t, but bounded, i.e.,

(2, uis )| < 0iyi, uis t) (5.3)

where the bounding function 7; is known and uniformly bounded in the corresponding
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compact sets of admissible state variables, inputs, and outputs, respectively.
Assumption 5.3 The system state vector z; of each subsystem remains bounded before
and after the occurrence of a fault, i.e., z;(t) € Loo, ¥t > 0.

Assumption 5.4 The nonlinear terms p;o(z;, u;) satisfy the following condition: Yu; € U;
and Vz;, 2; € Z;,

|pi2 (i wi) — pia(Zi, wi)| < iy, wi) |20 — Zi (5.4)

where o;9 is a known and uniformly bounded function, Z; C "™ and U; C ™ are compact
sets of admissible state variables and inputs, respectively.
Assumption 5.5 The interconnection terms satisfy the following condition, i.e., Vz;, 2; €

Z;, and V,Zj, 2]‘ S Zj,

IN

|Hi1j(zjﬁ Uj) — Hilj(ij, 'UJ])‘ 'Yilj|zj - 2j| (5'5)

|H7 (z),u5) — HE (Z,u)] < v (v wi) |25 — 2 (5.6)

where 'yl-lj is a known Lipschitz constant, %-23- is a known and uniformly bounded function,
and Z; C R™ and Z; C R"™ are compact sets of admissible state variables for subsystems i
and j, respectively.

Assumption 5.6 The rate of change of the possibly time-varying sensors bias is uniformly
bounded, i.e., |6;(t)] < o for all t > 0. Also, the sensor bias magnitude ; is uniformly
bounded, i.e., |0;(t)| < 6;.

Assumption 5.2 characterizes the class of modeling uncertainty under consideration. The
bound on the modeling uncertainty is needed in order to be able to distinguish between the
effects of faults and modeling uncertainty ([14, 83]).

Assumption 5.3 requires the boundedness of the state variables before and after the occur-
rence of a fault in each subsystem. Hence, it is assumed that the distributed feedback control
system is capable of retaining the boundedness of the state variables of each subsystem even
in the presence of a fault. This is a technical assumption required for well-posedness since

the distributed FDI design under consideration does not influence the closed-loop dynamics
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and stability. The design of distributed fault-tolerant controllers is beyond the scope of this
chapter. However, it is important to note that the proposed distributed FDI design does
not depend on the structure of the distributed controllers.

Assumption 5.4 characterizes the type of known nonlinearities of the nominal system dy-
namics under consideration. It is needed for deriving the adaptive thresholds for fault
detection and isolation.

Assumption 5.5 requires the interconnection terms to satisfy Lipschitz condition. Several
examples of distributed nonlinear systems with Lipschitz interconnection terms have been
considered in literature, including automated highway system (see, e.g., [58, 62]), inter-
connected inverted pendulums given in [32], and large-scale power systems as described in

[25].

5.2 Distributed Fault Detection and Isolation Architecture

The distributed FDI architecture is comprised of M local FDI components, with one FDI
component designed for each of the M subsystems. Specifically, each local FDI component
consists of a FDE and an adaptive FIE. Under normal conditions, each local FDE monitors
the corresponding local subsystem to detect the occurrence of any fault. If a sensor fault is
detected, then the FIEs are activated for the purpose of isolating the particular subsystem
where the sensor fault has actually occurred.

The example depicted in Figure 4.1 can be used to illustrate the distributed FDI architecture
described above. In Figure 4.1, a system composed of three interconnected subsystems is
considered. Without loss of generality, we assume that there exist direct interconnections
in two pairs of subsystems (i.e., subsystems 1 and 2, and subsystems 2 and 3). Thus, the
distributed FDI architecture consists of three local FDI components, and the information
exchange is conducted between FDI component 1 and 2, and FDI components 2 and 3,
respectively. An example of three interconnected inverted pendulums mounted on carts,

which has a similar system structure as shown in Figure 4.1, will be considered in Section
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5.9.

5.2.1 Distributed Fault Detection Method

In this section, we describe the distributed fault detection method, including the design of
each local FDE for residual generation and adaptive thresholds for residual evaluation.

Based on the subsystem model described by (5.2), the FDE for each local subsystem is

chosen as:
‘ M
Gn = Anza+ AC i+ va(yiw) + > HY(25,u5)
=1
S (5.7)
Zio = Azt + AisZio + Vi (yi, wi) + pio(Zi, wi) + Li(ys — 9i) + ZH%(EJ, u;) '
j=1
9 = CizZg,

where 2,1, Z;2, and y; denote the estimated local state and output variables of the ith subsys-
tem,i = 1,---, M, respectively, L; € %<l is a design gain matrix, ; 2 (i) " (C’;lyi)—r]—r,
and Z; 2 [EDE (Cj_lyj)T]T (here Zj; is the estimate of state vector zj; of the jth inter-
connected subsystem). The initial conditions are 2;1(0) = 0 and £2(0) = C; 'y;(0).

For each local FDE, let Z;; = zi1 — 2;1 and Zpo = zio — Zi2 denote the state estimation
errors, and ¢; 2 y; — U; denote the output estimation error. Then, before fault occurrence

(i.e., for t < Tp), by using (5.2) and (5.7), the estimation error dynamics are given by
M
Zno= AnZn+ Y [H(z,uy) — H (%5, u;)] (5.8)
j=1

M
Zio = AuZin+AinZa+pio(zi, ui) —Pz‘z(fz',uz‘)-Fm-i-Z [HY(z5,u5) — HY(25,u5)] (5.9)
=1
Gi = Ci(zia — Zi2) = CiZia, (5.10)

= AN . . .
where A4 = Aju — L;C;. Note that, since C; is nonsingular, we can always choose L; to
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make A;4 stable. We define a state estimation error vector as:
() Gty Gan) )T (5.11)

Next, we will investigate the design of adaptive thresholds for distributed fault detection in
each subsystem. First, a bounding function on the state estimation error vector Z; can be
obtained for 0 <t < Tj ( i.e., before fault occurrence).

Lemma 5.1 Consider the interconnected systems described by (5.2) and the fault detection
estimators described by (5.7). Assume that there exists a symmetric positive definite matrix
P, e Ri—li)x(ni=bi) for j —=1,... M, such that,

4

1. the symmetric matrix R; —.A;ER- — PAqL> 0,

2. the matrix Q € RM*M  whose entries are given by

)\mm(Rz) ; 1= .7

—||Pi||%j_||Pj||7ji» i#Fj j=1--, M

is positive definite, where 'yilj and 'y}l- are the Lipschitz constants introduced in (5.5),

and A\pin(R;) is the smallest eigenvalue of R;.

Then, for 0 < t < Ty, the state estimation error vector Z(t) defined by (5.11) satisfies the
following inequality:

[Z1(8)] < x(), (5.12)

where x(t) = A‘Z’;}%, the matrix P = diag{P,--- , Py}, the constant c = Amin (@) / Amaz (P),

and Vj is a positive constant.

Proof: The proof of the above lemma follows a similar reasoning logic as reported in the
proof of Lemma 3.2 in Chapter 3, and it is omitted here.

. . . . ~ A ~
Now, let us consider each component of the output estimation error, i.e., g;p(t) = CipZia(t),

p=1,---,1;, where Cj, is the pth row vector of matrix C;. Based on (5.4), (5.6) and (5.12),
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after following a similar reasoning logic in [85], we have

t
)] < by [l x(r) + mar. (5.13)

where k;, and )\, are positive constants chosen such that ]Cl-pe“‘ii4t| < kipe_)‘ipt (since Ais
is stable, constants k;, and \;, satisfying the above inequality always exist, as described by

[35]), and

AN
0i = [’Yi217 e 777;2(1'_1)7 "Ai3|’+0’i277§(i+1)7 Tt 7’77,'2M]T ) (514)

(that is, the entries of g; are given by g;; = || Ais|| + 042, and g;; = ’y%- for j #1).
Therefore, according to (5.13), the occurrence of a sensor fault is detected when the modulus
of at least one component of the output estimation error (i.e., §;,(t)), generated by the one

or more local FDEs, exceeds its corresponding threshold v;,(t) given by

(1>

t
vip(t) 2 iy /0 =) | x(r) + 7] dr (5.15)

Remark 5.1 In the presence of a sensor fault in one subsystem, the fault effect may
be propagated to other subsystems due to their interconnections. As a result, multiple
residuals generated by several local FDEs associated with different subsystems may exceed
their thresholds, indicating the occurrence of a sensor fault. Thus, the determination of
the particular subsystem where the sensor fault has actually occurred among subsystems
affected by the fault is necessary for successful sensor fault diagnosis, which is investigated

next.

5.2.2 Distributed Fault Isolation Method

Now, assume that a sensor bias fault occurred in sth subsystem is detected at some time Ty;

accordingly, at t = Ty, the FIEs are activated. For s = 1,--- , M, the local FIE associated
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with the sth subsystem is chosen as

i M
ésl = -/451231 + As2cs_1(ys - és) + d}sl (y87 us) + Qslés + ZHslj(éja uj) (516)
j=1

A

292 = A537251 + As47382 + ¢52 (y57 U’S) + /052(2?57 us) + Ls(ys - Qs) + 98205
M
+Y HZ(%5,u5) (5.17)
j=1
Qsl = ASIQSI - ASQCgl (518)
Qs2 = AS4QSQ - Ls (519)
QS = 03232 + és (520)

where 241, Zs2, and g5 denote the estimated state and output variables provided by the
local FIE, respectively, L, € Rls*!s is a design gain matrix (for simplicity of presentation

and without loss of generality, we let Ly = L;), 25 2 [(2s1)T (CTys — 0:) 71T, 2 2

S
(21 — Q10;)7 (Cj_lyj)T]T, and 0, is the estimated sensor bias provided by the local
isolation estimator. The initial conditions are Z4(Ty) = 0, Zs2(Ty) = 0, Qs1(Ty) = 0, and
Qs (T,) = 0.
The adaptation in the isolation estimators arises due to the unknown fault magnitude 6;.

The adaptive law for adjusting 0, is derived using the Lyapunov synthesis approach (see,

for example, [35]). Specifically, the learning algorithm is given by
0, = Po. {F(CSQSQ + I)ngs}, (5.21)

where g4(t) 2 Ys(t) —ys(t) denotes the output estimation error generated by the FIE for the
sth subsystem, I' > 0 is a symmetric, positive-definite learning rate matrix, and Pg, is the
projection operator restricting 0, to the corresponding known set ©4 (in order to guarantee
stability of the learning algorithm in the presence of modeling uncertainty (as described in
[35, 15]).

The distributed fault isolation decision scheme is based on the following intuitive principle:
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if a sensor fault occurs in the sth subsystem at time Ty and is detected at time T}, then a set
of adaptive threshold functions {sp(t), p=1,-- -, } can be designed for the corresponding
local isolation estimator, such that each component of its output estimation error satisfies
|Usp(t)] < psp(t), forallt > T,. Consequently, such a set of adaptive thresholds yusy(t), with
s =1,---,M, can be associated with the output estimation error of each local isolation
estimator. In the fault isolation procedure, if, for a particular local isolation estimator
r € {1,---,M}\{s}, there exists some p € {1,--- I}, such that the pth component of
its output estimation error satisfies |g,,(t)| > prp(t) for some finite time ¢ > T}, then the
possibility of the occurrence of the sensor fault in rth subsystem can be excluded. Thus,
we have the following

Distributed Fault Isolation Decision Scheme: If, for each r € {1,--- , M}\{s}, there
exist some finite time t" > Ty and some p € {1,--- 1.}, such that |G.p(t")| > prp(t"), then
the occurrence of the sensor bias fault in the sth subsystem is concluded.

Clearly, the distributed fault isolation logic follows the well-known generalized observer

scheme (GOS) architectural framework.

5.3 Adaptive Thresholds for Distributed Fault Isolation

The threshold functions f,(t) clearly play a key role in the proposed distributed fault
isolation decision scheme. Denote the state estimation error generated by the local isolation
estimator for the sth subsystem by Z(t) 2 251(t) — 251(t) and Zsa(t) 2 zs2(t) — Zs2(t).
By using (5.16)-(5.20) and (5.2), in the presence of a sensor fault in the sth subsystem, for

t > Ty, we have

M
Za =AaZa+AnCy 04 [HY (25, u)—HY (25, u5)] — QO (5.22)
j=1

ZLSQ :As4§s2 + As?)gsl +778 + pSQ(Zsa us) — Ps2 (257 us) + Lses - Q5205

M
+Z [ng(zj7uj)_H§j(2j7Uj)] (5.23)
j=1
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where 9~S = és — @, is the parameter estimation error, and Ay is defined in (5.9). By
substituting AxC; !t = —Q + A Q (see (5.18)) into (5.22) and by letting Z,, 2 Zs1 +

Qslés, we have
M .
Za = AaZa + Y [Hy(zj,u) — HY(25,15)] — Qabs. (5.24)
j=1
Let us define a vector of state estimation errors as:
vy (Bar) T (5.25)

where for s =1,--- , M, Zq is defined in (5.24). Then, we have the following result:

Lemma 5.2 Consider the interconnected systems described by (5.2) and the fault isolation
estimators described by (5.16)-(5.20). In the presence of a sensor fault in sth subsystem,
if there exists a symmetric positive definite matrix Py € R—l)xni=b) forj =1 ... M,

such that,

1. the symmetric matrix

R; S —ALP, = P —2P,P; > 0, (5.26)

2. the matrix Q € RM*M whose entries are given by

Amin(Ri) | j=i
Qij = min{ ) (5.27)

is positive definite, where fyilj and 'yjl-i are the Lipschitz constants defined in (5.5).

Then, the state estimation error vector zi(t) defined by (5.25) satisfies

Z21()] < xs(t), fort > Tq, (5.28)
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where

1

_Oe_b(t—Td) 1 —b(t ) ) 2 ) 2
=17 4 10, § (40| O ,

7j=1
(5.29)

AN A = .
the matrix P = diag{ Py, - , Py}, the constant b = \pin(Q)/ Amaz(P), and Vjp is a constant
to be defined later on in the proof.
Proof: The proof consists of three parts. First, let us consider the Lyapunov function

candidate Vg = ESTlPSZﬂ. The time derivative of V; along the solution of (5.24) is given by
Ve = ZL(Al P+ P.Ag)z0 —22] PO, +22] P, Z o (2, u) — HY(%5,u;)[5.30)
J=1

Note that, for the interconnected jth subsystem, where j € {1,---, M}\{s}, we have

zj1 — 21 + Qj10; Zj1
—z="7 " E B B (5.31)
ng—Cj_lyj 0

where Z;; is defined in (5.24) (note that zj; = Zj; —|—Qj19~j = Zj +Qj1éj). Therefore, based

n (5.31) and (5.5), we have

22 P, Z (250 w5) — Hy (35, u;)] < 2|| | Zmzsu e (5.32)
j=1
Also, we have
220 PsQs105 < |2PsZs1| |Qs105| < 22) PsPsZs1 + 5\93195\2- (5.33)

By using (5.30), (5.32) and (5.33), we have
M

Ve < Zh[ALP + PAa + 2P P70 + 5 L1036, 1+ 2([ Pl Y vz l1Z01].
7=1
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According to (5.26) and the inequality ZSTlefsl > Amin(Rs)|Zs1|?, where Apin(Rs) is the

minimum eigenvalue of R, we have

M

. _ B B 1 .

Vs < _)‘min(RS)‘ZﬂP + 2| Ps| Z’Ysljlzslejll + §]Q5198|2 : (5.34)
j=1

Second, for the interconnected rth subsystem, where r € {1,--- , M}\{s}, based on (5.16)

and (5.2), we have
Zr1 = Ar1Zr1 + Z Z]au] ng(éjauj)] : (5.35)

Note that the difference between (5.35) and (5.24) is because in the case the sensor fault is
assumed to be in the sth subsystem. For subsystem r, we also define a Lyapunov function

candidate V,, = ZLPTZH. The time derivative of V;. along the solution of (5.35) is given by

VT (-Arlp +P-AT1)Z'T1+237=1P [H (25, us) — H&s(é&usn
+2z, P, Z (2 ) —Hp, (s uge) | - (5.36)
k;és

Note that for the interconnection terms in (5.36), we have

. Zs1 — Zs1 + Qslés Zs1 + Q5105
2s — 2s = = , (5.37)
Zs2 — C’S_lys —0;195
and
2kt — 21+ Qb Zk1
2L — 2 = = , (5.38)
zk2 — C 0

where Zp; = 251 + QUa0r = k1 + Q105 Then based on (5.37) and (5.38), we have

M
2z Py Z o (2 w) —H Gy wi)] < 201Pel1 D vl Z | 2l (5.39)
hZs ks
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and

2zp1 Py [H&s(zs,us)—H,}s(és,us)} < 2"PTH’%}S”Ele’251‘+227:|—].PTP7'27'1+

1 _ 2
+5 [ (1928 +1CT 6] (5-40)

Therefore, based on (5.39), (5.40), (5.36) and (5.26), after some algebraic manipulations, it

can be shown that

M

_ - 1 _ 2
_)‘min(Rr)‘ZHF + 2|| P Z%}jlzrlejﬂ + ) [’les(|Qsles| + ’Cs 193|)] (5.41)
j=1

£

IN

Finally, we consider an overall Lyapunov function candidate V' = le\i Vi = Zf\i 1 ZiTlPiZﬂ =
21T Pz, for the interconnected systems, where P = diag{Py,---, Py} and z; is defined in

(5.25). From (5.34) and (5.41), we have

M M M
Vo< > ARzl + D0 2Pl zal 124
i=1 =1 j=1

M
1 : _
+§ [’95198’2 + Z ['Ygl's(’QslHS| +|C5 105‘)]2]

j=1
_ _ _ _ _ _ T
= —[lzu| [2a] -+ |Z2aal] Q [|211] |221] -+ |Z2ana]
1 . 1 M 2
+§!f2319s|2 +5 > [ (1906104] +1C10.D)]
j=1

where the matrix Q is defined by (5.27). By applying the Rayleigh principle (i.e., Apin (Q)]21]? <

2] Q71 < Amaz(Q)]21]?), we have
1. . 1M )
V< -0V + §|Qsles\2 +5 > [ (1960s] + 1C510D]7
j=1

where the constant b is defined in (5.29). Now, based on Lemma 3.2.4 in [35] and Assumption
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4.6, it can be shown that

1 [t Mo
v <y / E‘b“_ﬂ{ > h;sesamslnﬂrc;1||>}2+||ﬂsl||2a§}df+v<0)e—b<t—ﬂ>. (5.42)
Ty

j=1

Note that a positive constant Vg can be always chosen such that V(0) < Vy. By using

the definition of V'(¢) and the Rayleigh principle, the proof of (5.28) can be concluded.
O

The following lemma provides a bounding function for the output estimation error generated

by the local isolation estimator associated with the sth subsystem, in the case that a sensor

fault occurs in the sth subsystem.

Lemma 5.3 If a sensor fault in the sth subsystem is detected at time T,, where s €

{1,---, M}, then for all t > Ty, the pth component of the output estimation error generated

by the local FIE for the sth subsystem satisfies

t
’gszo(t)‘ < kSp/T e rr(t=") [(052 + |[As3l]) [Q2s10s] + [os| xs(T) + 052|Cs_105‘
d

+17s + ag||Qsa]| ] dr + |CpQs2bs + Osp| + Espwsge rETa), (5.43)

A 4 . . . . ..
= 0s(t) — 05(t) is the fault parameter estimation error, wge Is a positive constant

where 0,(t)
satisfying |zs2(Tg)| < wso, ésp is the pth component of 05, and 0s Is defined in (5.14).
Proof: Consider the the state estimation error Zgso described by (5.23). By substituting

L= Q0 + A4 (see (5.19)) into (5.23) and by letting Zso 2 Ze0 + Q20, we obtain

21%32 = AS4282 + A83281 + ps2(zs’ us) - pSQ(ésa us) - 98298 +ns
M
0 [HE (z,u5) — HE (35, u)] - (5.44)
j=1

. . JURRVAN
Define each component of the output estimation error generated by the sth FIE as g5, =
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Ysp — Usp, with p=1,--- | I5. By using (5.20), (5.2), and the definition of Zs(t), we have

gsp(t) = CspZs2 (t) — Osp = Csp <252 (t) — QSQés> —0Ogp - (5.45)
Note that in the presence of a sensor fault in subsystem s, we have

21—21 Zsl
2o — B = T = T (5.46)
252—05_1(%—95) Cs_les

By using (5.46) and (5.31), we have

|HZj(25,u5) — H (25,w)] < 2175 (5.47)

|p32(25,u3) - psz(ﬁs,usﬂ < 032‘251| + 032‘08_19~S| .

Based on (5.47), (5.45), and the definition of Zs, and by following some similar reasoning

logic as reported in the derivation of adaptive thresholds for fault detection, we have

t

Fa®] < ko /

e_Asp(t_T) |:(‘AS3H + 0’52)(‘251‘ + ‘QslésD
Ty

M
+Z/7§] ’2j1| + 0'32‘03_195| + s + |95295’ dr
j=1

+|Csp982és + ésp| + ksp|552(Td)|€_>\Sp(t_Td) ; (548)

where the constants kg, and A, are introduced in (5.13), and wse is an upper bound of
|zs2(Ty)| such that |Z52(Ty)| = |2s2(Ty)| < wse. Now, by using (5.14), (5.48), Lemma 5.2,
and Assumption 5.6, the proof of (5.43) can be concluded.

O
Although Lemma 5.3 provides a bounding function for the output estimation error corre-
sponding to the local isolation estimator associated with the sth subsystem, in the case
that a sensor fault occurs in the sth subsystem. Lemma 5.3 cannot be directly used as a

threshold function for fault isolation, because HNS(t) is not available (we do not assume the
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condition of persistency of excitation in this paper). However, as the estimate 0, belongs to

the known compact set O, we have

0s — és(t)’ < Ks(t), for a suitable k4(t) depending on
the geometric properties of set ©4 (see, e.g., [83]). Hence, the following threshold function

for fault isolation can be chosen:

e Aerlt=T) [(HAsaHJrUsz)!QslllﬂerIQS\XS(T)+0s2HC§1HHS+ﬁs+HQszHas dr

psp(t) = ksp / t

Ty

‘HcsstQ + Fsp”is + k:spws2€_>\5p(t_Td) . (549)

where FSI, € R is a constant vector with all entries being 0 except the pth entry (taking
the value of 1). The above design and analysis is summarized as follows:

Theorem 5.1 : Consider a sensor fault in subsystem s is detected at time Ty, where s =
1,---,M. Then, the distributed fault isolation scheme, characterized by the distributed
fault isolation estimators (5.16) - (5.20) and the adaptive thresholds (5.49), guarantees that
each component of the output estimation error generated by the local isolation estimator

associated with subsystem s satisfies |Jsp(t)| < psp(t), for allp=1,--- 15, and t > Ty.

5.4 Analytical Properties

In this section, we analyze two important properties of the distributed FDI method, in-
cluding fault detectability as well as stability and learning capability of the adaptive fault

isolation method.

5.4.1 Fault Detectability Analysis

As is well known in the fault diagnosis literature, there is an inherent tradeoff between
robustness and fault detectability. The following theorem characterizes (in a non-closed
form) the class of sensor faults that are detectable by the proposed distributed FDI method.
Theorem 5.2 (Fault Detectability): For the distributed fault detection method de-
scribed by (5.7) and (5.15), suppose that a sensor fault occurs in the ith subsystem at

time Ty, where i € {1,--- ,M}. Assume there exists a symmetric positive definite matrix
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N

P, e Ri—ti)x(ni—bi) for j =1,... M, such that,

1. the symmetric matrix

RS AP — BAy —2PP,> 0, (5.50)

2. the matrix Q € RM*M whose entries are given by

R Amin(Ri) j=i
Qi = m”f< ! ) (5.51)
—NBilv; =Bl G#4 5 =1,-, M

is positive definite, where ’y}j and 7]1-1- are the Lipschitz constants defined in (5.5).

Then, the sensor fault will be detected if there exist some time instant T; > T and some

p € {1,---1; }, such that the sensor bias 0; satisfies the following condition

Ty
i [ e g6 1C 0 + il ar
To

> Vip + Ni(Td), (5.52)

zp—czp/T ala=m) [,.0,dr
0

where 0;;, is the pth component of 6;, ||(-)||5g is the exponentially weighted Ly norm de-
fined in the time interval [Ty, Ty ( see [35]), o; is defined in (5.14), the constant d 2

Amin (Q)/ Amaz (P), thematrixﬁédiag{ﬁl, , Pl N(Td) = kip [, Td e Ta=7)[| g5 p(7) +

1

)2
ﬁi]dT with ¢(t) 2 { Voe™** } , and &; is a constant to be defined later on in the proof.

Proof: In the presence of a sensor fault (i.e., for t > Tp) in the ith subsystem, base on (5.2)

. . . . A R . A ~
and (5.7), the dynamics of the state estimation error Z;; = z;;1 — Z;1 and Zj2 = 2z — Z;2 of

the ith FDE satisfies

ZLH = A1z — ZQC 1ﬂ10 +Z z],u]) Hilj(éi,u]')] (5.53)
7j=1
Zig = /_lz'45i2 + AizZit + pia(zi, wi) — pie(Zi,wi) + 1 — LiBi0;

+Z z],u] Hfj(,ij, uj)] (5.54)
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First, we consider the Lyapunov function candidate V; = EiTlpiiil. By using a similar
reasoning logic as shown in the proof of Lemma 5.2 ; we can obtain the time derivative of

V; along the solution of (5.53) as follows:

M
. AL A B 5 1 _
Vi < —Amin(Bo)|Za P21 P> v |zall20] + 5 Mi2C; Bt (5.55)
j=1
Second, for the interconnected nth subsystem, where n € {1,--- , M}\{i}, we also define

a Lyapunov function candidate V,, = 2;115”2”1. It can be shown that
. M 1
Vi < =i (Bn) |21 [* +2]| P Z’V}Lﬂgnl’ |5j1’+§[%1n|01'_15i9i’ 1%, (5.56)
j=1

where R, is defined in (5.50).
M

Finally, we consider an overall Lyapunov function candidate V' = Zj‘i V=500 =1 JlP Zj1 =
2; Pz, for the interconnected systems, where P = diag{ﬁl, i ,PM} and Z; is defined in

(5.11). Based on (5.55) and (5.56), and by following a similar reasoning logic as reported

in the proof of Lemma 4.2, we have
) M
Vs [Z (|G Bi6il)? + || Aial P 151 B |
7=1

where the constant d is defined in the theorem. Now, let us consider #; defined in (5.11).

Based on Lemma, 4.1, it can be shown that

Z)? < Voe_df+/te—d<t—f>§§\ci—1ﬁi9i|2d7
= ¢*+&(|C; ' Bibillsa)? (5.57)

1
Aial|? 2 . . .-
where & = { I 2H2 /\+ZJ( Pl)(%’) } , ¢ is defined in the theorem, and the positive constant 1/

is chosen such that V(0) < Vj. Based on (5.57), we can obtain

21()] < 6(t) + &IICT Bii ()] ]aq - (5.58)
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Now, let us consider each component of the output estimation error, (i.e., ¥ip = Yip — Vip,

p=1,---1;). Based on (5.7) and (5.2), we have

Uip(t) = CipZio + Bibip

t
_ Cip/ eAi4(tT){Ai3 Zin + pia(zi, wi) — piz(Zi, ui) + i

—L;3;0; + Z (25, uy) H%(ij, Uj)]}dT + Bibip .
Additionally, by using (5.58) and by applying the triangular inequality, we obtain

t
Cip/ Aia(t=T) ( L;j; z)dT + /Bzgzp
0

9ip(D)] =

t
—kip / et @gimncﬂ&eibﬁ az-2|0;1&9i|]dr
0
t
i €N (o 6+ ) (5.59)
0
where p; is defined in (5.14). Now, based on (5.59) and the step function f;, it can be easily

seen that if there exists T;; > Tp, such that condition (5.52) is satisfied, then it is concluded

that |§ip(Ta)| > vip(Ty), i-e., the fault is detected at time ¢ = T}.

5.4.2 Stability and Learning Capability

Theorem 5.3 (Stability and Learning Capability): Suppose that a sensor fault occurs in
the sth subsystem at time Ty, where s € {1,--- , M }. Then, the distributed fault isolation

scheme described by (5.16)-(5.20) and (5.49) guarantees that,

e for each local fault isolation estimator g, ¢ = 1,--- , M, the estimate variables 24 (t),

242(t), and 6,(t) are uniformly bounded;

e there exist a positive constant ks and a bounded function (s(t), such that, for all finite

time ty > Ty, the output estimation error of the matched sth local isolation estimator
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satisfies

[ ra < s [MGora (5.60)

Ty Ty

where (s(t) and R4 are related to the modeling uncertainty, the estimation errors.
Proof. Let us consider the signal boundedness property. The state estimation error and

. . . . -~ A
output estimation error of the FIE associated with the gth subsystem are defined as Z,1 =

A ~ A ~ . A N .
2q1(t) — 2q1(1), Zg2(t) = 2g2(t) — 242(1), and g = yq(t) — Jq(t), respectively.

First, consider the FIE associated with sth subsystem (i.e., ¢ = s). By using (5.24) and
the similar reasoning logic as reported in the proof of Lemma 5.3 (see (5.44)), respectively,

we obtain

M
éql = Aqlfql-i-z [H;j(zj, Uj)—H;j(ﬁj, 'LL])} —quaq (5.61)
j=1
Zq2 = Aq45q2 + Ag3Zq1 +1g — Qq2‘9.q + pg2(2q; Uq)
M
_Pq2(2qvuq)+z [H(?j(zjvuj) - ng(zj,uj)] ) (5.62)
=1

where Zg 2 Zg + Q10, and Zp 2 Z + Qg20,. Note that (5.61) is in the same form

as (5.24). Thus, based on the results of Lemma 5.2 (i.e., (5.28)), Assumption 5.2 and
Assumption 5.6, we have Z;1 € Lo and Zj1 € Lo. Moreover, due to the use of parameter
projection (see (5.21)), we have 8, € Lo, and §; € Ly, . Therefore, based on Assumption 5.3
and the definition of Zy; and Zz;1, we know that Z;1 € Lo, Zj1 € Loo, 21 € Loo and
Zj1 € Loo. Additionally, based on Lemma 4.3, we know that pga(zq,uq) — pe2(Zq, uq) and
ng(zj,uj) -H gj (2j,u;) are bounded. Furthermore, because 74, {252 and 9q are bounded
(Assumption 5.2 and Assumption 5.6) and A4 is stable, by using (5.62), we can obtain
Zg2 € Loo. Owning to the definition of Z;, we conclude that Z,o € Lo and 242 € L.

Second, let us consider the FIEs associated with healthy subsystems (i.e., ¢ € {1,--- , M }\{s},).

By using the similar reasoning logic as reported in the proof of Lemma 5.2 and Lemma 5.3
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(see (5.35) and (5.44)), we have

M
Zn = Aaza+ Y [Hyi(z,u) — Hy(%,45)]
7j=1

M
Zg = AuZp+ ApZp + g+ pg(zg,ug) — pga(Zg,uq) + Z [Hf(zgwuj') - ng(éjv “J)] )
j=1

where Z;1 2 Za + Qg16, and Zp 2 Zg2 + Qg20,. Then, based on a similar reasoning logic
as reported above, we can conclude that z;1 € Lo, éq € Lo, 21 € Loo, Zg2 € Loo, and
242 € Loo. This concludes the first part of the theorem.
Next, in the case that the gth FIE matches the occurred sensor fault in the sth subsystem,
i.e., ¢ = s, the proof of the second part of the theorem concerning the learning capability of
the gth FIE follows similar reasoning logic in [85] and is omitted here due to space limitation.
O
Theorem 5.3 guarantees the boundedness of all the variables involved in the local adaptive
FIEs in the presence of a sensor fault in the sth subsystem. Moreover, the performance
measure given by (5.60) shows that the ability of the matched local isolation estimator to
learn the post-fault system dynamics is limited by the Ly norm of (,(t), which, in turn,
is related to the modeling uncertainty 7s, the parameter estimation error 0, the rate of

change of the time—varying bias 6, and the estimation error of the interconnection term.

5.5 Simulation Results

In this section, a simulation example of interconnected inverted pendulums mounted on
carts [32] shown in Figure 3.1 is chosen to illustrate the effectiveness of the distributed FDI
algorithm. Specifically, we consider three identical inverted pendulums mounted on carts,

which are connected by springs and dampers. Each cart is linked by a transmission belt to
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a drive wheel driven by a DC motor. As described in [32], the equations of motion are

(M + m)wz + Fd,%‘ + mld;cost; — ml(l%)%im?i = u;+8;

JU; + Fyd; — mlgsind; + mwicosﬂi = 0

where, for each subsystem, v; (i = 1,2,3) is the position of the cart, ¢; is the angle of the
pendulum, u; is the input force to the carts, respectively. The interconnection forces due to
springs and dampers are s1 = k(1hg — 1)+ (i —1)1), 52 = k(1 +1P3— 1) +c(h1 +13 — o),
and s3 = k(1o — ¥3) 4 ¢(1)a — 1)3), where k and ¢ are the spring constant and the damping
constant, respectively. Additionally, J is the moment of inertial, M is the mass of the
cart, m is rod mass, [ is rod length, g is the gravitational acceleration, Fy and Fy, are the
friction coefficients. The model parameters are: M = 10kg, m = 0.535kg, J = 0.62kgm?,
[ =0.365m, F, = 0.062kg/s, Fy = 0.09kgm? and g = 9.8m/s?, k = 1.5, and ¢ = 0.2.

For each subsystem, we assume the cart position, pendulum angle, and pendulum angular
velocity are measured. By using a change of coordinates defined by x; = [zi1 22 xi3 xi4]T =
Tiehi 0 i 93] T with T3 = [=1.5 0 1.5 3.175/cosd; 1 00 0; 0 1 0 0; 0 0 0 1], astate
space model in the form of (5.2) can be obtained.

The modeling uncertainty is assumed to be up to 5% inaccuracy in the friction constant
Fy (In the simulation, the actual modeling uncertainty considered is 2% inaccuracy). We
consider a sensor fault which may occur to the first output of the ith subsystem, i.e., a
constant bias in y;; with 6;; € [0, 0.4].

Figure 5.1, Figure 5.2, and Figure 5.3 show the simulation results when a constant bias
with #2 = [0.3 0 0]" occurs in the second subsystem at T = 5 second. Specifically, the
fault detection residual (solid line) associated with ¥; and its threshold (dashed line) gen-
erated by each local FDE are shown in Figure 5.1. As can be seen, the fault is detected
almost immediately by each FDE. Then, the three local FIEs are activated to determine
the particular faulty subsystem. Selected fault isolation residuals (solid line) and the corre-

sponding thresholds (dashed line) generated by the FIE1 and FIE3 are shown in Figure 5.2.
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It can be seen that the residuals associated with ¥; generated by FIE 1 and FIE 3 exceed
their thresholds at approximately ¢ = 5.2 second. Meanwhile, all three residual components
(solid line) generated by FIE 2 always remain below their thresholds (dashed line), as shown
in Figure 5.3. Thus, we conclude the sensor fault is in subsystem 2. It is worth noting that
for FIE 1 and FIE 3, only the residuals and thresholds associated with y13 and ys3 are
shown, since it is sufficient to exclude the possibility of occurrence of any sensor fault in

subsystem 1 and subsystem 3 based on the presented fault isolation decision scheme.

X 10 FDE1 output 3
3 T T T
residual
2fF | = = threshold
h
\ fault detected
1 . R
\
~
o m e
0 1 2 3 4
time (second)
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3 T T T
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Figure 5.1: Selected detection residual generated by each FDE.

Figure 5.2: Selected isolation residuals generated by FIE 1 and FIE 3 (for subsystems 1

and 3, respectively).
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Figure 5.3: Isolation residuals generated by FIE 2 (associated with subsystem 2).
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Chapter 6

A Distributed Detection Scheme
for Process Faults and Sensor
Faults in a Class of Interconnected

Nonlinear Uncertain Systems

6.1 Introduction

In the Chapter 3, Chapter 4 and Chapter 5, the design and analysis of distributed faut
diagnosis in interconnected input-output nonlinear systems are presented. However, such
systems are assumed to satisfy certain structural assumptions. Specifically, the system
models considered in the above three chapters are based on the assumptions that the system
states in each subsystem can be decomposed into an unknown part and a measurable part.
In this chapter, we significantly extend the previous results in the above three chapters by
removing this restrictive limitation on system model structure.

In the presented distributed fault detection architecture, a local fault detection component

is designed for each subsystem under consideration by utilizing local measurements and
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certain communicated information from neighboring fault detection components associated
with its directly interconnected subsystems. The distributed fault detection method is
presented with an analytical framework aiming at characterizing its important properties.
Specifically, the analysis focuses on: (i) derivation of adaptive thresholds for distributed
fault detection, ensuring the robustness property with respect to interactions among in-
terconnected subsystems and modeling uncertainty; (ii) investigation of fault detectability
conditions, characterizing the class of process faults and sensor faults that are detectable
by the proposed method.

This chapter is organized as follows. In Section 6.2, the problem of distributed fault de-
tection for a class of interconnected nonlinear uncertain systems is formulated. Section 6.3
describes the distributed fault detection method, including the design of local fault detection
component for each subsystem and the derivation of adaptive thresholds for fault isolation.
In Section 6.4, the fault detectability conditions are analyzed, characterizing the class of
sensor faults and process faults that are detectable by the proposed method, respectively.

Simulation results of an example of multi-machine power systems is presented in Section 6.5.

6.2 Problem Formulation

Consider a nonlinear dynamic system composed of M interconnected subsystems with the
dynamics of the ith subsystem, i = 1,---, M, being described by the following differential

equation

T = Aiwi+ ¢i(Ti, wi) + Bia(t — Tia) fi(zis wi) + Dimi(zi, wi, ) + &(2i, us, t)
M
+ 3 hij(yi g, ug)

j=1
yi = Cizi+ Biy(t — Tiy)0; (6.1)

where z; € R, u; € ®™, and y; € R4 are the state vector, input vector, and output

vector of the ith subsystem, respectively, z; € R™ is the combined state vectors of the
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ith subsystem and its directly interconnected subsystems. ¢; : R™ x R™i — R p; :
R ox R x RE = NG, f; 2 R R o R R xR X RT o R Ry

Rl x R x ™ — K™ are smooth vector fields. Specifically, the model given by

ini = Aixni + di(zni,wi)

yni = Cizng

is the known nominal model of the ith subsystem with ¢; being the known nonlinearity.
The modeling uncertainty consists of two parts. First, the vector field 7; in (6.1) represents
the modeling uncertainty in the local dynamics of the ith subsystem, and D; € R"*%is a
modeling uncertainty distribution matrix. Second, the vector field §; in (6.1) represents the
modeling uncertainty in the interconnections between the ith subsystem and its directly
interconnected subsystems.

The term B, (t — Tiz) fi(x;, u;) denotes the changes in the dynamics of ith subsystem due to
the occurrence of a process fault in the local subsystem. Specifically, £, (t—T;,,) describes the
time profile of a fault which occurs at some unknown time Tj,, and f;(x;,u;) is a nonlinear
fault function. The change in the dynamics of ith subsystem due to the occurrence of a
sensor fault in the local subsystem is represented by B, (t — Tp)¢; in (6.1). Specifically,
9; € R represents the magnitude of a constant sensor bias fault, and the function Biy
characterize the time profile of the sensor fault in ¢th subsystem with the unknown fault
occurrence time Tj,. In this chapter, both the time profile functions f;;(-) and B, (-) are
considered as a step function §; (i.e., B;(t — Tp) = 0 if t < Ty, and B;(t — Tp) = 1 if t > Ty,
where Ty = Tj, for process faults, and Ty = T, for sensor faults).

The objective of this chapter is to develop a robust distributed fault detection scheme for
the class of interconnected nonlinear uncertain systems in the form of (6.1). We consider
the case of a single process fault represented by f;(x;, u;) and the case of a single sensor fault
represented by 6;. Note that the sensor fault can possibly affect multiple output components
(ie., ; € R4). The following assumptions are made throughout this chapter

Assumption 6.1. The function n; in (6.1), representing the modeling uncertainty in the
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local dynamics of the ith subsystem, is an unknown nonlinear function of x;, u; and t, but
bounded. Also, the functions §; in (6.1), describing unknown part of the interaction be-
tween ith subsystem and other directly interconnected subsystems, is an unknown nonlinear

function of z;, u; and t, but bounded. Specifically,

Ini(zi,wist)] < 7y, i, t),

|§Z(zzau27t>‘ S Ei(yauiat)a

(6.2)

where y is combined output vectors of the ith subsystem and its directly interconnected
subsystems, the the bounding functions 7; and & are known and uniformly bounded in
the corresponding compact sets of admissible state variables, inputs, and outputs with
appropriate dimensions, respectively.

Assumption 6.2 The system state vector x; of each subsystem remains bounded before
and after the occurrence of a fault, i.e., z;(t) € Lo, ¥t > 0.

Assumption 6.3 The nonlinear terms ¢;(x;,u;) in (6.1) satisfy a Lipschitz condition:

Yu; € U; and Vx;, &; € A,

|pi(wiy ui) — @@, ui)| < oyl — & (6.3)

where o; is a known Lipschitz constant, X; C R™ and U; C R™ are compact sets of
admissible state variables and inputs, respectively.
Assumption 6.4 The interconnection terms h;;(y;, z;,u;) is Lipschitz in x; with a known

Lipschitz constant v;;, i.e., Vx;, ; € X},

\hig(Yis 25, ug) — hij(yi, 5, u)] < vigleg — 25 (6.4)

Assumption 6.1 characterize the class of modeling uncertainty under consideration, in-
cluding various modeling errors in the system’s local dynamics and the unknown part of
interconnection between subsystems. The bounds on the modeling uncertainties are neces-

sary for distinguishing between the effects of faults and modeling uncertainty (see [79, 84]).
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Assumption 6.2 requires the boundedness of the state variables before and after the occur-
rence of a fault in each subsystem. Hence, it is assumed that the distributed feedback control
system is capable of retaining the boundedness of the state variables of each subsystem even
in the presence of a fault. This is a technical assumption required for well-posedness since
the distributed FDI design under consideration does not influence the closed-loop dynamics
and stability. The design of distributed fault-tolerant controllers is beyond the scope of this
paper. However, it is important to note that the proposed distributed FDI design does not
depend on the structure of the distributed controllers.

Assumption 6.4 requires the nominal interconnection term h;; between subsystems is Lips-
chitz in z;. In literature, several examples of distributed nonlinear systems with Lipschitz
interconnection terms have been considered (see, for instance, the automated highway sys-
tem [58], interconnected inverted pendulums [63], and large-scale power systems [25]).
Remark 6.1 The nonlinear fault diagnosis schemes presented in previous papers [82, 84] are
based on a centralized architecture. In this chapter, the problem of distributed fault detection
for interconnected nonlinear uncertain systems is investigated. Moreover, in [85, 77, 78],
a distributed fault diagnosis method was developed for a class of interconnected nonlinear
systems satisfying certain structural assumptions. Moreover, it is assumed the fault only
affect measurable state variables. In the dissertation, we consider a class of more general
interconnected nonlinear uncertain systems, and the faults are allowed to affect all the state

variables.

6.3 Distributed Fault Detection Method

The distributed fault detection architecture is comprised of M local FDE, with one FDE
designed for each of the M subsystems. Specifically, each local FDE monitors the corre-
sponding local subsystem to detect the occurrence of any fault.

In this section, we investigate the distributed fault detection method, including the designs
of each local FDE for residual generation and the corresponding adaptive thresholds for

residual evaluation.
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6.3.1 Distributed Fault Detection Estimators

Based on the subsystem model described by (6.1), the FDE for each local subsystem is

chosen as:
‘ M
Bio= Aifi+ ¢i(@i ) + Lily — 9i) + > _haj (i &5, u5) + Dimi(yi, ) sgn(Eigi)
=
9i = Cidy, (6.5)

where Z; and g; denote the estimated local state and output variables of the ith subsystem,
i =1,---, M, respectively, y; 2 y; — U; denotes the output estimation error, L; € Rm*<k
is a design gain matrix, F; is a design matrix defined later on (in Lemma 6.2), £; is the
estimate of state vector x; of the jth interconnected subsystem. It is worth noting that
the distributed FDE given by (6.5) for the ith subsystem is constructed based on local
input and output variables (i.e., u; and y;) and the communicated information #; and w;
from the FDE associated with the jth directly interconnected subsystem. Note that many
distributed estimation and diagnostic methods in literature allow certain communication
among interconnected subsystems (see, e.g., [58, 60, 20]).

For each local FDE, let Z; = x; — T; denote the state estimation error of the ¢th subsystem.
Then, before fault occurrence (i.e., for ¢ < Tp), by using (6.1) and (6.5), the estimation

error dynamics are given by

M
T = Adi+ gi(wi,w) — ¢i(Ziswi) + & + Z [P (is 5, wy) — hig (Y, T, u;)]
=
+Din; — Dimi (i, wi) sgn(E;5;) (6.6)
gi = Ci(z; — ;) = Ciy, (6.7)

where Az é Al - LZCZ
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6.3.2 Adaptive Thresholds for Distributed Fault Detection

Next, we investigate the design of adaptive thresholds for distributed fault detection in each
subsystem. The following Lemma will be needed in the subsequent analysis:

Lemma 6.1 [35]. Let z(t), 7(t) : [0,00) — R. Then
At) < —az(t) +r(t), VE>tg>0

implies that

t
A1) < e (1) + / T (F)dr, Y >ty > 0
to

for any finite constant c.

Then, a bounding function on the state estimation error vector

21@E)T, ey @), e, @a)T]T (6.8)

(t)
before fault occurrence ( i.e., for 0 < ¢t < Tj) can be derived. Specifically, we have the
following results:

Lemma 6.2 For the system described by (6.1) and the fault detection estimator described
by (6.5). If there exists a symmetric positive definite matrix P; € R™*" a gain matrix
L; € R**ti and a matrix E; € R%*% such that,

M M
A _ _
= Al P = PAA—(2+ ) )PP — Qoil| Bl + > i)l > 0 (6.9)

j=1 j=1
PD; = C[E, (6.10)

Qi

where I is the identity matrix, v;; and ~y;; are the Lipschitz constants introduced in (6.4).

Then, for 0 < t < Ty, the state estimation error vector Z(t) defined by (6.8) satisfies

#? < oo 2 4o /t e_a(t_ﬂi!f'!ZdT (6.11)
o )\mzn(P) 2)\mzn(P) 0 i=1 ' , .
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where the constant a = Amin(Q)/Amaz(P), P = diag{P1, -, Py}, @ 2 diag{Q1, -+ ,Qun},
& is defined in Assumption 6.1 , and Vj is a positive constant to be defined later on.
Proof: For the ith subsystem, let us consider a Lyapunov function candidate V; = i";r Pz;.

Then the time derivative of V; along the solution of (6.6) is given by

Vi = i {AZ-TH‘ + PiAi:| i + 23] P& + 23] Pi[Dimi(xi, i) — Dimi(yi, ui)sgn(Eifi)]
M
+28] Py hi(yis w5, w5) — P (yi, 5, 05)]

j=1
+2i] Pi[¢i(wi, us) — i, us)] (6.12)

Based on (6.4), we have

M M
28 P> [hij(yir wjy ug)—hi(yi, £5,u5)] < 20&] P> i1,
j=1 j=1
M M
< Y vu# BPEi+ Y vid d5. (6.13)
j=1 j=1
Moreover, based on (6.3) and (6.6), we obtain
221 P, (i (i, wi)—i(8i, wi)] < 2|Zi| [|P| 0 | 8] = & [204]| P[] % . (6.14)

Furthermore, based on (6.10), and by using the property that (F;C;i;)" sgn((E;Cii;)) >

|E;C;Z;|, we obtain

2, Py [Dimi(xi,us) — Diffi (i, wi)sgn(Ei@ii)] = 2(E:Ciii) " mii, ug)

—27i (i, ui) - (BiCi#) " sgn(E;Ci;)

IN

2| B G| [ |mi (s, wi) | — 1 (yi, us) |

0. (6.15)

IN
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Additionally, we have
- - - B
28] P& < 2P| 6] < 23] PR + 5’&‘\2’ (6.16)

where &; is the upper bound of |¢;| defined in Assumption 6.1. By substituting (6.13), (6.14),
(6.15) and (6.16) into (6.12), we obtain

M M
. B _ _ B T 1 -
V: < ac;r |:A;I—Pz + PA; + QJZHBH I+ (2 + E 7ij)PiPi:| x; + E ’yijx;-rxj + 5’&‘2 . (6.17)

Jj=1 J=1

Now, let us consider the following overall Lyapunov function candidate for the intercon-

nected system: V = Zf\il Vi = Zf\il JE;FPJJZ = 7" P#, where P is defined in Lemma 6.2.

M M
Let us denote I' = diag{Z’yjl, e ,nyjM} and R 2 diag{ Ry, -+, Ra}, where

j=1 J=1
. M
Ry = Al Pi+ PAi+ (2+ ) i) PiPs +204|| || 1. (6.18)
j=1
Therefore, based on (6.17) and (6.9), we have
1 L]
e 2T pa .y =TDA F12 _ _~T~ AL
V<z'Ri+ 2 Fw+;2|§il = -3 Qi+ ;2\@| , (6.19)

where the matrix @ is defined by (6.9). By using the Rayleigh principle (i.e., Apin(P)|Z|> <
V() < Amaz(P)|Z|? ) and the definition of V (¢), we have

. Moy Mo
V< —Amin(Q)li‘|Q+Z§|&!2 < —aV+Z§\§i|2, (6.20)
=1 =1

where Z and the constant a are defined in (6.8) and Lemma 6.2, respectively. Now, based

on Lemma 6.1, it can be easily shown that
R B 2
V(t) < V(0)e  + 2/0 e ; &% dr .
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Note that we can always choose a positive constant Vj such that V(0) < Vy. Thus, based on
the definition of V'(¢) and the Rayleigh principle, the proof of (6.11) can be immediately con-
cluded.

Remark 6.2: Note that conditions (6.9) and (6.10) can be transformed into standard linear
matrix inequalities (See , e.g., [69, 76]). Then, a feasible solution to (6.9) and (6.10) can
possibly be found by using the linear matrix inequality (LMI) toolbox.

Specifically, the following procedure can be adopted:

e By using the Schur complements, the nonlinear inequalities —AZTP@- — PA—(2+

M M
Z'yij)PZ-Pi — (204||Bi|| + Z’in)l > 0 can be converted to a LMI form as
j=1 j=1

M M
— — 1
—Al P — P A; — 20,1 — g viid (2+ E ij)2 Pi
j=1 j=1

M >0 (6.21)
2+ )2 P I
L Jj=1 J
and
Gl P
>0, (6.22)
PGl

where ¢; is a positive constant. Then, a suitable solution of P; can be obtained by

solving (6.21) and (6.22) using the LMI toolbox.

e Based on the matrix P; found in the above step, the matrix E; can be obtained by

using (6.10).

Now, we analyze the output estimation error g;(t) (see (6.7)) of the ith subsystem. For

0 <t < Tp, the solution of (6.6) is given by

t
Ti(t) = /0 AT (@3 (i, uz) — dil@a, i) + & + Dymi(ws, wi) — Dt (yi, ws)sgn(Eij;)] dr
t M
+/0 eI " [hij (i, g, u5) — hag(yi, &5, ug)] dr (6.23)
j=1
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A

Therefore, for each component of the output estimation error, i.e., ;(t) = CipZi(t), p =
1,---,l;, where Cj, is the pth row vector of matrix Cj, by applying the triangle inequality,
we have

|Gip(t) ’/ Ci eA =) [y (s, w) — i(i, ws) + &) dr

M
‘/ C; 8 i(t= TZ ij ylal‘]au] hij(yia‘%j?uj)]dT

J=1

t _
+‘/ Cipe 7 D (@, ui)—Dimi(yi, i) sgn(Egji) dr
0

Therefore, based on (6.2), (6.3), (6.4), and (6.6), we have

t M
()] < ,%/0 o Aip(t=T) [Ui |Z:| + 2|\ Dl 7 + |&il +Z%j|gzj|]d7, (6.24)

J=1

where k;;, and \;, are positive constants chosen such that \CipeAit| < kipe*)‘ipt (since A; is

stable, constants k;, and \;, satisfying the above inequality always exist [35]). By defining

A
0i = [Vits s Yilim1)s Tis Vitir1)s o Yin] | (6.25)

(that is, the components of p; are given by 0;; = 0, and g;; = 745 for j # i), the inequality

(6.24) can be rewritten as
Y
|9ip()] < k‘z’p/ (b= [lezl |Z| + 2/|Dil| 7 + & |d (6.26)
0
Now, based on (6.26) and (6.11), we obtain
N -
F®)] < ki |90 [l () + 21D 7+ E

where )
3

NOES UL / te_a(t‘”fjlélgch (6.27)
)\mm(P) 2)\mz’n<P> 0 i—1 ' ' '
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Therefore, based on the above analysis, we have the following result

Distributed Fault Detection Decision Scheme: The decision on the occurrence of a
fault (detection) in the ith subsystem is made when the modulus of at least one component of
the output estimation error (i.e., §ip(t) ) generated by the local FDE exceeds its corresponding

threshold v,(t) given by

t
A (et _ =
vin(t) 2 ks /0 A [|gil x(r) + 21| Dl 7 + &) . (6.28)

The fault detection time Ty is defined as the first time mstant such that |Gip(Ta)| > vip(Ta),

for some Ty > Ty and somep € {1,--- ,1;}, that is, Ty = 2 inf U {t>0: |Gip(t)] > vip(t)} .

Remark 6.3 It is worth noting that 1;,(t) given by (6.2§) 1is an adaptive threshold for
fault detection, which has obvious advantage over a constant one. Moreover, the threshold
Vip(t) can be easily implemented using linear filtering techniques [83]. Additionally, the
constants Vj in (6.27) is a (possibly conservative) bound for the unknown initial conditions
V(0). However, note that, since the effect of this bound decreases exponentially (i.e., it is

multiplied by e~%), the practical use of such a conservative bound will not affect significantly

the performance of the distributed fault detection algorithm.

6.4 Fault Detectability Analysis

As is well known in the fault diagnosis literature, there is an inherent tradeoff between
robustness and fault sensitivity. Below, we studied the fault detectability property of the
proposed distributed fault detection method, which characterizes the class of detectable

sensor faults and process faults.

6.4.1 Sensor Fault Detectability Condition

In this section, the fault detectability condition of sensor faults are derived. Specifically,
the following theorem characterizes the class of sensor faults that are detectable by the

proposed distributed fault detection method.
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Theorem 6.1: For the distributed fault detection method described by (6.5) and (6.28),
suppose that a sensor fault occurs in the ith subsystem at time T;,, where i € {1,---,M}.
Then, if there exist some time instant Ty > T;, and some p € {1,---,l;}, such that the

sensor bias 0; satisfies

01 [ il A=) & |lpadr

V 2)\7717,7’1,

where ||(-)||2q is the exponentially weighted Lo norm [35],

ra()|, (629)

Ciploil [

- \/ a)\mm(P) tiy

t _ _
Nl(t) é ‘Czp/ eAi(t_T)LidT—Fip eAi(t_T)HLinT,

Ty

and Fy, is a constant matrix defined later on in the proof. Then, the sensor fault will be
detected at time t = Ty, i.e., |0;p(Ty)| > vip(Ta)-
Proof: In the presence of a sensor fault (i.e., for t > Tj,) in ith subsystem, base on (6.1)

. . . JURVAN . .
and (6.5), the dynamics of the state estimation error &; = x; — &; satisfies

§z
I
2

iTi + Giwi, ui) — Gi&i,u) + & + Dimi (x4, wi) — Dl (ys, wi) sgn(E;Ps) — LiBiyb;

M

Z ij yuxbuj hij(yiajjvuj)} (6'30)
Ui = 5? +/Bzy (6.31)

First, let us consider the Lyapunov function candidate V; = Lf;rH.fZ for the ¢th subsystem.
By following similar reasoning logic as reported in the proof of Lemma 6.2, we can show

that the time derivative of V; along the solution of (6.30) satisfies

M
. 5 5 T 1
V; <& R + E 1’7ijx;‘r$j +5l& - LiBiyil* ,
=

where R; is defined in (6.18). Note that

1€ — LiBiys|* < (1] + |LiBy0il)* < 216l + |LiBiy0il) -
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Then, based on two above inequalities, we have:
V < fL‘ R iTi + Z'}/@]x i + |£z‘2 + |Lzﬁzy0 |2 (6.32)
J=1

Second, for the interconnected kth subsystem which is healthy, where k € {1,--- , M }\{i},
we also define a Lyapunov function V; = :iZPk:ik. Analogously, the time derivative of Vj

along the solution of (6.6) satisfies:

M

. _ ~ e 1 _
Vi < 3 Rpdip + Y i) 35 + §|§k!2 : (6.33)
j=1
Next, we consider an overall Lyapunov function candidate V' = Z]J‘/il Vi = Z =17 TP T =
# T P7 for all the interconnected subsystems, where P = diag{P},--- , Py}, and 7 is defined
n (6.8). From (6.32) and (6.33), we have
M1 1
V< —7'Qi+ Z} §|£@-!2 + 5|gi|2 + | LiBiybi|* . (6.34)
1=

where @ is defined in Lemma 6.2.
Then, by following similar reasoning logic as reported in the proof of Lemma 6.2, based on

(6.34), we can obtain:

1Z2 < Voe P / a(t=r Z|§, 2dr4+—— /t a(t=7) (’&FHLzﬁZ 0;]%) dr
o )\mzn(P) 2)\mzn(P) m’m(P) 0 Y
(6.35)
By substituting (6.27) into (6.35), we have
. 1 ' !f 2
2 < 2 / t 7’ ? LZ y 0

< x2+1/ emalt=7 (‘@' | LiBybil)? d (6.36)

)‘min(P) 0 \f
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From (6.36), we know

. L ) &l :
”'S{Mmmle (L0 d }+x

1 i
\V4 mzn H |£ + ‘Llﬁlye | H2a (637)

where |[(+)|]24 is the exponentially weighted Ls norm [35]. By using the property ||z +y||2a <

[|z]|2a + ||Y||2a , the above inequality can be rewritten as

[1€ill2a || ZiBiybil|2a

=X+ : 6.38

Note that
1
LiBibil iy |2 _ | LiBiyl| 16i]
|| LiBiybil |20 = {ay(l —eT L < #.
Thus, we have
ill24 L;Biyl| 0:
F < x4+ |1€:ll2 || ZiBiyl| [6s] (6.39)

2\min (P) aAmin(P)
Now we analyze the output estimation error. Specifically, for each component of the output
estimation error, i.e., §;p(t) = CipZi(t)+Biy Fipbi, where for the constant matrix Fj, € Rbixbi
only its (p, p)th entry takes the value of 1 , while all the remaining entries are 0. Based on

(6.30) and (6.31), we have

gip = Czp/ A(t 7) zﬁzye +§z+z ij y27$]7u]) hij(yiai;ﬁuj)]dT+/8inip0i
7j=1

t
+ [pi (@i, wi) — i &g, ui)] + Cip/ eAit=T) |:Di77i($i,ui) — Dini(yi, wi)sgn(E;y;) | dT .
0

By applying the triangle inequality, based on Assumption 6.1, Assumption 6.3 and Assump-
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tion 6.4, we obtain:

t _
[Tip(t)| > ‘/0 Cipe T L85, 05d — By Fiph;

t _
—‘ / CipeAi(t_T) [’Qz”-ﬂ + Din; — Dzﬁzsgn(Ezgjz) + fz] dr|, (6.40)
0

where p; is defined in (6.25). Then by using (6.39) and (6.40), we have

t A _
/ Cipe™ " loilx + 2/ Dil| 7 + & ]dr

/CZ At Lol [|LiBiy [ 6] , T‘_ (6.41)
pe aAmin(P)

t _
iG] > \ [ Cue L0t — 0] -

/Cz A(t—7) \@zlllﬁzllza ‘
pe /2 min (P)

By rearranging the terms involving 6; and by substituting (6.28) into (6.41), we have

Qz )
o, — | el czpe 0| 1,8, dr

V a mzn

- Vz'p . (642)

|y2p ‘/C € i(t=T) 1Bzyd7_ ﬁzy ip ‘9‘

el

\/ 2>\mzn

Based on the property of the step function 3;,, we can rewrite the above inequality as

Czpe i(t=7) H§zH2adT

follows:
_ - el .
|G (t)] ) Lidr — Fyp| 6] — Nowml A c e Ly |dr | 6]

el

V 2)\mzn

Now, from (6.43), we can see that if there exists T; > Tj,, such that condition (6.29) is

Clpe i(t=7) ||§1||2ad7- — Vip - (643)

satisfied, then it is concluded that |y;,(Tq)| > vip(Ty), i.e., the sensor fault is detected at

time t = Ty.
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6.4.2 Process Fault Detectability Condition

In this section, we derive the fault detectability condition for process fault f;(x;,u;). Specif-
ically, the following theorem characterizes the class of process faults that are detectable by
the proposed distributed fault detection method.

Theorem 6.2: For the distributed fault detection method described by (6.5) and (6.28),
suppose that a process fault f;(xz;,u;) occurs in the ith subsystem at time T;,, where i €
{1,---,M}. Then, if there exist some time instant Ty > T;, and some p € {1,--- ,1;}, such

that the fault function f;(x;,u;) satisfies

T ’QZ‘ t—T1
TmCzpe =7 £ (g, wy)dr | — Do (P J1 C@pe | filxi, wi)||2adT
> \/L/ Cipe €] |2adT| + 204 . (6.44)

Then, the process fault will be detected at time t = Ty, i.e., |9ip(Ty)| > vip(Tq).

Proof: In the presence of a process fault (i.e., for t > T},) in ith subsystem, base on (6.1)
. . . . A N .

and (6.5), the dynamics of the state estimation error Z; = x; — Z; satisfies

xLi = A (b («7717 uz) ¢z(l‘uuz) + fz + /Bza:fz(xuuz)

Z i ylax])uj hl](yla‘%jau])]

g&z

+Di77i($ia ui) — Difii(yi, wi) sgn(Eigi) (6.45)
Up = CipTi (6.46)
First, we consider the Lyapunov function candidate V; = :E;FPZ:%Z for the i¢th subsystem.

By following similar reasoning logic reported in the proof of Theorem 6.1, we can show the

time derivative of V; along the solution of (6.45) satisfies

M
Vi <& R + Z%‘jﬂf Zj+ &1+ |Bia fi(i, wi)]? (6.47)
i=1
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Second, for the interconnected kth subsystem which is healthy, where k € {1,---, M}\{i},
the time derivative of the Lyapunov function V, = .’Z';—Pk{i'k along the solution of (6.6) is
the same as (6.33).

Next, for an overall Lyapunov function candidate V' = Z]]Vil Vi = E]Ail :Z‘jTPjan =z ' Pz,
where P = diag{Py,---, Py}, and Z is defined in (6.8). Based on the (6.47) and (6.33), we

have

M

. 5 B 1 - 1 -

V<-2'Qi+ ) 5y£i|2 + 5w + | Biw fi (i, ui) |2 (6.48)
=1

Then, by following a similar reasoning logic as reported in the proof of Theorem 6.1, we

have
Voe~™ 1 ¢ Mo
=2 < 0 / —a(t—r) i2d
< St ), ;m T
1 Lo &l
a(t-) IS g e V2] g
+)\mm(P)/0 e Ny 1B filwn w)l) dr
< Xt [§ill2a | [1Biafi(i, ui)ll2a (6.49)

Now, we analyze the output estimation error, for each component of the output estimation

error, i.e., ip(t) 2 CipZi(t), p=1,---,l;, we have

t
Uip = Cip/o eAit=") [gbi(mi,ui) — ¢i(Zi, ui) + & + [Dimi(i, wi) — Dimi(yi, wi) sgn(E;y;)]
M

t
—{—Bmfl(ml,ul)] dT—l—CZp/ eAi(t_T) E [hij(yi,:nj,uj) — hij(yi,iﬁj,Uj)]dT. (650)
0 -
J=1

By applying the triangle inequality, based on Assumption 6.1, Assumption 6.3, and As-

sumption 6.4, we have:

¢ . ¢ _
|Tip(t)] > ’/0 Cipe ) By fi (i, ui)dr —’/0 CipeAi(tiT)“Qﬂ‘j|+£7j]d7—

t _
—‘/ Cipe D [ Dy — Dyisgn(Egi)] dr|, (6.51)
0
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where p; is defined in (6.25). Based on (6.49) and (6.51), we have

t _ t B ~
[Gip(t)| > ‘/ Cipe 7 By fi(as, ug)dr —‘/ Cine ™ |0ilx + 2/|Dil| 7 + & | dr

‘/ Cie A;(t—1) ‘szng?a ’/ Cive Aq(t— T)‘QZH‘Bwa(xuUZ)HQa '
pe 2 min(P) v Amin(P)

By substituting (6.28) and using the property of the step function f;; and we can rewrite

the above inequality as follows:

’Qz / A;(t—
— Cipe | fi(i, wi) || 2adT
v/ Amin(P)

|Qz / A;(t—
Cipe N ||oadT
VPP el

Now, we can see that if there exists Ty > T}, such that condition (6.44) is satisfied, then

|y2p ‘/ Czpe it=r fl(xlaul)dT

it is concluded that |g;,(Ty)| > vip(T4), i.e., the process fault is detected at time t = T.

O

6.5 Simulation Results

A two-machine infinite bus power system shown in Figure 6.1 is used to demonstrate the
effectiveness of the proposed distributed fault detection and isolation method. Specifically,

2:1’12

O—taD—="—=1+a+0©

120

Figure 6.1: A two-machine infinite bus power system [26].
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we consider a two machine infinite bus power system consisting of 2 interconnected machines
under turbine / governor control. Based on the dynamics of such power systems [25, 26,
71, 9, 41, 57], by defining the state variables as z; = [§; w; P Xei]T, we can obtain a

state space model of the ith subsystem i = 1,2 as follows [40]:

(6.52)
yi = Cix
where
0 1 0 0
A 0 —2%2. (L= Fip) 3% Fip,
,L‘ =
1 Ko,
0 0 _Tmi Tmi
Kei 1
|0 TR 0 .. |
Bii=1[000 7#]", Ba=1[0-100]" and
1 000
Ci = 0100
0 001
d the i : Biv = N WOE:Z«;E;J'BU in(s S
and the interconnection term h;; = ijl’#i —m sin(d; — 0;) and the known terms

/

E

g E;]_ and Bjj, i, j = 1, 2, are assumed to be constants [25]. The parameters for each

machine are the same as given in [40] and are shown in Table 6.1.

Table 6.1 System parameters
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machine 1 machine 2

H(s) 4 5.1
D(p.u.) 5 3

ke 1 1
Frp 0.3 0.3
T 0.35 0.35
wo(rad/s)  314.159 314.159

For simplicity, the input to each subsystem consists of two parts: a stabilizing part based
on state feedback design and a sinusoidal signal causing each subsystem to deviate from
steady-state linear dynamics. The modeling uncertainty under consideration consists of
two parts. First, the modeling uncertainty in the local dynamics of the two subsystems
are assumed to be up to 5% inaccuracy in the gain of the speed governor of the machine,
which are represented as Dyn; and Dang, respectively, where D1 = Dy = [0 0 0 1]T,

m =1 = Tf.ill%(izowi’ and ¢; € [—0.05 0.05], which lead to 7; = |%wimaz|, where

Wi,a. 18 upper bound of |w;| obtained based on the prior knowledge of the system. In the
simulation, the unknown modeling uncertainty in the local dynamics of the two subsystems
0.03K.,
are assumed to be n; =10 = To, Rioo Wi
Second, for the uncertainty in the interconnection term, we consider up to 5% inaccuracy
woEy, By Bij

in the interconnection term Z;'V:Lj#i —7,— sin(d; — d;) (corresponding to & in (6.1)).

In the simulation, the unknown part in the interconnection term is assumed to be 4%

/ /

. . N onqiquBij .
inaccuracy in the term ) =l T, sin(d; — 0;).
b2 K2

In addition, the following two types of faults are considered in each subsystem:

1. An actuator fault. A simple multiplicative actuator fault by letting u; = u; + U;u;
is considered, where 4; is the nominal control input in the non-fault case, and ¥; €
[—1 0] is the unknown fault magnitude. For instance, the case ©; = 0 represents the
normal operation condition, while the case 1; = —1 corresponds to a complete failure

of the actuator.
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2. A sensor bias fault. A sensor bias in the first output is represented as 6;, 6; € [0, 10]

(i.e., up to 20% of the maximum value of the first output of each machine ).

By using the LMI toolbox introduced in the Section (4.2.1), the design parameters can be

obtained as follows:

Ly

Lo

Py

Py

E, = [0 0 0.066], and E,

13.5
—1.034
—0.404

13.5
—0.850
—0.423

0

23.718
4.195
—0.6366

1
24.050
5.349

11.781
2.857
23.7

0
9.24
2.857

—-0.6366 23.7

0.0614 0.0002

0.004 0

0.0002
0.004
0

0.0669
0
0.004

0

0.03
—0.006
0

0
0.037
—0.0122
0

—0.006
0.188
0

0.004
—-0.012
0.184
0

0
0

0.0604

0
0
0

0.0658

[0 0 0.0604]. Consequently, the related design constants

are kil = kig = ki3 = 1, >\i1 =13.5 and )\ig =13.3 and )\ig =13.9. Thus
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1.044 —0.004 —-0.008 0
—0.004 0.828 —0.212 0

Q1 =
—0.008 —0.212 0.7155 0
0 0 0 1.045
1.041 —0.01 -0.0015 0
—0.007 0.948 —0.357 0
Q2 =

—0.008 —0.366 0.8158 0

0 0 0 1.042

and a = 2.73.

First, the case of a sensor fault in machine 2 is illustrated in Figure 6.2 and Figure 6.3.
Specifically, we consider a sensor fault with #; = [10 0 0 O]T occurs to machine 2 at
Tyy = 5 second. As we can see, in Figure 6.2, although there is no fault in machine 1,
the residual in the second output generated by FDE 1 exceeds its corresponding threshold
approximately at ¢t = 5 sec, indicating that the effect of the sensor bias in machine 2 has been
propagated into the machine 1 due to the interconnection. In Figure 6.3 the residuals in the
first and the second outputs generated by FDE 2 exceeds their corresponding thresholds
immediately after sensor bias occurrence. Therefore, the sensor bias fault in machine 2 is
timely detected.

Then, we consider an actuator fault in machine 1. Figure 6.4 shows the fault detection
results when a partial actuator fault with %; = —0.25 occurs to machine 1 at T3, = 5
second. As can be seen from Figure 6.4, the residual in the third output generated by FDE
1(i.e., the local FDE designed for machinel) exceeds its threshold immediately after fault

occurrence. Therefore, the actuator fault in machine 1 is also timely detected.
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FDE 1 Output2
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‘‘‘‘‘ residual
threshold | |
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0.031 i

KN fault detected
002 B /\ T

0.01r i

—

time (second)

Figure 6.2: The case of a sensor fault in machine 2: fault detection residuals (solid and blue
line) associated with y;2 and the corresponding threshold (dashed and red line) generated
by the FDE 1
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‘‘‘‘‘ residual
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0 2 4 6 8 10

time (second)

Figure 6.3: The case of a sensor fault in machine 2: the fault detection residuals (solid and
blue line) associated with 321 and y22 and the corresponding threshold (dashed and red line)
generated by the FDE 2
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Figure 6.4: The case of an actuator fault in machine 1: the fault detection residuals (solid
and blue line) associated with yi3 and the corresponding threshold (dashed and red line)
generated by the FDE 1
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, the problem of fault diagnosis of interconnected nonlinear uncertain
systems is investigated. In the presented distributed FDI architecture, a fault diagnostic
component is designed for each subsystem in the interconnected system by utilizing local
measurements and certain communicated information from neighboring FDI components
associated with its directly interconnected subsystems. Each local FDI component consists
of two modules: a fault detection module is used to detect an occurrence of any fault in the
corresponding subsystem, and a fault isolation module is used to determining the type of the
fault among a set of partially known possible fault types in each subsystem or determining
the actual faulty subsystem among all the subsystems.

First, a distributed fault detection and isolation method is developed for process faults in
a class of interconnected nonlinear uncertain systems. In the fault diagnostic component
associated with each subsystem, a fault detection estimator is used for fault detection and
activation of fault isolation, and a bank of fault isolation estimators are used to determine
the particular type of fault that has occurred in the subsystem. Under certain assumptions,
adaptive thresholds are designed for distributed fault detection and isolation in each subsys-

tem. The important properties of robustness and fault sensitivity (fault detectability and
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isolability) of the distributed FDI algorithm are investigated. In addition, the stability and
learning capability of local adaptive fault isolation estimators designed for each subsystem
are also established.

Second, a distributed sensor FDI scheme is developed for a class of interconnected input-
output nonlinear systems where only the measurable part of state variables are directly af-
fected by the interconnections between subsystems. A class of multi-machine power systems
is used as an application example to illustrate the effectiveness of the proposed approach.
The general theory can be easily extended to other system. For each subsystem, a local
FDI component comprised of a fault detection estimator and a fault isolation estimators is
designed to detect sensor faults and determine the particular subsystem where the sensor
fault actually occurs. The adaptive thresholds for distributed sensor fault detection and
isolation in each subsystem are derived and some important properties of FDI methods
are analyzed, including fault detectability, fault isolability, and the stability and learning
capability of the distributed adaptive fault isolation estimators

Third, we extend the above sensor FDI results by considering a class of interconnected input-
output nonlinear systems where both the unknown and the measurable parts of system
states of each subsystem are directly affected by the interconnection between subsystems.
In this case, due to the fault effect propagation, the estimation error of the unknown state
variables in each subsystem is also affected by the sensor fault. Thus, the problem considered
is more challenging than what is described above

Fourth, a fault detection scheme is presented for a more general distributed nonlinear sys-
tems. We significantly extend the research work in Chapter 3, Chapter 4 and Chapter 5
by removing some restrictive limitations on system model structure. In the distributed de-
tection scheme, a fault detection component is associated with each subsystem. Adaptive
thresholds for fault detection is derived, ensuring robustness with respect to interconnections
among subsystems and modeling uncertainty. Moreover, the fault detectability conditions
are rigorously investigated, characterizing the class of detectable process faults and sensor

faults in each subsystem.
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7.2 Future Research Work

For the problem of sensor fault diagnosis in interconnected nonlinear systems discussed in
Chapter 5, the issue of the fault isolability condition still needs further investigation. The
fault isolability condition is a critical property in characterizing the class of sensor faults that
are isolable by the proposed fault isolation method. Additionally, after a faulty subsystem
is successfully isolated by using the proposed sensor fault isolation scheme discussed in
Chapter 5, we can extend the presented fault isolation method to construct a hierarchical
method which allows the isolation of both the faulty subsystem and the particular faulty
sensor as well. Also, the fault isolation issue for the system model given in Chapter 6 needs
investigation in the future.

As described in Section 2.3, malicious attacks on the interconnection or communication
link between subsystems is a typical fault needs to be considered in the fault diagnosis of
interconnected systems. The issue of detection and isolation of malicious attacks in the com-
munication link are interesting topics for future research. The robustness to communication
delay and packet dropouts is also worth investigating.

In this work, the interconnections among subsystems are assumed to be partially known.
However, in some applications, the interconnection information of interconnected systems
is difficult to model due to the complexity of the overall systems. Thus, the case of inter-
connection effects with significant modeling uncertainties should be investigated to extend

the applicability of the distributed FDI method proposed in this dissertation.

153



Bibliography

1]

A. R. Behbahani. Adaptive distributed intelligent control architecture for future propul-
sion systems. Technical Report PR-WP-TP-2007-22, U.S. Air Force Research Labora-
tory, April 2007.

A.R. Bergen. Power systems analysis. Prentice Hall, Englewood Cliffs, New Jersey,
1986.

M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. Diagnosis and Fault-Tolerant

Control. Springer, Berlin, 2006.

Francesca Boem, Riccardo MG Ferrari, and Thomas Parisini. Distributed fault detec-
tion and isolation of continuous-time non-linear systems. European Journal of Control,

17(5):603-620, 2011.
J. Chen and R. J. Patton. Robust Model-Based Fault Diagnosis for Dynamic Systems.

Kluwer Academic Publishers, London, 1999.

W. Chen and M. Saif. Adaptive actuator fault detection, isolation and accommodation

in uncertain systems. International Journal of Control, 80(1):45-63, 2007.

Mo-Yuen Chow and Yodyium Tipsuwan. Network-based control systems: a tutorial.
In Industrial Electronics Society, 2001. IECON’01. The 27th Annual Conference of the
IEEE, volume 3, pages 1593-1602. IEEE, 2001.

Mariesa L Crow and MD Ili¢. The waveform relaxation method for systems of differ-

ential /algebraic equations. Mathematical and computer modelling, 19(12):67-84, 1994.

154



[9]

[12]

[13]

[14]

D. M. Stipanovic D. D. Siljak and A. I. Zecevic. Robust decentralized turbine/governor
control using linear matrix inequalities. IEEE Trans. Power System, 17(3):715-722,
2002.

Supratim Deb and R Srikant. Rate-based versus queue-based models of congestion

control. ACM SIGMETRICS Performance Evaluation Review, 32(1):246-257, 2004.

F Dorfler, Fabio Pasqualetti, and Francesco Bullo. Distributed detection of cyber-
physical attacks in power networks: A waveform relaxation approach. In Communica-
tion, Control, and Computing (Allerton), 2011 49th Annual Allerton Conference on,
pages 1486-1491. IEEE, 2011.

Nicola Elia and Jeff N Eisenbeis. Limitations of linear control over packet drop net-

works. Automatic Control, IEEE Transactions on, 56(4):826-841, 2011.

D. G. Eliades and M. M. Polycarpou. A fault diagnosis and security framework for
water systems. IEEE Transactions on Control Systems Technology, 18(6):1254-1265,

2010.

A. Emami-Naeini, M. M. Akhter, and S. M. Rock. Effect of model uncertainty on
failure detection: the threshold selector. IEEE Transactions on Automatic Control,

33:1106-1115, 1988.

J. Farrell and M. M. Polycarpou. Adaptive Approximation Based Control. J. Wiley,
Hoboken, NJ, 2006.

M Farsi, K Ratcliff, and Manuel Barbosa. An overview of controller area network.

Computing €& Control Engineering Journal, 10(3):113-120, 1999.

James P Farwell and Rafal Rohozinski. Stuxnet and the future of cyber war. Survival,

53(1):23-40, 2011.

155



[18]

[21]

R. Ferrari, T. Parisini, and M. M. Polycarpou. Distributed fault diagnosis of large-scale
discrete-time nonlinear systems: New results on the isolation problem. In 49th IEEE

Conference on Decesion and Control.

R. Ferrari, T. Parisini, and M. M. Polycarpou. A fault detection scheme for distributed
nonlinear uncertain systems. In Proceedings of the 2006 IEEFE International Symposium

on Intelligent Control.

R. Ferrari, T. Parisini, and M. M. Polycarpou. Distributed fault diagnosis with overlap-
ping decompositions: an adaptive approximation approach. IEEFE Trans. on Automatic

Control, 54:794-799, 2009.

R. Ferrari, T. Parisini, and M. M. Polycarpou. Distributed fault detection and isola-
tion of large-scale discrete-time nonlinear systems:an adaptive approximation approach.

IEEE Trans. on Automatic Control, 57:275-290, 2012.

P. M. Frank. Fault diagnosis in dynamic systems using analytical and knowledge-based

redundancy - a survey and some new results. Automatica, 26:459-474, 1990.

Emilia Fridman, Alexandre Seuret, and Jean-Pierre Richard. Robust sampled-data
stabilization of linear systems: an input delay approach. Automatica, 40(8):1441-1446,
2004.

J. J. Gertler. Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker,
New York, NY, 1998.

Y. Guo, D. J. Hill, and Y. Wang. Nonlinear decentralized control of large-scale power

systems. Automatica, 36:1275-1289, 2000.

Y. Wang. G. Guo and D. J. Hill. Robust decentralized nonlinear controller design for

multimahine power systems. Automatica, 33:1725-1733, 1997.

Rachana Ashok Gupta and Mo-Yuen Chow. Networked control system: Overview and
research trends. Industrial Electronics, IEEE Transactions on, 57(7):2527-2535, 2010.

156



[28]

[29]

[32]

33]

M.F. Hassan, M.A.Sultan, and M.S.Attia. Fault detection in large-scale stochastic

dynamic systems. In IEE PROCEEDINGS -D, volume 139, 1992.

Joao P Hespanha, Margaret McLaughlin, Gaurav S Sukhatme, Minoo Akbarian, Ra-
jiv Garg, and Weirong Zhu. Haptic collaboration over the internet. In The Fifth
PHANTOM Users Group Workshop, volume 40, 2000.

Joao P Hespanha, Payam Naghshtabrizi, and Yonggang Xu. A survey of recent results
in networked control systems. Proceedings of the IEEE, 95(1):138-162, 2007.

Kenji Hikichi, Hironao Morino, Isamu Arimoto, Kaoru Sezaki, and Yasuhiko Yasuda.
The evaluation of delay jitter for haptics collaboration over the internet. In Global
Telecommunications Conference, 2002. GLOBECOM’02. IEEFE, volume 2, pages 1492—
1496. IEEE, 2002.

N. Hovakimyan, E. Lavretsky, B. Yang, and A.J.Calise. Coordinated decentralized
adaptive output feedback control of interconnected systems. IEEE Transactions on

Nerural Networks, 16:185—-194, 2005.

I. Hwang, S. Kim, Y. Kim, and C. E. Seah. A survey of fault detection, isolation,
and reconfiguration methods. IEEE TRANSACTIONS ON CONTROL SYSTEMS
TECHNOLOGY, 18(3):636-653, 2010.

M. IKEDA and D.D.Siljak. Overlapping decomposition expansion and contraction of

dynamic systems. J. Large Scale Syst, 1:2938, 1980.

P. A. Toannou and J. Sun. Robust Adaptive Control. Prentice Hall, Englewood Cliffs,
NJ, 1996.

R. Isermann. Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault

Tolerance. Springer, Berlin, 2006.

157



[37]

[40]

[41]

[42]

[43]

[44]

[45]

B. Jiang, M. Staroswiechi, and V. Cocquempot. Fault diagnosis based on adaptive
observer for a class of nonlinear systems with unknown parameters. International

Journal of Control, 77(4):415-426, 2004.

Karl Henrik Johansson, Martin Térngren, and Lars Nielsen. Vehicle applications of
controller area network. In Handbook of Networked and Embedded Control Systems,
pages 741-765. Springer, 2005.

P. Kabore and H. Wang. Design of fault diagnosis filters and fault tolerant control for
a class of nonlinear systems. IEEFE Transactions on Automatic Control, 46:1805-1810,

2001.

Jianming Lian Karanjit Kalsi and Stanislaw H.Zak. Decentralized control of multi-
machine power systems. In 2009 American Control Conference, pages 21222127, St.
Louis, MO, USA, 2009.

P. Kundur. Power system stability and control. McGrawHill, New York, NY, 1994.

S Kuvshinkova. Sql slammer worm lessons learned for consideration by the electricity

sector. North American FElectric Reliability Council, 2003.

Ekachai Lelarasmee, Albert E Ruehli, and Alberto L Sangiovanni-Vincentelli. The
waveform relaxation method for time-domain analysis of large scale integrated circuits.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
1(3):131-145, 1982.

Derong Liu. Networked control systems: theory and applications. Springer, 2008.

N. Meskin and K. Khorasani. Actuator fault detection and isolation for a network of

unmanned vehicles. IEEE Transactions on Automatic Control, 54(4):835-840, 2009.

Reza Olfati-Saber and Richard M Murray. Consensus problems in networks of agents
with switching topology and time-delays. Automatic Control, IEEE Transactions on,

49(9):1520-1533, 2004.

158



[47]

[48]

[51]

P. Panagi and M. M. Polycarpou. Decentralized adaptive approximation based control

of a class of large-scale systems. pages 4191-4196, June 2008.

P. Panagi and M. M. Polycarpou. Distributed fault detection and accommodation with

partial communication. March 2010.

Fabio Pasqualetti, Florian Dorfler, and Francesco Bullo. Attack detection and identi-
fication in cyber-physical systems—part i: Models and fundamental limitations. arXiv

preprint arXiw:1202.6144, 2012.

Fabio Pasqualetti, Florian Dorfler, and Francesco Bullo. Attack detection and identi-
fication in cyber-physical systems—part ii: Centralized and distributed monitor design.

arXiww preprint arXiv:1202.6049, 2012.

Fabio Pasqualetti, Florian Dorfler, and Francesco Bullo. Cyber-physical security via
geometric control: Distributed monitoring and malicious attacks. In Decision and

Control (CDC), 2012 IEEE 51st Annual Conference on, pages 3418-3425. IEEE, 2012.

G. K. A. Rao and N. Viswanadham. Decentralized fault detection and diagnosis in

large linear stochasitc systems. J.I. Electr. Telecommun. Eng, 39:143-148, 1993.

K. Reif, K. Schmidt, F. Gesele, S. Reichelt, M. Saeger, and N. Seidler. Networked

control systems in motor vehicles. ATZelektronik Worldwide, 3(4):18-23, 2008.

Wei Ren and Randal W Beard. Consensus seeking in multiagent systems under dy-
namically changing interaction topologies. Automatic Control, IEEE Transactions on,

50(5):655-661, 2005.

Michael Rotkowitz and Sanjay Lall. Affine controller parameterization for decentralized
control over banach spaces. Automatic Control, IEEE Transactions on, 51(9):1497—

1500, 2006.

159



[56]

[59]

[60]

[61]

G. P. Sallee. Performance deterioration based on existing (historical) data JT9D jet
engine diagnostics program. Technical Report NASA CR135448, PWA551221, United

Technologies Corporation, Pratt & Whitney Aircraft Group, 1978.

P. W. Sauer and M. A. Pai. Power systems dynamics and stability. Prentice-Hall,
Englewood Cliffs, New Jersey, 1998.

S. Shankar, S. Darbha, and A. Datta. Design of a decentralized detection filter for
a large collection of interacting LTI systems. Mathematical Problems in Engineering,

8:233-248, 2002.

Shervin Shirmohammadi and N Ho Woo. Evaluating decorators for haptic collaboration
over internet. In Haptic, Audio and Visual Environments and Their Applications, 2004.
HAVE 2004. Proceedings. The 3rd IEEE International Workshop on, pages 105-109.
IEEE, 2004.

D. D. Siljak, editor. Decentralization, Stabilization and Estimation of Large-Scale Lin-

ear Systems. Academic Press Inc., Boston, 1990.

M. G. Singh, M. F. Hassan, Y. L. Chen, and Q. R. Pan. New approach to failure
detection in large-scale systems. In IEE PROCEEDINS,, volume 130, pages 243-249,
1983.

J. T. Spooner and K. M. Passino. Adaptive control of a class of decentralized nonlinear

systems. IEEE Transactions on Automatic Control, 41(2):280-284, 1996.

J. T. Spooner and K. M. Passino. Decentralized adaptive control of nonlinear sys-
tems using radial basis neural networks. IEFEE Transactions on Automatic Control,

44(11):2050-2057, 1999.

Ao Tang, Krister Jacobsson, Lachlan LH Andrew, and Steven H Low. An accurate link

model and its application to stability analysis of fast tcp. In INFOCOM 2007. 26th

160



[65]

[66]

[67]

[70]

[71]

[72]

IEEFE International Conference on Computer Communications. IEEE, pages 161-169.
IEEE, 2007.

L. Tang, X. Zhang, J. A. DeCastro, L. Farfan-Ramos, and D. Simon. A unified non-
linear adaptive approach for detection and isolation of engine faults. In Proceedings of

the ASME Turbo Expo 2010, Glasgow, Scotland, June 2010.

X. Tang, G. Tao, and S. M. Joshi. Adaptive actuator failure compensation for nonlinear

MIMO systems with an aircraft control application. Automatica, 43:1869-1883, 2007.

Yodyium Tipsuwan and Mo-Yuen Chow. Control methodologies in networked control

systems. Control engineering practice, 11(10):1099-1111, 2003.

Nikolai Vatanski, Jean-Philippe Georges, Christophe Aubrun, Eric Rondeau, and
Sirkka-Liisa Jamséd Jounela. Control compensation based on upper bound delay in

networked control systems. arXiv preprint c¢s/0609151, 2006.

K. Vijayaraghavan, R. Rajamani, and J. Bokor. Quantitative fault estimation for a

class of nonlinear systems. International Journal of Control, 80(1):64-74, 2007.

A. Xu and Q. Zhang. Nonlinear sysem fault diagnosis based on adaptive estimation.

Automatica, 40:1181-1193, 2004.

D. J. Hill Y. Wang and G. Guo. Robust decentralized control for multimachine power
systems. IEEE Trans. Circuits System, 45(3):271-279, 1998.

X. Yan and C. Edwards. Robust decentralized actuator fault detection and estimation
for large-scale systems using a sliding-mode observer. International Journal of Control,

81(4):591-606, 2008.

Tai C Yang. Networked control system: a brief survey. IEE Proceedings-Control Theory
and Applications, 153(4):403-412, 2006.

161



[74]

[80]

Lei Ying, Geir E Dullerud, and Rayadurgam Srikant. Global stability of internet con-
gestion controllers with heterogeneous delays. IEEE/ACM Transactions on Networking
(TON), 14(3):579-591, 2006.

Sandro Zampieri. Trends in networked control systems. In 17th IFAC World Congress,
pages 2886-2894, 2008.

Ke Zhang, Bin Jiang, and Peng Shi. Fast fault estimation and accommodation for

dynamical systems. Control Theory € Applications, IET, 3(2):189-199, 20009.

Q. Zhang and X. Zhang. Distributed sensor fault diagnosis in a class of interconnected
nonlinear uncertain systems. In the 2012 IFAC Symposium on Fault Detection, Su-
pervision and Safety of Technical Processes, pages 1101-1106, Mexico City, Mexico,
August 2012.

Q. Zhang and X. Zhang. Distributed sensor fault diagnosis in a class of interconnected

nonlinear uncertain systems. Annual Reviews in Control, 37:170-179, 2013.

X. Zhang. Sensor bias fault detection and isolation in a class of nonlinear uncertain
systems using adaptive estimation. IEEE Transactions on Automatic Control, 56:1220—

1226, 2011.

X. Zhang, H.Uliyar, L.Farfan-Ramos, Y.Zhang, and M.Salman. Fault diagnosis of
automotive electric power generation and storage systems. In 2010 IEEFE International
Conference on Control Applicaitons, Part of 2010 IEEE Multi-Conference on Systems

and Control, Yokohama, Japan, September 2010.

X. Zhang, T. Parisini, and M. M. Polycarpou. Sensor bias fault isolation in a class of

nonlinear systems. IEEE Transactions on Automatic Control, 50:370-376, 2005.

X. Zhang, M. M. Polycarpou, and T. Parisini. Robust fault isolation of a class of
nonlinear input-output systems. International Journal of Control, 74(13):1295-1310,
2001.

162



[83]

[85]

[36]

X. Zhang, M. M. Polycarpou, and T. Parisini. A robust detection and isolation scheme
for abrupt and incipient faults in nonlinear systems. IEEE Transactions on Automatic

Control, 47(4):576-593, 2002.

X. Zhang, M. M. Polycarpou, and T. Parisini. Fault diagnosis of a class of nonlinear
uncertain system with lipschitz nonlinearities using adaptive estimation. Automatica,

46:290-299, 2010.

X. Zhang and QQ.Zhang. Distributed fault detection and isolation in a class of large-
scale nonlinear uncertain systems. International Journal of Control, 85(11):1644-1662,

2012.

X. Zhang and Q. Zhang. Distributed fault detection and isolation in a class of large-
scale nonlinear uncertain systems. In 18th IFAC World Congress, pages 4302-4307,

Milano, Italy, August 2011.

163



Appendix A

Notation of Chapter 6

0;  the power angle of the ith generator, in rad

w; the relative speed of the ith generator, in rad/s

P,,; the mechanical input power, in p.u.

P.; the electrical power, in p.u

wo the synchronous machine speed in rad/s

D; the per unit damping constant

H; the inertia constant, in s

E . the transient EMF in the quadrature axis, in p.u

E,i  EMF in the quadrature axis, in p.u

Ey¢;  the equivalent EMF in the excitation coil, in p.u

T, the direct axis transient short-circuit time constant, in s
rg; the direct axis reactance, in p.u.

x;h- the direct axis transient reactance, in p.u.

B;;  theith row and jth column element of nodal susceptance matrix at the internal nodes
after eliminating all physical buses, in p.u.

Qi  the reactive power, in p.u.

Iy;  the excitation current, in p.u.

I  the direct axis current, in p.u.
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Iy
kci

’LLfZ'

Ladj

wij

p-u.

the quadrature axis current, in p.u.
the gain of excitation amplifier, in p.u.
the input of the SCR amplifier, in p.u.
the mutual reactance between the excitation coil and the stator coil, in p.u.

the transmission line reactance between the i¢th generator and the jth generator, in
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