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ABSTRACT

Zhang, Qi. Ph.D.in Engineering, Department of Electrical Engineering, Wright State Uni-
versity, 2013. Distributed Fault Diagnosis of Interconnected Nonlinear Uncertain Systems

Fault diagnosis is crucial in achieving safe and reliable operations of interconnected con-

trol systems. This dissertation presents a distributed fault detection and isolation (FDI)

method for interconnected nonlinear uncertain systems. The contributions of this disserta-

tion include the following: First, the detection and isolation problem of process faults in a

class of interconnected input-output nonlinear uncertain systems is investigated. A novel

fault detection and isolation scheme is devised, and the fault detectability and isolability

conditions are rigorously investigated, characterizing the class of faults in each subsystem

that are detectable and isolable by the proposed distributed FDI method. Second, a dis-

tributed sensor fault FDI scheme is developed in a class of interconnected input-output

nonlinear systems where only the measurable part of state variables are directly affected by

the interconnections between subsystems. A class of multimachine power systems is used

as an application example to illustrate the effectiveness of the proposed approach. Third,

the previous results are extended to a class of interconnected input-output nonlinear sys-

tems where both the unknown and the measurable part of system states of each subsystem

are directly affected by the interconnections between subsystems. In this case, the fault

propagation effect among subsystems directly affects the unknown part of state variables of

each subsystem. Thus, the problem considered is more challenging than what is described

above. Finally, a fault detection scheme is presented for a more general distributed non-

linear systems. With a removal of a restrictive limitation on the system model structure,

the results described above are extended to a class of interconnected nonlinear uncertain

systems with a more general structure.

In addition, the effectiveness of the above fault diagnosis schemes is illustrated by using

simulations of interconnected inverted pendulums mounted on carts and multi-machine

power systems. Different fault scenarios are considered to verify the diagnosis performances,
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and the satisfactory performances of the proposed diagnosis scheme are validated by the

good simulation results. Some interesting future research work is also discussed.
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Chapter 1

Introduction

Rapid progress in information technology is changing almost every aspect of how people

live their lives. In the last decade, peoples’ ability to access information has been greatly

enhanced by significant improvements in computer hardware, software, and telecommuni-

cations. As an integration of the fast developing information technology and the traditional

control technology, networked control systems have been applied in a broad range of areas

in industry. Such systems are composed of a great number of locally distributed and dy-

namically interacting control components, including control units, sensors, and actuators.

The information (sensor data, control signals, ect.) exchange among these control system

components is accomplished via a communication network or direct interconnections. The

primary advantages of distributed systems over the traditional centralized control systems

include improved control performance, low cost, reduced computation resource require-

ments, reduced wiring or communication bandwidth requirements, simple installation and

maintenance, and system agility. However, compared with tradition control systems, such

distributed systems are more vulnerable to system faults, since the effect of a catastrophic

failure in one subsystem will be quickly propagated to other subsystems due to interconnec-

tions or communications. In order to achieve reliable and safe operations of such distributed

systems, the design of intelligent fault diagnosis technologies is a crucial step in the devel-

opment of networked control system.
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Recently, there have been significant research activities in the development of new method-

ologies of fault diagnosis in distributed networked control systems. However, most of these

methods are based on a centralized architecture. In practice, due to the constraints on

computational capabilities, wiring, and/or communication bandwidth, it is very difficult

to address the problem of diagnosing faults in interconnected distributed systems using a

centralized architecture. Also, limited research work has been done in the area of the fault

diagnosis of distributed systems, in particular for distributed nonlinear uncertain systems

This dissertation is motivated by the above significant issues. The research objective is

to investigate the problem of distributed fault detection and isolation for interconnected

nonlinear uncertain systems. The overall organization of the dissertation is as follows:

Chapter 2 presents a general introduction of networked control system and reviews the

state of art of automated fault diagnosis techniques for distributed control systems.

Chapter 3 presents a distributed detection and isolation method for process faults in a

class of interconnected nonlinear uncertain systems. A fault detection and isolation (FDI)

component is designed for each subsystem in the interconnected system. A novel fault

detection and isolation scheme is devised, and the fault detectability and isolability condi-

tions are rigorously investigated, characterizing the class of faults in each subsystem that

are detectable and isolable by the proposed distributed FDI method. Moreover, the stabil-

ity and learning capability of the local adaptive fault isolation estimators designed for each

subsystem is established. This chapter is based on the following paper:

• X. Zhang and Q. Zhang, ”Distributed fault diagnosis in a class of interconnected

nonlinear uncertain systems,” International Journal of Control , vol. 85, no. 11, pp.

1644 -1662, 2012.

Chapter 4 presents a distributed sensor FDI scheme for a class of interconnected nonlin-

ear systems, where only the measurable part of the state variables are directly affected by

the interactions between subsystems. A multimachine power system is used as an illustra-

tive example of the general method. In the multimachine power system, each generator

2



is interconnected with other generators through a transmission network. In the proposed

distributed FDI scheme, a local FDI component is designed for each generator excitation

system in the power system based on local measurements and certain communicated infor-

mation from other FDI components associated with generators that are directly intercon-

nected to the local generator. A fault detection and isolation scheme is developed and some

of its properties, such as the fault detectability and isolability conditions are rigorously

investigated. This chapter is based on the following paper:

• Q. Zhang and X. Zhang, ”Distributed Sensor Fault Detection and Isolation for multi-

machine Power systems” , International Journal of Robust and Nonlinear Control ,

(under minor revision)

Chapter 5 presents a distributed sensor FDI method for a class of interconnected nonlinear

uncertain systems. This chapter extends the results described in Chapter 4 by considering

interconnected nonlinear systems where both the unknown part and the measurable parts of

system states of each subsystem are directly affected by the interconnections. This chapter

is based on the following paper:

• Q. Zhang and X. Zhang, ”Distributed sensor fault detection and isolation in a class of

interconnected nonlinear uncertain systems”, IFAC Annual Reviews in Control, vol.

37, Issue 1, pp. 170-179, 2013.

Chapter 6 presents a distributed fault detection method for a class of interconnected

nonlinear uncertain systems. This chapter extends previous results by considering more

general nonlinear systems. Under certain assumptions, a distributed fault detection method

is developed, and adaptive threshold for fault detection is derived, ensuring robustness

with respect to interconnections among subsystems and modeling uncertainty. Moreover,

the fault detectability conditions are rigorously investigated, characterizing the class of

detectable process faults and sensor faults in each subsystem. This chapter is based on the

following paper:

3



• Q. Zhang and X. Zhang, ”A distributed detection scheme for process faults and sen-

sor faults in a class of interconnected nonlinear uncertain systems,” the 2012 IEEE

Conference on Decision and Control , Maui, Hawaii, pp. 586-591, 2012. (Also in the

preparation of submission to IEEE Transactions on Automatic Control)

Chapter 7 includes some concluding remarks and some discussion of future research di-

rections as described.
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Chapter 2

Literature Review: Research

Motivation

In this chapter, a general introduction of networked control system is first presented. Then,

an overview of the field of fault diagnosis is given, and some important concepts and defi-

nitions are introduced. In addition, we review some existing research work focusing on the

areas of fault detection and isolation of distributed linear and nonlinear systems, respec-

tively. Then, the research objectives of this dissertation are presented.

2.1 Introduction of Networked Control System

The networked control systems (NCS) are a class of spatially distributed control systems

where all the system components (sensors, actuators and controllers) exchange information

through a shared bandwidth, limited digital communication network [27, 7, 73]. As shown

in Fig. 2.1, all the nodes in NCS (i.e., sensors, actuators and controllers) can be connected

to each other through a communication network, and the complexity and cost of design and

operation of the control systems can be significantly reduced [27, 30, 67, 44]. Moreover,

since NCS have a flexible architecture and enhanced agility, with adding or removal of

sensors, actuators or controllers in the overall system, low cost and reliable installation and

5



maintenance can be achieved.

Plant 

Sensor Actuator

Plant 

Sensor Actuator

Network

Controller Controller 

Figure 2.1: Typical Structure of Networked Control System.

In recent years, the area of NCS is attracting more and more attention, and there have been

many applications of networked control system in different areas of the engineering field.

Examples of such systems including automotive control systems [53, 38, 16], distributed

jet engine control [1], cooperative control of a team of unmanned vehicles [45], haptics

collaboration over the Internet [29, 31, 59], power generation and distribution systems [25],

and water transport networks [13], etc.

In order to get more insight into the networked control system concept, the networked

control system architecture of the Volvo XC90 [38] shown in Fig. 2.2 is considered as an

illustrative example. The embedded distributed vehicle control system is considered as a

networked control system composed of different types of subsystems (i.e., the electrical con-

trol units (ECUs) as shown in Table 2.1) and different types of communication networks.

Specifically, the power train and chassis ECUs (e.g., TCM, ECM, BCM, etc) exchange the

6



information through a CAN bus (represented by red line) with a communication rate of 500

kbps. The body electronics ECUs (e.g., DDM, PDM, CCM, etc) are interconnected with

each other via another type of CAN bus (represented by light blue line) with a communica-

tion rate of 125 kbps. In addition, the media oriented system transport (MOST) networks

(represented by dark blue lines) connects the infotainment and telematics ECUs, and the

slave nodes are connected into the corresponding ECU through local interconnect networks

(LINs) which are denoted by dashed black lines.

TCM 

ECM 

BCM 

MP1 

PHM 

MP2 

MMM 

ICM 

PDM 

SUM 

SUB 

ATM 

AUD 

DEM 

AEM 

REM 

DDM 

PSM 

ICM 

CCM 

SRS 

SAS 

CEM 

DIM 

BSC 

SWM 

UEM 

CAN 125kbps 

CAN 500kbps 

MOST 

SN1 

SN2 

SN3 

SN1 

SN i 

SN 

SN 

SN 

LINs 

Figure 2.2: Distributed control architecture for the Volvo XC90.
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Table 2.1 ECUs in the networked control system architecture of the Volvo XC90 [38]

Powertrain and chassis Body electronics

TCM Transmission control module CEM Central electronic module

ECM Engine control module SWM Steering wheel module

BCM Brake control module DDM Driver door module

BSC Body sensor cluster REM Rear electronic module

SAS Steering angle sensor CCM Climate control module

SUM Suspension module PDM Passenger door module

AUD Audio module

Infotainment/Telematics

MP1,2 Media player 1 and 2 ICM Infotainment control

PHM Phone module UEM Upper electronic module

MMM Multimedia module DIM Driver information module

SUB Subwoofer AEM Auxiliary electronic module

ATM Antenna tuner module

Recently, significant research work has been done in area of NCS. Most of the results focus

on the control problem [75], including

(1) Control of networks: in order to achieving efficient utilization of network resources of

NCS, the problem of network resources scheduling is investigated([64, 10, 74]).

(2) Control over networks: because the data of all nodes of NCS is exchanged through unre-

liable communication links, a lot of work has been done in designing of feedback strategies

adapted to NCS, while maintaining system stability or good control performance([23, 68,

12]).

(3) Multi-agent systems: some research work has been devoted to analyzing how network

architecture and interactions between subsystems influence global control goals ([54, 55, 46]).

In order to achieve reliable and safe operations of NCS, the design of fault diagnosis and

8



accommodation schemes is also a crucial step. However, there has been limited research

work on fault diagnosis of networked control system. Thus, the study of fault diagnosis

and accommodation of NCS needs to be considered as one of the key future directions for

networked control systems research.

In the last two decades, there have been significant research activities in the design and

analysis of fault diagnosis and accommodation schemes ( [3, 5, 24, 36, 22] ). However,

most of these existing methods consider traditional centralized control systems. Thus, the

distributed fault diagnosis problem has attracted significantly increasing attention in recent

years.

2.2 Overview of Automated Fault Diagnosis

A fault is defined as an unpermitted deviation of at least one characteristic property of a

variable from an acceptable behavior. It may lead to a malfunction or failure of the system.

The faults in the system can generally be classified into three types: component faults,

actuator faults, and sensor faults.

1. A component fault typically represents a fault which leads to changes in the normal

system dynamics. It can be modeled as an additive component fault or multiplicative

component fault [24]. An additive component fault causes changes in the system

outputs independent of known inputs. A multiplicative component fault is expressed

as changes in plant parameters in a process. For example, in a vehicular electric power

generation and storage system, damaged diodes in the rectifier in the alternator results

in a component fault [80].

2. An actuator fault represents the discrepancies between the input command of an

actuator and its actual output. For instance, in an aircraft control system, control

surface damage can be considered as an actuator fault [33].

3. A sensor fault represents the deviation between the measured and the actual value of

a plant’s output variable.
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Actuator faults and sensor faults are commonly modeled as additive faults in the system.

Also, according to the time profiles of faults, faults can be classified as follows:

(i) abrupt fault , i.e., step-like change.

(ii) incipient faults. The magnitude of an incipient fault develops over a period of time.

They are often modeled as a drift or time-varying change in the parameters of a system.

(iii) intermittent fault. In a system, the symptoms of an intermittent fault only show up at

some time intervals or operating conditions, not all the time.

The fault diagnosis procedure monitors the system and generates information about the

abnormal behavior of its components. In general, fault detection, fault isolation and fault

identification are the three main steps of the fault diagnosis procedure [5]. The occurrence

of a fault in a monitored system can be determined in the fault detection stage. The step

of fault isolation ensures that we are able to retrieve some information about the fault such

as fault type or location, and fault identification determines the size or nature of the fault.

Next, we introduce some important properties for evaluating the performance of fault di-

agnosis schemes, including robustness, fault detectability and isolability.

(i) Robustness is the ability of the scheme to operate in the presence of noise, disturbance,

and modeling errors, with few false alarms.

(ii) Detectability and isolability are characterized by the class of faults which can be suc-

cessfully detected and isolated. A successful fault diagnosis scheme should be able to detect

and isolate faults of reasonably small sizes.

2.3 Fault Diagnosis Methods of Distributed Linear Systems

Early research work in the area of fault diagnosis of distributed system focuses on linear

systems [61, 28, 52]. The overlapping decomposition techniques proposed in [34] is used to

decompose a large scale linear system into subsystems sharing some common state variables.

Multiple decentralized observers are designed based on the subsystems, and differences

between the same state as estimated by the different observer can be used to isolate the
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fault. In [58, 45], a decentralized detection filter method is presented to estimate the states

of the distributed linear system, and the absence of modeling uncertainty is assumed.

Recently, some research work [49, 50] have considered detection of malicious attacks in

cyber-physical systems modeled as distributed linear systems. Cyber-physical systems is a

class of distributed system consisting of physical processes of each subsystem as well as

communication networks among all the subsystems. There are many examples of cyber-

physical systems in industry, such as power generation and distribution networks, computer

networks, sensor networks, and energy efficient buildings. Such distributed systems are

vulnerable to malicious attacks in the communication link among subsystems, for example,

the Davis-Besse nuclear plant suffered the SQL Slammer worm attack in January 2003 [42],

and the StuxNet computer worm [17] attacked Iran’s nuclear facilities in June 2010. As an

example, a differential-algebraic model of the ith cyber- physical subsystem under attack is

represented as follows [50]:

Eiẋi(t) = Aixi(t) +
∑
j∈Ni

Aijxj(t) +BKiuKi(t), (2.1)

yi(t) = Cixi(t) +DKiuKi(t) , , (2.2)

where xi(t) ∈ ℜni and yi(t) ∈ ℜmi are the state vector and the output vector of the ith

subsystem, respectively, and uKi represents the Kith type of attack on the system dynamics

or sensor outputs. Ni are the neighbors of the ith subsystem, Ai, BKi , DKi and Ci are

known matrices with appropriate dimensions, and the matrix Ei is possibly singular.

Based upon a waveform relaxation technique [43, 8], in [11, 49, 50, 51], a distributed fault

detection filter is proposed for each subsystem to detect any fault that may occur in the

corresponding subsystem. Also, the attack isolation problem for a certain class of cyber-

physical system has been considered in [49, 50], where a bank of distributed fault isolation

estimators are designed for each subsystem to identify a fault defined in a fault set. Specif-

ically, for the ith subsystem described in (2.2), the interconnections between subsystems

(i.e.
∑
j∈Ni

Aijxj(t) ) is treated as an unknown input, and a bank of unknown input observers
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are designed. Thus, the residual of each unknown input observer is insensitive to the inter-

connection term, and only sensitive to attacks in the ith subsystem. An isolation scheme

is proposed to identify both the subsystem where actual fault occurred and the particular

type of fault in that subsystem.

2.4 Fault Diagnosis Methods of Distributed Nonlinear Sys-

tems

In recent years, the area of distributed fault diagnosis of interconnected nonlinear system has

attracted significantly increasing attention [20, 72, 18, 48, 19, 86, 4]. Consider a nonlinear

dynamic system composed of M interconnected subsystems. A general system model is

given by the following differential equations, for i = 1, · · · ,M

ẋi = fi(xi, ui) + gi(x, ui, uj) + ηi(xi, ui, t) + βix(t− T0x)ϕi(xi, ui)

yi = Cixi + βiy(t− T0y)θi(t)
(2.3)

where xi ∈ ℜni , ui ∈ ℜmi , yi ∈ ℜli and x ∈ ℜn are the local state vector, input

vector, and output vector of the ith subsystem (ni ≥ li), and state vector of the overall

system, respectively, fi : ℜni × ℜmi 7→ ℜni represents the local nominal dynamics, gi :

ℜn × ℜmi × ℜmj 7→ ℜni represents the interconnection effect, ηi : ℜni × ℜmi × ℜ+ 7→ ℜni

is the modeling uncertainty. The term βix(t − T0x)ϕi(xi, ui) denotes the changes in the

dynamics of the ith subsystem due to the occurrence of a process fault in the local subsystem.

Specifically, the vector βix characterizes the time profile of a process fault occurring at

some unknown time T0x, and ϕi(xi, ui) represents the nonlinear process fault function. The

changes in the dynamics of ith subsystem caused by a sensor fault are characterized by

the term βiy(t − T0y)θi(t). Specifically, the vector θi(t) denotes a time-varying bias on

measurements caused by a sensor fault, and βiy represents the time profile of the sensor

fault, where T0y is the sensor fault occurrence time.

In recent research work of the fault diagnosis of nonlinear distributed systems, the inter-
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connection function gi is often assumed to be partially known or satisfy certain conditions.

For instance, the interconnection term is assumed to be linear in [45, 58], and the intercon-

nection term is assumed to satisfy lipschitz conditions in [72]. In [20, 19, 47, 18, 48, 4], an

on-line neural approximation model is used to estimate the interconnection term gi, and an

upper bound of the network approximation error is assumed to be known.

In [20, 18, 19], the overlapping decompositions strategy is applied to detect faults in large-

scale nonlinear systems. The distributed system is decomposed into sets of interconnected

subsystems sharing certain state variables. Based on the measurable local state and the

transmitted variables from the neighboring subsystem, a local fault detector is designed for

each subsystem. The interconnection between neighboring subsystems is approximated by

the neural network and the approximation information is sent to the local fault detector

in each subsystem. Moreover, a specially designed consensus-based estimator is used to

make the diagnoser reach a common decision about the variables which are affected by

faults. However, it is assumed that all the state variables are measurable. Additionally,

the unknown interconnection term is approximated by a linearly parameterized adaptive

approximator, and a bound on the approximation error is assumed to be known.

In [72], the sliding mode observer is used to address the problem of decentralized actuator

fault detection and estimation for a class of nonlinear large-scale systems. A sliding mode

observer is developed together with an appropriate coordinate transformation to find the

sliding mode dynamics. Then, an equivalent output error injection is used to estimate the

decentralized fault. The modeling uncertainty is assumed to have a certain structure and

a non-linear bound. In [72], the modeling uncertainty is assumed to be structured with a

known distribution matrix. Certain conditions on the uncertainty distribution matrix are

assumed to allow decoupling the effect of modeling uncertainty. Also, the upper bound

on the modeling uncertainty is assumed to satisfy a Lipschitz condition. When the above

conditions are satisfied, [72] provides a powerful method for fault estimation. However, the

modeling uncertainties in many practical systems are often unstructured. Additionally, the

fault estimation method presented in [72] does not necessarily allow the isolation of faults
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affecting the same state equation.

2.5 Research Motivation

In order to achieve safe and reliable operations of interconnected nonlinear controls systems

at all times, despite the possible occurrence of faulty behaviors in some subsystems, the

design of FDI schemes is a crucial step. First, an occurrence of any fault in any subsystem

needs to be detected as early as possible. Then, fault isolation schemes are required to

determine the particular fault type/location. Because of the fault effect propagation among

subsystems, multiple subsystems may be affected by a fault in a local subsystem. Thus, a

hierarchical fault isolation architecture needs to be considered in the FDI schemes, including

: 1) determining the faulty subsystem where the fault actually occurred among the set of

all subsystems. 2) determining the type of the fault among a set of known (or partially

known) possible fault types in the faulty subsystem.

The distributed fault detection and isolation methods introduced in Section 2.4 are very

interesting. However, the FDI problem for a general interconnected nonlinear uncertain

systems remains open.

As described above, in the literature of fault diagnosis of distributed nonlinear systems, some

research work considered the system with full-state measurements [20, 18, 19]. However,

in practice, only a part of the states are available. As a result, it is important to consider

the FDI problem of input-output systems with partial state measurements. Moreover, some

research work assume the absence of modeling uncertainty (e.g., [58]) or structured modeling

uncertainty (e.g., [72]). In the case of structured models of the modeling uncertainty, in

order to achieve robustness, it is often assumed that the uncertainty distribution matrix

satisfies certain rank conditions. Based on such assumptions, we can derive a system which

is decoupled from the modeling uncertainties, but remain sensitive to the faults by using

a suitable state transformation. However, the modeling uncertainty in many of practical

systems are unstructured, thus, it is necessary to address the problem of unstructured
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modeling uncertainty. Additionally, most of the research work introduced in Section 2.4

only focus on the fault detection problem of the distributed nonlinear systems. There are

very limited results investigating the fault isolation problem of the distributed nonlinear

systems.

The idea of using adaptive and learning techniques for fault diagnosis and accommodation

has been proposed in (see, for instance, [39, 83, 37, 66, 70, 6]). However, most of these

methods are based on a centralized fault diagnosis architecture. In practice, due to con-

straints on computational capabilities and communication bandwidth, it is very difficult to

address the problem of diagnosing faults in interconnected systems using a centralized archi-

tecture. Thus, in this dissertation, fault diagnosis schemes with a distributed architecture

are considered.

The first research objective of this dissertation is to investigate the detection and isola-

tion problem of process faults in a class of interconnected input-output nonlinear systems

with unstructured uncertainty. In such systems, it is assumed that system states of each

subsytem can be decomposed into an unknown part and a measurable part by a state trans-

formation, and the mearuable part of states may be directly affected by a set of process fault

types which are partially known. Our goal is detect and identify which one has actually

occurred in a faulty subsystem. In the proposed distributed FDI architecture, a FDI com-

ponent is designed for each subsystem in the interconnected system. For each subsystem, its

corresponding local FDI component is designed by utilizing local measurements and certain

communicated information from neighboring FDI components associated with subsystems

that are directly interconnected to the particular subsystem under consideration. A novel

fault detection and isolation scheme is developed and some of its properties, such as the

fault detectability and isolability conditions are rigorously investigated.

The second research objective of this dissertation is to study the sensor FDI problem for

a class of interconnected input-output nonlinear systems with an unstructured modeling

uncertainty. Because the effect of a faulty sensor in a subsystem may be propagated to other

interconnected subsystems, distributed sensor FDI is a challenging problem, and our goal
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is determining the faulty subsystem where the sensor fault actually occurred. A distributed

sensor FDI scheme is developed for a class of interconnected nonlinear systems where only

the measurable part of state variables are directly affected by the interactions between

subsystems. A class of multimachine power systems is used as an application example to

illustrate the effectiveness of the proposed method, and the method can be easily extended

to other systems with the similar model structure. In the multimachine power system,

each generator is interconnected with other generators through a transmission network,

and it is assumed that the system state in each generator excitation control system can be

decomposed into an unknown part and a measurable part. In the proposed distributed FDI

scheme, a local FDI component is designed for each generator excitation system in the power

system based on local measurements and certain communicated information from other

FDI components associated with generators which are directly interconnected to the local

generator. A fault detection and isolation scheme is developed and some of its properties,

such as the fault detectability and isolability conditions are rigorously investigated.

The third research objective of this dissertation is to extend the above results on sensor fault

diagnosis by considering a class of interconnected input-output nonlinear systems, where

both the unknown part and the measurable part of system states of each subsystem are

directly affected by the interconnection between subsystem. In this case, a fault propaga-

tion effect among subsystems directly affects the unknown part of state variables of each

subsystem. Thus, the problem considered is more challenging than what is described above.

The fourth research objective of this dissertation is to consider the fault detection problem

of more general distributed nonlinear systems. In the research work described above, it is

assumed that the nonlinear system model satisfies certain structural assumptions. Specif-

ically, it is assumed that the system state in each subsystem can be decomposed into an

unknown part and a measurable part, with the unknown part assumed to be stable and

not directly affected by faults. Under this task, we significantly extend the above research

work by removing these restrictive limitations on system model structure and fault ef-

fects. Under certain assumptions, a distributed fault detection method is developed for a
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class of interconnected nonlinear uncertain systems with a more general system structure.

In the distributed detection scheme, a fault detection component is associated with each

subsystem. Adaptive thresholds for fault detection are derived, ensuring robustness with re-

spect to interconnections among subsystems and modeling uncertainty. Moreover, the fault

detectability conditions are rigorously investigated, characterizing the class of detectable

process faults and sensor faults in each subsystem.
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Chapter 3

Distributed Process Fault

Detection and Isolation in

Interconnected Nonlinear Systems

A centralized FDI methodology for nonlinear uncertain systems has been developed in

[83, 84]. The chapter significantly extends the previous results by developing a distributed

FDI scheme for a class of interconnected nonlinear uncertain systems. The class of faults

considered are nonlinear process faults which directly affect the dynamics of a particular

subsystem and includes both abrupt and incipient faults, including components faults and

actuator faults described in Section 2.2. Because of the interactions among subsystems and

the limitation of information that is available for each subsystem, the problem of distributed

FDI is very challenging. In the presented distributed FDI architecture, a fault diagnostic

component is designed for each subsystem in the interconnected system by utilizing local

measurements and certain communicated information from neighboring FDI components

associated with its directly interconnected subsystems. Each local FDI component consists

of a fault detection estimator (FDE) and a bank of nonlinear adaptive fault isolation estima-

tors (FIEs), where each FIE is associated with a type of potential nonlinear fault associated
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with the corresponding subsystem. Once a fault is detected in a particular subsystem, then

the corresponding local FIEs are activated for the purpose of determining the particular

type of fault that has occurred in the subsystem.

In the fault isolation scheme, a set of adaptive thresholds are designed in order to evaluate

residuals generated from each FIE, and we can eliminate the possibility of the occurrence

of a particular fault based on the fact that at least one of the residual components of the

corresponding isolation estimator exceeds its threshold in finite time. Thus, if all but one

of the faults are excluded, then a successful fault isolation can be achieved. In addition,

a concept ’fault mismatch function’ is applied in describing the similarity degree of two

faults. If two faults are not sufficiently different, then they can not be isolated by using the

proposed FDI method.

The distributed FDI method is presented with an analytical framework aiming at char-

acterizing its important properties. Specifically, the analysis focuses on: (i) derivation of

adaptive thresholds for distributed fault detection and fault isolation, ensuring the robust-

ness property with respect to interactions among interconnected subsystems and modeling

uncertainty; (ii) investigation of fault detectability and isolability conditions, characteriz-

ing the class of faults in each subsystem that are detectable and isolable by the proposed

method; (iii) investigation of stability and learning capability of local adaptive fault isolation

estimators designed for each subsytem.

The chapter is organized as follows. In Section 3.1, the problem of distributed FDI for a

class of interconnected nonlinear uncertain systems is formulated. Section 3.2 describes

the distributed FDI architecture and the design of local FDI component for each subsystem

in the interconnected system. The design of adaptive thresholds for distributed fault isola-

tion in each subsystem is presented in Section 3.4. Section 3.5 analyzes several important

properties of the distributed FDI method, including fault detectability, fault isolability,

and stability and learning capability of the adaptive fault isolation estimators. To illus-

trate the effectiveness of the diagnostic method, some simulation results of an example of

interconnected inverted pendulums mounted on carts is presented in Section 3.6.
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3.1 Problem Formulation

Consider a nonlinear dynamic system composed of M interconnected subsystems with the

dynamics of the ith subsystem, i = 1, · · · ,M , being described by the following differential

equation

żi = Aizi + ζi(zi, ui) + φi(zi, ui, t) + βi(t− T0)Eif̄i(zi, ui)

+
∑M

j=1 [hij(zi, zj , ui, uj) + dij(zi, zj , ui, uj)]

yi = C̄izi

(3.1)

where zi ∈ ℜni , ui ∈ ℜmi , and yi ∈ ℜli are the state vector, input vector, and output

vector of the ith subsystem (ni ≥ li), respectively, ζi : ℜni ×ℜmi 7→ ℜni , φi : ℜni ×ℜmi ×

ℜ+ 7→ ℜni , f̄i : ℜni ×ℜmi 7→ ℜqi , dij and hij : ℜni ×ℜnj × ℜmi × ℜmj 7→ ℜni are smooth

vector fields. Specifically, the model given by

żNi = AizNi + ζi(zNi, ui)

yNi = C̄izNi

is the known nominal model of the ith subsystem with ζi being the known nonlinearity. The

vector field φi in (3.1) represents the modeling uncertainty of the ith subsystem, and βi(t−

T0)Eif̄i(zi, ui) denotes the changes in the dynamics of ith subsystem due to the occurrence

of a fault in the local subsystem. Specifically, βi(t − T0) is a step function representing

the time profile of a fault which occurs at some unknown time T0 (i.e., βi(t − T0) = 0 if

t < T0, and βi(t − T0) = 1 if t ≥ T0), f̄i(zi, ui) is a nonlinear fault function, and Ei is a

fault distribution matrix. Additionally, the vector fields hij and dij represent the direct

interconnection between the ith subsystem and the jth subsystem. Specifically, hij is the

known part of direct interconnection, while dij is the unknown part of the interconnection.

It is noted that likely many functions hij and dij are identically zero in an interconnected

system (i.e., many subsystems do not directly influence subsystem i). Moreover, hii = 0

and dii = 0 because the interconnection terms are only defined between two subsystems.

Assumption 3.1 The constant matrices Ei ∈ ℜni×qi and C̄i ∈ ℜli×ni with qi ≤ li are of
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full column rank and satisfies the condition rank(C̄iEi) = qi. Additionally, all the invariant

zeros of the system (Ai, Ei, C̄i) are in the left half plane.

Then, under Assumption 3.1, for i = 1, · · · ,M , there exists a change of coordinates xi =

[x⊤i1 x⊤i2]
⊤ = Tizi with xi1 ∈ ℜ(ni−li) and xi2 ∈ ℜli , such that [72]

• TiEi =

 0

Ei2

, where Ei2 ∈ ℜli×qi .

• C̄iT
−1
i = [0 Ci], where Ci ∈ ℜli×li is orthogonal.

Therefore, in the new coordinate system, the system model (3.1) is in the form of

ẋi1 = Ai1xi1 +Ai2xi2 + ρi1(xi, ui) + ϕi1(xi, ui, t)

+

M∑
j=1

[
H1
ij(xi, xj , ui, uj) +D1

ij(xi, xj , ui, uj)
]

ẋi2 = Ai3xi1 +Ai4xi2 + ρi2(xi, ui) + ϕi2(xi, ui, t) + βi(t− T0)Ei2f̄i(xi, ui)

+

M∑
j=1

[
H2
ij(xi, xj , ui, uj) +D2

ij(xi, xj , ui, uj)
]

yi = Cixi2 ,

(3.2)

where

 Ai1 Ai2

Ai3 Ai4

 = TiAiT
−1
i ,

 ρi1

ρi2

 = Tiζi,

 ϕi1

ϕi2

 = Tiφi,

 H1
ij

H2
ij

 = Tihij ,

and

 D1
ij

D2
ij

 = Tidij . Let us define x̄j , ūj , and ȳj as the vectors comprising of the

state variables, input signals, and output variables of those subsystems that have nonzero

unknown interconnection termsD1
ij andD

2
ij with respect to subsystem i, respectively. Then,
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by allowing a more general structure of the fault function, we have

ẋi1 = Ai1xi1 +Ai2xi2 + ρi1(xi, ui) + ηi1(xi, x̄j , ui, ūj , t) +

M∑
j=1

H1
ij(xi, xj , ui, uj)

ẋi2 = Ai3xi1 +Ai4xi2 + ρi2(xi, ui) + ηi2(xi, x̄j , ui, ūj , t) + βi(t− T0)fi(xi, ui)

+

M∑
j=1

H2
ij(xi, xj , ui, uj)

yi = Cixi2 ,

(3.3)

where ηi1
△
= ϕi1 +

M∑
j=1

D1
ij , ηi2

△
= ϕi2 +

M∑
j=1

D2
ij , and fi : ℜni × ℜmi 7→ ℜli is a smooth

vector field representing the unstructured nonlinear fault function in each subsystem under

consideration, Clearly, (3.2) is a special case of (3.3) with fi(xi, ui) = Ei2f̄i.

To formulate the fault isolation problem, it is assumed that there are Ni types of faults in

the fault set associated with the ith subsystem, i = 1, · · · ,M . Specifically, the unknown

fault function fi(xi, ui) in (3.3) is assumed to belong to a finite set of fault types given by

Fi
△
=

{
f1i (xi, ui), . . . , fNii (xi, ui)

}
. (3.4)

Each fault type f si , s = 1, · · · , Ni, is in the form of

fsi (xi, ui)
△
=

[
(θsi1(t))

⊤gsi1(xi, ui), · · · , (θsili(t))
⊤gsili(xi, ui)

]⊤
, (3.5)

where θsip(t), p = 1, · · · , li , characterizing the unknown fault magnitude, is a parameter

vector assumed to belong to a known compact and convex set Θs
ip (i.e., θ

s
ip(t) ∈ Θs

ip, ∀t ≥ 0),

and gsip is a known smooth vector field representing the functional structure of the sth fault

affecting the pth component of state vector xi2 of the ith subsystem. For instance, in the

case of a leakage fault [83], θsip(t) characterizes the size of the leakage in a tank, and gsip

represents the functional structure of the fault affecting each state equation.

The fault isolation problem formulated above is motivated by practical considerations. In

many engineering applications, based on the historical data and past experiences, the system
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engineers often have a reasonably good idea of the types of faults that may occur in a

particular system. Although different faults have possibly different nonlinear effects on the

system dynamics, for a given type of fault, the uncertainty is often the magnitude of the

fault. In [83], a well-known fault diagnosis benchmark example, the three-tank system, has

been considered to motivate the definition of the fault set described by (3.2) and (3.3).

The objective of this chapter is to develop a robust distributed fault detection and isolation

scheme for the class of interconnected nonlinear uncertain systems that can be transformed

into (3.3). It is worth noting that the case of a new fault, which doesn’t belong to the fault

set (3.4), can also be determined based on the presented FDI method, if its fault functional

structure is sufficiently different (as quantified in Section 3.5.2). Throughout the paper, the

following assumptions are made:

Assumption 3.2 The functions ηi1 and ηi2 in (3.3), representing the unstructured modeling

uncertainty, are unknown nonlinear functions of xi, x̄j , ui, ūj , and t, but bounded,

|ηi1(xi, x̄j , ui, ūj , t)| ≤ η̄i1(yi, ȳj , ui, ūj , t), |ηi2(xi, x̄j , ui, ūj , t)| ≤ η̄i2(yi, ȳj , ui, ūj , t) ,

(3.6)

where the the bounding functions η̄i1 and η̄i2 are known and uniformly bounded in the cor-

responding compact sets of admissible state variables, inputs, and outputs with appropriate

dimensions, respectively.

Assumption 3.3 The system state vector xi of each subsystem remains bounded before

and after the occurrence of a fault, i.e., xi(t) ∈ L∞, ∀t ≥ 0.

Assumption 3.4 The nonlinear terms ρi1(xi, ui) and ρi2(xi, ui) in (3.3) satisfy the following

inequalities: ∀ui ∈ Ui and ∀xi, x̂i ∈ Xi,

|ρi1(xi, ui)− ρi1(x̂i, ui)| ≤ σi1|xi − x̂i| (3.7)

|ρi2(xi, ui)− ρi2(x̂i, ui)| ≤ σi2(yi, ui, x̂i) |xi − x̂i| (3.8)

where σi1 is a known Lipschitz constant, σi2(·) is a known function that is uniformly
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bounded, Xi ⊂ ℜni and Ui ⊂ ℜmi are compact sets of admissible state variables and inputs,

respectively.

Assumption 3.5 The interconnection terms H1
ij and H2

ij satisfy the following condition,

i.e., ∀xj , x̂j ∈ Xj ,

|H1
ij(xi, xj , ui, uj)−H1

ij(x̂i, x̂j , ui, uj)| ≤ γ1ij |xj − x̂j | (3.9)

|H2
ij(xi, xj , ui, uj)−H2

ij(x̂i, x̂j , ui, uj)| ≤ γ2ij(yi, yj , ui, uj)|xj − x̂j | (3.10)

where γ1ij is a known Lipschitz constant, and γ2ij is a known and uniformly bounded func-

tion.

Assumption 3.6 The rate of change of each fault parameter vector θsip(t) in (3.5) (s =

1, · · · , Ni, p = 1, · · · , li) is uniformly bounded, i.e., |θ̇si (t)| ≤ αsi for all t ≥ 0, where

θsi (t)
△
=

[
(θsi1(t))

⊤ , · · · ,
(
θsili(t)

)⊤]⊤
, and αsi is a known constant.

Assumption 3.7 The fault function f si (xi, ui) satisfy the following condition, i.e., ∀xj , x̂j ∈

Xj ,

|f si (xi, ui)− fsi (x̂i, ui)| ≤ ϖs
i (yi, ui)|xi − x̂i| (3.11)

where ϖs
i is a known and uniformly bounded function.

Assumption 3.2 characterizes the class of modeling uncertainty under consideration, in-

cluding various modeling errors in the system’s local dynamics (i.e., ϕi1 and ϕi2) and the

unknown part of interconnection between subsystems (i.e., D1
ij and D2

ij). The bounds on

the unstructured modeling uncertainty are needed in order to be able to distinguish be-

tween the effects of faults and modeling uncertainty (see [83, 84]). For instance, in the

aircraft engine fault diagnosis application considered in [65], the modeling uncertainty is

the deviation of the actual engine dynamics from a nominal engine model representing the

dynamics of a new engine, which results from normal engine component degradation during

its service life. Such normal component degradation can be modeled by small changes in

certain engine component health parameters (e.g., efficiency and flow capacity of the fan,
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compressor, and turbine). Therefore, the bounding function on the modeling uncertainty

(i.e., η̄i1 and η̄i2) can be obtained by using the knowledge of possible normal degradation

of these health parameters during a number of flights under the worst case scenario [56].

Additionally, it is worth noting that the modeling uncertainty considered in this paper is

unstructured, while distributed fault diagnosis methods in the literature often assume the

absence of modeling uncertainty (e.g., [58]) or structured modeling uncertainty (e.g., [72]).

In the case of structured models of the modeling uncertainty, in order to achieve robustness,

it is often assumed that certain rank conditions are satisfied by the uncertainty distribution

matrix. On the other hand, the utilization of structured uncertainty with additional as-

sumptions on the distribution matrix may allow the design of FDI schemes that completely

decouple the fault from the modeling uncertainty.

Assumption 3.3 requires the boundedness of the state variables before and after the occur-

rence of a fault in each subsystem. Hence, it is assumed that the distributed feedback control

system is capable of retaining the boundedness of the state variables of each subsystem even

in the presence of a fault. This is a technical assumption required for well-posedness since

the distributed FDI design under consideration does not influence the closed-loop dynamics

and stability. The design of distributed fault-tolerant controllers is beyond the scope of this

chapter. However, it is important to note that the proposed distributed FDI design does

not depend on the structure of the distributed controllers.

Assumption 3.4 characterizes the type of known nonlinearities of the nominal system dy-

namics under consideration. Specifically, it is assumed ρi1(xi, ui) is Lipschitz in ui, and

ρi2(xi, ui) satisfies inequality (3.8). Note that condition (3.8) is more general than the

Lipschitz condition (in this special case, σi2 is a constant).

Assumption 3.5 requires the interconnection term Hij between subsystems to satisfy a Lip-

schitz type of condition. Several examples of distributed nonlinear systems with Lipschitz

interconnection terms have been considered in literature (see, for instance, the automated

highway system [58, 62], interconnected inverted pendulums [32, 63]), and large-scale power

systems [25]). Note that Hij is a function of unknown state vectors xj and xi.
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In Assumption 3.6, known bounds on the rate of change of the fault magnitude θsi (t) are

assumed. In practice, the rate bounds αsi can be set by exploiting some a priori knowledge

on the fault developing dynamics. Note that the cases of abrupt faults and incipient faults

are both covered by the fault model βi(t − T0)fi under consideration. Specifically, the

fault time profile function βi(t − T0) is a step function modeling abrupt characteristics

of the fault, and the fault magnitude θsi (t) represents the (possibly time-varying) fault

magnitude. For instance, in the case of foreign object damage to the fan of an aircraft

engine, the function βi(t− T0) models the sudden and immediate effect of the damage, and

θsi (t) captures the possibly time-varying development of the fault magnitude following the

initial sudden damage. In the specifical case of abrupt faults, we can simply set αsi = 0

(i.e., θsi is a vector of constants), and the function βi(t − T0) models the abrupt behavior

of the fault.

Assumption 3.7 assumes the fault function fi satisfies the condition given by (3.11). This

is needed for the design and analysis of the distributed adaptive FDI algorithm, since the

fault function fi is also a function of the unknown state variables xi. In the special case that

the fault is a function of measurable output yi and known input ui, we simply have ϖs
i = 0.

Remark 3.1 An interesting distributed fault estimation method was developed in [72]

based on sliding mode observer techniques. The approach in [72] assumes a known bound

on the fault function and utilizes a structured model of modeling uncertainty with additional

assumptions on the distribution matrices of the modeling uncertainty, which allows com-

pletely decoupling faults from modeling uncertainty. In this chapter, we consider a different

problem of distributed fault isolation for nonlinear systems with different fault models and

unstructured modeling uncertainty based on adaptive estimation techniques. The objective

is to detect the occurrence of any faults and to determine if one of the faults in the fault

set (3.4) or a new fault that doesn’t belong to (3.4) has occurred. In addition, in previous

papers [82, 84], fault diagnosis schemes for nonlinear systems utilizing a centralized archi-

tecture were developed. In this research work, the problem of distributed fault diagnosis for
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interconnected nonlinear systems is investigated. With the interconnection terms H1
ij and

H2
ij among subsystems (see (3.3)) and the presence of unstructured modeling uncertainty,

the design and analysis of distributed fault diagnosis methods is much more challenging

than centralized fault diagnosis methods.

3.2 Distributed Fault Detection and Isolation Architecture

The distributed FDI architecture is comprised of M local FDI components, with one FDI

component designed for each of theM subsystems. The objective of each FDI component is

to detect and isolate faults in the corresponding local subsystem. Specifically, each local FDI

component consists of a fault detection estimator (FDE) and a bank ofNi nonlinear adaptive

fault isolation estimators (FIEs), where Ni is the number of different nonlinear fault types in

the fault set Fi associated with the corresponding ith subsystem (see (3.4)), i = 1, · · · ,M .

Under normal conditions, each local FDE monitors the corresponding local subsystem to

detect the occurrence of any fault. If a fault is detected in a particular subsystem i, then

the corresponding Ni local FIEs are activated for the purpose of determining the particular

type of fault that has occurred in the subsystem.

The FDI architecture for each subsystem follows the generalized observer scheme (GOS)

architectural framework well-documented in the fault diagnosis literature [3, 5]. The dis-

tributed nature of the presented FDI method can be better understood if compared with

the conventional centralized FDI architecture. For M interconnected subsystems, N1 +

N2 + · · · + NM estimators are needed at the server node in the case of centralized FDI

architecture. With the presented distributed FDI architecture, Ni estimators are needed

at the ith subsystem. Hence, the computation is distributed across the subsytems in the

network.
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3.3 Distributed Fault Detection Method

In this section, we investigate the distributed fault detection method, including the designs

of each local FDE for residual generation and the corresponding adaptive thresholds for

residual evaluation.

3.3.1 Distributed Fault Detection Estimators

Based on the subsystem model described by (3.3), the FDE for each local subsystem is

chosen as:

˙̂xi1 = Ai1x̂i1 +Ai2C
−1
i yi + ρi1(x̂i, ui) +

M∑
j=1

H1
ij(x̂i, x̂j , ui, uj)

˙̂xi2 = Ai3x̂i1 +Ai4x̂i2 + ρi2(x̂i, ui) + Li(yi − ŷi) +

M∑
j=1

H2
ij(x̂i, x̂j , ui, uj)

ŷi = Cix̂i2 ,

(3.12)

where x̂i1, x̂i2, and ŷi denote the estimated local state and output variables of the ith subsys-

tem, i = 1, · · · ,M , respectively, Li ∈ ℜli×li is a design gain matrix, x̂i
△
= [(x̂i1)

⊤ (C−1
i yi)

⊤]⊤,

and x̂j
△
= [(x̂j1)

⊤ (C−1
j yj)

⊤]⊤ (here x̂j1 is the estimate of state vector xj1 of the jth in-

terconnected subsystem). The initial conditions are x̂i1(0) = 0 and x̂i2(0) = C−1
i yi(0). It

is worth noting that the distributed FDE (3.12) for the ith subsystem is constructed based

on local input and output variables (i.e., ui and yi) and the communicated information x̂j

and uj from the FDE associated with the jth interconnected subsystem. Note that many

distributed estimation and diagnostic methods in literature allow certain communication

among interconnected subsystems (see, e.g., [58, 60, 72, 20, 45]).

For each local FDE, let x̃i1
△
= xi1 − x̂i1 and x̃i2

△
= xi2 − x̂i2 denote the state estimation

errors, and ỹi
△
= yi − ŷi denote the output estimation error. Then, before fault occurrence
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(i.e., for t < T0), by using (3.3) and (3.12), the estimation error dynamics are given by

˙̃xi1 = Ai1x̃i1 + ρi1(xi, ui)− ρi1(x̂i, ui) + ηi1

+
M∑
j=1

[
H1
ij(xi, xj , ui, uj)−H1

ij(x̂i, x̂j , ui, uj)
]

(3.13)

˙̃xi2 = Āi4x̃i2 +Ai3x̃i1 + ρi2(xi, ui)− ρi2(x̂i, ui) + ηi2

+

M∑
j=1

[
H2
ij(xi, xj , ui, uj)−H2

ij(x̂i, x̂j , ui, uj)
]

(3.14)

ỹi = Ci(xi2 − x̂i2) = Cix̃i2 , (3.15)

where Āi4
△
= Ai4 − LiCi. Note that, since Ci is nonsingular, we can always choose Li to

make Āi4 stable.

3.3.2 Adaptive Thresholds for Distributed Fault Detection

Next, we will investigate the design of adaptive thresholds for distributed fault detection in

each subsystem. The following Lemma will be needed in the subsequent analysis:

Lemma 3.1 [35]. Let p̄(t), q̄(t) : [0,∞) 7→ ℜ. Then

˙̄p(t) ≤ −ap̄(t) + q̄(t), ∀t ≥ t0 ≥ 0

implies that

p̄(t) ≤ e−a(t−t0)p̄(t0) +

∫ t

t0

e−a(t−τ)q̄(τ)dτ, ∀t ≥ t0 ≥ 0

for any finite constant a.

Then, a bounding function on the state estimation error vector

x̃1(t)
△
= [(x̃11)

⊤, · · · , (x̃i1)⊤, · · · , (x̃M1)
⊤]⊤ (3.16)

before fault occurrence ( i.e., for 0 ≤ t < T0) can be obtained. Specifically, we have the

following results:

Lemma 3.2. Consider the system described by (3.3) and the fault detection estimator
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described by (3.12). Assume that there exists a symmetric positive definite matrix Pi ∈

ℜ(ni−li)×(ni−li), for i = 1, · · · ,M , such that,

1. the symmetric matrix

Ri
△
= −A⊤

i1Pi − PiAi1 − 2PiPi − 2σi1||Pi||I > 0 , (3.17)

where I is the identity matrix;

2. the matrix Q ∈ ℜM×M , whose entries are given by

Qij =

 λmin(Ri) , i = j

−||Pi||γ1ij − ||Pj ||γ1ji , i ̸= j, j = 1, · · · , M ,
(3.18)

is positive definite, where γ1ij and γ
1
ji are the Lipschitz constants introduced in (3.9).

Then, for 0 ≤ t < T0, the state estimation error vector x̃1(t) defined by (3.16) satisfies

the following inequality:

|x̃1|2 ≤ V̄0e
−ct

λmin(P )
+

1

2λmin(P )

∫ t

0
e−c(t−τ)

M∑
i=1

|η̄i1|2 dτ , (3.19)

where the matrix P
△
= diag{P1, · · · , PM}, the constant c

△
= λmin(Q)/λmax(P ), and V̄0 is a

positive constant to be defined later on.

Proof: For the ith subsystem, let us consider a Lyapunov function candidate Vi =

x̃i1
⊤Pix̃i1. The time derivative of Vi along the solution of (3.13) is given by

V̇i = x̃⊤i1(A⊤
i1Pi + PiAi1)x̃i1 + 2x̃⊤i1Piηi1 + 2x̃⊤i1Pi

M∑
j=1

[
H1
ij(xi, xj , ui, uj)−H1

ij(x̂i, x̂j , ui, uj)
]

+2x̃⊤i1Pi [ρi1(xi, ui)− ρi1(x̂i, ui)] . (3.20)
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Note that

xj − x̂j =

 xj1 − x̂j1

xj2 − C−1
j yj

 =

 x̃j1

0

 . (3.21)

Therefore, based on (3.9) and (3.21), we have

2x̃⊤i1Pi

M∑
j=1

[
H1
ij(xi, xj , ui, uj)−H1

ij(x̂i, x̂j , ui, uj)
]

≤ 2|x̃i1| · ||Pi||
M∑
j=1

γ1ij |xj − x̂j |

= 2||Pi||
M∑
j=1

γ1ij |x̃i1| |x̃j1| . (3.22)

Moreover, based on (3.7) and (3.21), we obtain

2x̃⊤i1Pi [ρi1(xi, ui)− ρi1(x̂i, ui)] ≤ 2|x̃i1| · ||Pi||σi1 |xi − x̂i|

= 2|x̃i1| · ||Pi||σi1 |x̃i1|

= x̃⊤i1 [ 2σi1||Pi||I ] x̃i1 . (3.23)

Additionally, we have

2x̃⊤i1Piηi1 ≤ |2Pix̃i1| |ηi1| ≤ 2x̃⊤i1PiPix̃i1 +
1

2
|ηi1|2 . (3.24)

By using (3.20), (3.22), (3.23) and (3.24), we obtain

V̇i ≤ x̃⊤i1

[
A⊤
i1Pi+PiAi1+2PiPi+2σi1||Pi|| I

]
x̃i1+2||Pi||

M∑
j=1

γ1ij |x̃i1| |x̃j1|+
1

2
|ηi1|2 . (3.25)

Based on (3.17) and the inequality x̃⊤i1Rix̃i1 ≥ λmin(Ri)|x̃i1|2, where λmin(Ri) is the mini-

mum eigenvalue of Ri, we obtain:

V̇i ≤ −λmin(Ri) |x̃i1|2 + 2||Pi||
M∑
j=1

γ1ij |x̃i1| |x̃j1| +
1

2
|ηi1|2 . (3.26)

Now, let us consider the following overall Lyapunov function candidate for the intercon-
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nected system: V =
∑M

i=1 Vi =
∑M

i=1 x̃i1
⊤Pix̃i1 = x̃⊤1 Px̃1, where P = diag{P1, · · · , PM}.

Therefore, from (3.26) and (3.18), we have

V̇ ≤ −
M∑
i=1

λmin(Ri)|x̃i1|2 +
M∑
i=1

M∑
j=1

2||Pi|| γ1ij |x̃i1| |x̃j1| +

M∑
i=1

1

2
|ηi1|2

= −
[
|x̃11| |x̃21| · · · |x̃M1|

]
Q



|x̃11|

|x̃21|
...

|x̃M1|


+

M∑
i=1

1

2
|ηi1|2

where the matrixQ is defined by (3.18). By using the Rayleigh principle (i.e., λmin(P )|x̃1|2 ≤

V (t) ≤ λmax(P )|x̃1|2 ) and the definition of V (t), we have

V̇ ≤ −λmin(Q)|x̃1|2 +
M∑
i=1

1

2
|ηi1|2 ≤ −λmin(Q)

λmax(P )
V +

M∑
i=1

1

2
|ηi1|2 = −cV +

M∑
i=1

1

2
|ηi1|2 .

where x̃1 and the constant c are defined in (3.16) and Lemma 3.2, respectively. Now, based

on Lemma 3.1, it can be easily shown that

V (t) ≤ V (0)e−ct +
1

2

∫ t

0
e−c(t−τ)

M∑
i=1

|η̄i1|2 dτ .

Note that we can always choose a positive constant V̄0 such that V (0) < V̄0. Thus, based on

the definition of V (t) and the Rayleigh principle, the proof of (3.19) can be immediately con-

cluded.

Remark 3.2: It is also worth noting that a necessary condition for (3.17) is that Ai1 is

Hurwitz. In addition, note that the linear matrix inequality (LMI) toolbox can be used

to find a feasible solution to the matrix inequalities (3.17) and (3.18). Specifically, the

following procedure can be adopted:

• By using the Schur complements, the nonlinear inequalities −A⊤
i1Pi−PiAi1−2PiPi−
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2σi1 ||Pi|| I > 0 can be converted to a LMI form as

 −A⊤
i1Pi − PiAi1 − 2σi1ςiI

√
2Pi

√
2Pi I

 > 0 (3.27)

and  ςiI Pi

Pi ςiI

 > 0 , (3.28)

where ςi is a positive constant. Then, a suitable solution of Pi can be obtained by

solving (3.27) and (3.28) using the LMI toolbox.

• For the matrix Pi found in the above step, the matrix Q defined in (3.18) is verified.

If Q is positive definite, the solution of Pi is valid.

Now, we analyze the output estimation error ỹi(t) (see (3.15)) of the ith subsystem. For

0 ≤ t < T0, the solution of (3.14) is given by

x̃i2(t) =

∫ t

0
eĀi4(t−τ) [Ai3x̃i1(τ) + ηi2(xi, x̄j , ui, ūj , t)] dτ +

∫ t

0
eĀi4(t−τ) [ρi2(xi, ui)− ρi2(x̂i, ui)] dτ

+

∫ t

0
eĀi4(t−τ)

M∑
j=1

[
H2
ij(xi, xj , ui, uj)−H2

ij(x̂i, x̂j , ui, uj)
]
dτ .

Therefore, for each component of the output estimation error, i.e., ỹip(t)
△
= Cipx̃i2(t), p =

1, · · · , li, where Cip is the pth row vector of matrix Ci, by applying the triangle inequality,

we have

|ỹip(t)| ≤
∣∣∣∣ ∫ t

0
Cipe

Āi4(t−τ)
M∑
j=1

j ̸=i

[
H2
ij(xi, xj , ui, uj)−H2

ij(x̂i, x̂j , ui, uj)
]
dτ

∣∣∣∣
+

∣∣∣∣ ∫ t

0
Cipe

Āi4(t−τ) [Ai3x̃i1 + ηi2] dτ

∣∣∣∣
+

∣∣∣∣ ∫ t

0
Cipe

Āi4(t−τ) [ρi2(xi, ui)− ρi2(x̂i, ui)] dτ

∣∣∣∣ . (3.29)
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Based on (3.8), (3.10), and (3.21), we have

|H2
ij(xi, xj , ui, uj)−H2

ij(x̂i, x̂j , ui, uj)| ≤ γ2ij |x̃j1|

|ρi2(xi, ui, )− ρi2(x̂i, ui)| ≤ σi2(yi, ui, x̂i1) |x̃i1| .
(3.30)

Therefore, by using (3.29) and (3.30), we obtain

|ỹip(t)| ≤ kip

∫ t

0
e−λip(t−τ)

[
[||Ai3|| + σi2(yi, ui, x̂i1)] |x̃i1| + |ηi2| +

M∑
j=1

γ2ij |x̃j1|
]
dτ , (3.31)

where kip and λip are positive constants chosen such that |CipeĀi4t| ≤ kipe
−λipt (since Āi4

is stable, constants kip and λip satisfying the above inequality always exist [35]). By letting

ϱi
△
= [γ2i1, · · · , γ2i(i−1), ||Ai3||+ σi2, γ

2
i(i+1), · · · , γ

2
iM ]⊤ , (3.32)

(that is, the components of ϱi are given by ϱii = ||Ai3||+ σi2, and ϱij = γ2ij for j ̸= i), the

inequality (3.31) can be rewritten as

|ỹip(t)| ≤ kip

∫ t

0
e−λip(t−τ)

[ M∑
j=1

ϱij |x̃j1| + |ηi2|
]
dτ

≤ kip

∫ t

0
e−λip(t−τ)

[
|ϱi| |x̃1| + η̄i2

]
dτ . (3.33)

Now, based on (3.33) and (3.19), we obtain

|ỹip(t)| ≤ kip

∫ t

0
e−λip(t−τ)

[
|ϱi|χ(τ) + η̄i2

]
dτ . (3.34)

where

χ(t)
△
=

{
V̄0e

−ct

λmin(P )
+

1

2λmin(P )

∫ t

0
e−c(t−τ)

M∑
i=1

|η̄i1|2 dτ

}1/2

. (3.35)

Therefore, based on the above analysis, we have the following

Distributed Fault Detection Decision Scheme: The decision on the occurrence of a

fault (detection) in the ith subsystem is made when the modulus of at least one component of
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the output estimation error (i.e., ỹip(t)) generated by the local FDE exceeds its corresponding

threshold νip(t) given by

νip(t)
△
= kip

∫ t

0
e−λip(t−τ)

[
|ϱi|χ(τ) + η̄i2

]
dτ . (3.36)

The fault detection time Td is defined as the first time instant such that |ỹip(Td)| > νip(Td),

for some Td ≥ T0 and some p ∈ {1, · · · , li}, that is, Td
△
= inf

li∪
p=1

{ t ≥ 0 : |ỹip(t)| > νip(t)} .

The above design and analysis is summarized by the following technical result:

Theorem 3.1 (Robustness): For the interconnected nonlinear uncertain system described

by (3.3), the distributed fault detection method, characterized by FDE (3.12) and adaptive

thresholds (3.36) designed for each local subsystem, ensures that each residual component

yip(t) generated by the local FDEs remains below its corresponding adaptive threshold νip(t)

prior to the occurrence of a fault (i.e., for t < T0).

Remark 3.3 It is worth noting that νip(t) given by (3.36) is an adaptive threshold for

fault detection, which has obvious advantage over a constant one. Moreover, the threshold

νip(t) can be easily implemented using linear filtering techniques [83]. Additionally, the

constants V̄0 in (3.35) is a (possibly conservative) bound for the unknown initial conditions

V (0). However, note that, since the effect of this bound decreases exponentially (i.e., it

is multiplied by e−ct), the practical use of such a conservative bound will not significantly

affect the performance of the distributed fault detection algorithm.

3.4 Distributed Fault Isolation Method

3.4.1 Distributed Fault Isolation estimators

As described above, each local FDI component consists of a FDE and a bank of FIEs. Now,

assume that a fault is detected in the ith subsystem at some time Td; accordingly, at t = Td

the FIEs in the local FDI component designed for the ith subsystem are activated. Each

FIE is designed based on the functional structure of one potential fault type in the local
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subsystem. Specifically, the following Ni nonlinear adaptive estimators are used as isolation

estimators: for s = 1, · · · , Ni,

˙̂xsi1 = Ai1x̂
s
i1 +Ai2C

−1
i yi + ρi1(x̂

s
i , ui) +

M∑
j=1

H1
ij(x̂

s
i , x̂j , ui, uj)

˙̂xsi2 = Ai3x̂
s
i1 +Ai4x̂

s
i2 + ρi2(x̂

s
i , ui) + Lsi (yi − ŷsi ) + f̂ si (x̂

s
i , ui, θ̂

s
i ) + Ωsi

˙̂
θsi

+
M∑
j=1

H2
ij(x̂

s
i , x̂j , ui, uj)

Ω̇si = Āi4Ω
s
i +Gsi (x̂

s
i , ui)

ŷsi = Cix̂
s
i2 ,

(3.37)

where x̂si1, x̂
s
i2, and ŷsi denote the estimated state and output variables provided by the

sth local FIE, respectively, Lsi ∈ ℜli×li is a design gain matrix (for simplicity of presenta-

tion and without loss of generality, we let Lsi = Li), x̂
s
i

△
= [(x̂si1)

⊤ (C−1
i yi)

⊤]⊤, and x̂j
△
=

[(x̂j1)
⊤ (C−1

j yj)
⊤]⊤. The function f̂ si (x̂

s
i , ui, θ̂

s
i )

△
= [(θ̂si1)

⊤gsi1(x̂
s
i , ui), · · · , (θ̂sili)

⊤gsili(x̂
s
i , ui)]

provides the adaptive structure for approximating the unknown fault function fsi (xi, ui)

described by (3.5), and θ̂sip (i = 1, · · · ,M , and p = 1, · · · , li) is the adjustable param-

eter vector. The initial conditions are x̂si1(Td) = 0, x̂si2(Td) = 0, and Ωsi (Td) = 0. It

is noted that, according to (3.5), the fault approximation model f̂ si is linear in the ad-

justable weights θ̂si . Consequently, the gradient matrix Gsi (x̂
s
i , ui)

△
= ∂f̂si (x̂

s
i , ui, θ̂

s
i ) / ∂θ̂

s
i =

diag [(gsi1(x̂
s
i , ui))

⊤, · · · , (gsili(x̂
s
i , ui))

⊤] does not depend on θ̂si . Note that the distributed

FIEs (3.37) for each local subsystem are constructed based on local measurements (i.e., ui

and yi) and the communicated information x̂j and uj from the FDI component associated

with the jth directly interconnected subsystem.

The adaptation in the isolation estimators arises due to the unknown fault magnitude θsi
△
=[

(θsi1)
⊤ , · · · ,

(
θsi li

)⊤]⊤
. The adaptive law for adjusting θ̂si is derived using the Lyapunov

synthesis approach (see for example [35]). Specifically, the learning algorithm is chosen as

follows

˙̂
θsi = PΘsi

{
ΓΩsi

⊤C⊤
i ỹ

s
i

}
, (3.38)
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where ỹsi (t)
△
= yi(t) − ŷsi (t) denotes the output estimation error generated by the sth FIE

for the local subsystem, Γ > 0 is a symmetric, positive-definite learning rate matrix, and

PΘsi
is the projection operator restricting θ̂si to the corresponding known set Θs

i (in order

to guarantee stability of the learning algorithm in the presence of modeling uncertainty, as

described in [35, 15]).

The distributed fault isolation decision scheme is based on the following intuitive principle: if

fault s occurs in the ith subsystem, i = 1, · · · ,M , at time T0 and is detected at time Td, then

a set of adaptive threshold functions {µsip(t), p = 1, · · · , li, s = 1, · · · , Ni} can be designed

for the matched sth isolation estimator of the ith subsystem, such that each component of

its output estimation error satisfies |ỹsip(t)| ≤ µsip(t), for all t ≥ Td. Consequently, such

a set of adaptive thresholds µsip(t) with s = 1, · · · , Ni can be associated with the output

estimation error of each local isolation estimator. In the fault isolation procedure, if, for a

particular local isolation estimator r ∈ {1, · · · , Ni}\{s}, there exists some p ∈ {1, · · · , li},

such that the pth component of its output estimation error satisfies |ỹrip(t)| > µrip(t) for

some finite time t > Td, then the possibility of the occurrence of fault r can be excluded.

Based on this intuitive idea, the following fault isolation decision scheme is devised:

Distributed Fault Isolation Decision Scheme: If, for each r ∈ {1, · · · , Ni}\{s} , there

exist some finite time tr > Td and some p ∈ {1, · · · , li}, such that |ỹrip(tr)| > µrip(t
r), then

the occurrence of fault s in the ith subsystem is concluded.

Remark 3.4 It is worth noting that the presented FDI method is capable of identifying not

only faults defined in the partially unknown fault class F (see (3.4)) but also the case of new

faults that do not belong to F (in this case, at least one component of the residuals generated

by each FIE would exceed its threshold). In addition to the output estimation error, the

parameter estimation θ̂si might also provide some information for fault isolation. However,

note that a necessary condition to ensure that the parameter estimation θ̂si converges to its

actual value θsi is the persistency of excitation of signals (see [35, 15]), which is in general too

restrictive in many practical applications. Here we do not assume persistency of excitation.
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3.4.2 Adaptive Thresholds for Distributed Fault Isolation

The threshold functions µsip(t) clearly play a key role in the proposed distributed fault

isolation decision scheme. The following lemma provides a bounding function for each

component of the output estimation error of the matched sth local isolation estimator in

the case that fault s occurs in the ith subsystem.

Lemma 3.3 If fault s in the ith subsystem is detected at time Td, where s ∈ {1, · · · , Ni}

and i ∈ {1, · · · ,M}, then for all t > Td, each component of the output estimation error

ỹsip(t) associated with the matched sth local isolation estimator satisfies

|ỹsip(t)| ≤ kip

∫ t

Td

e−λip(t−τ)
[
|ϱ̄i|χ(τ)+η̄i2+αsi ||Ωsi ||

]
dτ + kipωi2e

−λip(t−Td)+|(CipΩsi )⊤| |θ̃si | ,

(3.39)

where ỹsip(t)
△
= yip(t) − ŷsip(t), p = 1, · · · li, χ(t) is given in (3.35), θ̃si (t)

△
= θ̂si (t) − θsi (t)

represents the fault parameter vector estimation error, ωi2 is a positive constant satisfying

|xsi2(Td)| ≤ ωi2, and ϱ̄i is defined later on..

Proof: Denote the state estimation error of the sth local isolation estimator for the ith

subsystem by x̃si1(t)
△
= xi1(t)−x̂si1(t) and x̃si2(t)

△
= xi2(t)−x̂si2(t). By using (3.37) and (3.3),

in the presence of fault s in the ith subsystem, the state estimation error of the matched

sth local FIE satisfies, for t > Td,

˙̃xsi1 = Ai1x̃
s
i1 + ηi1 + ρi1(xi, ui)− ρi1(x̂

s
i , ui)

+
M∑
j=1

[
H1
ij(xi, xj , ui, uj)−H1

ij(x̂
s
i , x̂j , ui, uj)

]
(3.40)

˙̃xsi2 = Āi4x̃
s
i2 +Ai3x̃

s
i1 + ηi2 + ρi2(xi, ui)− ρi2(x̂

s
i , ui) + f si (xi, ui)− f̂ si (x̂

s
i , ui, θ̂

s
i )

−Ωsi
˙̂
θsi +

M∑
j=1

[
H2
ij(xi, xj , ui, uj)−H2

ij(x̂
s
i , x̂j , ui, uj)

]
, (3.41)
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where Āi4 is defined in (3.14). Note that

fsi (xi, ui)− f̂si (x̂
s
i , ui) = Gsi (xi, ui)θi −Gsi (x̂

s
i , ui)θi +Gsi (x̂

s
i , ui)θi −Gsi (x̂

s
i , ui)θ̂i

= f si (xi, ui)− f si (x̂
s
i , ui)−Gsi (x̂

s
i , ui)θ̃i . (3.42)

By using Gsi (x̂
s
i , ui) = Ω̇si − Āi4Ω

s
i (see (3.37)), we have

˙̃xsi2 = Āi4

(
x̃si2 +Ωsi θ̃

s
i

)
+Ai3x̃

s
i1 + ηi2 −

d

dt
(Ωsi θ̃

s
i ) + ρi2(xi, ui)− ρi2(x̂

s
i , ui)− Ωsi θ̇

s
i

+

M∑
j=1

[
H2
ij(xi, xj , ui, uj)−H2

ij(x̂
s
i , x̂j , ui, uj)

]
+ fsi (xi, ui)− fsi (x̂

s
i , ui) .

By letting x̄si2
△
= x̃si2 +Ωsi θ̃

s
i , the above equation can be rewritten as

˙̄xsi2 = Āi4x̄
s
i2 +Ai3x̃

s
i1 +

M∑
j=1

[
H2
ij(xi, xj , ui, uj)−H2

ij(x̂
s
i , x̂j , ui, uj)

]
+ fsi (xi, ui)− f si (x̂

s
i , ui)

+ρi2(xi, ui)− ρi2(x̂
s
i , ui) + ηi2 − Ωsi θ̇

s
i (t) . (3.43)

The solution of (3.43), for t > Td, is given by

x̄si2(t) =

∫ t

Td

eĀi4(t−τ)
[
Ai3x̃

s
i1 + ηi2 − Ωsi θ̇

s
i

]
dτ +

∫ t

Td

eĀi4(t−τ) [ρi2(xi, ui)− ρi2(x̂
s
i , ui)] dτ

+

∫ t

Td

eĀi4(t−τ)
M∑
j=1

[
H2
ij(xi, xj , ui, uj)−H2

ij(x̂
s
i , x̂j , ui, uj)

]
dτ

+

∫ t

Td

eĀi4(t−τ) [f si (xi, ui)− fsi (x̂
s
i , ui)] dτ + eĀi4(t−Td)x̄si2(Td) . (3.44)

By using (3.37), (3.3), and the definition of x̄si2(t), each component of the output estimation

error is given by:

ỹsip(t) = Cipx̃
s
i2(t) = Cip

(
x̄si2(t)− Ωsi θ̃

s
i

)
. (3.45)

Now, based on (3.44) and (3.45), as well as Assumptions 3.2, 3.4 and 3.5, after following

some similar reasoning logic as reported in the derivation of the adaptive thresholds for
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fault detection (see (3.21), (3.30), and (3.31)), it can be shown that

|ỹsip(t)| ≤ kip

∫ t

Td

e−λip(t−τ)
[
||Ai3|| |x̃si1| + η̄i2 + αsi ||Ωsi ||+

M∑
j=1

γ2ij |x̃j1|
]
dτ + |(CipΩsi )⊤| |θ̃si |

+ kip

∫ t

Td

e−λip(t−τ)
[
σi2|x̃si1| + ϖs

i |x̃si1|
]
dτ + kipe

−λip(t−Td)|x̄si2(Td)| ,

where the constants kip and λip are defined in (3.31). using x̃1 as defined in (3.16) respec-

tively,

ϱ̄i
△
= [γ2i1, · · · , γ2i(i−1), ||Ai3||+ σi2 +ϖs

i , γ
2
i(i+1), · · · , γ

2
iM ]⊤ , (3.46)

we have

|ỹsip(t)|≤kip
∫ t

Td

e−λip(t−τ)
[
|ϱ̄i| |x̃1|+ η̄i2 + αsi ||Ωsi ||

]
dτ + |(CipΩsi )⊤| |θ̃si | + kipe

−λip(t−Td)|x̄si2(Td)| .

Note that (3.40) is in the same form as (3.13). Thus, by using the results of Lemma 3.2

(i.e., (3.39)), the above inequality becomes

|ỹsip(t)|≤kip
∫ t

Td

e−λip(t−τ)
[
|ϱ̄i|χ+ η̄i2 + αsi ||Ωsi ||

]
dτ + kip|x̄si2(Td)|e−λip(t−Td) + |(CipΩsi )⊤| |θ̃si | .

Where χ is defined by (3.35). Now, inequality (3.39) follows directly from the initial condi-

tion x̂si2(Td) = 0, Ωsi (Td) = 0, and |xsi2(Td)| ≤ ωi2.

Although Lemma 3.3 provides an upper bound on the output estimation error of the sth

local estimator for subsystem i, the right-hand side of (3.39) cannot be directly used as

a threshold function for fault isolation, because θ̃si (t) is not available (we do not assume

the condition of persistency of excitation as described in Remark 3.4) . However, since

the estimate θ̂si belongs to the known compact set Θs
i , we have

∣∣∣θsi − θ̂si (t)
∣∣∣ ≤ κsi (t) for a

suitable κsi (t) depending on the geometric properties of set Θs
i (see [82, 83]). Hence, based
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on the above discussions, the following threshold function is chosen:

µsip(t) =kip

∫ t

Td

e−λip(t−τ)
[
|ϱ̄i|χ+ η̄i2 + αsi ||Ωsi ||

]
dτ + kipωi2e

−λip(t−Td) + |(CipΩsi )⊤|κsi (t) .

(3.47)

Remark 3.5 Note that the adaptive threshold µsip(t) can be easily implemented on-line

using linear filtering techniques [82, 83]. The constant bound ωi2 is a (possibly conservative)

bound for the unknown initial conditions xsi2(Td). However, note that, since the effect of

this bound decreases exponentially (i.e., it is multiplied by e−λip(t−Td), the practical use of

such a conservative bound will not affect significantly the performance of the distributed

fault isolation algorithm.

Remark 3.6 As we can see, the adaptive threshold function described by (3.47) is influenced

by several sources of uncertainty entering the fault isolability problem, such as modeling

uncertainty (i.e., ηi1, ηi2), fault parametric uncertainty κsi , unknown fault development rate

αsi , and unknown initial conditions (i.e., V̄0 and ωi2). Intuitively, the smaller the uncertainty

(resulting in a smaller threshold µsip(t)), the easier the task of isolating the faults. On the

other hand, as clarified in Section 3.5.2, the capability to isolate a fault depends not only

on the threshold µsip(t), but also on the degree that the types of faults in each subsystem

are mutually “different”.

3.5 Analytical Properties of the Distributed FDI Method

As is well known in the fault diagnosis literature, there is an inherent tradeoff between

robustness and fault sensitivity. In this section, we analyze the fault sensitivity property of

the the distributed fault diagnosis method, including fault detectability and isolability. In

addition, the stability and learning capability of the adaptive fault isolation estimators are

also investigated.
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3.5.1 Fault Detectability Condition

The following theorem characterizes (in a non-closed form) the class of faults that are

detectable by the proposed distributed fault detection method.

Theorem 3.2 (Fault Detectability): For the distributed fault detection method de-

scribed by (3.12) and (3.36), suppose that fault s occurs in the ith subsystem at time T0,

where s ∈ {1, · · · , Ni} and i ∈ {1, · · · ,M}. Then, if there exist some time instant Td > T0

and some p ∈ {1, · · · , li}, such that the fault function fi(xi, ui) satisfies

∣∣∣∣ ∫ Td

T0

Cipe
Āi4(Td−τ)fi(xi(τ), ui(τ))dτ

∣∣∣∣ ≥ 2νip(Td) , (3.48)

the fault will be detected at time t = Td, i.e., |ỹip(Td)| > νip(Td).

Proof: In the presence of a fault (i.e., for t ≥ T0), base on (3.3) and (3.12), the dynamics

of the state estimation error x̃i1
△
= xi1 − x̂i1 and x̃i2

△
= xi2 − x̂i2 satisfies

˙̃xi1 = Ai1x̃i1 + ηi1 +
M∑
j=1

[
H1
ij(xi, xj , ui, uj)−H1

ij(x̂i, x̂j , ui, uj)
]

+ρi1(xi, ui)− ρi1(x̂i, ui) (3.49)

˙̃xi2 = Āi4x̃i2 +Ai3x̃i1 + ηi2 + βifi +
M∑
j=1

[
H2
ij(xi, xj , ui, uj)−H2

ij(x̂i, x̂j , ui, uj)
]

+ ρi2(xi, ui)− ρi2(x̂i, ui) (3.50)

Therefore, for each component of the output estimation error, i.e., ỹip(t)
△
= Cipx̃i2(t),

p = 1, · · · , li, we have

ỹip(t) =

∫ t

0
Cipe

Āi4(t−τ) [Ai3x̃i1 + ηi2 + βifi(xi, ui)] dτ

+

∫ t

0
Cipe

Āi4(t−τ) [ρi2(xi, ui)− ρi2(x̂i, ui)] dτ

+

∫ t

0
Cipe

Āi4(t−τ)
M∑
j=1

[
H2
ij(xi, xj , ui, uj)−H2

ij(x̂i, x̂j , ui, uj)
]
dτ .

Note that (3.49) is in the same form as (3.13). Therefore, from Lemma 3.2, we have
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|x̃1(t)| ≤ χ(t), where χ(t) is defined in (3.35). Then, by applying the triangle inequality

and (3.30), we obtain:

|ỹip(t)| ≥
∣∣∣∣ ∫ t

0
Cipe

Āi4(t−τ)βifi(xi, ui)dτ

∣∣∣∣− kip

∫ t

0
e−λip(t−τ)

[
||Ai3|| |x̃i1| + |ηi2|

+
M∑
j=1

γ2ij |x̃j1|+ σi2|x̃i1|
]
dτ

≥
∣∣∣∣ ∫ t

0
Cipe

Āi4(t−τ)βifi(xi, ui)dτ

∣∣∣∣− kip

∫ t

0
e−λip(t−τ)

[
|ϱi|χ+ η̄i2

]
dτ , (3.51)

where ϱi is defined in (3.32). By substituting (3.36) into (3.51), we have

|ỹip(t)| ≥
∣∣∣∣ ∫ t

0
Cipe

Āi4(t−τ)βifi(xi(τ), ui(τ))dτ

∣∣∣∣− νip(t) (3.52)

Based on the property of the step function βi, if there exists Td > T0, such that condition

(3.48) is satisfied, then it is concluded that |ỹip(Td)| > νip(Td), i.e., the fault is detected at

time t = Td.

Remark 3.7 Note that the integral on the left-hand side of (3.48) represents the filtered

fault function. In qualitative terms, the fault detectability theorem states that if the mag-

nitude of the filtered fault function on the time interval [T0, Td] becomes sufficiently large,

then the fault in the ith subsystem can be detected. The result also shows that if a fault

function fi(xi, ui) changes sign over time then it may be difficult (or impossible) to detect.

3.5.2 Fault Isolability Analysis

For our purpose, a fault in each subsystem is considered to be isolable if the distributed

fault isolation scheme is able to reach a correct decision in finite time. Intuitively, faults

are isolable if they are mutually different according to a certain measure quantifying the

difference in the effects that different faults have on measurable outputs and on the estimated

quantities in the isolation scheme. To quantify this concept, we introduce the fault mismatch
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function between the sth fault and the rth fault in the ith subsystem, for i = 1, · · · ,M :

hsrip (t)
△
= Cip

(
Ωsiθ

s
i − Ωri θ̂

r
i

)
, (3.53)

where r, s = 1, · · · , Ni, r ̸= s and p = 1, · · · , li. From a qualitative point of view, hsrip (t)

can be interpreted as a filtered version of the difference between the actual fault function

Gsiθ
s
i and its estimate Gri θ̂

r
i associated with the rth local isolation estimator whose structure

does not match the actual fault s in the local subsystem. Recalling that each local FIE

is designed based on the functional structure of one of the nonlinear faults in the fault

class associated with the local subsystem. Consequently, if fault s occurs, its estimate Gri θ̂
r
i

generated by FIE r is determined by the structure of FIE r, which in turn is determined

by fault r. Therefore, the fault mismatch function hsrip (t), defined as the ability of the rth

local FIE to learn fault s in the local subsystem, offers a measure of the difference between

fault s and fault r associated with the local subsystem.

The following theorem characterizes the class of isolable faults in each subsystem:

Theorem 3.3 Consider the distributed fault isolation scheme described by (3.37) and

(3.47). Suppose that fault s (s = 1, · · · , Ni), occurring in the ith subsystem at time T0,

is detected at time Td. Then, fault s is isolable if, for each r ∈ {1, · · · , Ni}\{s} , there

exist some time tr > Td and some p ∈ {1, · · · , li} , such that the fault mismatch function

hsrip (t
r) satisfies

|hsrip (tr)| ≥ 2kip

∫ tr

Td

e−λip(t
r−τ)[ |ϱ̄i|χ+ η̄i2

]
dτ + kip

∫ tr

Td

e−λip(t
r−τ)[αsi ||Ωsi || + αri ||Ωri ||

]
dτ

+ |(CipΩri )⊤|κri + 2ωi2kipe
−λip(tr−Td) . (3.54)

Proof: Denote the state estimation errors of the rth local isolation estimator for subsystem

i by x̃ri1(t)
△
= xi1(t)− x̂ri1(t) and x̃

r
i2(t)

△
= xi2(t)− x̂ri2(t). By using (3.37) and (3.3), in the

44



presence of fault s in the ith subsystem, for t > Td, we have

˙̃xri1 = Ai1x̃
r
i1 + ρi1(xi, ui)− ρi1(x̂

r
i , ui) + ηi1

+
M∑
j=1

[
H1
ij(xi, xj , ui, uj)−H1

ij(x̂
r
i , x̂j , ui, uj)

]
(3.55)

˙̃xri2 = Āi4x̃
r
i2 +Ai3x̃

r
i1 + ηi2 +

M∑
j=1

[
H2
ij(xi, xj , ui, uj)−H2

ij(x̂
r
i , x̂j , ui, uj)

]
+ ρi2(xi, ui)

−ρi2(x̂ri , ui)+Gsi (xi, ui)θsi −Gsi (x̂si , ui)θsi +Gsi (x̂si , ui)θsi −Gri (x̂ri , ui)θ̂ri −Ωri
˙̂
θri .(3.56)

By substituting Gsi (x̂
s
i , ui) = Ω̇si − Āi4Ω

s
i and Gri (x̂

r
i , ui) = Ω̇ri − Āi4Ω

r
i into (3.56), we

obtain

˙̃xri2 = Āi4

(
x̃ri2 +Ωri θ̂

r
i − Ωsi θ

s
i

)
+Ai3x̃

r
i1 + ηi2 − Ωsθ̇si −

d

dt

(
Ωri θ̂

r
i − Ωsiθ

s
i

)
+

M∑
j=1

[
H2
ij(xi, xj , ui, uj)−H2

ij(x̂
r
i , x̂j , ui, uj)

]
+ ρi2(xi, ui)− ρi2(x̂

r
i , ui)

+f si (xi, ui)− fsi (x̂
s
i , ui) .

By defining x̄ri2(t)
△
= x̃ri2(t) + Ωri θ̂

r
i − Ωsi θ

s
i , the above equation can be rewritten as follows

˙̄xri2 = Āi4x̄
r
i2 +Ai3x̃

r
i1 +

M∑
j=1

[
H2
ij(xi, xj , ui, uj)−H2

ij(x̂
r
i , x̂j , ui, uj)

]
+ ηi2 − Ωsi θ̇

s
i

+ρi2(xi, ui)− ρi2(x̂
r
i , ui) + fsi (xi, ui)− f si (x̂

s
i , ui) . (3.57)

The pth component of the output estimation error generated by the rth local FIE for

subsystem i (i.e., ỹrip(t)
△
= yip(t)− ŷrip(t), p = 1, · · · li) is given by

ỹrip(t) = Cipx̃
r
i2(t) = Cip(x̄

r
i2(t)− Ωri θ̂

r
i +Ωsiθ

s
i ) = Cipx̄

r
i2(t) + hsrip (t).

By applying the triangle inequality, we have

|ỹrip(t)| ≥ |hsrip (t)| − |Cipx̄ri2(t)| . (3.58)
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Note that (3.57) is in a similar form as (3.43). Therefore, by using (3.57) and (3.58) and

by following similar reasoning logic reported in the proof of Lemma 3.3, we have

|ỹrip(t)| ≥ |hsrip (t)| −
∫ t

Td

|CipeĀi4(t−τ)|
[
|ϱ̄i|χ(τ) + |η2|+ |Ωsθ̇si |

]
dτ − |CipeĀi4(t−Td)| |xri2(Td)| .

≥ |hsrip (t)| − kip

∫ t

Td

e−λip(t−τ)
[
|ϱ̄i|χ(τ) + |η̄2|+ |Ωsθ̇si |

]
dτ − kipe

−λip(t−Td)|xri2(Td)| .

Now by taking into account the corresponding adaptive threshold µrip(t) given by (3.47) we

can conclude that, if condition (3.54) is satisfied at time t = tr, we obtain |ỹrip(tr)| > µrip(t
r),

which implies that the possibility of the occurrence of fault r in subsystem i can be excluded

at time t = tr.

Remark 3.8 According to the above theorem, if, for each r ∈ {1, · · · , Ni}\{s}, the fault

mismatch function hsrip (t
r) satisfies condition (3.54) for some time tr > 0, then the pth

component of the output estimation error generated by the rth FIE of subsystem i would

exceed its corresponding adaptive threshold at time t = tr, i.e., |ỹrip(tr)| > µrip(t
r), hence

excluding the occurrence of fault r in subsystem i. Therefore, Theorem 3.3 characterizes

(in a non-closed form) the class of nonlinear faults that are isolable in each subsystem by

the proposed robust distributed FDI scheme.

3.5.3 Stability and Learning Capability

We now investigate the stability and learning properties of the adaptive fault isolation esti-

mators, which are described by the following result:

Theorem 3.4 Suppose that fault s, occurring in the ith subsystem, is detected at time Td,

where s ∈ {1, · · · , Ni} and i ∈ {1, · · · ,M}. Then, the distributed fault isolation scheme

described by (3.37), (3.38) and (3.47) guarantees that,

• for each local fault isolation estimator q, q = 1, · · · , Ni, the estimate variables x̂qi1(t),

x̂qi2(t), and θ̂
q
i (t) are uniformly bounded;
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• there exist a positive constant κ̄i and a bounded function ξ̄si (t), such that, for all finite

time tf > Td, the output estimation error of the matched sth local isolation estimator

satisfies ∫ tf

Td

|ỹsi (t)|2dt ≤ κ̄i + 2

∫ tf

Td

|ξ̄si (t)|2dt . (3.59)

Proof. Let us first address the signal boundedness property. The state estimation error

and output estimation error of the qth FIE for the ith subsystem are defined as x̃qi1(t)
△
=

xi1(t)− x̂qi1(t), x̃
q
i2(t)

△
= xi2(t)− x̂qi2(t), and ỹ

q
i

△
= yi(t)− ŷqi (t), respectively. By using (3.37)

and (3.3), for t > Td, the output estimation error is ỹqi = Cix̃
q
i2, and the state estimation

error satisfies

˙̃xqi1 = Ai1x̃
q
i1 + ηi1 + ρi1(xi, ui)− ρi1(x̂

q
i , ui)

+
M∑
j=1

[
H1
ij(xi, xj , ui, uj)−H1

ij(x̂
q
i , x̂j , ui, uj)

]
(3.60)

˙̃xqi2 = Āi4x̃
q
i2 +Ai3x̃

q
i1 + ηi2 + ρi2(xi, ui)− ρi2(x̂

q
i , ui) +Gsi (xi, ui)θ

s
i −Gsi (x̂

s
i , ui)θ

s
i

+Gsi (x̂
s
i , ui)θ

s
i −Gqi (x̂

q
i , ui)θ̂

q
i − Ωqi

˙̂
θqi

+

M∑
j=1

[
H2
ij(xi, xj , ui, uj)−H2

ij(x̂
q
i , x̂j , ui, uj)

]
. (3.61)

By substituting Gsi (x̂
s
i , ui) = Ω̇si − Āi4Ω

s
i and Gqi (x̂

q
i , ui) = Ω̇qi − Āi4Ω

q
i (see (3.37)) into

(3.61), and by defining x̄qi2
△
= x̃qi2 − Ωsiθ

s
i +Ωqi θ̂

q
i , we obtain

˙̄xqi2 = Āi4x̄
q
i2 +Ai3x̃

q
i1 + ρi2(xi, ui)− ρi2(x̂

q
i , ui) + fsi (xi, ui)− f si (x̂

s
i , ui) + ηi2

+

M∑
j=1

[
H2
ij(xi, xj , ui, uj)−H2

ij(x̂
q
i , x̂j , ui, uj)

]
− Ωsi θ̇

s
i . (3.62)

Note that (3.60) is in the same form as (3.13). Therefore, based on the results of Lemma 3.2

(i.e., (3.39)) and Assumptions 3.2 and 3.3, we have x̃qi1 ∈ L∞, x̃j1 ∈ L∞, and x̂qi1 ∈ L∞.

Additionally, based on similar reasoning logic as report in the proof of Lemma 3.2 (see

(3.30)), we know that ρi2(xi, ui) − ρi2(x̂
q
i , ui) , H2

ij(xi, xj , ui, uj) − H2
ij(x̂

q
i , x̂j , ui, uj) , and
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f si (xi, ui) − fsi (x̂
s
i , ui) are bounded. Moreover, due to the use of parameter projection (see

(3.38)), we have θ̂qi ∈ L∞. Furthermore, because ηi2, Ω
s
i , and θ̇

s
i are bounded (Assumption

3.2 and Assumption 3.6) and Āi4 is a stable matrix, by using (3.62) we can obtain x̄qi2 ∈ L∞.

Owing to the definition of x̄q2, we conclude that x̃q2 ∈ L∞ and x̂q2 ∈ L∞. This concludes the

first part of the theorem.

Now, let us prove the second part of the theorem concerning the learning capability of the

local FIE in the case that it matches the occurred sth fault in the local subsystem, i.e.,

q = s. In this case, the solution of (3.62) can be written as x̄si2(t) = ξsi1(t)+ξ
s
i2(t), ∀t ≥ Td ,

where ξsi1 and ξsi2 are the solutions of the following differential equations, respectively,

ξ̇si1 = Āi4ξ
s
i1 +Ai3x̃

s
i1 + ρi2(xi, ui)− ρi2(x̂

s
i , ui) +

M∑
j=1

[
H2
ij(xi, xj , ui, uj)−H2

ij(x̂
s
i , x̂j , ui, uj)

]
+ηi2 + f si (xi, ui)− fsi (x̂

s
i , ui)− Ωsi θ̇

s
i , ξsi1(Td) = 0

ξ̇si2 = Āi4ξ
s
i2 , ξsi2(Td) = x̃si2(Td) = xsi2(Td) .

Using the definition of x̄si2, we have x̃si2 = ξsi1(t) + ξsi2(t)− Ωsi θ̃
s
i . Therefore,

ỹsi (t) = Cix̃
s
i2 = Ci[ξ

s
i1(t) + ξsi2(t)]− CiΩ

s
i θ̃
s
i . (3.63)

Now, consider a Lyapunov function candidate Vi = 1
2Γs (θ̃

s
i )

2 +
∫∞
t |Ciξsi2(τ)|2dτ . The time

derivative of Vi along the solution of (3.38) is given by V̇i = 1
Γs θ̃

s
iPΘs

{
ΓsΩsi

⊤C⊤
i ỹ

s
i

}
−

|Ciξsi2|2 − 1
Γs θ̃

s
i θ̇
s
i . Clearly, since θsi ∈ Θs, when the projection operator P is in effect, it

always results in smaller parameter errors that will decrease V̇i [35, 82]. Therefore, by using

(3.63) and completing the squares, we obtain

V̇i ≤ (ỹsi )
⊤CiΩ

s
i θ̃
s
i − |Ciξsi2|2 −

1

Γs
θ̃si θ̇

s
i

= (ỹsi )
⊤ (−ỹsi + Ciξ

s
i1 + Ciξ

s
i2) − |Ciξsi2|2 −

1

Γs
θ̃si θ̇

s
i

≤ −|ỹsi |2

2
+ |Ciξsi1|2 +

1

Γs
|θ̃si | |θ̇si | . (3.64)
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Let ξ̄si
△
=

(
|Ciξsi1|2 + 1

Γs |θ̃
s
i ||θ̇si |

) 1
2
. By integrating (3.64) from t = Td to t = tf , we

obtain
∫ tf
Td

|ỹsi (t)|2 dt ≤ κ̄i + 2
∫ tf
Td

|ξ̄si (t)|2 dt, where κ̄i
△
= suptf≥Td{2[Vi(Td) − Vi(tf )]} .

Theorem 3.4 guarantees the boundedness of all the variables involved in the local adaptive

FIEs in the case that a fault is detected in the corresponding subsystem. Moreover, the

performance measure given by (3.59) shows that the ability of the matched local isolation

estimator to learn the post-fault system dynamics is limited by the extended L2 norm of

ξ̄si (t), which, in turn, is related to the modeling uncertainties ηi1 and ηi2, the parameter

estimation error θ̃si , and the rate of change of the time–varying bias θsi .

3.6 Simulation Results

In this section, a simulation example of interconnected inverted pendulums mounted on

carts [32] shown in Figure 3.1 is given to illustrate the effectiveness of the distributed FDI

algorithm.

 M  M 

Figure 3.1: Interconnected inverted pendulums mounted on carts

Specifically, we consider two identical inverted pendulums mounted on carts, which are
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connected by springs and dampers. Each cart is linked by a transmission belt to a drive

wheel driven by a DC motor. As described in [32], the equations of motion are

(M +m)ψ̈1 + Fψψ̇1 +mlϑ̈1cosϑ1 −ml(ϑ̇1)
2sinϑ1 = u1 + s1

Jϑ̈1 + Fϑϑ̇1 −mlgsinϑ1 +mlψ̈1cosϑ1 = 0

(M +m)ψ̈2 + Fψψ̇2 +mlϑ̈2cosϑ2 −ml(ϑ̇2)
2sinϑ2 = u2 + s2

Jϑ̈2 + Fϑϑ̇2 −mlgsinϑ2 +mlψ̈2cosϑ2 = 0

where, in each subsystem, ψi (i = 1, 2) is the position of the cart, ϑi is the angle of the

pendulum, ui is the input force, respectively. The interconnection forces due to springs

and dampers are s1 = k(ψ2 − ψ1) + c(ψ̇2 − ψ̇1), s2 = k(ψ1 − ψ2) + c(ψ̇1 − ψ̇2), where k

and c are the spring constant and the damping constant, respectively. Additionally, J is

the moment of inertial, M is the mass of the cart, m is rod mass, l is rod length, g is the

gravitational acceleration, Fϑ and Fψ are the friction coefficients. The model parameters

are: M = 5kg, m = 0.535 kg, J = 0.062 kgm2, l = 0.365m, Fψ = 6.2 kg/s, Fϑ = 0.09 kgm2

and g = 9.8m/s2, k = 1, and c = 0.02.

For each subsystem, we assume the cart position (ψi), pendulum angle (ϑi), and pendulum

angular velocity (ϑ̇i) are measurable. By using a change of coordinates defined by zi =

[zi1 zi2 zi3 zi4]
⊤ = Ti[ψi ϑi ψ̇i ϑ̇i]

⊤ with

T =



−1.5 0 1 0.3175/ cosϑi

1 0 0 0

0 1 0 1

0 0 0 1


(3.65)
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a system state space model is obtained as



żi1

żi2

żi3

żi4


=



−1.5 −2.25 0 0

1 1.5 0 0

0 0 0 1

0 0 0 0





zi1

zi2

zi3

zi4


+



ζi1(zi, ui)

ζi2(zi, ui)

0

ζi4(zi, ui)


+ hij + φi + dij(3.66)

yi =


0 1 0 0

0 0 1 0

0 0 0 1





zi1

zi2

zi3

zi4


,

where the nominal nonlinear dynamics are ζi2 = −0.3175zi4
coszi3

,

ζi1 =
ml(cos zi3)

2(Fϑzi4 −mlg sin zi3)− 0.3175(m+M)(Fϑzi4 −mgl sin zi3)

cos zi3[J(M +m)− (ml cos zi3)2]

+
0.4763zi4
cos zi3

+
0.3175zi4 sin zi3

(cos zi3)2

ζi4 =
ml cos zi3

[
ml(zi4)

2 sin zi3 − (Fψ + c)(zi1 + 1.5zi2 − 0.3175zi4)− kzi2 + ui
]

(ml cos zi3)2 − J(M +m)

+
(M +m)(Fϑzi4 −mgl sin zi3)

(ml cos zi3)2 − J(M +m)

and the known interconnection term is

hij =

[
0 0 0

mlcoszi3[kzj2 + c(zj1 + 1.5zj2 − 0.3175zj4)]

(mlcoszi3)2 − J(M +m)

]⊤
.

Note that the effects of modeling uncertainty (i.e., φi and dij) have been included in the

above model. Specifically, two sources of modeling uncertainty are considered: (i) up to

80% inaccuracy in the friction constant Fϑ (corresponding to φi in (3.66) and (3.1)); (ii)

up to 10% inaccuracy in the spring constant k in the interconnection force (corresponding

to dij in (3.66) and (3.1)).
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In addition, the following two types of faults are considered in each subsystem:

1. An actuator fault. A simple multiplicative actuator fault by letting ui = ūi + θ1i ūi is

considered, where ūi is the nominal control input in the non-fault case, and θ1i ∈ [−1 0]

is the unknown fault magnitude. For instance, the case θ1i = 0 represents the normal

operation condition, while the case θ1i = −1 corresponds to a complete failure of

the actuator. Hence, based on the system and fault models given by (3.66) and

(3.5), the actuator fault can be described by f1i
△
= [0 0 θ1i g

1
i (zi, ui)]

⊤, where

g1i = mlui cos zi3
(ml cos zi3)2−J(M+m)

and θ1i ∈ [−1 0].

2. A process fault causing extra abnormal friction applied to the cart. Specifically, as a

result of the fault, the viscous friction constant Fψ increases by up to three times of its

nominal value. Then, the fault function is in the form of f2i
△
= [0 0 θ2i g

2
i (zi)]

⊤, where

g2i =
3mlFψ zi1 cos zi3

(ml cos zi3)2−J(M+m)
and θ2i ∈ [−1 0] represents significance of extra friction.

Clearly, the above system model is in the form of (3.3) with xi1 = zi1, xi2 = [zi2 zi3 zi4]
⊤,

ρi1 = ζi1, ρi2 = [ζi2 0 ζi4]
⊤, and Hij = hij . Also, it can be easily seen that Assumptions

3.2-3.7 are satisfied. Specifically, based on the change of coordinates defined above, we have

η̄i1 =

∣∣∣∣0.8Fϑyi3[ml(cos yi2)2 − 0.3175(M +m)]

cos yi2[J(M +m)− (ml cos yi2)2]

∣∣∣∣ ,
η̄i2 =

|0.8(M +m)Fϑyi3| + |0.1kml cos yi2(yj1 − yi1)|
J(M +m)− (ml cos yi2)2

,

γ121 = γ112 = 0, γ212 = cml | cos y12|
J(M+m)−(ml cos y12)2

and γ221 = cml | cos y22|
J(M+m)−(ml cos y22)2

, σi1 = 0 and

σi2 =
(Fψ+c)ml | cos yi2|

J(M+m)−(ml cos yi2)2
, ϖ1

i = 0, and ϖ2
i =

3mlFψ | cos zi3|
J(M+m)−(ml cos zi3)2

.

The initial condition of each cart-pendulum subsystem is set to xi = [0 0 0 0]⊤. For

simplicity, the input to each subsystem consists of two parts: a stabilizing part based on

state feedback design and a sinusoidal signal causing each subsystem to deviate from steady-

state linear dynamics. In the simulation, the actual modeling uncertainties used are: (i)

40% inaccuracy in the friction constant Fϑ; (ii) 8% inaccuracy in the spring constant k in

the interconnection force.
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The gain matrix Li of the estimators is chosen such that the poles of matrix Āi4 are

located at -1.7 , -2.5 and -2.2, respectively. Consequently, the related design constants are

ki1 = ki2 = ki3 = 1, λi1 = −1.7, λi2 = −2.5 and λi3 = −2.2. Additionally, we choose the

matrix P = [0.5 0 ; 0 0.5] (i.e., Pi = 0.5, see Lemma 3.2). Thus, Q = [1 0; 0 1], which

results in c = 2. The learning rate of the adaptive algorithm for fault parameters estimation

in the FIE1 and FIE2 is set to 1 and 0.1, respectively.

First, we consider an an actuator fault (fault type 1, as defined in section 3.2 ) in subsystem

1. Figure 3.2 and Figure 3.3 show the fault detection results when a partial actuator

fault with θ11 = −0.25 occurs to subsystem 1 at T0 = 5 second. Note that, since the

dynamics of zi3 in each subsystem is not affected by the faults or modeling uncertainty

under consideration, we only focus on the residuals and thresholds associated with yi1 and

yi3. As can be seen from Figure 3.3, both the residuals generated by FDE 2 (i.e., local

FDE associated with subsystem 2) always remain below their thresholds, while the residual

associated with y13 generated by FDE 1 (i.e., the local FDE designed for subsystem 1)

almost immediately exceeds its threshold after fault occurrence (see Figure 3.3). Therefore,

the actuator fault in subsystem 1 is timely detected. Then, the two local FIEs associated

with subsystem 1 are activated to determine the particular fault type that has occurred.

Selected fault isolation residuals and the corresponding thresholds generated by the two local

FIEs for subsystem 1 are shown in Figure 3.4. It is obvious that the residual associated with

y13 generated by local FIE 2 exceeds the threshold at approximately t = 5.88 second, while

both residuals generated by local FIE 1 always remain below their thresholds, indicating

the isolation of fault f11 (i.e., actuator fault in subsystem 1). It is worth noting that for local

FIE 2, only the residual and threshold associated with y13 are shown, since it is sufficient

to exclude the possibility of occurrence of f21 based on the presented fault isolation decision

scheme. In addition, Figure 3.5 and Figure 3.6 show the actuator fault effect on the angle

and the angle velocity of the subsystem 1.

As another illustrative example, we consider a process fault causing extra abnormal friction

applied to the cart in the second subsystem. Figure 3.7 and Figure 3.8 show the simulation
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Figure 3.2: The case of an actuator fault in subsystem 1: fault detection residuals (solid and
blue line) associated with y11 and y13 and their thresholds (dashed and red line) generated
by the local FDE for subsystem 1.
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Figure 3.3: The case of an actuator fault in subsystem 1: the fault detection residuals
(solid and blue line) associated with y21 and y23 and their thresholds (dashed and red line)
generated by the local FDE for subsystem 2.

54



5 10 15 20
0

0.01

0.02

0.03

0.04
FIE1 (y11)

time (second)

 

 

5 10 15 20
0

0.2

0.4

0.6

0.8
FIE1 (y13)

time (second)

 

 

5 10 15 20
0

0.5

1

1.5
FIE2 (y13)

time (second)

 

 

residual
threshold

residual
threshold

residual
threshold

fault 
isolted

Figure 3.4: The case of an actuator fault in subsystem 1: selected fault isolation residuals
(solid and blue line) and their thresholds (dashed and red line) generated by the two local
FIEs associated with subsystem 1.

results of fault detection when such a fault with θ22 = −0.5 occurs to the second subsystem at

T0 = 5 second. Figure 3.9 shows the results of fault isolation. Again, the fault is successfully

detected and isolated.

Moreover, a completely unknown fault is considered in subsystem 1. Specifically, as a result

of the fault, the dynamics of the angle velocity is affected by a sinusoidal signal. Then, the

fault function is in the form of funknowni
△
= [0 0 cos(t)]⊤. Figure 3.10 and Figure 3.11

show the fault detection results when this unknown fault occurs to subsystem 1 at T0 = 5

second. As can be seen from Figure 3.11, both the residuals generated by FDE 2 (i.e., local

FDE associated with subsystem 2) always remain below their thresholds, while the residual

associated with y13 generated by FDE 1 (i.e., the local FDE designed for subsystem 1) almost

immediately exceeds its threshold after fault occurrence (see Figure 3.10). Therefore, the

unknown fault in subsystem 1 is timely detected. Then, the two local FIEs associated with

subsystem 1 are activated to determine the particular fault type that has occurred. Selected

fault isolation residuals and the corresponding thresholds generated by the two local FIEs

for subsystem 1 are shown in Figure 3.12 and Figure 3.13. It is obvious that the residuals

in both FIEs exceed the corresponding thresholds. Thus, based on the isolation logic, the
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Figure 3.5: The case of an actuator fault in subsystem 1: the signal of the angle in the fault
free case (solid and blue line) and the signal of the angle in the actuator fault case (dashed
and red line) of subsystem 1.
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Figure 3.6: The case of an actuator fault in subsystem 1: the signal of the angle velocity in
the fault free case (solid and blue line) and the signal of the angle velocity in the actuator
fault case (dashed and red line) of subsystem 1.
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Figure 3.7: The case of a process fault in subsystem 2: fault detection residuals (solid and
blue line) associated with y11 and y13 and their thresholds (dashed and red line) generated
by the local FDE for subsystem 1.
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Figure 3.8: The case of a process fault in subsystem 2: the fault detection residuals (solid and
blue line) associated with y21 and y23 and their thresholds (dashed and red line) generated
by the local FDE for subsystem 2.
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Figure 3.9: The case of a process fault in subsystem 2: selected fault isolation residuals
(solid and blue line) and their thresholds (dashed and red line) generated by the two local
FIEs associated with subsystem 2.

possibilities of the occurrence of the two predefined faults are excluded, the decision of the

occurrence of an unknown type fault which is not included in the fault set is made.
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Figure 3.10: The case of a complete unknown fault in subsystem 1: fault detection residuals
(solid and blue line) associated with y11 and y13 and their thresholds (dashed and red line)
generated by the local FDE for subsystem 1.
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Figure 3.11: The case of a complete unknown fault in subsystem 1: the fault detection
residuals (solid and blue line) associated with y21 and y23 and their thresholds (dashed and
red line) generated by the local FDE for subsystem 2.
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Figure 3.12: The case of a complete unknown fault in subsystem 1: selected fault isolation
residuals (solid and blue line) and their thresholds (dashed and red line) generated by FIE
1 associated with subsystem 1.

5 10 15 20
0

0.05

0.1
FIE2(y11)

 

 

5 10 15 20
0

1

2

3
FIE2(y13)

time (second)

 

 
residual
threshold

residual
threshold

fault isolated

Figure 3.13: The case of a complete unknown fault in subsystem 1: selected fault isolation
residuals (solid and blue line) and their thresholds (dashed and red line) generated by FIE
2 associated with subsystem 1.
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Chapter 4

Distributed Sensor Fault Detection

and Isolation in Multimachine

Power Systems

The distributed fault diagnosis scheme presented in Chapter 3 only considers the process

faults in a class of distributed nonlinear systems. In real world applications, the reliable

operations of interconnected control systems also greatly rely on the health of sensors. For

instance, a sensor fault may lead to poor tracking performance, or even affect the stability of

the overall distributed system, since the fault effect may be propagated to other subsystems

through interconnections. Moreover, a faulty sensor output may also cause wrong diagnostic

and prognostic decisions, resulting in mistaken replacement of system components or mission

abortion. Hence, sensor fault diagnosis is a critical issue in distributed interconnected

control systems.

This chapter presents a distributed sensor FDI scheme for a class of interconnected non-

linear systems, where only the measurable part of the state variables are directly affected

by the interconnections between subsystems. A multimachine power systems is used as

an application example. The general theory can be easily extended to other systems with
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the similar model structure. In a multimachine power systems, each generator is inter-

connected with other generators through a transmission network, where the interactions

between directly interconnected generators are nonlinear. Because of the interconnection

among generators and the limited sensor data that are available for each local system, the

problem of distributed sensor FDI is very challenging. In the proposed distributed FDI

architecture, a fault diagnostic component is designed for each generator in the intercon-

nected system by exploiting local measurements and suitable communicated information

from neighboring FDI components associated with its directly interconnected generators.

In each FDI component, adaptive thresholds for distributed FDI are derived, ensuring ro-

bustness with respect to nonlinear interconnection and unstructured modeling uncertainty

under certain conditions. Furthermore, the fault detectability and isolability properties are

investigated, characterizing the class of sensor faults that are detectable and isolable by

the distributed FDI method. In addition, the stability and learning capability of the local

adaptive fault isolation estimators designed for each generator is derived. A simulation ex-

ample of a two-machine power system is used to illustrate the effectiveness of the proposed

method.

The chapter is organized as follows. In Section 4.1, the problem of distributed FDI for

multimachine power systems is formulated. Section 4.2 describes the distributed FDI ar-

chitecture, the design of adaptive thresholds for distributed fault detection and isolation

in each generator, and the fault detectability of the distributed sensor FDI method. Sec-

tion 4.3 analyzes several important properties of the distributed fault isolation method,

including fault isolability, stability and learning capability. To illustrate the effectiveness of

the diagnostic method, some simulation results using the example of a two-machine power

system are presented in Section 4.4.
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4.1 Problem Formulation

We consider a multimachine power system consisting ofM generators interconnected through

a transmission network. A complete model of each generator includes the mechanical equa-

tions describing the motion of the generator rotor, the generator electrical equations repre-

senting the dynamics of the generator windings, and the electrical equations describing the

interconnections between the generator and the transmission network. Based on the classic

dynamic model of power systems given in [2], a model for the ith generator with excitation

control in the multimachine power system can be described by the following equations (see

[25, 26]):

1. Mechanical Equations

δ̇i = ωi , (4.1)

ω̇i = − Di

2Hi
ωi +

ω0

2Hi
(Pmi0 − Pei) + di , (4.2)

2. Generator electrical dynamics:

Ė
′
qi =

1

T
′
doi

(Efi − Eqi) , (4.3)
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3. Electrical equations:

Eqi = E
′
qi + (xdi − x

′
di)Idi,

Efi = kciufi,

Pei =

M∑
j=1

E
′
qiE

′
qjBij sin(δi − δj),

Qei = −
M∑
j=1

E
′
qiE

′
qjBij cos(δi − δj),

Idi = −
M∑
j=1

E
′
qjBij cos(δi − δj),

Iqi =
M∑
j=1

E
′
qjBij sin(δi − δj),

Eqi = xadiIfi,

Vti =
√

(E
′
qi − x

′
diIdi)

2 + (x
′
diIqi)

2.

The notation for the above generator model, given in the Appendix A, is the same as in

[25].

In this chapter, we focus on the sensor fault FDI problem of the excitation loop of each

generator in the multimachine power system. Thus, by using the direct feedback linearizable

compensation for the power system as in [26], we obtain

δ̇i = ωi

ω̇i = − Di
2Hi

ωi − ω0
2Hi

∆Pei

∆Ṗei = − 1

T
′
doi

∆Pei +
1

T
′
doi

vfi + E
′
qi

M∑
j=1

Ė
′
qjBij sin(δi − δj)− E

′
qi

M∑
j=1

E
′
qjBij cos(δi − δj)ωj ] ,

where ωi is the relative speed of the ith generator, δi is the power angle of the ith generator,

and ∆Pei = Pei − Pmi0 with Pei being the electrical power and Pmi0 being the mechanical

input power, respectively. Since only the excitation loop is under consideration, Pmi0 is a

constant. By defining the state vector as xi = [xi1 x
⊤
i2 ]⊤ = [ωi δi ∆Pei]

⊤ with xi1 = ωi,
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xi2 = [δi ∆Pei]
⊤ and by assuming the states δi and ∆Pei to be measurable, we can obtain

a model of the excitation loop of the ith generator, i = 1, · · · ,M as follows:

ẋi1 = Ai1xi1 +Ai2xi2 + di(xi, ui, t)

ẋi2 = Ai3xi1 +Ai4xi2 +Gi
vfi

T
′
doi

+ ηi(xi, ui, t) +Gi

M∑
j=1

γijhij(xi, xj)

yi = xi2 + βi(t− Ti)θi(t) ,

(4.4)

where vfi ∈ ℜ and yi ∈ ℜ2 represent the control input and output, respectively, Ai1 = − Di
2Hi

,

Ai2 = [ 0 ω0
2Hi

], Ai3 = [ 1 − E
′2
qiBii ]

⊤, Ai4 = [ 0 0; 0 − 1

T
′
doi

], Gi = [ 0 1 ]⊤. The

term Giγijhij represents the direct interconnection between the ith generator and the jth

generator. Specifically, hij(xi, xj)
△
= E

′
qiĖ

′
qjBij sin(δi − δj)− E

′
qiE

′
qjBij cos(δi − δj)xj1, and

γij is a constant with a value of either 1 or 0 (i.e., if the jth generator is directly connected

to the ith generator, then γij = 1 . Otherwise, γij = 0 ). Note that, γii = 0 because the

interconnection term is only defined between two generators.

The functions di and ηi in (4.4) represent the modeling uncertainties, and βi(t − Ti)θi(t)

denotes a sensor bias fault [81, 79]. Specifically, βi(t − Ti) is a step function representing

the time profile of the sensor fault which occurs at some unknown time Ti, and the vector

θi(t) ∈ ℜ2 represents the unknown time-varying sensor bias affecting the output of the

ith generator. Therefore, the sensor fault can be either an abrupt or incipient one. It is

assumed that only one of the M generators possibly has faulty sensors at a given time.

The objective of this chapter is to develop a robust distributed sensor bias FDI scheme for

multimachine power systems that can be represented by (4.4). Specifically, the distributed

FDI algorithm detects the occurrence of a sensor fault and determines the particular gen-

erator with faulty sensors. Throughout the chapter, the following assumptions are made:
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Assumption 4.1. The functions di and ηi in (4.4), representing the unstructured modeling

uncertainty, are unknown nonlinear functions of xi, ui, and t, but bounded,

|di(xi, ui, t)| ≤ d̄i(yi, ui, t), |ηi1(xi, ui, t)| ≤ η̄i1(yi, ui, t), |ηi2(xi, ui, t)| ≤ η̄i2(yi, ui, t) ,

(4.5)

where ηi1 and ηi2 represent the first and the second component of ηi, respectively, and the the

bounding functions d̄i , η̄i1 , and η̄i2 are known and uniformly bounded in the corresponding

compact sets of admissible state variables, inputs, and outputs with appropriate dimensions,

respectively.

Assumption 4.2. The state vector xi of each subsystem remains bounded before and after

the occurrence of a fault, i.e., xi(t) ∈ L∞, ∀t ≥ 0.

Assumption 4.3. The rate of change of the possible time-varying sensors bias is uniformly

bounded. i.e., |θ̇i(t)| ≤ αi for all t ≥ 0, where αi is a known positive constant.

Assumption 4.1 characterizes the class of modeling uncertainty under consideration. The

bound on the modeling uncertainty is needed in order to be able to distinguish between

the effects of faults and modeling uncertainty (see [83, 84]). The modeling uncertainty in

the multimachine power system can be a variety of sources affecting the dynamics of each

machine, such as a consistent load change, increase of the mechanical input power in each

machine, or parametric uncertainties. For instance, the disturbance effect on the power

system frequency is considered in [25].

Assumption 4.2 requires the boundedness of the state variables before and after the oc-

currence of a fault in each subsystem. Hence, it is assumed that the distributed feedback

control system is capable of retaining the boundedness of the state variables of each sub-

system even in the presence of a sensor fault. This is a technical assumption required for

well-posedness since the distributed FDI design under consideration does not influence the

closed-loop dynamics and stability. The design of distributed fault-tolerant controllers is be-

yond the scope of this paper. However, it is important to note that the proposed distributed

FDI design does not depend on the structure of the distributed controllers.
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Assumption 4.3 gives a known bound on the rate of change of the sensor fault magnitude

θi(t). In practice, the rate bound αi can be set by exploiting some a priori knowledge on the

fault developing dynamics. Note that both abrupt fault and incipient fault are considered

in the paper for multimachine power systems. Specifically, the fault time profile function

βi(t − Ti) is a step function modeling abrupt characteristics of the sensor bias, and the

fault magnitude θi(t) represents the (possibly time-varying) sensor bias magnitude. In the

specifical case of abrupt faults, we can simply set αi = 0 (i.e., θi is a vector of constants).

Remark 4.1. Note that the FDI method presented in this chapter can be easily extended

to other nonlinear systems, where the interconnections only directly affect the measurable

part of the state vector. Specifically, it can be extended to a general system model described

as follows:

żi1 = Ai1zi1 +Ai2zi2 + ψi1(yi, ui) + ηi1(zi, ui, t)

żi2 = Ai3zi1 +Ai4zi2 + ρi2(zi, ui) + ψi2(yi, ui) + ηi2(zi, ui, t) +
M∑
j=1

Hij(zj , uj)

yi = Cizi2 + βi(t− T0)θi(t) ,

(4.6)

where [ z⊤i1 z⊤i2 ]
⊤ , ui, and yi are the state vector, input vector, and output vector of

the ith subsystem, respectively, ψi1, ρi2 and ψi2 represent nonlinearities, ηi1(zi, ui, t) and

ηi2(zi, ui, t) represent modeling uncertainties, and Hij(zj , uj) represents the interconnec-

tion from the jth directly interconnected subsystem, Ai1, Ai2, Ai3, Ai4 and Ci are known

matrices with appropriate dimensions, and θi represents a sensor fault.

4.2 Distributed Fault Detection and Isolation Architecture

The distributed FDI architecture is made ofM local FDI components, with one FDI compo-

nent designed for each of theM generators. Specifically, each local FDI component consists

of a FDE and a nonlinear adaptive FIE. Under normal conditions, each local FDE monitors

the corresponding local generator to detect the occurrence of any fault. If a sensor fault is

detected, then the FIEs are activated for the purpose of isolating the particular generator
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where the sensor fault has actually occurred.

The FDI architecture for each generator follows the generalized observer scheme (GOS)

architectural framework well-documented in the fault diagnosis literature [3, 5]. The dis-

tributed nature of the presented FDI method can be better understood if compared with

the conventional centralized FDI architecture. For M interconnected generators, M + 1

estimators are needed at the server node in the case of centralized FDI architecture. More-

over, each generator needs to transmit data to the server node. With the distributed FDI

architecture, only a pair of local FDE and FIE is needed at the ith generator. Hence,

the computation is distributed in the network. Additionally, data communication is only

required among the FDI components associated with generators that are directly intercon-

nected.

In order to get a deeper insight into the distributed FDI architecture described above, we

refer to Figure 4.1. For the sake of simplicity, an example of three interconnected generators

is considered. Without loss of generality, we assume that there exit direct interconnections

in two pairs of generators (i.e., generators 1 and 2, and generators 2 and 3). Thus, the

distributed FDI architecture consists of three local FDI components, and the information

exchange is conducted between FDI components 1 and 2, and FDI components 2 and 3,

respectively.

4.2.1 Distributed Fault Detection Method

In this section, we describe the distributed fault detection method, including the design of

each local FDE for residual generation and adaptive thresholds for residual evaluation.

Based on the generator model described by (4.4), the FDE for each local generator is chosen

as:
˙̂xi1 = Ai1x̂i1 +Ai2yi

˙̂xi2 = Ai3x̂i1 +Ai4x̂i2 +Gi
vfi

T
′
doi

+ Li(yi − ŷi) +Gi

M∑
j=1

γijhij(x̂i, x̂j)

ŷi = x̂i2

(4.7)
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Subsystem  

#1 

Subsystem  

#2 

Subsystem  
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FDE1 

FIE1 

FDI component 1 

Local  Diagnostic Decision 

FDE2 

FIE2 

FDI component 2 

Local  Diagnostic Decision 

FDE3 

FIE3 

FDI component 3 

Local  Diagnostic Decision 

Figure 4.1: Example of distributed FDI architecture for three interconnected generators.

where x̂i1, x̂i2, and ŷi denote the estimated local state and output variables of the ith

generator, i = 1, · · · ,M , respectively, Li is an estimator gain, x̂i
△
= [x̂i1 y⊤i ]

⊤, and

x̂j
△
= [x̂j1 y⊤j ]

⊤ ( here x̂j1 is the estimate of state variable xj1 of the jth interconnected

generator). The initial conditions are x̂i1(0) = 0 and x̂i2(0) = yi(0). It is worth noting

that the local FDE (4.7) for the ith generator is constructed based on local input and

output variables (i.e., vfi and yi) and certain communicated information from the FDE

associated with the jth directly interconnected generator (for instance, x̂j). Note that

this structure is consistent with several others in the literature on distributed estimation

and diagnosis in which information exchanges among subsystems are considered (see, e.g.,

[58, 60, 72, 20, 21]).

For each local FDE, let x̃i1
△
= xi1 − x̂i1 and x̃i2

△
= xi2 − x̂i2 denote the state estimation

errors, and ỹi
△
= yi− ŷi denote the output estimation error, respectively. Then, before fault

occurrence (i.e., for 0 ≤ t < Ti), by using (4.4) and (4.7), the estimation error dynamics are
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given by

˙̃xi1 = Ai1x̃i1 + di (4.8)

˙̃xi2 = Āi4x̃i2 +Ai3x̃i1 +Gi

M∑
j=1

γij [hij(xi, xj)− hij(x̂i, x̂j)] + ηi (4.9)

ỹi = xi2 − x̂i2 = x̃i2 (4.10)

where Āi4
△
= Ai4 − Li. Specifically, the estimate gain matrix Li ∈ ℜ2×2 can be chosen to

make Āi4 = diag{−λi1, −λi2} with the positive scalars λi1 and λi2. By using (4.8) and

(4.5), and by applying the triangle inequality, we obtain

|x̃i1| ≤ ωi0e
Ai1t +

∫ t

0
eAi1(t−τ)d̄i(yi, ui, τ)dτ , (4.11)

where ωi0 is a constant bound for |xi1(0)|, such that |x̃i1(0)| = |xi1(0)| ≤ ωi0 (Note x̂i1(0) =

0).

Now, we analyze the output estimation error ỹi(t) (see (4.10)) of the ith generator. For

0 ≤ t < Ti, based on (4.9), we know the estimation errors of δi and ∆Pei (i.e. x̃i2) is given

by

x̃i2(t) =

∫ t

0
eĀi4(t−τ)

{
Ai3x̃i1(τ) +Gi

M∑
j=1

γij [hij(xi(τ), xj(τ))− hij(x̂i(τ), x̂j(τ))]

+ηi(xi(τ), ui(τ), τ)

}
dτ .

Note that for the interconnection effect from the jth directly connected generator, we have

|hij(xi, xj)−hij(x̂j , x̂j)| = |E′
qiE

′
qjBij cos(yi1−yj1)(xj1−x̂j1)| ≤ |E′

qiE
′
qjBij cos(yi1−yj1)| |x̃j1| .

Therefore, based on the system model (4.4), for each component of the output estimation
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error, (i.e., ỹip(t), p = 1, 2), we have

|ỹi1(t)| ≤
∫ t
0 e

−λi1(t−τ)(|x̃i1|+ ηi1) dτ ≤
∫ t
0 e

−λi1(t−τ)(χi(τ) + η̄i1) dτ ,

|ỹi2(t)| ≤
∫ t
0 e

−λi2(t−τ)
[
|E′2

qiBii|χi(τ) + η̄i2(τ) +
M∑
j=1

γij |E
′
qiE

′
qjBij cos(yi1(τ)− yj1(τ))|χj(τ)

]
dτ ,

(4.12)

where

χi(t)
△
= ωi0e

Ai1t +

∫ t

0
eAi1(t−τ)d̄i(yi, ui, τ)dτ , i = 1, 2, · · ·M. (4.13)

Therefore, based on the above discussions, we have the following

Distributed Fault Detection Decision Scheme: The decision on the occurrence of a

fault (detection) in the ith generator is made when the modulus of at least one component

of the output estimation error (i.e., ỹip(t), p = 1, 2 ) generated by the local FDE exceeds its

corresponding threshold νip(t) given by

νi1(t)
△
=

∫ t
0 e

−λi1(t−τ)(χi + η̄i1) dτ ,

νi2(t)
△
=

∫ t
0 e

−λi2(t−τ)
[
|E′2

qiBii|χi + η̄i2 +

M∑
j=1

γij |E
′
qiE

′
qjBij cos(yi1 − yj1)|χj

]
dτ ,

(4.14)

where χi(t) and χj(t) are defined by (4.13). The fault detection time Td is defined as the

first time instant such that |ỹip(Td)| > νip(Td), for some Td ≥ Ti and some p ∈ {1, 2}, that

is, Td
△
= inf

2∪
p=1

{ t ≥ 0 : |ỹip(t)| > νip(t)} .

Remark 4.2. Note that νip(t) given by (4.14) is an adaptive threshold for fault detection,

which has obvious advantage over a constant one. Moreover, the threshold νip(t) can be

easily implemented using linear filtering techniques [83].

4.2.2 Fault Detectability Condition

The following theorem characterizes (in a non-closed form) the class of sensor faults that

are detectable by the proposed distributed fault detection method.

Theorem 4.1 (Fault Detectability ): For the distributed fault detection method de-
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scribed by (4.7) and (4.14), suppose that a sensor fault occurs in the ith subsystem at

time Ti, where i ∈ {1, · · · ,M}. Then, if there exist some time instant Td > Ti and some

p ∈ {1, 2 }, such that the sensor bias θi satisfies the following condition

∣∣∣∣ ∫ Td

Ti

e−λip(Td−τ)(CipAi3
Ai2

Ai1
− CipLi)θidτ + θip

∣∣∣∣
− Gip

∫ Td

Ti

e−λi2(Td−τ)
M∑
j=1

γij(|E
′
qiE

′
qjBij x̂j1|+ |E′

qiĖ
′
qjBij |) |θi1|dτ

≥ 2νip(Td) +

∫ Td

Ti

e−λip(Td−τ)
[
|CipAi3||

Ai2

A2
i1

αi|(1− eAi1(τ−Ti))

+Gip

M∑
j=1

γij |E
′
qiE

′
qjBij |(1− | cos(yi1 − yj1)|)χj

]
dτ, (4.15)

where θip is the pth component of θi, C
⊤
ip ∈ ℜ2 is a constant vector with all entries being 0

except the pth entry (taking the value of 1), and Gip is the pth component of Gi defined in

(4.4), then the sensor fault will be detected at time t = Td, i.e., |ỹip(Td)| > νip(Td).

Proof: In the presence of a sensor fault (i.e., for t ≥ Ti) in the ith generator, base on (4.4)

and (4.7), the dynamics of the state estimation error x̃i1
△
= xi1 − x̂i1 and x̃i2

△
= xi2 − x̂i2

of the ith FDE satisfies

˙̃xi1 = Ai1x̃i1 −Ai2βiθi + di (4.16)

˙̃xi2 = Āi4x̃i2 +Ai3x̃i1 + ηi − Liβiθi +Gi

M∑
j=1

γij [hij(xi, xj)− hij(x̂i, x̂j)] . (4.17)

Let ξi
△
= x̃i1 − Ai2

Ai1βiθi; from (4.16), we have

ξ̇i = Ai1ξi + di −
Ai2

Ai1
βiθ̇i . (4.18)
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Then, based on (4.18) and by using the triangular inequality, we obtain

|ξi(t)| ≤ ωi0e
Ai1t +

∫ t

0
eAi1(t−τ)d̄i(yi, ui, τ)dτ +

∣∣∣∣ ∫ t

0
eAi1(t−τ)

Ai2

Ai1
βiθ̇idτ

∣∣∣∣
≤ χi(t) + |Ai2

A2
i1

βiαi|(1− eAi1(t−Ti)) , (4.19)

where αi and χi(t) are defined in Assumption 4.3 and (4.13), respectively.

Now, let us consider the output estimation error. For the second component of the output

estimation error ( i.e., ỹi2 = yi2 − ŷi2), based on (4.17) and (4.4), we have

ỹi2(t) = Ci2x̃i2 + βiCi2θi

=

∫ t

0
e−λi2(t−τ)

[
− E

′2
qiBii x̃i1 + ηi2 − Ci2Liβiθi +

M∑
j=1

γij [hij(xi, xj)− hij(x̂i, x̂j)]

]
dτ

+βiCi2θi .

By using the definition of ξi (i.e., ξi
△
= x̃i1 − Ai2

Ai1βiθi) and applying again the triangular

inequality, we have

|ỹi2(t)| ≥
∣∣∣∣ ∫ t

0
e−λi2(t−τ)

[
− E

′2
qiBiiξi + (

−E′2
qiBiiAi2

Ai1
− Ci2Li)βiθi

]
dτ + βiCi2θi

∣∣∣∣
−
∫ t

0
e−λi2(t−τ)(η̄i2 +

M∑
j=1

γij |hij(xi, xj)− hij(x̂i, x̂j)|)dτ

≥
∣∣∣∣ ∫ t

0
e−λi2(t−τ)(

−E′2
qiBiiAi2

Ai1
− Ci2Li)βiθidτ + βiCi2θi

∣∣∣∣− ∫ t

0
e−λi2(t−τ)|E′2

qiBii| |ξi|dτ

−
∫ t

0
e−λi2(t−τ)(η̄i2 +

M∑
j=1

γij |hij(xi, xj)− hij(x̂i, x̂j)|)dτ . (4.20)

For the interconnection effect from the jth FDE, we have

hij(xi, xj)− hij(x̂i, x̂j) = −E′
qiE

′
qjBij [cos(yi1 − βiθi1 − yj1)xj1 − cos(yi1 − yj1)x̂j1]

+E
′
qiĖ

′
qjBij [sin(yi1 − βiθi1 − yj1)− sin(yi1 − yj1)]. (4.21)
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The first term of the right hand side of (4.21) can be rewritten as follows:

−E′
qiE

′
qjBij [cos(yi1 − βiθi1 − yj1)xj1 − cos(yi1 − yj1)x̂j1]

= −E′
qiE

′
qjBij [cos(yi1 − βiθi1 − yj1)xj1 − cos(yi1 − yj1)x̂j1 + cos(yi1 − βiθi1 − yj1)x̂j1

− cos(yi1 − βiθi1 − yj1)x̂j1]

= −E′
qiE

′
qjBij

{
cos(yi1 − βiθi1 − yj1)x̃j1 + [cos(yi1 − βiθi1 − yj1)

− cos(yi1 − yj1)]x̂j1

}
. (4.22)

Note that | cos(yi1−βiθi1−yj1)−cos(yi1−yj1)| ≤ |βiθi| and | sin(yi1−βiθi1−yj1)−sin(yi1−

yj1)| ≤ |βiθi|. Thus, based on (4.21) and (4.22), we have

|hij(xi, xj)− hij(x̂i, x̂j)| ≤ |E′
qiE

′
qjBij |(|x̃j1|+ |βiθi1| |x̂j1|) + |E′

qiĖ
′
qjBij | |βiθi1| . (4.23)

Based on (4.23), (4.20) and (4.19), we have

|ỹi2(t)| ≥
∣∣∣∣ ∫ t

0
e−λi2(t−τ)(

−E′2
qiBiiAi2

Ai1
− Ci2Li)βiθidτ + βiθi2

∣∣∣∣
−
∫ t

0
e−λi2(t−τ)|E′2

qiBii| |
Ai2

A2
i1

βiαi|(1− eAi1(τ−Ti))dτ

−
∫ t

0
e−λi2(t−τ)

M∑
j=1

γij(|E
′
qiE

′
qjBij x̂j1|+ |E′

qiĖ
′
qjBij |) |βiθi1|dτ

−
∫ t

0
e−λi2(t−τ)

[
|E′2

qiBii|χi + η̄i2 +

M∑
j=1

γij |E
′
qiE

′
qjBij |χj

]
dτ , (4.24)

where χi and χj are defined in (4.13). Based on the detection threshold given in (4.14), by
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using the property of the step function βi(t− Ti), (4.24) can be rewritten as

|ỹi2(t)| ≥
∣∣∣∣ ∫ t

Ti

e−λi2(t−τ)(
−E′2

qiBiiAi2

Ai1
−Ci2Li)θidτ + θi2

∣∣∣∣
−
∫ t

Ti

e−λi2(t−τ)
[
|E′2

qiBii| [χi + |Ai2

A2
i1

αi|(1− eAi1(τ−Ti))] + η̄i2 +
M∑
j=1

γij |E
′
qiE

′
qjBij |χj

]
dτ

−
∫ t

Ti

e−λi2(t−τ)
M∑
j=1

γij(|E
′
qiE

′
qjBij x̂j1|+|E

′
qiĖ

′
qjBij |) |θi1|dτ. (4.25)

Additionally, for the first component of output estimation error (i.e., ỹi1), by following the

similar reasoning logic as reported above, we have

|ỹi1(t)| ≥
∣∣∣∣ ∫ t

Ti

e−λi1(t−τ)(
Ai2

Ai1
−Ci1Li)θidτ+θi1

∣∣∣∣−∫ t

Ti

e−λi1(t−τ)[χi+|Ai2

A2
i1

αi|(1−eAi1(τ−Ti))+η̄i1] dτ .

(4.26)

Based on (4.25) and (4.26), it can be easily seen that if there exists Td > Ti, such that

condition (4.15) is satisfied, then it is concluded that |ỹip(Td)| > νip(Td), i.e., the fault is

detected at time t = Td.

The above analysis for the general case of incipient faults can be specified to the important

case of abrupt faults. Specifically, we have the following results:

Corollary 4.1: For the distributed fault detection method described by (4.7) and (4.14),

suppose that a constant sensor bias occurs in the ith generator at time Ti, where i ∈

{1, · · · ,M}. Then, if there exist some time instant Td > Ti and some p ∈ {1, 2 }, such

that the constant sensor bias θi satisfies the following conditions:

|θi| ≥
Nip(Td) + 2νip(Td)

σip(Td)
, (4.27)
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where

σip
△
=

∣∣∣∣Cipλip
(Ai3Ai2Ai1 − Li + I)(1− e−λip(Td−Ti))

∣∣∣∣
−Gip

∫ Td
Ti
e−λi2(Td−τ)

M∑
j=1

γij(|E
′
qiE

′
qjBij x̂j1|+ |E′

qiĖ
′
qjBij |) |Ci1|dτ

Nip
△
=

∫ Td
Ti
e−λip(Td−τ)Gip

M∑
j=1

γij |E
′
qiE

′
qjBij |(1− | cos(yi1 − yj1)|)χj dτ ,

and I is the identity matrix, then the sensor fault will be detected at time t = Td, i.e.,

|ỹip(Td)| > νip(Td).

Remark 4.3. According to Corollary 4.1, in the case of abrupt sensor faults, if the sensor

bias magnitude θi is sufficiently large (i.e., it satisfies (4.27)) for some Td > Ti , then the

fault will be detected at Td. Thus, Corollary 4.1 characterizes the class of abrupt sensor

faults that are detectable by the distributed sensor fault detection method.

Remark 4.4. In the presence of a sensor fault in one of the generators of the power system,

the fault effect may be propagated to other FDI components due to their interconnections

through the transmission network. As a result, multiple residuals generated by several local

FDEs may exceed their thresholds, indicating the occurrence of a sensor fault. Clearly,

among a set of interconnected generators, the isolation of the particular generator where

the sensor fault has actually occurred is an important research issue, which is investigated

next.

4.2.3 Distributed Fault Isolation Method

Now, assume that a sensor bias fault occurred in sth generator is detected at some time Td;

accordingly, at t = Td, the FIEs are activated. For s = 1, · · · ,M , the local FIE associated
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with the sth generator is chosen as

˙̂xs1 = As1x̂s1 +As2(ys − θ̂s) + Ωs1
˙̂
θs (4.28)

˙̂xs2 = As3x̂s1 +As4 x̂s2+Gs
vfs

T
′
dos

+ Ls(ys − ŷs) + Ωs2
˙̂
θs+Gs

M∑
j=1

γsjhsj(x̂s, x̂j)(4.29)

Ω̇s1 = As1Ωs1 −As2 (4.30)

Ω̇s2 = Ās4Ωs2 − Ls (4.31)

ŷs = x̂s2 + θ̂s , (4.32)

where x̂s1, x̂s2, and ŷs denote the estimated state and output variables provided by the

local FIE, respectively, Ls is a design gain matrix (see (4.7)), x̂s
△
= [x̂s1 (ys − θ̂s)

⊤]⊤,

x̂j
△
= [x̂j1 y⊤j ]

⊤, x̂j1 is from jth FDE, and θ̂s is the estimated sensor bias provided

by the local isolation estimator. The initial conditions are x̂s1(Td) = 0, x̂s2(Td) = 0,

Ωs1(Td) = 0, and Ωs2(Td) = 0. Note that the distributed FIE described by (4.28)-(4.32)

for each local generator is constructed based on local measurements (i.e., vfs and ys) and

certain communicated information (for instance, x̂j ) from the FDI component associated

with the jth directly interconnected generator.

The adaptive law for adjusting θ̂s is derived using the Lyapunov synthesis approach (see,

for example, [35]). Specifically, the learning algorithm is given by

˙̂
θs = PΘs

{
Γs(Ωs2 + I)⊤ỹs

}
, (4.33)

where ỹs(t)
△
= ys(t) − ŷs(t) denotes the output estimation error generated by the FIE

associated with the sth generator, Γs > 0 is a symmetric, positive-definite learning rate

matrix, and PΘs is the projection operator restricting θ̂s to the corresponding known set

Θs (in order to guarantee stability of the learning algorithm in the presence of modeling

uncertainty, as described in [35, 15]), and I is the identity matrix.

The distributed fault isolation decision scheme is based on the following intuitive principle:

if a sensor fault occurs in the sth generator at time Ts and is detected at time Td, then a
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set of adaptive threshold functions {µsp(t), p = 1, 2 } can be designed for the corresponding

local isolation estimator, such that each component of its output estimation error satisfies

|ỹsp(t)| ≤ µsp(t), for all t ≥ Td. Consequently, such a set of adaptive thresholds µsp(t), with

s = 1, · · · ,M , can be associated with the output estimation error of each local isolation

estimator. In the fault isolation procedure, if, for a particular local isolation estimator

r ∈ {1, · · · ,M}\{s}, there exists some p ∈ {1, 2 }, such that the pth component of its

output estimation error satisfies |ỹrp(t)| > µrp(t) for some finite time t > Td, then the

possibility of the occurrence of the sensor fault in rth generator can be excluded. Based on

this intuitive idea, we have the following

Distributed Fault Isolation Decision Scheme: If, for each r ∈ {1, · · · ,M}\{s} , there

exist some finite time tr > Td and some p ∈ {1, 2 }, such that |ỹrp(tr)| > µrp(t
r), then the

occurrence of the sensor bias fault in the sth generator is concluded.

Remark 4.5. Note that the isolation of the faulty generator is conducted locally. In the

distributed FDI architecture (see, for instance, Figure 4.1), a local FIE is associated with

each generator. For a particular local generator, if at least one component of the residual

generated by the local FIE exceed its threshold, then the case of a fault in the local generator

is excluded. On the other hand, if all local FIE residual components remain below their

corresponding thresholds, then the local FDI component determines that the local generator

is faulty.

4.2.4 Adaptive Thresholds for Distributed Fault Isolation

The threshold functions µsp(t) clearly play a key role in the proposed distributed fault iso-

lation decision scheme. To derive the adaptive threshold, we analyze the output estimation

error of the matched sth local isolation estimator in the case that a sensor bias fault occurs

to the sth generator.

Let us denote the state estimation error of the sth local isolation estimator associated with

the sth generator by x̃s1(t)
△
= xs1(t)− x̂s1(t) and x̃s2(t)

△
= xs2(t)− x̂s2(t) and the output

estimation error by ỹs
△
= ys − ŷs, respectively. By using (4.28)-(4.32) and (4.4), in the
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presence of a sensor fault in the sth generator, for t > Td, we have

˙̃xs1 = As1x̃s1 +As2θ̃s − Ωs1
˙̂
θs + ds (4.34)

˙̃xs2 = Ās4x̃s2 +As3x̃s1 + ηs + Lsθ̃s − Ωs2
˙̂
θs

+Gs

M∑
j=1

γsj [hsj(xs, xj)− hsj(x̂s, x̂j)] , (4.35)

where Ās4 is defined in (4.9).

The following lemma provides a bounding function for the output estimation error corre-

sponding to the local isolation estimator associated with the sth generator, in the case that

a sensor fault occurs in this generator.

Lemma 4.1. If a sensor fault in the sth generator is detected at time Td, where s ∈

{1, · · · ,M}, then for all t > Td, the pth component of the output estimation error generated

by the local FIE for the sth generator satisfies

|ỹsp(t)| ≤
∫ t

Td

e−λsp(t−τ)
[
|CspAs3|(ρs + |Ωs1θ̃s|) + η̄sp + |CspΩs2| αs

+Gsp(
M∑
j=1

γsj |E
′
qsE

′
qjBsj |χj +

M∑
j=1

γsj(|ϕsj |+ |ψsj |)θ̃s1)
]
dτ + ωs2e

−λsp(t−Td)

+|(CspΩs2 + Csp)
⊤| |θ̃s| , (4.36)

where

ϕsj(t)
△
= E

′
qsĖ

′
qjBsj sin(ys1 − yj1)− E

′
qsE

′
qjBsj x̂j1 cos(ys1 − yj1)

ψsj(t)
△
= E

′
qsĖ

′
qjBsj cos(ys1 − yj1) + E

′
qsE

′
qjBsj x̂j1 sin(ys1 − yj1) ,

θ̃s(t)
△
= θ̂s(t) − θs(t) represents the fault parameter estimation error, θs1 is the first com-

ponent of θs, ωs2 is a positive constant satisfying |xs2(Td)| ≤ ωs2, C
⊤
sp ∈ ℜ2 is a constant

vector with all entries being 0 except the pth entry (taking the value of 1), χj(t) is defined

in (4.13),

ρs(t)
△
=

∫ t

Td

eAs1(t−τ)
(
d̄s(ys, us, τ) + |Ωs1|αs

)
dτ + ω̄s0e

As1(t−Td) , (4.37)

and ω̄s0 is a constant bound satisfying |x̃s1(Td)| ≤ ω̄s0 .
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Proof: Consider the state estimation error x̃s1 described by (4.34). By substituting As2 =

−Ω̇s1 +As1Ωs1 (see (4.30)) into (4.34) and by letting x̄s1
△
= x̃s1 +Ωs1θ̃s, we obtain

˙̄xs1 = As1x̄s1 − Ωs1θ̇s + ds . (4.38)

Therefore, the solution of (4.38) is given by

x̄s1 =

∫ t

Td

eAs1(t−τ)
(
ds(xs, us, τ)− Ωs1θ̇s

)
dτ + eAs1(t−Td)x̄s1(Td) . (4.39)

By using (4.4), (4.39), Assumption 4.3, the definition of x̄s1, and the triangular inequality,

we obtain

|x̃s1| ≤ |x̄s1|+ |Ωs1θ̃s| ≤ ρs + |Ωs1θ̃s| , (4.40)

where ρs is defined in (4.37).

Now, let us consider the output estimation error ỹs. By substituting Ls = −Ω̇s2 + Ās4Ωs2

(see (4.31)) into (4.35) and by letting x̄s2
△
= x̃s2 +Ωs2θ̃s, we obtain

˙̄xs2 = Ās4x̄s2 +As3x̃s1 + ηs − Ωs2θ̇s +Gs

M∑
j=1

γsj [hsj(xs, xj)− hsj(x̂s, x̂j)] . (4.41)

Define each component of the output estimation error generated by the sth FIE as ỹsp
△
=

ysp − ŷsp, p = 1, 2. By using (4.32), (4.4), and the definition of x̄s2(t), we have

ỹsp(t) = Cspx̃s2(t)− Cspθ̃s = Cspx̄s2(t)− (CspΩs2 + Csp)θ̃s . (4.42)

Next, let us consider the second component of the output estimation error ( i.e., ỹs2). Based

on (4.41) and (4.42) as well as Assumptions 4.1 and 4.3, it can be shown that

|ỹs2(t)| ≤
∫ t

Td

e−λs2(t−τ)
[
|E′2

qsBss| |x̃s1|+ η̄s2 + |Cs2Ωs2| αs +
M∑
j=1

γsj |hsj(xs, xj)

−hsj(x̂s, x̂j)|
]
dτ + ωs2e

−λs2(t−Td) + |(Cs2Ωs2 + Cs2)
⊤| |θ̃s| , (4.43)
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where ωs2 is a constant bound for |xs2(Td)|, such that |x̃s2(Td)| = |xs2(Td)| ≤ ωs2 (Note

x̂s2(Td) = 0). Note that in the presence of a sensor fault in the sth generator, we have

hsj(xs, xj)− hsj(x̂s, x̂j) = −E′
qsE

′
qjBsj [cos(ys1 − θs1 − yj1)xj1 − cos(ys1 − θ̂s1 − yj1)x̂j1]

+E
′
qsĖ

′
qjBsj [sin(ys1 − θs1 − yj1)− sin(ys1 − θ̂s1 − yj1)]

= −E′
qsE

′
qjBsj

{
[cos(ys1 − θs1 − yj1)− cos(ys1 − θ̂s1 − yj1)]x̂j1

+cos(ys1−θs1−yj1)x̃j1
}

+E
′
qsĖ

′
qjBsj [sin(ys1−θs1−yj1)−sin(ys1− θ̂s1−yj1)].

Then, after some algebra manipulations, we have

hsj(xs, xj)− hsj(x̂s, x̂j) = −E′
qsE

′
qjBsj cos(ys1−θs1−yj1)x̃j1 + ϕsj(cos θs1−cos θ̂s1)

−ψsj(sin θs1 − sin θ̂s1) ,

where ϕsj and ψsj are given in (4.36). Thus, by using the triangle inequality, we obtain

|hsj(xs, xj)− hsj(x̂j , x̂j)| ≤ |E′
qsE

′
qjBsj ||x̃j1|+ (|ϕsj |+ |ψsj |)|θ̃s1| . (4.44)

Note that as defined in (4.29), x̂j
△
= [ x̂j1 y⊤j ]⊤ with x̂j1 being the state estimation provided

by the jth FDE. Therefore, x̃j1 in (4.44) satisfies

˙̃xj1 = Aj1x̃j1 + dj . (4.45)

Because (4.45) is in the same form of (4.8), we have |x̃j1(t)| ≤ χj(t), where χj is defined in

(4.13).
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Based on (4.43), (4.44) and (4.40), we have

|ỹs2(t)| ≤
∫ t

Td

e−λs2(t−τ)
[
|E′2

qsBss|(ρs + |Ωs1θ̃s|) + η̄s2 + |Cs2Ωs2| αs +
M∑
j=1

γsj |E
′
qsE

′
qjBsj |χj

+

M∑
j=1

γsj(|ϕsj |+ |ψsj |)|θ̃s1|
]
dτ+ωs2e

−λs2(t−Td)+ |(Cs2Ωs2 + Cs2)
⊤| |θ̃s| . (4.46)

Analogously, for the first component of output estimation error (i.e., ỹs1), by following the

similar reasoning logic as reported above, we have

|ỹs1(t)| ≤
∫ t

Td

e−λs1(t−τ)
[
ρs+|Ωs1θ̃s|+|Cs1Ωs2| αs+η̄s1

]
dτ+|(Cs1Ωs2+Cs1)⊤| |θ̃s|+ωs2e−λs1(t−Td) .

(4.47)

Now the (4.36) follows directly from (4.46) and (4.47).

Although Lemma 4.1 provides a bounding function for the output estimation error corre-

sponding to the local isolation estimator associated with the sth generator, in the case that a

sensor fault occurs in the sth generator, it cannot be directly used as a threshold function for

fault isolation, because θ̃s(t) is not available (we do not assume the condition of persistency

of excitation in this paper). However, as the estimate θ̂s belongs to the known compact set

Θs, we have
∣∣∣θsp − θ̂sp(t)

∣∣∣ ≤ κsp(t), p = 1, 2 , for a suitable κs(t)
△
= [κs1(t) κs2(t) ]

⊤ de-

pending on the geometric properties of set Θs (see, e.g., [84]). Hence, the following threshold

function for fault isolation can be chosen:

µsp(t) =

∫ t

Td

e−λsp(t−τ)
[
|CspAs3|(ρs + |Ωs1|κs) + η̄sp + |CspΩs2| αs +Gsp

M∑
j=1

γsj |E
′
qsE

′
qjBsj |χj

+Gsp

M∑
j=1

γsj(|ϕsj |+ |ψsj |)κs1
]
dτ + ωs2e

−λsp(t−Td) + |(CspΩsp + Csp)
⊤|κs . (4.48)

Remark 4.6. Note that the adaptive threshold µsp(t) can be easily implemented on-line

using linear filtering techniques (see [83]). The constant bounds ω̄s0 and ωs2 are (possibly

conservative) bounds for the unknown initial conditions xs1(Td) and xs2(Td), respectively.
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However, note that, since the effect of these bounds decreases exponentially (i.e., ω̄s0 is

multiplied by eAs1(t−Td), and ωs2 is multiplied by e−λsp(t−Td), the practical use of such

conservative bounds will not affect significantly the performance of the distributed fault

isolation algorithm.

4.3 Analytical Properties of the Distributed Fault Isolation

Method

As is well known in the fault diagnosis literature, there is an inherent tradeoff between

robustness and fault sensitivity. In this section, we analyze the fault isolability of the

distributed sensor fault diagnosis method. In addition, the stability and learning capability

of the adaptive isolation estimators are also investigated.

4.3.1 Fault Isolability Analysis

For our purpose, a fault in each generator is considered to be isolable if the distributed

fault isolation scheme is able to reach a correct decision in finite time. Intuitively, faults

are isolable if they are mutually different according to a certain measure quantifying the

difference in the effects that different faults have on measurable outputs and on the estimated

quantities in the isolation scheme. To quantify this concept, we introduce the fault mismatch

function [83] between a sensor fault occurred in the sth generator and a sensor fault occurred

in the rth generator:

hrsp (t)
△
= (CrpΩr2+Crp)θ̂r−Grp

∫ t

Td

e−λrp(t−τ)
M∑
j=1

γrj [ϕrj(cosϑ
s
j−cos θ̂r1)

+ψrj(sinϑ
s
j+sin θ̂r1)]dτ, (4.49)

where ϕrj and ψrj are defined in (4.36), r, s = 1, · · · ,M , r ̸= s, p ∈ { 1, 2 }, θ̂r1 is the

first component of θ̂r, and ϑ
s ∈ RM is a vector with only its sth component being non-zero

(i.e., ϑss = θs1 and ϑsr = 0), respectively. From a qualitative point of view, hrsp (t) can be
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interpreted as a filtered version of the difference between the effect of a sensor fault in the

sth generator on the rth FIE and the estimated sensor fault provided by the rth FIE whose

structure does not match the actual fault scenario. Therefore, the fault mismatch function

hrsp (t), defined as the ability of the rth local FIE to learn the effect of the sensor fault in

the sth generator, offers a measure of the difference between the sensor fault occurred in

the sth generator and the sensor fault occurred in the rth generator.

The following theorem characterizes in an implicit way the class of isolable faults in each

generator:

Theorem 4.2. (Fault Isolability) Consider the distributed fault isolation scheme described

by (4.28)- (4.32) and (4.48). Suppose that a sensor fault occurring in the sth generator is

detected at time Td. Then, fault s is isolable if, for each r ∈ {1, · · · ,M}\{s} , there exist

some time tr > Td and some p ∈ { 1, 2 } such that the fault mismatch function hrsp (tr)

satisfies

|hrsp (tr)| ≥
∫ t

Td

e−λrp(t−τ)
{
|CrpAr3| (χr + |Ωr1θ̂r |) + η̄rp +Grp

[ M∑
j=1

γrj |E
′
qrE

′
qjBrj | |χj |

+γrs|E
′
qrE

′
qsBrs|

(
|As2

A2
s1

αs|(1− eAs1(τ−Ts)) + |As2

As1
θs|

)] }
dτ

+ωr2e
−λrp(t−Td) + µrp(t) . (4.50)

Proof: Denote the state estimation errors of the rth local isolation estimator associated

with the rth generator by x̃r1(t)
△
= xr1(t)− x̂r1(t) and x̃r2(t)

△
= xr2(t)− x̂r2(t). By using

(4.28)-(4.32) and (4.4), in the presence of a sensor fault in the sth generator, for t > Td, we

have

˙̃xr1 = Ar1x̃r1 +Ar2θ̂r − Ωr1
˙̂
θr + dr (4.51)

˙̃xr2 = Ār4x̃r2 +Ar3x̃r1 + Lrθ̂r − Ωr2
˙̂
θr + ηr

+Gr

M∑
j=1

γrj [hrj(xr, xj)− hrj(x̂r, x̂j)] . (4.52)
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Then, based on (4.51), by using the same reasoning logic as reported in the proof of

Lemma 4.1 (see (4.38)), we have

˙̄xr1 = Ar1x̄r1 + dr (4.53)

˙̄xr2 = Ār4x̄r2 +Ar3x̃r1 + ηr +Gr

M∑
j=1

γrj [hrj(xr, xj)− hrj(x̂r, x̂j)] , (4.54)

where x̄r1
△
= x̃r1 + Ωr1θ̂r and x̄r2

△
= x̃r2 + Ωr2θ̂r. Note that (4.53) is in the same form as

(4.45). Therefore, from the proof of Lemma 4.1 and the definition of x̄r1, we obtain

|x̃r1| ≤ |x̄r1|+ |Ωr1θ̂r| ≤ χr + |Ωr1θ̂r| , (4.55)

where χr is defined in (4.13).

Now, let us analyze the estimation error of the interconnection term

M∑
j=1

γrj [hrj(xr, xj) −

hrj(x̂r, x̂j)] in (4.52). First, note that in the presence of a sensor fault in the sth generator,
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we have

hrs(xr, xs)− hrs(x̂r, x̂s) = E
′
qrĖ

′
qsBrs[sin(yr1 − (ys1 − ϑss))− sin(yr1 − θ̂r1 − ys1)]

−E′
qrE

′
qsBrs[cos(yr1 − (ys1 − ϑss))xs1 − cos(yr1 − θ̂r1 − ys1)x̂s1]

= E
′
qrĖ

′
qsBrs[sin(yr1 − ys1 + ϑss)− sin(yr1 − θ̂r1 − ys1)]

−E′
qrE

′
qsBrs

{
[cos(yr1 − ys1 + ϑss)− cos(yr1 − θ̂r1 − ys1)]x̂s1

+cos(yr1 − ys1 + ϑss)x̃s1

}
= [E

′
qrĖ

′
qsBrs sin(yr1 − ys1)− E

′
qrE

′
qsBrsx̂s1 cos(yr1 − ys1)] ·

(cosϑss − cos θ̂r1)

+[E
′
qrĖ

′
qsBrs cos(yr1 − ys1) + E

′
qrE

′
qsBrsx̂s1 sin(yr1 − ys1)] ·

(sinϑss + sin θ̂r1)− E
′
qrE

′
qsBrs cos(yr1 − ys1 + ϑss)x̃s1

= ϕrs(cosϑ
s
s−cos θ̂r1)+ψrs(sinϑ

s
s+sin θ̂r1)

−E′
qrE

′
qsBrs cos(yr1−ys1+ϑss)x̃s1 , (4.56)

where ϕrs and ψrs are defined in (4.36).

Second, the estimation error of the interconnection effect from the kth healthy generator,

k ∈ {1, · · · ,M}\{s, r}, can be represented as follows

M∑
k=1
k ̸=s

γrk[hrk(xr, xk)− hrk(x̂r, x̂k)] =

M∑
k=1
k ̸=s

γrkE
′
qrĖ

′
qkBrk

[
sin(yr1 − (yk1 − ϑsk))

− sin(yr1 − θ̂r1 − yk1)

]
−

M∑
k=1
k ̸=s

γrkE
′
qrE

′
qkBrk

[
cos(yr1 − (yk1 − ϑsk))xk1

− cos(yr1 − θ̂r1 − yk1)x̂k1

]
.
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By using a similar reasoning logic reported as in (4.56), we have

M∑
k=1
k ̸=s

γrk[hrk(xr, xk)− hrk(x̂r, x̂k)] =
M∑
k=1
k ̸=s

γrk

[
ϕrk(cosϑ

s
k − cos θ̂r1) + ψrk(sinϑ

s
k + sin θ̂r1)

−E′
qrE

′
qkBrk cos(yr1 − yk1 + ϑsk)x̃k1

]
, (4.57)

where ϕrk and ψrk are defined in (4.36), and ϑsk is the kth component of ϑs defined in (4.49).

Therefore, based on (4.56) and (4.57), we can obtain

M∑
j=1

γrj [hrj(xr, xj)−hrj(x̂r, x̂j)] =

M∑
j=1

γrj [ϕrj(cosϑ
s
j−cos θ̂r1)+ψrj(sinϑ

s
j + sin θ̂r1)

−E′
qrE

′
qjBrj cos(yr1−yj1 + ϑsj)x̃j1]. (4.58)

Then, based on (4.58) and (4.54), we have

˙̄xr2 = Ār4x̄r2 +Ar3x̃r1 + ηr +Gr

M∑
j=1

γrj

{
ϕrj(cosϑ

s
j − cos θ̂r1) + ψrj(sinϑ

s
j + sin θ̂r1)

−E′
qrE

′
qjBrj cos(yr1 − yj1 + ϑsj)x̃j1

}
. (4.59)

Now, let us consider the pth component of the output estimation error ( i.e., ỹrp
△
= yrp−ŷrp).

By using (4.32), (4.4), and the definition of x̄r2(t), we have

ỹrp(t) = Crpx̃r2(t)− Crpθ̂r = Crpx̄r2(t)− (CrpΩr2 + Crp)θ̂r .

Thus, based on the above equation and (4.59), we can obtain

ỹrp(t) = Grp

∫ t

Td

e−λrp(t−τ)
M∑
j=1

γrj [ϕrj(cosϑ
s
j − cos θ̂r1) + ψrj(sinϑ

s
j + sin θ̂r1)]dτ

+

∫ t

Td

e−λrp(t−τ)[CrpAr3x̃r1+ηrp−Grp
M∑
j=1

γrjE
′
qrE

′
qjBrj cos(yr1−yj1+ϑsj)x̃j1]dτ

−(CrpΩr2 + Crp)θ̂r + Crpx̃r2(Td)e
−λrp(t−Td) . (4.60)
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Therefore, based on (4.59) and (4.60), by using the triangle inequality, we can obtain

|ỹrp(t)| ≥ |hrsp (t)| −
∫ t

Td

e−λrp(t−τ)[|CrpAr3| |x̃r1|+ η̄rp +Grp

M∑
j=1

γrj |E
′
qrE

′
qjBrj | |x̃j1| ]dτ

+ωr2e
−λrp(t−Td) . (4.61)

In the presence of a sensor fault in the sth generator, based on some similar reasoning logic

as reported in the proof of Lemma 4.1 (see (4.45)), and (4.19), we can obtain

|x̃s1| ≤ χs + |As2

A2
s1

αs|(1− eAs1(t−Ts)) + |As2

As1
θs| , (4.62)

and

|x̃j1| ≤ χj , r ∈ {1, · · · ,M}\{s}, (4.63)

where χj is defined in (4.13). Therefore, based on (4.61), (4.62), (4.63), and (4.55), we have

|ỹrp(t)| ≥ |hrsp (t)| −
∫ t

Td

e−λrp(t−τ)
{
|CrpAr3| (χr + |Ωr1θ̂r|) + η̄rp

+Grp

[ M∑
j=1

γrj |E
′
qrE

′
qjBrj | |χj |

+γrs|E
′
qrE

′
qsBrs|

(
|As2

A2
s1

αs|(1− eAs1(τ−Ts)) + |As2

As1
θs|

) ] }
dτ

−ωr2e−λrp(t−Td) . (4.64)

Therefore, by taking into account the corresponding adaptive threshold µrp given in (4.48)

for the FIE associated with the rth generator, we can conclude that, if condition (4.50) is

satisfied at time t = tr, we obtain |ỹrp(tr)| > µrp(t
r), which implies that the possibility of

the occurrence of a sensor fault in rth generator can be excluded at time t = tr.

Remark 4.7. According to the above theorem, if, for each r ∈ {1, · · · ,M}\{s}, the

fault mismatch function hrsp (tr) satisfies condition (4.50) for some time tr > 0, then the

pth component of the output estimation error generated by the rth FIE associated with
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the rth generator would exceed its corresponding adaptive threshold at time t = tr, i.e.,

|ỹrp(tr)| > µrp(t
r), hence excluding the occurrence of a sensor fault in the rth generator.

Therefore, Theorem 4.2 characterizes (in a non-closed form) the class of sensor faults that

are isolable in each generator by the proposed robust distributed FDI scheme.

4.3.2 Stability and Learning Capability

We now investigate the stability and learning properties of the adaptive fault isolation esti-

mators, which are described by the following result:

Theorem 4.3. (Stability and Learning Capability): Suppose that a sensor fault occurs in

the sth generator at time Ts, where s ∈ {1, · · · ,M}. Then, the distributed fault isolation

scheme described by (4.28)-(4.32) and (4.48) guarantees that,

• for each local fault isolation estimator q, q = 1, · · · ,M , the estimate variables x̂q1(t),

x̂q2(t), and θ̂q(t) are uniformly bounded;

• there exist a positive constant κ̄s and a bounded function ζ̄s(t), such that, for all finite

time tf > Td, the output estimation error of the matched sth local isolation estimator

satisfies ∫ tf

Td

|ỹs(t)|2dt ≤ κ̄s + 2

∫ tf

Td

|ζ̄s(t)|2dt . (4.65)

Proof: Let us first address the signal boundedness property. The state estimation error and

output estimation error of the FIE for the qth generator are defined as x̃q1
△
= xq1(t)−x̂q1(t),

x̃q2(t)
△
= xq2(t)− x̂q2(t), and ỹq

△
= yq(t)− ŷq(t), respectively. First, let us consider the FIE

associated with sth generator (i.e., q = s ). By using the similar reasoning logic as reported

in the proof of Lemma 4.1 (see (4.38) and (4.41)), we have

˙̄xq1 = Aq1x̄q1 − Ωq1θ̇q + dq (4.66)

˙̄xq2 = Āq4x̄q2 +Aq3x̃q1 + ηq − Ωq2θ̇q +Gq

M∑
j=1

γqj [hqj(xq, xj)− hqj(x̂q, x̂j)] , (4.67)

where x̄q1
△
= x̃q1 +Ωq1θ̃q and x̄q2

△
= x̃q2 +Ωq2θ̃q.
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Since dq, Ωq1 and θ̇q are bounded (Assumption 4.1 and Assumption 4.3) and Aq1 is stable,

we obtain x̄q1 ∈ L∞ based on (4.66). Moreover, due to the use of parameter projection

(see (4.33)), we have θ̂q ∈ L∞. Therefore, based on Assumption 4.2 and the definition of

x̄q1, we know that x̃q1 ∈ L∞, and x̂q1 ∈ L∞. Then, based on a similar analysis of the

dynamics of the state estimation error x̃j1
△
= xj1 − x̂j1 of the jth FDE, we have x̃j1 ∈ L∞

and x̂j1 ∈ L∞. Thus, we know ϕqj and ψqj are bounded (see, (4.36)). Additionally, based

on a similar reasoning logic as reported in the proof of Lemma 4.1 (see (4.44)), we know that

and hqj(xq, xj)−hqj(x̂q, x̂j) is bounded. Furthermore, because ηq, Ωq2 and θ̇q are bounded

(Assumption 4.1 and Assumption 4.3) and Āq4 is stable, by using (4.67), we can obtain

x̄q2 ∈ L∞. Owing to the definition of x̄q2, we conclude that x̃q2 ∈ L∞ and x̂q2 ∈ L∞.

Now, let us consider the FIEs associated with healthy generators (i.e., q ∈ {1, · · · ,M}\{s},).

By using the similar reasoning logic as reported in the proof of Theorem 4.2 (see (4.53) and

(4.54)), we have

˙̄xq1 = Aq1x̄q1 + dq (4.68)

˙̄xq2 = Āq4x̄q2 +Aq3x̃q1 + ηq +Gq

M∑
j=1

γqj [hqj(xq, xj)− hqj(x̂q, x̂j)] , (4.69)

where x̄q1
△
= x̃q1 +Ωq1θ̂q and x̄q2

△
= x̃q2 +Ωq2θ̂q. Then, based on a similar reasoning logic

as reported above, we can conclude that θ̂q ∈ L∞, x̂q1 ∈ L∞ and x̂q2 ∈ L∞. This concludes

the first part of the theorem.

Now, let us prove the second part of the theorem concerning the learning capability of the

qth FIE in the case that it matches the occurred sensor fault in the sth generator, i.e., q = s.

In this case, the solution of (4.67) can be written as x̄s2(t) = ζs1(t)+ζs2(t), ∀t ≥ Td , where

ζs1 and ζi2 are the solutions of the following differential equations, respectively:

ζ̇s1 = Ās4ζs1 +As3x̃s1 + ηs − Ωs2θ̇s +Gs

M∑
j=1

γsj [hsj(xs, xj)− hsj(x̂s, x̂j)] , ζs1(Td) = 0

ζ̇s2 = Ās4ζs2 , ζs2(Td) = x̃s2(Td) = xs2(Td) .

(4.70)
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Using the definition of x̄s2, we have x̃s2 = ζs1(t) + ζs2(t)− Ωs2θ̃s. Therefore,

ỹs(t) = x̃s2 − θ̃s = [ζs1(t) + ζs2(t)]− (Ωs2 + I)θ̃s . (4.71)

Now, consider a Lyapunov function candidate Vs = 1
2Γs

θ̃⊤s θ̃s +
∫∞
t |ζs2(τ)|2dτ . The time

derivative of Vs along the solution of (4.33) is given by V̇s = 1
Γs
θ̃⊤s PΘs

{
Γs(Ωs2 + I)⊤ỹs

}
−

|ζs2|2− 1
Γs
θ̃⊤s θ̇s. Clearly, since θs ∈ Θs, when the projection operator P is in effect, it always

results in smaller parameter errors that will decrease V̇s [35, 15]. Therefore, by using (4.71)

and completing the squares, we obtain

V̇s ≤ θ̃⊤s (Ωs2 + I)⊤ỹs − |ζs2|2 −
1

Γs
θ̃⊤s θ̇s = ỹ⊤s (−ỹs + ζs1 + ζs2) − |ζs2|2 −

1

Γs
θ̃⊤s θ̇s

≤ −|ỹs|2

2
+ |ζs1|2 +

1

Γs
|θ̃s| |θ̇s| . (4.72)

Let ζ̄s
△
=

(
|ζs1|2 + 1

Γs
|θ̃s||θ̇s|

) 1
2
. By integrating (4.72) from t = Td to t = tf , we obtain∫ tf

Td
|ỹs(t)|2 dt ≤ κ̄s + 2

∫ tf
Td

|ζ̄s(t)|2 dt, where κ̄s
△
= suptf≥Td{2[Vs(Td)− Vs(tf )]} .

Theorem 4.3 guarantees the boundedness of all the variables involved in the local adaptive

FIE in the case that a sensor fault is detected in the corresponding generator. Moreover, the

performance measure given by (4.65) shows that the ability of the matched local isolation

estimator to learn the post-fault system dynamics is limited by the extended L2 norm of

ζ̄s(t), which, in turn, is related to the modeling uncertainties ds and ηs, the parameter

estimation error θ̃s, the rate of change of the time–varying bias θs , and the estimation

error of the interconnection.

4.4 Simulation Results

A two-machine infinite bus power system [25, 26] as shown in Figure 4.2 is used to demon-

strate the effectiveness of the proposed distributed fault detection and isolation method.

The voltage and the angle of the infinite bus are assumed to be constant under all condi-
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tions, and the infinite bus is assumed to absorb infinite power. The parameters of the two

Figure 4.2: A two-machine infinite bus power system [26]

generators and the transmission line are give in Table 4.1.

Table 4.1 System parameters

Generator 1 Generator 2

xd (p.u.) 1.863 2.36

x
′
d (p.u.) 0.257 0.319

xad (p.u.) 1.712 1.712

T
′
do (p.u.) 6.9 7.96

H(s) 4 5.1

D(p.u.) 5 3

kc 1 1

x12(p.u.) 0.55

x13(p.u.) 0.53

x23(p.u.) 0.6

ω0(rad/s) 314.159

Based on the parameters given in Table 1, by defining the state variables as xi = [xi1 x
⊤
i2]

⊤ =

[ωi δi ∆Pei]
⊤ with i = 1, 2, we can obtain a state space model of the system consisting of
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two generators as follows:

 ẋ11

ẋ12

 =


−0.625 0 −39.27

1 0 0

−E′2
q1B11 0 −0.1449


 x11

x12

+


0

0

1

 0.1449 vf1 +


0

0

1

h12

y1 =

 0 1 0

0 0 1

x1 ,

 ẋ21

ẋ22

 =


−0.2941 0 −30.8

1 0 0

−E′2
q2B22 0 −0.1256


 x21

x22

+


0

0

1

 0.1256 vf2 +


0

0

1

h21

y2 =

 0 1 0

0 0 1

x2 ,
where the interconnection terms h12 and h21 are given by:

h12(δ, ω) = E
′
q1Ė

′
q2B12 sin(δ1 − δ2)− E

′
q1E

′
q2B12 cos(δ1 − δ2)ω2

h21(δ, ω) = E
′
q2Ė

′
q1B21 sin(δ2 − δ1)− E

′
q2E

′
q1B21 cos(δ2 − δ1)ω1 ,

and the known variables E
′
qi and Bij , i, j = 1, 2, can be calculated on-line based on the

machine dynamics [25].

In this two-machine infinite bus power simulation example, two sources of modeling un-

certainty are considered: (i) up to 5% disturbance effect on the power system frequency

(i.e., fi = (1/2π)ωi); (ii) up to 5% reduction in the direct axis transient short-circuit time

constant T
′
doi. Therefore, we have d̄i =

∣∣0.05ωi
2π

∣∣ , η̄i1 = 0, and η̄i2 =
0.0526

T
′
doi

|vfi −∆Pei|. The

initial condition of machine 1 and machine 2 are set to x1 = x2 = [ 0 0 0 ]⊤. For simplicity,

the input to each subsystem consists of two parts: a stabilizing part based on state feedback
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design and a sinusoidal signal causing each subsystem to deviate from steady-state linear

dynamics. In the simulation, the actual modeling uncertainties used are: (i) 4% distur-

bance effect on the power system frequency; (ii) 2% reduction in the direct axis transient

short-circuit time constant T
′
doi.

The gain matrix Li of the estimators is chosen such that the poles of matrix Āi4 are located

at -1.7 and -2.5, respectively. Consequently, the related design constants are λi1 = −1.7

and λi2 = −2.5. Additionally, in the fault isolation module, FIE1 and FIE2 are two FIEs

which are associated with the first generator and the second generator, respectively. The

learning rates of the adaptive algorithm for fault parameters estimation in FIE1 and FIE2

are 1 and 0.05 for both FIE1 and FIE2.

We consider the case of a constant sensor bias which may occur to one of the two genera-

tors. Figure 4.3 and Figure 4.4 show the fault detection results when a constant bias with

θ2 = [ 0.03 0.001 ]⊤ occurs to the second generator at T2 = 5 second. Specifically, the fault

detection residuals (solid line) associated with δi and ∆Pi and the corresponding thresh-

olds (dashed line) generated by each local FDE are shown in Figure 4.3 and Figure 4.4,

respectively. As can be seen, the fault is detected almost immediately by each FDE. Then,

the two local FIEs are activated to determine the particular faulty generator. The fault

isolation residuals (solid line) and the corresponding thresholds (dashed line) generated by

the FIE1 and FIE2 are shown in Figure 4.5 and Figure 4.6, respectively. It can be seen

that the residual associated with output ∆P1 generated by FIE 1 (i.e. the FIE associated

with the first generator) exceeds its threshold at approximately t = 6 second. Meanwhile,

both of the two residual components (solid line) generated by FIE 2 always remain below

their thresholds (dashed line), as shown in Figure 4.6. Thus, the sensor fault in the second

generator is correctly isolated.

In addition, the case of a sensor fault θ1 = [ 0.02 0.001 ]⊤ in the first generator has also

been considered. Specifically, Figure 4.7 and Figure 4.8 show fault detection results when

the fault occurs to the first generator at T1 = 5 second. Figure 4.9 and Figure 4.10 show

the results of fault isolation. Again, the sensor bias is successfully detected and isolated.
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Figure 4.3: The case of a sensor bias in the second generator: the fault detection residuals
(solid and blue line) associated with y11 and y12 and their thresholds (dashed and red line)
generated by the local FDE for the first generator
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Figure 4.4: The case of a sensor bias in the second generator: the fault detection residuals
(solid and blue line) associated with y21 and y22 and their thresholds (dashed and red line)
generated by the local FDE for the second generator
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Figure 4.5: The case of a sensor bias in the second generator: the fault isolation residuals
(solid and blue line) and their thresholds (dashed and red line) generated by local FIE1
associated with the first generator
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Figure 4.6: The case of a sensor bias in the second generator: the fault isolation residuals
(solid and blue line) and their thresholds (dashed and red line) generated by local FIE2
associated with the second generator

96



0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
FDE1 output 1

time (second)

 

 
residual
threshold

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08
FDE1 output 2

time (second)

 

 
residual
threshold

fault detected

Figure 4.7: The case of a sensor bias in the first generator : the fault detection residuals
(solid and blue line) associated with y11 and y12 and their thresholds (dashed and red line)
generated by the local FDE for the first generator.
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Figure 4.8: The case of a sensor bias in the first generator: the fault detection residuals
(solid and blue line) associated with y21 and y22 and their thresholds (dashed and red line)
generated by the local FDE for the second generator.
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Figure 4.9: The case of a sensor bias in the first generator: the fault isolation residuals
(solid and blue line) and their thresholds (dashed and red line) generated by the local FIE
1 associated with the first generator.
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Figure 4.10: The case of a sensor bias in the first generator: the fault isolation residuals
(solid and blue line) and their thresholds (dashed and red line) generated by the local FIE
2 associated with the second generator.
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Chapter 5

Distributed Sensor Fault Diagnosis

in a Class of Interconnected

Nonlinear Uncertain Systems

The distributed fault diagnosis schemes for sensor faults in a class of input-output intercon-

nected nonlinear systems have been presented in Chapter 4. In such systems, it is assumed

that the system state in each subsystem can be decomposed into an unknown part and

a measurable part, and there is no interconnection term in the dynamic equation of the

unknown part of states. These assumptions may result in some possibly limiting require-

ments in applications. In this chapter, we extend the results described in Chapter 4 by

considering a class of input-output interconnected nonlinear systems, where both unknown

part and measurable part of system states of each subsystem are directly affected by the

interconnection between other directly interconnected subsystems and this local subsystem.

We are aiming to determine the particular subsystem with faulty sensors in the presence

of propagated fault effect. In the presented distributed FDI architecture, a fault diagnostic

component is designed for each subsystem in the interconnected system by utilizing local

measurements and certain communicated information from neighboring FDI components
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associated with its directly interconnected subsystems. Each local FDI component consists

of a FDE and a nonlinear adaptive FIE. Once a sensor fault is detected, then the FIEs are

activated for the purpose of isolating the particular subsystem where the sensor fault has

actually occurred. In the fault isolation stage, the output estimation error of each FIE is

evaluated with a set of adaptive thresholds, which can be implemented on-line using linear

filtering techniques. The occurrence of sensor fault in a particular subsystem is excluded

if at least one component of the output estimation error associated with the correspond-

ing FIE exceeds its threshold at some finite time. The subsystem with actual local faulty

sensors can be isolated if we can successfully exclude the occurrences of sensor faults for

all subsystems but one. The chapter focuses on the derivation of adaptive thresholds for

distributed sensor fault detection and fault isolation, respectively, ensuring robustness with

respect to interactions among interconnected subsystems and modeling uncertainty. Ad-

ditionally, the fault detectability condition and the stability and learning property of the

distributed adaptive fault isolation method are investigated. An example of interconnected

inverted pendulums mounted on carts is used to illustrate the effectiveness of the proposed

scheme.

The organization of this chapter is as follows In Section 5.1, the sensor FDI problem for a

class of interconnected nonlinear uncertain systems is formulated. Section 5.2 describes the

distributed FDI architecture and the design of local FDI component for each subsystem in

the interconnected system. The design of adaptive thresholds for distributed fault isolation

is presented in Section 5.3. Section 5.4 investigates two important analytical properties of

the distributed FDI method, including the fault detectability condition and the stability

and learning capability of the distributed adaptive fault isolation method. To illustrate the

effectiveness of the FDI method, simulation results of an example of interconnected inverted

pendulums mounted on carts is presented in Section 5.5.
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5.1 Problem Formulation

Consider a nonlinear dynamic system composed of M interconnected subsystems with the

dynamics of the ith subsystem, i = 1, · · · ,M , being described by the following differential

equation

ẋi = Aixi + Eiζi(xi, ui) +Diφi(xi, ui, t) + gi(yi, ui) +
∑M

j=1 hij(xj , uj)

yi = C̄ixi + βi(t− T0)θi(t)
(5.1)

where xi ∈ ℜni , ui ∈ ℜmi , and yi ∈ ℜli are the state vector, input vector, and output

vector of the ith subsystem (ni ≥ li), respectively, Ei ∈ ℜni×qi and Di ∈ ℜni×ri are constant

matrices, and ζi : ℜni × ℜmi 7→ ℜqi , gi : ℜli × ℜmi 7→ ℜni , φi : ℜni × ℜmi × ℜ+ 7→ ℜri ,

hij : ℜnj ×ℜmj 7→ ℜni are smooth vector fields. Specifically, the model given by

ẋNi = AixNi + Eiζi(xNi, ui) + gi(yNi, ui)

yNi = C̄ixNi

is the known nominal model of the ith subsystem with ζi and gi being the known nonlinear-

ities. The vector field φi in (5.1) represents the modeling uncertainty of the ith subsystem,

and βi(t − T0)θi(t) denotes a sensor bias fault. Specifically, βi(t − T0) is a step function

representing the time profile of the sensor fault which occurs at some unknown time T0.

The vector θi(t) ∈ ℜli represents the unknown time-varying sensor bias affecting the out-

put of subsystem i. Therefore, the sensor fault can be either an abrupt or incipient one.

It is assumed that the sensor fault only occurs to one of the M subsystems at any time.

Additionally, the vector fields hij represents the direct interconnection between the ith sub-

system and the jth subsystem. Note that hii(xi, ui) = 0, because the interconnection term

is only defined for two different subsystems. Also, it is noted that likely many functions hij

are identically zero, since many subsystems may not be directly interconnected.

Assumption 5.1 The constant matrices Ei ∈ ℜni×qi , Di ∈ ℜni×ri , and C̄i ∈ ℜli×ni

with qi ≤ li are of full column rank and satisfies the conditions of rank(C̄iEi) = qi and
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rank(C̄iDi) = ri.

Then, under Assumption 5.1, there exists a change of coordinates zi = [z⊤i1 z⊤i2]
⊤ = Tixi

with zi1 ∈ ℜ(ni−li) and zi2 ∈ ℜli , such that ([72])

• TiEi =

 0

Ei2

, TiDi =

 0

Di2

, where Ei2 ∈ ℜli×qi , and Di2 ∈ ℜli×ri .

• C̄iT
−1
i = [0 Ci], where Ci ∈ ℜli×li is orthogonal.

Therefore, in the new coordinate system, by considering more general structures of the

system nonlinearity and modeling uncertainty, we have

żi1 = Ai1zi1 +Ai2zi2 + ψi1(yi, ui) +

M∑
j=1

H1
ij(zj , uj)

żi2 = Ai3zi1 +Ai4zi2 + ρi2(zi, ui) + ψi2(yi, ui) + ηi(zi, ui, t) +

M∑
j=1

H2
ij(zj , uj)

yi = Cizi2 + βi(t− T0)θi(t) ,

(5.2)

where

 Ai1 Ai2

Ai3 Ai4

 = TiAiT
−1
i ,

 ψi1

ψi2

 = Tigi, and

 H1
ij

H2
ij

 = Tihij , and the smooth

vector fields ρi2 : ℜni×ℜmi 7→ ℜli and ηi : ℜni×ℜmi×ℜ+ 7→ ℜli represent the unstructured

system nonlinearity and modeling uncertainty in the zi2 state equation, respectively.

The objective of this chapter is to develop a robust distributed sensor bias FDI scheme

for interconnected nonlinear systems that can be transformed into (5.2). Specifically, the

distributed FDI algorithm aims to determine the particular subsystem with faulty sensors.

Throughout this chapter, the following assumptions are made:

Assumption 5.2 The unstructured modeling uncertainty, represented by ηi in (5.2), is an

unknown nonlinear function of zi, ui, and t, but bounded, i.e.,

|ηi(zi, ui, t)| ≤ η̄i(yi, ui, t) , (5.3)

where the bounding function η̄i is known and uniformly bounded in the corresponding

102



compact sets of admissible state variables, inputs, and outputs, respectively.

Assumption 5.3 The system state vector zi of each subsystem remains bounded before

and after the occurrence of a fault, i.e., zi(t) ∈ L∞, ∀t ≥ 0.

Assumption 5.4 The nonlinear terms ρi2(zi, ui) satisfy the following condition: ∀ui ∈ Ui

and ∀zi, ẑi ∈ Zi,

|ρi2(zi, ui)− ρi2(ẑi, ui)| ≤ σi2(yi, ui) |zi − ẑi| (5.4)

where σi2 is a known and uniformly bounded function, Zi ⊂ ℜni and Ui ⊂ ℜmi are compact

sets of admissible state variables and inputs, respectively.

Assumption 5.5 The interconnection terms satisfy the following condition, i.e., ∀zi, ẑi ∈

Zi, and ∀zj , ẑj ∈ Zj ,

|H1
ij(zj , uj)−H1

ij(ẑj , uj)| ≤ γ1ij |zj − ẑj | (5.5)

|H2
ij(zj , uj)−H2

ij(ẑj , uj)| ≤ γ2ij(yi, ui)|zj − ẑj | (5.6)

where γ1ij is a known Lipschitz constant, γ2ij is a known and uniformly bounded function,

and Zi ⊂ ℜni and Zj ⊂ ℜnj are compact sets of admissible state variables for subsystems i

and j, respectively.

Assumption 5.6 The rate of change of the possibly time-varying sensors bias is uniformly

bounded, i.e., |θ̇i(t)| ≤ αi for all t ≥ 0. Also, the sensor bias magnitude θi is uniformly

bounded, i.e., |θi(t)| ≤ θ̄i.

Assumption 5.2 characterizes the class of modeling uncertainty under consideration. The

bound on the modeling uncertainty is needed in order to be able to distinguish between the

effects of faults and modeling uncertainty ([14, 83]).

Assumption 5.3 requires the boundedness of the state variables before and after the occur-

rence of a fault in each subsystem. Hence, it is assumed that the distributed feedback control

system is capable of retaining the boundedness of the state variables of each subsystem even

in the presence of a fault. This is a technical assumption required for well-posedness since

the distributed FDI design under consideration does not influence the closed-loop dynamics
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and stability. The design of distributed fault-tolerant controllers is beyond the scope of this

chapter. However, it is important to note that the proposed distributed FDI design does

not depend on the structure of the distributed controllers.

Assumption 5.4 characterizes the type of known nonlinearities of the nominal system dy-

namics under consideration. It is needed for deriving the adaptive thresholds for fault

detection and isolation.

Assumption 5.5 requires the interconnection terms to satisfy Lipschitz condition. Several

examples of distributed nonlinear systems with Lipschitz interconnection terms have been

considered in literature, including automated highway system (see, e.g., [58, 62]), inter-

connected inverted pendulums given in [32], and large-scale power systems as described in

[25].

5.2 Distributed Fault Detection and Isolation Architecture

The distributed FDI architecture is comprised of M local FDI components, with one FDI

component designed for each of the M subsystems. Specifically, each local FDI component

consists of a FDE and an adaptive FIE. Under normal conditions, each local FDE monitors

the corresponding local subsystem to detect the occurrence of any fault. If a sensor fault is

detected, then the FIEs are activated for the purpose of isolating the particular subsystem

where the sensor fault has actually occurred.

The example depicted in Figure 4.1 can be used to illustrate the distributed FDI architecture

described above. In Figure 4.1, a system composed of three interconnected subsystems is

considered. Without loss of generality, we assume that there exist direct interconnections

in two pairs of subsystems (i.e., subsystems 1 and 2, and subsystems 2 and 3). Thus, the

distributed FDI architecture consists of three local FDI components, and the information

exchange is conducted between FDI component 1 and 2, and FDI components 2 and 3,

respectively. An example of three interconnected inverted pendulums mounted on carts,

which has a similar system structure as shown in Figure 4.1, will be considered in Section
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5.5.

5.2.1 Distributed Fault Detection Method

In this section, we describe the distributed fault detection method, including the design of

each local FDE for residual generation and adaptive thresholds for residual evaluation.

Based on the subsystem model described by (5.2), the FDE for each local subsystem is

chosen as:

˙̂zi1 = Ai1ẑi1 +Ai2C
−1
i yi + ψi1(yi, ui) +

M∑
j=1

H1
ij(ẑj , uj)

˙̂zi2 = Ai3ẑi1 +Ai4ẑi2 + ψi2(yi, ui) + ρi2(ẑi, ui) + Li(yi − ŷi) +

M∑
j=1

H2
ij(ẑj , uj)

ŷi = Ciẑi2 ,

(5.7)

where ẑi1, ẑi2, and ŷi denote the estimated local state and output variables of the ith subsys-

tem, i = 1, · · · ,M , respectively, Li ∈ ℜli×li is a design gain matrix, ẑi
△
= [(ẑi1)

⊤ (C−1
i yi)

⊤]⊤,

and ẑj
△
= [(ẑj1)

⊤ (C−1
j yj)

⊤]⊤ (here ẑj1 is the estimate of state vector zj1 of the jth inter-

connected subsystem). The initial conditions are ẑi1(0) = 0 and ẑi2(0) = C−1
i yi(0).

For each local FDE, let z̃i1
△
= zi1 − ẑi1 and z̃i2

△
= zi2 − ẑi2 denote the state estimation

errors, and ỹi
△
= yi − ŷi denote the output estimation error. Then, before fault occurrence

(i.e., for t < T0), by using (5.2) and (5.7), the estimation error dynamics are given by

˙̃zi1 = Ai1z̃i1 +
M∑
j=1

[
H1
ij(zj , uj)−H1

ij(ẑj , uj)
]

(5.8)

˙̃zi2 = Āi4z̃i2+Ai3z̃i1+ρi2(zi, ui)−ρi2(ẑi, ui)+ηi+
M∑
j=1

[
H2
ij(zj , uj)−H2

ij(ẑj , uj)
]
(5.9)

ỹi = Ci(zi2 − ẑi2) = Ciz̃i2 , (5.10)

where Āi4
△
= Ai4 − LiCi. Note that, since Ci is nonsingular, we can always choose Li to
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make Āi4 stable. We define a state estimation error vector as:

z̃1(t)
△
= [(z̃11)

⊤, · · · , (z̃i1)⊤, · · · , (z̃M1)
⊤]⊤ (5.11)

Next, we will investigate the design of adaptive thresholds for distributed fault detection in

each subsystem. First, a bounding function on the state estimation error vector z̃1 can be

obtained for 0 ≤ t < T0 ( i.e., before fault occurrence).

Lemma 5.1 Consider the interconnected systems described by (5.2) and the fault detection

estimators described by (5.7). Assume that there exists a symmetric positive definite matrix

P̄i ∈ ℜ(ni−li)×(ni−li), for i = 1, · · · ,M , such that,

1. the symmetric matrix R̄i
△
= −A⊤

i1P̄i − P̄iAi1 > 0 ,

2. the matrix Q̄ ∈ ℜM×M , whose entries are given by

Q̄ij =

 λmin(R̄i) , i = j

−||P̄i||γ1ij − ||P̄j ||γ1ji , i ̸= j, j = 1, · · · , M

is positive definite, where γ1ij and γ
1
ji are the Lipschitz constants introduced in (5.5),

and λmin(R̄i) is the smallest eigenvalue of R̄i.

Then, for 0 ≤ t < T0, the state estimation error vector z̃1(t) defined by (5.11) satisfies the

following inequality:

|z̃1(t)| ≤ χ(t), (5.12)

where χ(t) = V̄0e−ct

λmin(P̄ )
, the matrix P̄

△
= diag{P̄1, · · · , P̄M}, the constant c △

= λmin(Q̄)/λmax(P̄ ),

and V̄0 is a positive constant.

Proof: The proof of the above lemma follows a similar reasoning logic as reported in the

proof of Lemma 3.2 in Chapter 3, and it is omitted here.

Now, let us consider each component of the output estimation error, i.e., ỹip(t)
△
= Cipz̃i2(t),

p = 1, · · · , li, where Cip is the pth row vector of matrix Ci. Based on (5.4), (5.6) and (5.12),
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after following a similar reasoning logic in [85], we have

|ỹip(t)| ≤ kip

∫ t

0
e−λip(t−τ)

[
|ϱi|χ(τ) + η̄i

]
dτ , (5.13)

where kip and λip are positive constants chosen such that |CipeĀi4t| ≤ kipe
−λipt (since Āi4

is stable, constants kip and λip satisfying the above inequality always exist, as described by

[35]), and

ϱi
△
= [γ2i1, · · · , γ2i(i−1), ||Ai3||+σi2, γ2i(i+1), · · · , γ

2
iM ]⊤ , (5.14)

(that is, the entries of ϱi are given by ϱii = ||Ai3||+ σi2, and ϱij = γ2ij for j ̸= i).

Therefore, according to (5.13), the occurrence of a sensor fault is detected when the modulus

of at least one component of the output estimation error (i.e., ỹip(t)), generated by the one

or more local FDEs, exceeds its corresponding threshold νip(t) given by

νip(t)
△
= kip

∫ t

0
e−λip(t−τ)

[
|ϱi|χ(τ) + η̄i

]
dτ . (5.15)

Remark 5.1 In the presence of a sensor fault in one subsystem, the fault effect may

be propagated to other subsystems due to their interconnections. As a result, multiple

residuals generated by several local FDEs associated with different subsystems may exceed

their thresholds, indicating the occurrence of a sensor fault. Thus, the determination of

the particular subsystem where the sensor fault has actually occurred among subsystems

affected by the fault is necessary for successful sensor fault diagnosis, which is investigated

next.

5.2.2 Distributed Fault Isolation Method

Now, assume that a sensor bias fault occurred in sth subsystem is detected at some time Td;

accordingly, at t = Td, the FIEs are activated. For s = 1, · · · ,M , the local FIE associated
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with the sth subsystem is chosen as

˙̂zs1 = As1ẑs1 +As2C
−1
s (ys − θ̂s) + ψs1(ys, us) + Ωs1

˙̂
θs +

M∑
j=1

H1
sj(ẑj , uj) (5.16)

˙̂zs2 = As3ẑs1 +As4ẑs2 + ψs2(ys, us) + ρs2(ẑs, us) + Ls(ys − ŷs) + Ωs2
˙̂
θs

+

M∑
j=1

H2
sj(ẑj , uj) (5.17)

Ω̇s1 = As1Ωs1 −As2C
−1
s (5.18)

Ω̇s2 = Ās4Ωs2 − Ls (5.19)

ŷs = Csẑs2 + θ̂s (5.20)

where ẑs1, ẑs2, and ŷs denote the estimated state and output variables provided by the

local FIE, respectively, Ls ∈ ℜls×ls is a design gain matrix (for simplicity of presentation

and without loss of generality, we let Ls = Li), ẑs
△
= [(ẑs1)

⊤ (C−1
s (ys − θ̂s))

⊤]⊤, ẑj
△
=

[(ẑj1 − Ωj1θ̂j)
⊤ (C−1

j yj)
⊤]⊤, and θ̂s is the estimated sensor bias provided by the local

isolation estimator. The initial conditions are ẑs1(Td) = 0, ẑs2(Td) = 0, Ωs1(Td) = 0, and

Ωs2(Td) = 0.

The adaptation in the isolation estimators arises due to the unknown fault magnitude θs.

The adaptive law for adjusting θ̂s is derived using the Lyapunov synthesis approach (see,

for example, [35]). Specifically, the learning algorithm is given by

˙̂
θs = PΘs

{
Γ(CsΩs2 + I)⊤ỹs

}
, (5.21)

where ỹs(t)
△
= ys(t)−ŷs(t) denotes the output estimation error generated by the FIE for the

sth subsystem, Γ > 0 is a symmetric, positive-definite learning rate matrix, and PΘs is the

projection operator restricting θ̂s to the corresponding known set Θs (in order to guarantee

stability of the learning algorithm in the presence of modeling uncertainty (as described in

[35, 15]).

The distributed fault isolation decision scheme is based on the following intuitive principle:
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if a sensor fault occurs in the sth subsystem at time T0 and is detected at time Td, then a set

of adaptive threshold functions {µsp(t), p = 1, · · · , ls } can be designed for the corresponding

local isolation estimator, such that each component of its output estimation error satisfies

|ỹsp(t)| ≤ µsp(t), for all t ≥ Td. Consequently, such a set of adaptive thresholds µsp(t), with

s = 1, · · · ,M , can be associated with the output estimation error of each local isolation

estimator. In the fault isolation procedure, if, for a particular local isolation estimator

r ∈ {1, · · · ,M}\{s}, there exists some p ∈ {1, · · · , lr}, such that the pth component of

its output estimation error satisfies |ỹrp(t)| > µrp(t) for some finite time t > Td, then the

possibility of the occurrence of the sensor fault in rth subsystem can be excluded. Thus,

we have the following

Distributed Fault Isolation Decision Scheme: If, for each r ∈ {1, · · · ,M}\{s} , there

exist some finite time tr > Td and some p ∈ {1, · · · , lr}, such that |ỹrp(tr)| > µrp(t
r), then

the occurrence of the sensor bias fault in the sth subsystem is concluded.

Clearly, the distributed fault isolation logic follows the well-known generalized observer

scheme (GOS) architectural framework.

5.3 Adaptive Thresholds for Distributed Fault Isolation

The threshold functions µsp(t) clearly play a key role in the proposed distributed fault

isolation decision scheme. Denote the state estimation error generated by the local isolation

estimator for the sth subsystem by z̃s1(t)
△
= zs1(t) − ẑs1(t) and z̃s2(t)

△
= zs2(t) − ẑs2(t).

By using (5.16)-(5.20) and (5.2), in the presence of a sensor fault in the sth subsystem, for

t > Td, we have

˙̃zs1 =As1z̃s1+As2C
−1
s θ̃s+

M∑
j=1

[
H1
sj(zj , uj)−H1

sj(ẑj , uj)
]
−Ωs1

˙̂
θs (5.22)

˙̃zs2 =Ās4z̃s2+As3z̃s1+ηs+ρs2(zs, us)−ρs2(ẑs, us)+Lsθ̃s−Ωs2
˙̂
θs

+
M∑
j=1

[
H2
sj(zj , uj)−H2

sj(ẑj , uj)
]

(5.23)
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where θ̃s = θ̂s − θs is the parameter estimation error, and Ās4 is defined in (5.9). By

substituting As2C
−1
s = −Ω̇s1 + As1Ωs1 (see (5.18)) into (5.22) and by letting z̄s1

△
= z̃s1 +

Ωs1θ̃s, we have

˙̄zs1 = As1z̄s1 +
M∑
j=1

[
H1
sj(zj , uj)−H1

sj(ẑj , uj)
]
− Ωs1θ̇s. (5.24)

Let us define a vector of state estimation errors as:

z̄1(t)
△
= [(z̄11)

⊤ , · · · , (z̄s1)⊤ , · · · , (z̄M1)
⊤]⊤ , (5.25)

where for s = 1, · · · ,M , z̄s1 is defined in (5.24). Then, we have the following result:

Lemma 5.2 Consider the interconnected systems described by (5.2) and the fault isolation

estimators described by (5.16)-(5.20). In the presence of a sensor fault in sth subsystem,

if there exists a symmetric positive definite matrix Pi ∈ ℜ(ni−li)×(ni−li), for i = 1, · · · ,M ,

such that,

1. the symmetric matrix

Ri
△
= −A⊤

i1Pi − PiAi1 − 2PiPi > 0 , (5.26)

2. the matrix Q ∈ ℜM×M , whose entries are given by

Qij =

 λmin(Ri) , j = i

−||Pi||γ1ij − ||Pi||γ1ji , j ̸= i, j = 1, · · · , M
(5.27)

is positive definite, where γ1ij and γ
1
ji are the Lipschitz constants defined in (5.5).

Then, the state estimation error vector z̄1(t) defined by (5.25) satisfies

|z̄1(t)| ≤ χs(t), for t > Td , (5.28)
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where

χs(t) =

{
V̄0e

−b(t−Td)

λmin(P )
+

1

2λmin(P )

∫ t

Td

e−b(t−τ)
[
||Ωs1||2 α2

s+

M∑
j=1

[
γ1jsθ̄s(||Ωs1||+||C−1

s ||)
]2]

dτ

} 1
2

,

(5.29)

the matrix P
△
= diag{P1, · · · , PM}, the constant b △

= λmin(Q)/λmax(P ), and V̄0 is a constant

to be defined later on in the proof.

Proof: The proof consists of three parts. First, let us consider the Lyapunov function

candidate Vs = z̄⊤s1Psz̄s1. The time derivative of Vs along the solution of (5.24) is given by

V̇s = z̄⊤s1(A⊤
s1Ps+PsAs1)z̄s1−2z̄⊤s1PsΩs1θ̇s+2z̄⊤s1Ps

M∑
j=1

[
H1
sj(zj , uj)−H1

sj(ẑj , uj)
]
.(5.30)

Note that, for the interconnected jth subsystem, where j ∈ {1, · · · ,M}\{s} , we have

zj − ẑj =

 zj1 − ẑj1 +Ωj1θ̂j

zj2 − C−1
j yj

 =

 z̄j1

0

 , (5.31)

where z̄j1 is defined in (5.24) (note that z̄j1 = z̃j1+Ωj1θ̃j = z̃j1+Ωj1θ̂j). Therefore, based

on (5.31) and (5.5), we have

2z̄s1Ps

M∑
j=1

[H1
sj(zj , uj)−H1

sj(ẑj , uj)] ≤ 2||Ps||
M∑
j=1

γ1sj |z̄s1| |z̄j1|. (5.32)

Also, we have

2 z̄⊤s1PsΩs1θ̇s ≤ |2Psz̄s1| |Ωs1θ̇s| ≤ 2z̄⊤s1PsPsz̄s1 +
1

2
|Ωs1θ̇s|2 . (5.33)

By using (5.30), (5.32) and (5.33), we have

V̇s ≤ z̄⊤s1
[
A⊤
s1Ps + PsAs1 + 2PsPs

]
z̄s1 +

1

2
|Ωs1θ̇s|2 + 2||Ps||

M∑
j=1

γ1sj |z̄s1||z̄j1|.
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According to (5.26) and the inequality z̄⊤s1Rsz̄s1 ≥ λmin(Rs)|z̄s1|2, where λmin(Rs) is the

minimum eigenvalue of Rs, we have

V̇s ≤ −λmin(Rs)|z̄s1|2 + 2||Ps||
M∑
j=1

γ1sj |z̄s1||z̄j1|+
1

2
|Ωs1θ̇s|2 . (5.34)

Second, for the interconnected rth subsystem, where r ∈ {1, · · · ,M}\{s} , based on (5.16)

and (5.2), we have

˙̄zr1 = Ar1z̄r1 +

M∑
j=1

[
H1
rj(zj , uj)−H1

rj(ẑj , uj)
]
. (5.35)

Note that the difference between (5.35) and (5.24) is because in the case the sensor fault is

assumed to be in the sth subsystem. For subsystem r, we also define a Lyapunov function

candidate Vr = z̄⊤r1Prz̄r1. The time derivative of Vr along the solution of (5.35) is given by

V̇r = z̄⊤r1(A⊤
r1Pr+PrAr1)z̄r1+2z̄⊤r1Pr

[
H1
rs(zs, us)−H1

rs(ẑs, us)
]

+2z̄⊤r1Pr

M∑
k=1
k ̸=s

[
H1
rk(zk, uk)−H1

rk(ẑk, uk)
]
. (5.36)

Note that for the interconnection terms in (5.36), we have

zs − ẑs =

 zs1 − ẑs1 +Ωs1θ̂s

zs2 − C−1
s ys

 =

 z̄s1 +Ωs1θs

−C−1
s θs

 , (5.37)

and

zk − ẑk =

 zk1 − ẑk1 +Ωk1θ̂k

zk2 − C−1
k yk

 =

 z̄k1

0

 , (5.38)

where z̄k1 = ẑk1 +Ωk1θ̂k = ẑk1 +Ωk1θ̃k. Then based on (5.37) and (5.38), we have

2z̄r1Pr

M∑
k=1
k ̸=s

[
H1
rk(zk, uk)−H1

rk(ẑk, uk)
]
≤ 2||Pk||

M∑
k=1
k ̸=s

γ1rk|z̄r1| |z̄k1|, (5.39)
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and

2z̄r1Pr
[
H1
rs(zs, us)−H1

rs(ẑs, us)
]

≤ 2||Pr||γ1rs|z̄r1||z̄s1|+2z̄⊤r1PrPrz̄r1 +

+
1

2

[
γ1rs(|Ωs1θs|+|C−1

s θs|)
]2
. (5.40)

Therefore, based on (5.39), (5.40), (5.36) and (5.26), after some algebraic manipulations, it

can be shown that

V̇r ≤ −λmin(Rr)|z̄r1|2 + 2||Pr||
M∑
j=1

γ1rj |z̄r1||z̄j1|+
1

2

[
γ1rs(|Ωs1θs|+ |C−1

s θs|)
]2
.(5.41)

Finally, we consider an overall Lyapunov function candidate V =
∑M

i=1 Vi =
∑M

i=1 z̄
⊤
i1Piz̄i1 =

z̄⊤1 P z̄1 for the interconnected systems, where P = diag{P1, · · · , PM} and z̄1 is defined in

(5.25). From (5.34) and (5.41), we have

V̇ ≤ −
M∑
i=1

λmin(Ri)|z̃i1|2 +
M∑
i=1

M∑
j=1

2||Pi||γ1ij |z̃i1| |z̃j1|

+
1

2

[
|Ωs1θ̇s|2 +

M∑
j=1

[
γ1js(|Ωs1θs|+ |C−1

s θs|)
]2]

= −
[
|z̄11| |z̄21| · · · |z̄M1|

]
Q
[
|z̄11| |z̄21| · · · |z̄M1|

]⊤
+
1

2
|Ωs1θ̇s|2 +

1

2

M∑
j=1

[
γ1js(|Ωs1θs|+ |C−1

s θs|)
]2
,

where the matrixQ is defined by (5.27). By applying the Rayleigh principle (i.e., λmin(Q)|z̄1|2 ≤

z̄⊤1 Qz̄1 ≤ λmax(Q)|z̄1|2), we have

V̇ ≤ −bV +
1

2
|Ωs1θ̇s|2 +

1

2

M∑
j=1

[
γ1js(|Ωs1θs|+ |C−1

s θs|)
]2
,

where the constant b is defined in (5.29). Now, based on Lemma 3.2.4 in [35] and Assumption
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4.6, it can be shown that

V (t) ≤ 1

2

∫ t

Td

e−b(t−τ)
{ M∑
j=1

[
γ1jsθ̄s(||Ωs1||+||C−1

s ||)
]2
+||Ωs1||2α2

s

}
dτ+V (0)e−b(t−Td) . (5.42)

Note that a positive constant V̄0 can be always chosen such that V (0) < V̄0. By using

the definition of V (t) and the Rayleigh principle, the proof of (5.28) can be concluded.

The following lemma provides a bounding function for the output estimation error generated

by the local isolation estimator associated with the sth subsystem, in the case that a sensor

fault occurs in the sth subsystem.

Lemma 5.3 If a sensor fault in the sth subsystem is detected at time Td, where s ∈

{1, · · · ,M}, then for all t > Td, the pth component of the output estimation error generated

by the local FIE for the sth subsystem satisfies

|ỹsp(t)| ≤ ksp

∫ t

Td

e−λsp(t−τ)
[
(σs2 + ||As3||) |Ωs1θ̃s|+ |ϱs|χs(τ) + σs2|C−1

s θ̃s|

+η̄s + αs||Ωs2||
]
dτ + |CspΩs2θ̃s + θ̃sp| + kspωs2e

−λsp(t−Td), (5.43)

where θ̃s(t)
△
= θ̂s(t)− θs(t) is the fault parameter estimation error, ωs2 is a positive constant

satisfying |zs2(Td)| ≤ ωs2, θ̃sp is the pth component of θ̃s, and ϱs is defined in (5.14).

Proof: Consider the the state estimation error z̃s2 described by (5.23). By substituting

Ls = −Ω̇s2 + Ās4Ωs2 (see (5.19)) into (5.23) and by letting z̄s2
△
= z̃s2 +Ωs2θ̃s, we obtain

˙̄zs2 = Ās4z̄s2 +As3z̃s1 + ρs2(zs, us)− ρs2(ẑs, us)− Ωs2θ̇s + ηs

+

M∑
j=1

[
H2
sj(zj , uj)−H2

sj(ẑj , uj)
]
. (5.44)

Define each component of the output estimation error generated by the sth FIE as ỹsp
△
=
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ysp − ŷsp, with p = 1, · · · , ls. By using (5.20), (5.2), and the definition of z̄s2(t), we have

ỹsp(t) = Cspz̃s2(t)− θ̃sp = Csp

(
z̄s2(t)− Ωs2θ̃s

)
− θ̃sp . (5.45)

Note that in the presence of a sensor fault in subsystem s, we have

zs − ẑs =

 zs1 − ẑs1

zs2 − C−1
s (ys − θ̂s)

 =

 z̃s1

C−1
s θ̃s

 . (5.46)

By using (5.46) and (5.31), we have

|H2
sj(zj , uj)−H2

sj(ẑj , uj)| ≤ γ2sj |z̄j1|

|ρs2(zs, us)− ρs2(ẑs, us)| ≤ σs2|z̃s1|+ σs2|C−1
s θ̃s| .

(5.47)

Based on (5.47), (5.45), and the definition of z̄s1, and by following some similar reasoning

logic as reported in the derivation of adaptive thresholds for fault detection, we have

|ỹsp(t)| ≤ ksp

∫ t

Td

e−λsp(t−τ)
[
(||As3|| + σs2)(|z̄s1|+ |Ωs1θ̃s|)

+
M∑
j=1

γ2sj |z̄j1|+ σs2|C−1
s θ̃s|+ η̄s + |Ωs2θ̇s|

]
dτ

+|CspΩs2θ̃s + θ̃sp|+ ksp|z̄s2(Td)|e−λsp(t−Td) , (5.48)

where the constants ksp and λsp are introduced in (5.13), and ωs2 is an upper bound of

|zs2(Td)| such that |z̃s2(Td)| = |zs2(Td)| ≤ ωs2. Now, by using (5.14), (5.48), Lemma 5.2,

and Assumption 5.6, the proof of (5.43) can be concluded.

Although Lemma 5.3 provides a bounding function for the output estimation error corre-

sponding to the local isolation estimator associated with the sth subsystem, in the case

that a sensor fault occurs in the sth subsystem. Lemma 5.3 cannot be directly used as a

threshold function for fault isolation, because θ̃s(t) is not available (we do not assume the
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condition of persistency of excitation in this paper). However, as the estimate θ̂s belongs to

the known compact set Θs, we have
∣∣∣θs − θ̂s(t)

∣∣∣ ≤ κs(t), for a suitable κs(t) depending on

the geometric properties of set Θs (see, e.g., [83]). Hence, the following threshold function

for fault isolation can be chosen:

µsp(t) = ksp

∫ t

Td

e−λsp(t−τ)
[
(||As3||+σs2)||Ωs1||κs+ |ϱs|χs(τ)+σs2||C−1

s ||κs+ η̄s+ ||Ωs2||αs
]
dτ

+|CspΩs2 + Fsp|κs + kspωs2e
−λsp(t−Td) . (5.49)

where F⊤
sp ∈ ℜls is a constant vector with all entries being 0 except the pth entry (taking

the value of 1). The above design and analysis is summarized as follows:

Theorem 5.1 : Consider a sensor fault in subsystem s is detected at time Td, where s =

1, · · · ,M . Then, the distributed fault isolation scheme, characterized by the distributed

fault isolation estimators (5.16) - (5.20) and the adaptive thresholds (5.49), guarantees that

each component of the output estimation error generated by the local isolation estimator

associated with subsystem s satisfies |ỹsp(t)| ≤ µsp(t) , for all p = 1, · · · , ls, and t ≥ Td.

5.4 Analytical Properties

In this section, we analyze two important properties of the distributed FDI method, in-

cluding fault detectability as well as stability and learning capability of the adaptive fault

isolation method.

5.4.1 Fault Detectability Analysis

As is well known in the fault diagnosis literature, there is an inherent tradeoff between

robustness and fault detectability. The following theorem characterizes (in a non-closed

form) the class of sensor faults that are detectable by the proposed distributed FDI method.

Theorem 5.2 (Fault Detectability): For the distributed fault detection method de-

scribed by (5.7) and (5.15), suppose that a sensor fault occurs in the ith subsystem at

time T0, where i ∈ {1, · · · ,M}. Assume there exists a symmetric positive definite matrix
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P̂i ∈ ℜ(ni−li)×(ni−li), for i = 1, · · · ,M , such that,

1. the symmetric matrix

R̂i
△
= −A⊤

i1P̂i − P̂iAi1 − 2P̂iP̂i > 0 , (5.50)

2. the matrix Q̂ ∈ ℜM×M , whose entries are given by

Q̂ij =

 λmin(R̂i) , j = i

−||P̂i||γ1ij − ||P̂j ||γ1ji , j ̸= i, j = 1, · · · , M
(5.51)

is positive definite, where γ1ij and γ
1
ji are the Lipschitz constants defined in (5.5).

Then, the sensor fault will be detected if there exist some time instant Td > T0 and some

p ∈ {1, · · · li }, such that the sensor bias θi satisfies the following condition

∣∣∣∣θip − Cip

∫ Td

T0

eĀi4(Td−τ)Liθidτ

∣∣∣∣− kip

∫ Td

T0

e−λip(Td−τ)
[
|ϱi| ξi ||C−1

i θi||2d̄ + σi2|C−1
i θi|

]
dτ

> νip +Ni(Td), (5.52)

where θip is the pth component of θi, ||(·)||2d̄ is the exponentially weighted L2 norm de-

fined in the time interval [T0 , Td] ( see [35]), ϱi is defined in (5.14), the constant d̄
△
=

λmin(Q̂)/λmax(P̂ ), the matrix P̂
△
= diag{P̂1, · · · , P̂M}, Ni(Td)

△
= kip

∫ Td
T0
e−λip(Td−τ)

[
|ϱi|ϕ(τ)+

η̄i
]
dτ with ϕ(t)

△
=

{
V̄0e−d̄t

λmin(P̂ )

} 1
2

, and ξi is a constant to be defined later on in the proof.

Proof: In the presence of a sensor fault (i.e., for t ≥ T0) in the ith subsystem, base on (5.2)

and (5.7), the dynamics of the state estimation error z̃i1
△
= zi1 − ẑi1 and z̃i2

△
= zi2 − ẑi2 of

the ith FDE satisfies

˙̃zi1 = Ai1z̃i1−Ai2C
−1
i βiθi+

M∑
j=1

[
H1
ij(zj , uj)−H1

ij(ẑi, uj)
]

(5.53)

˙̃zi2 = Āi4z̃i2 +Ai3z̃i1 + ρi2(zi, ui)− ρi2(ẑi, ui) + ηi − Liβiθi

+

M∑
j=1

[
H2
ij(zj , uj)−H2

ij(ẑj , uj)
]
. (5.54)
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First, we consider the Lyapunov function candidate Vi = z̃⊤i1P̂iz̃i1. By using a similar

reasoning logic as shown in the proof of Lemma 5.2 , we can obtain the time derivative of

Vi along the solution of (5.53) as follows:

V̇i ≤ −λmin(R̂i)|z̃i1|2+2 ||P̂i||
M∑
j=1

γ1ij |z̃i1||z̃j1|+
1

2
|Ai2C

−1
i βiθi|2 . (5.55)

Second, for the interconnected nth subsystem, where n ∈ {1, · · · ,M}\{i} , we also define

a Lyapunov function candidate Vn = z̃⊤n1P̂nz̃n1. It can be shown that

V̇n≤−λmin(R̂n)|z̃n1|2+2||P̂n||
M∑
j=1

γ1nj |z̃n1| |z̃j1|+
1

2
[ γ1ni|C−1

i βiθi| ]2, (5.56)

where R̂n is defined in (5.50).

Finally, we consider an overall Lyapunov function candidate V =
∑M

j=1 Vj =
∑M

j=1 z̃
⊤
j1P̂j z̃j1 =

z̃⊤1 P̂ z̃1 for the interconnected systems, where P̂ = diag{P̂1, · · · , P̂M} and z̃1 is defined in

(5.11). Based on (5.55) and (5.56), and by following a similar reasoning logic as reported

in the proof of Lemma 4.2, we have

V̇ ≤ −d̄V +
1

2

[ M∑
j=1

(γ1ji|C−1
i βiθi|)2 + ||Ai2||2 |C−1

i βiθi|2
]
,

where the constant d̄ is defined in the theorem. Now, let us consider z̃1 defined in (5.11).

Based on Lemma 4.1, it can be shown that

|z̃1|2 ≤ V0e
−d̄t

λmin(P̂ )
+

∫ t

0
e−d̄(t−τ)ξ2i |C−1

i βiθi|2 dτ

= ϕ2 + ξ2i (||C−1
i βiθi||2d̄)2 , (5.57)

where ξi
△
=

{
||Ai2||2+

∑M
j=1(γ

1
ji)

2

2λmin(P̂ )

} 1
2

, ϕ is defined in the theorem, and the positive constant V0

is chosen such that V (0) < V0. Based on (5.57), we can obtain

|z̃1(t)| ≤ ϕ(t) + ξi||C−1
i βiθi(t)||2d̄ . (5.58)
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Now, let us consider each component of the output estimation error, (i.e., ỹip = yip − ŷip,

p = 1, · · · li). Based on (5.7) and (5.2), we have

ỹip(t) = Cipz̃i2 + βiθip

= Cip

∫ t

0
eĀi4(t−τ)

{
Ai3 z̃i1 + ρi2(zi, ui)− ρi2(ẑi, ui) + ηi

−Liβiθi +
M∑
j=1

[H2
ij(zj , uj)−H2

ij(ẑj , uj)]

}
dτ + βiθip .

Additionally, by using (5.58) and by applying the triangular inequality, we obtain

|ỹip(t)| ≥
∣∣∣∣Cip ∫ t

0
eĀi4(t−τ)(−Liβiθi)dτ + βiθip

∣∣∣∣
−kip

∫ t

0
e−λip(t−τ)

[
|ϱi| ξi||C−1

i βiθi||2d̄ + σi2|C−1
i βiθi|

]
dτ

−kip
∫ t

0
e−λip(t−τ)(|ϱi|ϕ+ η̄i)dτ, (5.59)

where ϱi is defined in (5.14). Now, based on (5.59) and the step function βi, it can be easily

seen that if there exists Td > T0, such that condition (5.52) is satisfied, then it is concluded

that |ỹip(Td)| > νip(Td), i.e., the fault is detected at time t = Td.

5.4.2 Stability and Learning Capability

Theorem 5.3 (Stability and Learning Capability): Suppose that a sensor fault occurs in

the sth subsystem at time T0, where s ∈ {1, · · · ,M}. Then, the distributed fault isolation

scheme described by (5.16)-(5.20) and (5.49) guarantees that,

• for each local fault isolation estimator q, q = 1, · · · ,M , the estimate variables ẑq1(t),

ẑq2(t), and θ̂q(t) are uniformly bounded;

• there exist a positive constant κ̄s and a bounded function ζ̄s(t), such that, for all finite

time tf > Td, the output estimation error of the matched sth local isolation estimator
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satisfies ∫ tf

Td

|ỹs(t)|2dt ≤ κ̄s + 2

∫ tf

Td

|ζ̄s(t)|2dt . (5.60)

where ζ̄s(t) and κ̄s are related to the modeling uncertainty, the estimation errors.

Proof. Let us consider the signal boundedness property. The state estimation error and

output estimation error of the FIE associated with the qth subsystem are defined as z̃q1
△
=

zq1(t)− ẑq1(t), z̃q2(t)
△
= zq2(t)− ẑq2(t), and ỹq

△
= yq(t)− ŷq(t), respectively.

First, consider the FIE associated with sth subsystem (i.e., q = s ). By using (5.24) and

the similar reasoning logic as reported in the proof of Lemma 5.3 (see (5.44)), respectively,

we obtain

˙̄zq1 = Aq1z̄q1+

M∑
j=1

[
H1
qj(zj , uj)−H1

qj(ẑj , uj)
]
−Ωq1θ̇q (5.61)

˙̄zq2 = Āq4z̄q2 +Aq3z̃q1 + ηq − Ωq2θ̇q + ρq2(zq, uq)

−ρq2(ẑq, uq)+
M∑
j=1

[
H2
qj(zj , uj)−H2

qj(ẑj , uj)
]
, (5.62)

where z̄q1
△
= z̃q1 + Ωq1θ̃q and z̄q2

△
= z̃q2 + Ωq2θ̃q. Note that (5.61) is in the same form

as (5.24). Thus, based on the results of Lemma 5.2 (i.e., (5.28)), Assumption 5.2 and

Assumption 5.6, we have z̄q1 ∈ L∞ and z̄j1 ∈ L∞. Moreover, due to the use of parameter

projection (see (5.21)), we have θ̂q ∈ L∞ and θ̂j ∈ L∞ . Therefore, based on Assumption 5.3

and the definition of z̄q1 and z̄j1, we know that z̃q1 ∈ L∞, z̃j1 ∈ L∞, ẑq1 ∈ L∞ and

ẑj1 ∈ L∞. Additionally, based on Lemma 4.3, we know that ρq2(zq, uq)−ρq2(ẑq, uq) and

H2
qj(zj , uj)−H2

qj(ẑj , uj) are bounded. Furthermore, because ηq, Ωq2 and θ̇q are bounded

(Assumption 5.2 and Assumption 5.6) and Āq4 is stable, by using (5.62), we can obtain

z̄q2 ∈ L∞. Owning to the definition of z̄q2, we conclude that z̃q2 ∈ L∞ and ẑq2 ∈ L∞.

Second, let us consider the FIEs associated with healthy subsystems (i.e., q ∈ {1, · · · ,M}\{s},).

By using the similar reasoning logic as reported in the proof of Lemma 5.2 and Lemma 5.3
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(see (5.35) and (5.44)), we have

˙̄zq1 = Aq1z̄q1 +
M∑
j=1

[
H1
qj(zj , uj)−H1

qj(ẑj , uj)
]

˙̄zq2 = Āq4z̄q2 +Aq3z̃q1 + ηq + ρq2(zq, uq)− ρq2(ẑq, uq) +

M∑
j=1

[
H2
qj(zj , uj)−H2

qj(ẑj , uj)
]
,

where z̄q1
△
= z̃q1 + Ωq1θ̂q and z̄q2

△
= z̃q2 + Ωq2θ̂q. Then, based on a similar reasoning logic

as reported above, we can conclude that z̄q1 ∈ L∞, θ̂q ∈ L∞, ẑq1 ∈ L∞, z̄q2 ∈ L∞, and

ẑq2 ∈ L∞. This concludes the first part of the theorem.

Next, in the case that the qth FIE matches the occurred sensor fault in the sth subsystem,

i.e., q = s, the proof of the second part of the theorem concerning the learning capability of

the qth FIE follows similar reasoning logic in [85] and is omitted here due to space limitation.

Theorem 5.3 guarantees the boundedness of all the variables involved in the local adaptive

FIEs in the presence of a sensor fault in the sth subsystem. Moreover, the performance

measure given by (5.60) shows that the ability of the matched local isolation estimator to

learn the post-fault system dynamics is limited by the L2 norm of ζ̄s(t), which, in turn,

is related to the modeling uncertainty ηs, the parameter estimation error θ̃s, the rate of

change of the time–varying bias θs , and the estimation error of the interconnection term.

5.5 Simulation Results

In this section, a simulation example of interconnected inverted pendulums mounted on

carts [32] shown in Figure 3.1 is chosen to illustrate the effectiveness of the distributed FDI

algorithm. Specifically, we consider three identical inverted pendulums mounted on carts,

which are connected by springs and dampers. Each cart is linked by a transmission belt to
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a drive wheel driven by a DC motor. As described in [32], the equations of motion are

(M +m)ψ̈i + Fψψ̇i +mlϑ̈icosϑi −ml(ϑ̇i)
2sinϑi = ui + si

Jϑ̈i + Fϑϑ̇i −mlgsinϑi +mlψ̈icosϑi = 0

where, for each subsystem, ψi (i = 1, 2, 3) is the position of the cart, ϑi is the angle of the

pendulum, ui is the input force to the carts, respectively. The interconnection forces due to

springs and dampers are s1 = k(ψ2−ψ1)+c(ψ̇2−ψ̇1), s2 = k(ψ1+ψ3−ψ2)+c(ψ̇1+ψ̇3−ψ̇2),

and s3 = k(ψ2 − ψ3) + c(ψ̇2 − ψ̇3), where k and c are the spring constant and the damping

constant, respectively. Additionally, J is the moment of inertial, M is the mass of the

cart, m is rod mass, l is rod length, g is the gravitational acceleration, Fϑ and Fψ are the

friction coefficients. The model parameters are: M = 10 kg, m = 0.535 kg, J = 0.62 kgm2,

l = 0.365m, Fψ = 0.062 kg/s, Fϑ = 0.09 kgm2 and g = 9.8m/s2, k = 1.5, and c = 0.2.

For each subsystem, we assume the cart position, pendulum angle, and pendulum angular

velocity are measured. By using a change of coordinates defined by xi = [xi1 xi2 xi3 xi4]
⊤ =

Ti[ψi ϑi ψ̇i ϑ̇i]
⊤ with Ti = [−1.5 0 1.5 3.175/ cosϑi; 1 0 0 0; 0 1 0 0; 0 0 0 1], a state

space model in the form of (5.2) can be obtained.

The modeling uncertainty is assumed to be up to 5% inaccuracy in the friction constant

Fψ (In the simulation, the actual modeling uncertainty considered is 2% inaccuracy). We

consider a sensor fault which may occur to the first output of the ith subsystem, i.e., a

constant bias in yi1 with θi1 ∈ [ 0, 0.4 ].

Figure 5.1, Figure 5.2, and Figure 5.3 show the simulation results when a constant bias

with θ2 = [ 0.3 0 0 ]⊤ occurs in the second subsystem at T2 = 5 second. Specifically, the

fault detection residual (solid line) associated with ϑ̇i and its threshold (dashed line) gen-

erated by each local FDE are shown in Figure 5.1. As can be seen, the fault is detected

almost immediately by each FDE. Then, the three local FIEs are activated to determine

the particular faulty subsystem. Selected fault isolation residuals (solid line) and the corre-

sponding thresholds (dashed line) generated by the FIE1 and FIE3 are shown in Figure 5.2.
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It can be seen that the residuals associated with ϑ̇i generated by FIE 1 and FIE 3 exceed

their thresholds at approximately t = 5.2 second. Meanwhile, all three residual components

(solid line) generated by FIE 2 always remain below their thresholds (dashed line), as shown

in Figure 5.3. Thus, we conclude the sensor fault is in subsystem 2. It is worth noting that

for FIE 1 and FIE 3, only the residuals and thresholds associated with y13 and y33 are

shown, since it is sufficient to exclude the possibility of occurrence of any sensor fault in

subsystem 1 and subsystem 3 based on the presented fault isolation decision scheme.
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Figure 5.1: Selected detection residual generated by each FDE.
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Figure 5.2: Selected isolation residuals generated by FIE 1 and FIE 3 (for subsystems 1
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Figure 5.3: Isolation residuals generated by FIE 2 (associated with subsystem 2).
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Chapter 6

A Distributed Detection Scheme

for Process Faults and Sensor

Faults in a Class of Interconnected

Nonlinear Uncertain Systems

6.1 Introduction

In the Chapter 3, Chapter 4 and Chapter 5, the design and analysis of distributed faut

diagnosis in interconnected input-output nonlinear systems are presented. However, such

systems are assumed to satisfy certain structural assumptions. Specifically, the system

models considered in the above three chapters are based on the assumptions that the system

states in each subsystem can be decomposed into an unknown part and a measurable part.

In this chapter, we significantly extend the previous results in the above three chapters by

removing this restrictive limitation on system model structure.

In the presented distributed fault detection architecture, a local fault detection component

is designed for each subsystem under consideration by utilizing local measurements and
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certain communicated information from neighboring fault detection components associated

with its directly interconnected subsystems. The distributed fault detection method is

presented with an analytical framework aiming at characterizing its important properties.

Specifically, the analysis focuses on: (i) derivation of adaptive thresholds for distributed

fault detection, ensuring the robustness property with respect to interactions among in-

terconnected subsystems and modeling uncertainty; (ii) investigation of fault detectability

conditions, characterizing the class of process faults and sensor faults that are detectable

by the proposed method.

This chapter is organized as follows. In Section 6.2, the problem of distributed fault de-

tection for a class of interconnected nonlinear uncertain systems is formulated. Section 6.3

describes the distributed fault detection method, including the design of local fault detection

component for each subsystem and the derivation of adaptive thresholds for fault isolation.

In Section 6.4, the fault detectability conditions are analyzed, characterizing the class of

sensor faults and process faults that are detectable by the proposed method, respectively.

Simulation results of an example of multi-machine power systems is presented in Section 6.5.

6.2 Problem Formulation

Consider a nonlinear dynamic system composed of M interconnected subsystems with the

dynamics of the ith subsystem, i = 1, · · · ,M , being described by the following differential

equation

ẋi = Aixi + ϕi(xi, ui) + βix(t− Tix)fi(xi, ui) +Diηi(xi, ui, t) + ξi(zi, ui, t)

+
M∑
j=1

hij(yi, xj , uj)

yi = Cixi + βiy(t− Tiy)θi (6.1)

where xi ∈ ℜni , ui ∈ ℜmi , and yi ∈ ℜli are the state vector, input vector, and output

vector of the ith subsystem, respectively, zi ∈ ℜri is the combined state vectors of the
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ith subsystem and its directly interconnected subsystems. ϕi : ℜni × ℜmi 7→ ℜni , ηi :

ℜni × ℜmi × ℜ+ 7→ ℜqi , fi : ℜni × ℜmi 7→ ℜni , ξi : ℜri × ℜmi × ℜ+ 7→ ℜni , hij :

ℜli ×ℜnj ×ℜmj 7→ ℜni are smooth vector fields. Specifically, the model given by

ẋNi = AixNi + ϕi(xNi, ui)

yNi = CixNi

is the known nominal model of the ith subsystem with ϕi being the known nonlinearity.

The modeling uncertainty consists of two parts. First, the vector field ηi in (6.1) represents

the modeling uncertainty in the local dynamics of the ith subsystem, and Di ∈ ℜni×qi is a

modeling uncertainty distribution matrix. Second, the vector field ξi in (6.1) represents the

modeling uncertainty in the interconnections between the ith subsystem and its directly

interconnected subsystems.

The term βix(t−Tix)fi(xi, ui) denotes the changes in the dynamics of ith subsystem due to

the occurrence of a process fault in the local subsystem. Specifically, βix(t−Tix) describes the

time profile of a fault which occurs at some unknown time Tix, and fi(xi, ui) is a nonlinear

fault function. The change in the dynamics of ith subsystem due to the occurrence of a

sensor fault in the local subsystem is represented by βiy(t − T0)θi in (6.1). Specifically,

θi ∈ ℜli represents the magnitude of a constant sensor bias fault, and the function βiy

characterize the time profile of the sensor fault in ith subsystem with the unknown fault

occurrence time Tiy. In this chapter, both the time profile functions βix(·) and βix(·) are

considered as a step function βi (i.e., βi(t− T0) = 0 if t < T0, and βi(t− T0) = 1 if t ≥ T0,

where T0 = Tix for process faults, and T0 = Tiy for sensor faults).

The objective of this chapter is to develop a robust distributed fault detection scheme for

the class of interconnected nonlinear uncertain systems in the form of (6.1). We consider

the case of a single process fault represented by fi(xi, ui) and the case of a single sensor fault

represented by θi. Note that the sensor fault can possibly affect multiple output components

(i.e., θi ∈ ℜli). The following assumptions are made throughout this chapter

Assumption 6.1. The function ηi in (6.1), representing the modeling uncertainty in the
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local dynamics of the ith subsystem, is an unknown nonlinear function of xi, ui and t, but

bounded. Also, the functions ξi in (6.1), describing unknown part of the interaction be-

tween ith subsystem and other directly interconnected subsystems, is an unknown nonlinear

function of zi, ui and t, but bounded. Specifically,

|ηi(xi, ui, t)| ≤ η̄i(yi, ui, t) ,

|ξi(zi, ui, t)| ≤ ξ̄i(y, ui, t),
(6.2)

where y is combined output vectors of the ith subsystem and its directly interconnected

subsystems, the the bounding functions η̄i and ξ̄i are known and uniformly bounded in

the corresponding compact sets of admissible state variables, inputs, and outputs with

appropriate dimensions, respectively.

Assumption 6.2 The system state vector xi of each subsystem remains bounded before

and after the occurrence of a fault, i.e., xi(t) ∈ L∞, ∀t ≥ 0.

Assumption 6.3 The nonlinear terms ϕi(xi, ui) in (6.1) satisfy a Lipschitz condition:

∀ui ∈ Ui and ∀xi, x̂i ∈ Xi,

|ϕi(xi, ui)− ϕi(x̂i, ui)| ≤ σi|xi − x̂i| (6.3)

where σi is a known Lipschitz constant, Xi ⊂ ℜni and Ui ⊂ ℜmi are compact sets of

admissible state variables and inputs, respectively.

Assumption 6.4 The interconnection terms hij(yi, xj , uj) is Lipschitz in xj with a known

Lipschitz constant γij , i.e., ∀xj , x̂j ∈ Xj ,

|hij(yi, xj , uj)− hij(yi, x̂j , uj)| ≤ γij |xj − x̂j | . (6.4)

Assumption 6.1 characterize the class of modeling uncertainty under consideration, in-

cluding various modeling errors in the system’s local dynamics and the unknown part of

interconnection between subsystems. The bounds on the modeling uncertainties are neces-

sary for distinguishing between the effects of faults and modeling uncertainty (see [79, 84]).
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Assumption 6.2 requires the boundedness of the state variables before and after the occur-

rence of a fault in each subsystem. Hence, it is assumed that the distributed feedback control

system is capable of retaining the boundedness of the state variables of each subsystem even

in the presence of a fault. This is a technical assumption required for well-posedness since

the distributed FDI design under consideration does not influence the closed-loop dynamics

and stability. The design of distributed fault-tolerant controllers is beyond the scope of this

paper. However, it is important to note that the proposed distributed FDI design does not

depend on the structure of the distributed controllers.

Assumption 6.4 requires the nominal interconnection term hij between subsystems is Lips-

chitz in xj . In literature, several examples of distributed nonlinear systems with Lipschitz

interconnection terms have been considered (see, for instance, the automated highway sys-

tem [58], interconnected inverted pendulums [63], and large-scale power systems [25]).

Remark 6.1 The nonlinear fault diagnosis schemes presented in previous papers [82, 84] are

based on a centralized architecture. In this chapter, the problem of distributed fault detection

for interconnected nonlinear uncertain systems is investigated. Moreover, in [85, 77, 78],

a distributed fault diagnosis method was developed for a class of interconnected nonlinear

systems satisfying certain structural assumptions. Moreover, it is assumed the fault only

affect measurable state variables. In the dissertation, we consider a class of more general

interconnected nonlinear uncertain systems, and the faults are allowed to affect all the state

variables.

6.3 Distributed Fault Detection Method

The distributed fault detection architecture is comprised of M local FDE, with one FDE

designed for each of the M subsystems. Specifically, each local FDE monitors the corre-

sponding local subsystem to detect the occurrence of any fault.

In this section, we investigate the distributed fault detection method, including the designs

of each local FDE for residual generation and the corresponding adaptive thresholds for

residual evaluation.
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6.3.1 Distributed Fault Detection Estimators

Based on the subsystem model described by (6.1), the FDE for each local subsystem is

chosen as:

˙̂xi = Aix̂i + ϕi(x̂i, ui) + Li(yi − ŷi) +

M∑
j=1

hij(yi, x̂j , uj) +Diη̄i(yi, ui)sgn(Eiỹi)

ŷi = Cix̂i , (6.5)

where x̂i and ŷi denote the estimated local state and output variables of the ith subsystem,

i = 1, · · · ,M , respectively, ỹi
△
= yi − ŷi denotes the output estimation error, Li ∈ ℜni×li

is a design gain matrix, Ei is a design matrix defined later on (in Lemma 6.2), x̂j is the

estimate of state vector xj of the jth interconnected subsystem. It is worth noting that

the distributed FDE given by (6.5) for the ith subsystem is constructed based on local

input and output variables (i.e., ui and yi) and the communicated information x̂j and uj

from the FDE associated with the jth directly interconnected subsystem. Note that many

distributed estimation and diagnostic methods in literature allow certain communication

among interconnected subsystems (see, e.g., [58, 60, 20]).

For each local FDE, let x̃i
△
= xi− x̂i denote the state estimation error of the ith subsystem.

Then, before fault occurrence (i.e., for t < T0), by using (6.1) and (6.5), the estimation

error dynamics are given by

˙̃xi = Āix̃i + ϕi(xi, ui)− ϕi(x̂i, ui) + ξi +

M∑
j=1

[hij(yi, xj , uj)− hij(yi, x̂j , uj)]

+Diηi −Diη̄i(yi, ui)sgn(Eiỹi) (6.6)

ỹi = Ci(xi − x̂i) = Cix̃i , (6.7)

where Āi
△
= Ai − LiCi.

130



6.3.2 Adaptive Thresholds for Distributed Fault Detection

Next, we investigate the design of adaptive thresholds for distributed fault detection in each

subsystem. The following Lemma will be needed in the subsequent analysis:

Lemma 6.1 [35]. Let z(t), r(t) : [0,∞) 7→ ℜ. Then

ż(t) ≤ −αz(t) + r(t), ∀t ≥ t0 ≥ 0

implies that

z(t) ≤ e−α(t−t0)z(t0) +

∫ t

t0

e−α(t−τ)r(τ)dτ, ∀t ≥ t0 ≥ 0

for any finite constant α.

Then, a bounding function on the state estimation error vector

x̃(t)
△
= [(x̃1)

⊤, · · · , (x̃2)⊤, · · · , (x̃M )⊤]⊤ (6.8)

before fault occurrence ( i.e., for 0 ≤ t < T0) can be derived. Specifically, we have the

following results:

Lemma 6.2 For the system described by (6.1) and the fault detection estimator described

by (6.5). If there exists a symmetric positive definite matrix Pi ∈ ℜni×ni , a gain matrix

Li ∈ ℜni×li , and a matrix Ei ∈ ℜqi×li such that,

Qi
△
= −Ā⊤

i Pi − PiĀi−(2 +
M∑
j=1

γij)PiPi − (2σi||Pi||+
M∑
j=1

γji)I > 0 (6.9)

PiDi = C⊤
i E

⊤
i , (6.10)

where I is the identity matrix, γij and γji are the Lipschitz constants introduced in (6.4).

Then, for 0 ≤ t < T0, the state estimation error vector x̃(t) defined by (6.8) satisfies

|x̃|2 ≤ V̄0e
−at

λmin(P )
+

1

2λmin(P )

∫ t

0
e−a(t−τ)

M∑
i=1

|ξ̄i|2 dτ , (6.11)

131



where the constant a
△
= λmin(Q)/λmax(P ), P

△
= diag{P1, · · · , PM}, Q △

= diag{Q1, · · · , QM},

ξ̄i is defined in Assumption 6.1 , and V̄0 is a positive constant to be defined later on.

Proof: For the ith subsystem, let us consider a Lyapunov function candidate Vi = x̃⊤i Pix̃i.

Then the time derivative of Vi along the solution of (6.6) is given by

V̇i = x̃⊤i

[
Ā⊤
i Pi + PiĀi

]
x̃i + 2x̃⊤i Piξi + 2x̃⊤i Pi[Diηi(xi, ui)−Diη̄i(yi, ui)sgn(Eiỹi)]

+2x̃⊤i Pi

M∑
j=1

[hij(yi, xj , uj)− hij(yi, x̂j , uj)]

+2x̃⊤i Pi[ϕi(xi, ui)− ϕi(x̂i, ui)] . (6.12)

Based on (6.4), we have

2x̃⊤i Pi

M∑
j=1

[hij(yi, xj , uj)−hij(yi, x̂j , uj)] ≤ 2|x̃⊤i Pi|
M∑
j=1

γij |x̃j |

≤
M∑
j=1

γij x̃
⊤
i PiPix̃i +

M∑
j=1

γij x̃
⊤
j x̃j . (6.13)

Moreover, based on (6.3) and (6.6), we obtain

2x̃⊤i1Pi [ϕi(xi, ui)−ϕi(x̂i, ui)] ≤ 2|x̃i| ||Pi||σi |x̃i| = x̃⊤i [ 2σi||Pi||I ] x̃i . (6.14)

Furthermore, based on (6.10), and by using the property that (EiCix̃i)
⊤sgn((EiCix̃i)) ≥

|EiCix̃i|, we obtain

2x̃⊤i Pi [Diηi(xi, ui)−Diη̄i(yi, ui)sgn(Eiỹi)] = 2(EiCix̃i)
⊤ηi(xi, ui)

−2η̄i(yi, ui) · (EiCix̃i)⊤ sgn(EiCix̃i)

≤ 2|EiCix̃i|
[
|ηi(xi, ui)| − η̄i(yi, ui)

]
≤ 0 . (6.15)
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Additionally, we have

2x̃⊤i Piξi ≤ |2Pix̃i| |ξi| ≤ 2x̃⊤i PiPix̃i +
1

2
|ξ̄i|2 , (6.16)

where ξ̄i is the upper bound of |ξi| defined in Assumption 6.1. By substituting (6.13), (6.14),

(6.15) and (6.16) into (6.12), we obtain

V̇i ≤ x̃⊤i

[
Ā⊤
i Pi + PiĀi + 2σi||Pi|| I + (2 +

M∑
j=1

γij)PiPi

]
x̃i +

M∑
j=1

γij x̃
⊤
j x̃j +

1

2
|ξ̄i|2 . (6.17)

Now, let us consider the following overall Lyapunov function candidate for the intercon-

nected system: V
△
=

∑M
i=1 Vi =

∑M
i=1 x̃

⊤
i Pix̃i = x̃⊤Px̃, where P is defined in Lemma 6.2.

Let us denote Γ
△
= diag{

M∑
j=1

γj1, · · · ,
M∑
j=1

γjM} and R
△
= diag{R1, · · · , RM}, where

Ri
△
= Ā⊤

i Pi + PiĀi + (2 +
M∑
j=1

γij)PiPi + 2σi||Pi|| I. (6.18)

Therefore, based on (6.17) and (6.9), we have

V̇ ≤ x̃⊤Rx̃+ x̃⊤Γx̃+

M∑
i=1

1

2
|ξ̄i|2 = −x̃⊤Qx̃+

M∑
i=1

1

2
|ξ̄i|2 , (6.19)

where the matrix Q is defined by (6.9). By using the Rayleigh principle (i.e., λmin(P )|x̃|2 ≤

V (t) ≤ λmax(P )|x̃|2 ) and the definition of V (t), we have

V̇ ≤ −λmin(Q)|x̃|2 +
M∑
i=1

1

2
|ξ̄i|2 ≤ −aV +

M∑
i=1

1

2
|ξ̄i|2 , (6.20)

where x̃ and the constant a are defined in (6.8) and Lemma 6.2, respectively. Now, based

on Lemma 6.1, it can be easily shown that

V (t) ≤ V (0)e−at +
1

2

∫ t

0
e−a(t−τ)

M∑
i=1

|ξ̄i|2 dτ .
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Note that we can always choose a positive constant V̄0 such that V (0) < V̄0. Thus, based on

the definition of V (t) and the Rayleigh principle, the proof of (6.11) can be immediately con-

cluded.

Remark 6.2: Note that conditions (6.9) and (6.10) can be transformed into standard linear

matrix inequalities (See , e.g., [69, 76]). Then, a feasible solution to (6.9) and (6.10) can

possibly be found by using the linear matrix inequality (LMI) toolbox.

Specifically, the following procedure can be adopted:

• By using the Schur complements, the nonlinear inequalities −Ā⊤
i Pi − PiĀi−(2 +

M∑
j=1

γij)PiPi − (2σi||Pi||+
M∑
j=1

γji)I > 0 can be converted to a LMI form as


−Ā⊤

i Pi − PiĀi − 2σiςiI −
M∑
j=1

γjiI (2 +
M∑
j=1

γij)
1
2Pi

(2 +
M∑
j=1

γij)
1
2Pi I

 > 0 (6.21)

and  ςiI Pi

Pi ςiI

 > 0 , (6.22)

where ςi is a positive constant. Then, a suitable solution of Pi can be obtained by

solving (6.21) and (6.22) using the LMI toolbox.

• Based on the matrix Pi found in the above step, the matrix Ei can be obtained by

using (6.10).

Now, we analyze the output estimation error ỹi(t) (see (6.7)) of the ith subsystem. For

0 ≤ t < T0, the solution of (6.6) is given by

x̃i(t) =

∫ t

0
eĀi(t−τ) [ϕi(xi, ui)− ϕi(x̂i, ui) + ξi +Diηi(xi, ui)−Diη̄i(yi, ui)sgn(Eiỹi)] dτ

+

∫ t

0
eĀi(t−τ)

M∑
j=1

[hij(yi, xj , uj)− hij(yi, x̂j , uj)] dτ . (6.23)
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Therefore, for each component of the output estimation error, i.e., ỹip(t)
△
= Cipx̃i(t), p =

1, · · · , li, where Cip is the pth row vector of matrix Ci, by applying the triangle inequality,

we have

|ỹip(t)| ≤
∣∣∣∣ ∫ t

0
Cipe

Āi(t−τ) [ϕi(xi, ui)− ϕi(x̂i, ui) + ξi] dτ

∣∣∣∣
+

∣∣∣∣ ∫ t

0
Cipe

Āi(t−τ)
M∑
j=1

[hij(yi, xj , uj)− hij(yi, x̂j , uj)]dτ

∣∣∣∣
+

∣∣∣∣ ∫ t

0
Cipe

Āi(t−τ)[Diηi(xi, ui)−Diη̄i(yi, ui)sgn(Eiỹi)]dτ

∣∣∣∣ .
Therefore, based on (6.2), (6.3), (6.4), and (6.6), we have

|ỹip(t)| ≤ kip

∫ t

0
e−λip(t−τ)

[
σi |x̃i|+ 2||Di|| η̄i + |ξi|+

M∑
j=1

γij |x̃j |
]
dτ , (6.24)

where kip and λip are positive constants chosen such that |CipeĀit| ≤ kipe
−λipt (since Āi is

stable, constants kip and λip satisfying the above inequality always exist [35]). By defining

ϱi
△
= [γi1, · · · , γi(i−1), σi, γi(i+1), · · · , γiM ]⊤ , (6.25)

(that is, the components of ϱi are given by ϱii = σi, and ϱij = γij for j ̸= i), the inequality

(6.24) can be rewritten as

|ỹip(t)| ≤ kip

∫ t

0
e−λip(t−τ)

[
|ϱi| |x̃| + 2||Di|| η̄i + ξ̄i

]
dτ. (6.26)

Now, based on (6.26) and (6.11), we obtain

|ỹip(t)| ≤ kip

∫ t

0
e−λip(t−τ)

[
|ϱi|χ(τ) + 2||Di|| η̄i + ξ̄i

]
dτ .

where

χ(t)
△
=

{
V̄0e

−at

λmin(P )
+

1

2λmin(P )

∫ t

0
e−a(t−τ)

M∑
i=1

|ξ̄i|2 dτ

} 1
2

. (6.27)
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Therefore, based on the above analysis, we have the following result

Distributed Fault Detection Decision Scheme: The decision on the occurrence of a

fault (detection) in the ith subsystem is made when the modulus of at least one component of

the output estimation error (i.e., ỹip(t)) generated by the local FDE exceeds its corresponding

threshold νip(t) given by

νip(t)
△
= kip

∫ t

0
e−λip(t−τ)

[
|ϱi|χ(τ) + 2||Di|| η̄i + ξ̄i

]
dτ. (6.28)

The fault detection time Td is defined as the first time instant such that |ỹip(Td)| > νip(Td),

for some Td ≥ T0 and some p ∈ {1, · · · , li}, that is, Td
△
= inf

li∪
p=1

{ t ≥ 0 : |ỹip(t)| > νip(t)} .

Remark 6.3 It is worth noting that νip(t) given by (6.28) is an adaptive threshold for

fault detection, which has obvious advantage over a constant one. Moreover, the threshold

νip(t) can be easily implemented using linear filtering techniques [83]. Additionally, the

constants V̄0 in (6.27) is a (possibly conservative) bound for the unknown initial conditions

V (0). However, note that, since the effect of this bound decreases exponentially (i.e., it is

multiplied by e−at), the practical use of such a conservative bound will not affect significantly

the performance of the distributed fault detection algorithm.

6.4 Fault Detectability Analysis

As is well known in the fault diagnosis literature, there is an inherent tradeoff between

robustness and fault sensitivity. Below, we studied the fault detectability property of the

proposed distributed fault detection method, which characterizes the class of detectable

sensor faults and process faults.

6.4.1 Sensor Fault Detectability Condition

In this section, the fault detectability condition of sensor faults are derived. Specifically,

the following theorem characterizes the class of sensor faults that are detectable by the

proposed distributed fault detection method.

136



Theorem 6.1: For the distributed fault detection method described by (6.5) and (6.28),

suppose that a sensor fault occurs in the ith subsystem at time Tiy, where i ∈ {1, · · · ,M}.

Then, if there exist some time instant Td > Tiy and some p ∈ {1, · · · , li}, such that the

sensor bias θi satisfies

|θi| ≥ 1

Ni(Td)

[ ∣∣∣∣ Cip|ϱi|√
2λmin(P )

∫ Td

Tiy

eĀi(t−τ)||ξ̄i||2adτ
∣∣∣∣+ 2νip(Td)

]
, (6.29)

where ||(·)||2a is the exponentially weighted L2 norm [35],

Ni(t)
△
=

∣∣∣∣Cip ∫ t

Tiy

eĀi(t−τ)Lidτ − Fip

∣∣∣∣− ∣∣∣∣ Cip|ϱi|√
aλmin(P )

∫ t

tiy

eĀi(t−τ)||Li||dτ
∣∣∣∣ ,

and Fip is a constant matrix defined later on in the proof. Then, the sensor fault will be

detected at time t = Td, i.e., |ỹip(Td)| > νip(Td).

Proof: In the presence of a sensor fault (i.e., for t ≥ Tiy) in ith subsystem, base on (6.1)

and (6.5), the dynamics of the state estimation error x̃i
△
= xi − x̂i satisfies

˙̃xi = Āix̃i + ϕi(xi, ui)− ϕi(x̂i, ui) + ξi +Diηi(xi, ui)−Diη̄i(yi, ui)sgn(Eiỹi)− Liβiyθi

+
M∑
j=1

[hij(yi, xj , uj)− hij(yi, x̂j , uj)] (6.30)

ỹi = Cix̃i + βiyθi (6.31)

First, let us consider the Lyapunov function candidate Vi = x̃⊤i Pix̃i for the ith subsystem.

By following similar reasoning logic as reported in the proof of Lemma 6.2, we can show

that the time derivative of Vi along the solution of (6.30) satisfies

V̇i ≤ x̃⊤i Rix̃i +

M∑
j=1

γij x̃
⊤
j x̃j +

1

2
|ξi − Liβiyθi|2 ,

where Ri is defined in (6.18). Note that

|ξi − Liβiyθi|2 ≤ (|ξi|+ |Liβiyθi|)2 ≤ 2(|ξ̄i|2 + |Liβiyθi|2) .
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Then, based on two above inequalities, we have:

V̇i ≤ x̃⊤i Rix̃i +

M∑
j=1

γij x̃
⊤
j x̃j + |ξi|2 + |Liβiyθi|2 . (6.32)

Second, for the interconnected kth subsystem which is healthy, where k ∈ {1, · · · ,M}\{i} ,

we also define a Lyapunov function Vk = x̃⊤k Pkx̃k. Analogously, the time derivative of Vk

along the solution of (6.6) satisfies:

V̇k ≤ x̃⊤k Rkx̃k +
M∑
j=1

γkj x̃
⊤
j x̃j +

1

2
|ξ̄k|2 . (6.33)

Next, we consider an overall Lyapunov function candidate V =
∑M

j=1 Vj =
∑M

j=1 x̃
⊤
j Pj x̃j =

x̃⊤Px̃ for all the interconnected subsystems, where P = diag{P1, · · · , PM}, and x̃ is defined

in (6.8). From (6.32) and (6.33), we have

V̇ ≤ −x̃⊤Qx̃+

M∑
i=1

1

2
|ξ̄i|2 +

1

2
|ξ̄i|2 + |Liβiyθi|2 . (6.34)

where Q is defined in Lemma 6.2.

Then, by following similar reasoning logic as reported in the proof of Lemma 6.2, based on

(6.34), we can obtain:

|x̃|2 ≤ V̄0e
−at

λmin(P )
+

1

2λmin(P )

∫ t

0
e−a(t−τ)

M∑
i=1

|ξ̄i|2dτ+
1

λmin(P )

∫ t

0
e−a(t−τ)(

|ξ̄i|2

2
+|Liβiyθi|2) dτ .

(6.35)

By substituting (6.27) into (6.35), we have

|x̃|2 ≤ χ2 +
1

λmin(P )

∫ t

0
e−a(t−τ)(

|ξ̄i|2

2
+ |Liβiyθi|2) dτ

≤ χ2 +
1

λmin(P )

∫ t

0
e−a(t−τ)(

|ξ̄i|√
2
+ |Liβiyθi|)2 dτ . (6.36)
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From (6.36), we know

|x̃| ≤
{

1

λmin(P )

∫ t

0
e−a(t−τ)(

|ξ̄i|√
2
+ |Liβiyθi|)2 dτ

} 1
2

+ χ

= χ+
1√

λmin(P )

∣∣∣∣( |ξ̄i|√
2
+ |Liβiyθi|)

∣∣∣∣
2a
, (6.37)

where ||(·)||2a is the exponentially weighted L2 norm [35]. By using the property ||x+y||2a ≤

||x||2a + ||y||2a , the above inequality can be rewritten as

|x̃| ≤ χ+
||ξ̄i||2a√
2λmin(P )

+
||Liβiyθi||2a√
λmin(P )

. (6.38)

Note that

||Liβiyθi||2a =
{
|Liβiyθi|2

a
(1− e−at)

} 1
2

≤ ||Liβiy|| |θi|√
a

.

Thus, we have

|x̃| ≤ χ+
||ξ̄i||2a√
2λmin(P )

+
||Liβiy|| |θi|√
aλmin(P )

. (6.39)

Now we analyze the output estimation error. Specifically, for each component of the output

estimation error, i.e., ỹip(t)
△
= Cipx̃i(t)+βiyFipθi, where for the constant matrix Fip ∈ ℜli×li ,

only its (p, p)th entry takes the value of 1 , while all the remaining entries are 0. Based on

(6.30) and (6.31), we have

ỹip = Cip

∫ t

0
eĀi(t−τ)

[
− Liβiyθi + ξi +

M∑
j=1

[hij(yi, xj , uj)− hij(yi, x̂j , uj)
]
dτ + βiyFipθi

+ [ϕi(xi, ui)− ϕi(x̂i, ui)] + Cip

∫ t

0
eĀi(t−τ)

[
Diηi(xi, ui)−Diη̄i(yi, ui)sgn(Eiỹi)

]
dτ .

By applying the triangle inequality, based on Assumption 6.1, Assumption 6.3 and Assump-
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tion 6.4, we obtain:

|ỹip(t)| ≥
∣∣∣∣ ∫ t

0
Cipe

Āi(t−τ)Liβiyθidτ − βiyFipθi

∣∣∣∣
−
∣∣∣∣ ∫ t

0
Cipe

Āi(t−τ)
[
|ϱi||x̃|+Diηi −Diη̄isgn(Eiỹi) + ξi

]
dτ

∣∣∣∣ , (6.40)

where ϱi is defined in (6.25). Then by using (6.39) and (6.40), we have

|ỹip(t)| ≥
∣∣∣∣ ∫ t

0
Cipe

Āi(t−τ)Liβiyθidτ − βiyFipθi

∣∣∣∣− ∣∣∣∣ ∫ t

0
Cipe

Āi(t−τ)
[
|ϱi|χ+ 2||Di|| η̄i + ξ̄i

]
dτ

∣∣∣∣
−
∣∣∣∣ ∫ t

0
Cipe

Āi(t−τ) |ϱi| ||ξ̄i||2a√
2λmin(P )

dτ

∣∣∣∣ − ∣∣∣∣ ∫ t

0
Cipe

Āi(t−τ) |ϱi| ||Liβiy|| |θi|√
aλmin(P )

dτ

∣∣∣∣ . (6.41)

By rearranging the terms involving θi and by substituting (6.28) into (6.41), we have

|ỹip(t)| ≥
∣∣∣∣ ∫ t

0
Cipe

Āi(t−τ)Liβiydτ − βiyFip

∣∣∣∣|θi| − ∣∣∣∣ |ϱi|√
aλmin(P )

∫ t

0
Cipe

Āi(t−τ)||Liβiy||dτ
∣∣∣∣ |θi|

−
∣∣∣∣ |ϱi|√

2λmin(P )

∫ t

0
Cipe

Āi(t−τ)||ξ̄i||2adτ
∣∣∣∣ − νip . (6.42)

Based on the property of the step function βiy, we can rewrite the above inequality as

follows:

|ỹip(t)| ≥
∣∣∣∣ ∫ t

Tiy

Cipe
Āi(t−τ)Lidτ − Fip

∣∣∣∣|θi| − ∣∣∣∣ |ϱi|√
aλmin(P )

∫ t

Tiy

Cipe
Āi(t−τ)||Li||dτ

∣∣∣∣ |θi|
−
∣∣∣∣ |ϱi|√

2λmin(P )

∫ t

0
Cipe

Āi(t−τ)||ξ̄i||2adτ
∣∣∣∣ − νip . (6.43)

Now, from (6.43), we can see that if there exists Td > Tiy, such that condition (6.29) is

satisfied, then it is concluded that |ỹip(Td)| > νip(Td), i.e., the sensor fault is detected at

time t = Td.
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6.4.2 Process Fault Detectability Condition

In this section, we derive the fault detectability condition for process fault fi(xi, ui). Specif-

ically, the following theorem characterizes the class of process faults that are detectable by

the proposed distributed fault detection method.

Theorem 6.2: For the distributed fault detection method described by (6.5) and (6.28),

suppose that a process fault fi(xi, ui) occurs in the ith subsystem at time Tix, where i ∈

{1, · · · ,M}. Then, if there exist some time instant Td > Tix and some p ∈ {1, · · · , li}, such

that the fault function fi(xi, ui) satisfies

∣∣∣∣∫ Td

Tix

Cipe
Āi(t−τ)fi(xi, ui)dτ

∣∣∣∣− ∣∣∣∣ |ϱi|√
λmin(P )

∫ Td

Tix

Cipe
Āi(t−τ)||fi(xi, ui)||2adτ

∣∣∣∣
≥

∣∣∣∣ |ϱi|√
2λmin(P )

∫ Td

0
Cipe

Āi(t−τ)||ξ̄i||2adτ
∣∣∣∣+ 2νip . (6.44)

Then, the process fault will be detected at time t = Td, i.e., |ỹip(Td)| > νip(Td).

Proof: In the presence of a process fault (i.e., for t ≥ Tix) in ith subsystem, base on (6.1)

and (6.5), the dynamics of the state estimation error x̃i
△
= xi − x̂i satisfies

˙̃xi = Āix̃i + ϕi(xi, ui)− ϕi(x̂i, ui) + ξi + βixfi(xi, ui)

+
M∑
j=1

[hij(yi, xj , uj)− hij(yi, x̂j , uj)]

+Diηi(xi, ui)−Diη̄i(yi, ui)sgn(Eiỹi) (6.45)

ỹip = Cipx̃i (6.46)

First, we consider the Lyapunov function candidate Vi = x̃⊤i Pix̃i for the ith subsystem.

By following similar reasoning logic reported in the proof of Theorem 6.1, we can show the

time derivative of Vi along the solution of (6.45) satisfies

V̇i ≤ x̃⊤i Rix̃i +

M∑
j=1

γij x̃
⊤
j x̃j + |ξ̄i|2 + |βixfi(xi, ui)|2 . (6.47)
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Second, for the interconnected kth subsystem which is healthy, where k ∈ {1, · · · ,M}\{i} ,

the time derivative of the Lyapunov function Vk = x̃⊤k Pkx̃k along the solution of (6.6) is

the same as (6.33).

Next, for an overall Lyapunov function candidate V =
∑M

j=1 Vj =
∑M

j=1 x̃
⊤
j Pj x̃j = x̃⊤Px̃,

where P = diag{P1, · · · , PM}, and x̃ is defined in (6.8). Based on the (6.47) and (6.33), we

have

V̇ ≤ −x̃⊤Qx̃+

M∑
i=1

1

2
|ξ̄i|2 +

1

2
|ξ̄i|2 + |βixfi(xi, ui)|2 . (6.48)

Then, by following a similar reasoning logic as reported in the proof of Theorem 6.1, we

have

|x̃|2 ≤ V̄0e
−at

λmin(P )
+

1

2λmin(P )

∫ t

0
e−a(t−τ)

M∑
i=1

|ξ̄i|2dτ

+
1

λmin(P )

∫ t

0
e−a(t−τ)

[ |ξ̄i|2
2

+ |βixfi(xi, ui)|2
]
dτ

≤ χ+
||ξ̄i||2a√
2λmin(P )

+
||βixfi(xi, ui)||2a√

λmin(P )
. (6.49)

Now, we analyze the output estimation error, for each component of the output estimation

error, i.e., ỹip(t)
△
= Cipx̃i(t), p = 1, · · · , li, we have

ỹip = Cip

∫ t

0
eĀi(t−τ)

[
ϕi(xi, ui)− ϕi(x̂i, ui) + ξi + [Diηi(xi, ui)−Diη̄i(yi, ui)sgn(Eiỹi)]

+βixfi(xi, ui)

]
dτ + Cip

∫ t

0
eĀi(t−τ)

M∑
j=1

[hij(yi, xj , uj)− hij(yi, x̂j , uj)]dτ . (6.50)

By applying the triangle inequality, based on Assumption 6.1, Assumption 6.3, and As-

sumption 6.4, we have:

|ỹip(t)| ≥
∣∣∣∣ ∫ t

0
Cipe

Āi(t−τ)βixfi(xi, ui)dτ

∣∣∣∣− ∣∣∣∣ ∫ t

0
Cipe

Āi(t−τ)
[
|ϱi| |x̃|+ ξi

]
dτ

∣∣∣∣
−
∣∣∣∣ ∫ t

0
Cipe

Āi(t−τ)
[
Diηi −Diη̄isgn(Eiỹi)

]
dτ

∣∣∣∣, (6.51)
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where ϱi is defined in (6.25). Based on (6.49) and (6.51), we have

|ỹip(t)| ≥
∣∣∣∣ ∫ t

0
Cipe

Āi(t−τ)βixfi(xi, ui)dτ

∣∣∣∣− ∣∣∣∣ ∫ t

0
Cipe

Āi(t−τ)
[
|ϱi|χ+ 2||Di|| η̄i + ξ̄i

]
dτ

∣∣∣∣
−
∣∣∣∣ ∫ t

0
Cipe

Āi(t−τ) |ϱi| ||ξ̄i||2a√
2λmin(P )

dτ | −
∣∣∣∣ ∫ t

0
Cipe

Āi(t−τ) |ϱi| ||βixfi(xi, ui)||2a√
λmin(P )

dτ

∣∣∣∣ .
By substituting (6.28) and using the property of the step function βix and we can rewrite

the above inequality as follows:

|ỹip(t)| ≥
∣∣∣∣ ∫ t

Tix

Cipe
Āi(t−τ)fi(xi, ui)dτ

∣∣∣∣− ∣∣∣∣ |ϱi|√
λmin(P )

∫ t

Tix

Cipe
Āi(t−τ)||fi(xi, ui)||2adτ

∣∣∣∣ − νip

−
∣∣∣∣ |ϱi|√

2λmin(P )

∫ t

0
Cipe

Āi(t−τ)||ξ̄i||2adτ
∣∣∣∣ .

Now, we can see that if there exists Td > Tix, such that condition (6.44) is satisfied, then

it is concluded that |ỹip(Td)| > νip(Td), i.e., the process fault is detected at time t = Td.

6.5 Simulation Results

A two-machine infinite bus power system shown in Figure 6.1 is used to demonstrate the

effectiveness of the proposed distributed fault detection and isolation method. Specifically,

Figure 6.1: A two-machine infinite bus power system [26].
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we consider a two machine infinite bus power system consisting of 2 interconnected machines

under turbine / governor control. Based on the dynamics of such power systems [25, 26,

71, 9, 41, 57], by defining the state variables as xi = [δi ωi Pmi Xei ]
⊤, we can obtain a

state space model of the ith subsystem i = 1 , 2 as follows [40]:

ẋi = Aixi +Bi1ui1 +Bi2hij(yi, xj)

yi = Cixi

(6.52)

where

Ai =



0 1 0 0

0 − Di
2Hi

ω0
2Hi

(1− FIPi)
ω0
2Hi

FIPi

0 0 − 1
Tmi

Kmi
Tmi

0 − Kei
TeiRiωo

0 1
Tei


Bi1 = [ 0 0 0 1

Tei
]⊤, Bi2 = [ 0 − 1 0 0 ]⊤ and

Ci =


1 0 0 0

0 1 0 0

0 0 0 1



and the interconnection term hij =
∑N

j=1,j ̸=i
ωoE

′
qi
E

′
qj
Bij

2Hi
sin(δi − δj) and the known terms

E
′
qi, E

′
qj and Bij , i, j = 1, 2, are assumed to be constants [25]. The parameters for each

machine are the same as given in [40] and are shown in Table 6.1.

Table 6.1 System parameters
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machine 1 machine 2

H(s) 4 5.1

D(p.u.) 5 3

kc 1 1

FIP 0.3 0.3

Tm 0.35 0.35

ω0(rad/s) 314.159 314.159

For simplicity, the input to each subsystem consists of two parts: a stabilizing part based

on state feedback design and a sinusoidal signal causing each subsystem to deviate from

steady-state linear dynamics. The modeling uncertainty under consideration consists of

two parts. First, the modeling uncertainty in the local dynamics of the two subsystems

are assumed to be up to 5% inaccuracy in the gain of the speed governor of the machine,

which are represented as D1η1 and D2η2, respectively, where D1 = D2 = [ 0 0 0 1 ]⊤,

η1 = η2 =
φiKei
TeiRiω0

ωi, and φi ∈ [−0.05 0.05 ], which lead to η̄i = | 0.05KeiTeiRiω0
ωimax |, where

ωimax is upper bound of |ωi| obtained based on the prior knowledge of the system. In the

simulation, the unknown modeling uncertainty in the local dynamics of the two subsystems

are assumed to be η1 = η2 =
0.03Kei
TeiRiω0

ωi.

Second, for the uncertainty in the interconnection term, we consider up to 5% inaccuracy

in the interconnection term
∑N

j=1,j ̸=i
ωoE

′
qi
E

′
qj
Bij

2Hi
sin(δi − δj) (corresponding to ξi in (6.1)).

In the simulation, the unknown part in the interconnection term is assumed to be 4%

inaccuracy in the term
∑N

j=1,j ̸=i
ωoE

′
qi
E

′
qj
Bij

2Hi
sin(δi − δj).

In addition, the following two types of faults are considered in each subsystem:

1. An actuator fault. A simple multiplicative actuator fault by letting ui = ūi + ϑiūi

is considered, where ūi is the nominal control input in the non-fault case, and ϑi ∈

[−1 0 ] is the unknown fault magnitude. For instance, the case ϑi = 0 represents the

normal operation condition, while the case ϑi = −1 corresponds to a complete failure

of the actuator.
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2. A sensor bias fault. A sensor bias in the first output is represented as θi, θi ∈ [ 0, 10 ]

(i.e., up to 20% of the maximum value of the first output of each machine ).

By using the LMI toolbox introduced in the Section (4.2.1), the design parameters can be

obtained as follows:

L1 =



13.5 1 0

−1.034 23.718 11.781

−0.404 4.195 2.857

0 −0.6366 23.7



L2 =



13.5 1 0

−0.850 24.050 9.24

−0.423 5.349 2.857

0 −0.6366 23.7



P1 =



0.0614 0.0002 0.004 0

0.0002 0.03 −0.006 0

0.004 −0.006 0.188 0

0 0 0 0.0604



P2 =



0.0669 0 0.004 0

0 0.037 −0.012 0

0.004 −0.0122 0.184 0

0 0 0 0.0658


E1 = [ 0 0 0.066 ], and E2 = [ 0 0 0.0604 ]. Consequently, the related design constants

are ki1 = ki2 = ki3 = 1, λi1 = 13.5 and λi2 = 13.3 and λi3 = 13.9. Thus
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Q1 =



1.044 −0.004 −0.008 0

−0.004 0.828 −0.212 0

−0.008 −0.212 0.7155 0

0 0 0 1.045



Q2 =



1.041 −0.01 −0.0015 0

−0.007 0.948 −0.357 0

−0.008 −0.366 0.8158 0

0 0 0 1.042


and a = 2.73.

First, the case of a sensor fault in machine 2 is illustrated in Figure 6.2 and Figure 6.3.

Specifically, we consider a sensor fault with θ2 = [ 10 0 0 0 ]⊤ occurs to machine 2 at

T2y = 5 second. As we can see, in Figure 6.2, although there is no fault in machine 1,

the residual in the second output generated by FDE 1 exceeds its corresponding threshold

approximately at t = 5 sec, indicating that the effect of the sensor bias in machine 2 has been

propagated into the machine 1 due to the interconnection. In Figure 6.3 the residuals in the

first and the second outputs generated by FDE 2 exceeds their corresponding thresholds

immediately after sensor bias occurrence. Therefore, the sensor bias fault in machine 2 is

timely detected.

Then, we consider an actuator fault in machine 1. Figure 6.4 shows the fault detection

results when a partial actuator fault with ϑ1 = −0.25 occurs to machine 1 at T1x = 5

second. As can be seen from Figure 6.4, the residual in the third output generated by FDE

1(i.e., the local FDE designed for machine1) exceeds its threshold immediately after fault

occurrence. Therefore, the actuator fault in machine 1 is also timely detected.
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Figure 6.2: The case of a sensor fault in machine 2: fault detection residuals (solid and blue
line) associated with y12 and the corresponding threshold (dashed and red line) generated
by the FDE 1
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Figure 6.3: The case of a sensor fault in machine 2: the fault detection residuals (solid and
blue line) associated with y21 and y22 and the corresponding threshold (dashed and red line)
generated by the FDE 2
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Figure 6.4: The case of an actuator fault in machine 1: the fault detection residuals (solid
and blue line) associated with y13 and the corresponding threshold (dashed and red line)
generated by the FDE 1
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, the problem of fault diagnosis of interconnected nonlinear uncertain

systems is investigated. In the presented distributed FDI architecture, a fault diagnostic

component is designed for each subsystem in the interconnected system by utilizing local

measurements and certain communicated information from neighboring FDI components

associated with its directly interconnected subsystems. Each local FDI component consists

of two modules: a fault detection module is used to detect an occurrence of any fault in the

corresponding subsystem, and a fault isolation module is used to determining the type of the

fault among a set of partially known possible fault types in each subsystem or determining

the actual faulty subsystem among all the subsystems.

First, a distributed fault detection and isolation method is developed for process faults in

a class of interconnected nonlinear uncertain systems. In the fault diagnostic component

associated with each subsystem, a fault detection estimator is used for fault detection and

activation of fault isolation, and a bank of fault isolation estimators are used to determine

the particular type of fault that has occurred in the subsystem. Under certain assumptions,

adaptive thresholds are designed for distributed fault detection and isolation in each subsys-

tem. The important properties of robustness and fault sensitivity (fault detectability and
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isolability) of the distributed FDI algorithm are investigated. In addition, the stability and

learning capability of local adaptive fault isolation estimators designed for each subsystem

are also established.

Second, a distributed sensor FDI scheme is developed for a class of interconnected input-

output nonlinear systems where only the measurable part of state variables are directly af-

fected by the interconnections between subsystems. A class of multi-machine power systems

is used as an application example to illustrate the effectiveness of the proposed approach.

The general theory can be easily extended to other system. For each subsystem, a local

FDI component comprised of a fault detection estimator and a fault isolation estimators is

designed to detect sensor faults and determine the particular subsystem where the sensor

fault actually occurs. The adaptive thresholds for distributed sensor fault detection and

isolation in each subsystem are derived and some important properties of FDI methods

are analyzed, including fault detectability, fault isolability, and the stability and learning

capability of the distributed adaptive fault isolation estimators

Third, we extend the above sensor FDI results by considering a class of interconnected input-

output nonlinear systems where both the unknown and the measurable parts of system

states of each subsystem are directly affected by the interconnection between subsystems.

In this case, due to the fault effect propagation, the estimation error of the unknown state

variables in each subsystem is also affected by the sensor fault. Thus, the problem considered

is more challenging than what is described above

Fourth, a fault detection scheme is presented for a more general distributed nonlinear sys-

tems. We significantly extend the research work in Chapter 3, Chapter 4 and Chapter 5

by removing some restrictive limitations on system model structure. In the distributed de-

tection scheme, a fault detection component is associated with each subsystem. Adaptive

thresholds for fault detection is derived, ensuring robustness with respect to interconnections

among subsystems and modeling uncertainty. Moreover, the fault detectability conditions

are rigorously investigated, characterizing the class of detectable process faults and sensor

faults in each subsystem.
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7.2 Future Research Work

For the problem of sensor fault diagnosis in interconnected nonlinear systems discussed in

Chapter 5, the issue of the fault isolability condition still needs further investigation. The

fault isolability condition is a critical property in characterizing the class of sensor faults that

are isolable by the proposed fault isolation method. Additionally, after a faulty subsystem

is successfully isolated by using the proposed sensor fault isolation scheme discussed in

Chapter 5, we can extend the presented fault isolation method to construct a hierarchical

method which allows the isolation of both the faulty subsystem and the particular faulty

sensor as well. Also, the fault isolation issue for the system model given in Chapter 6 needs

investigation in the future.

As described in Section 2.3, malicious attacks on the interconnection or communication

link between subsystems is a typical fault needs to be considered in the fault diagnosis of

interconnected systems. The issue of detection and isolation of malicious attacks in the com-

munication link are interesting topics for future research. The robustness to communication

delay and packet dropouts is also worth investigating.

In this work, the interconnections among subsystems are assumed to be partially known.

However, in some applications, the interconnection information of interconnected systems

is difficult to model due to the complexity of the overall systems. Thus, the case of inter-

connection effects with significant modeling uncertainties should be investigated to extend

the applicability of the distributed FDI method proposed in this dissertation.
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Appendix A

Notation of Chapter 6

δi the power angle of the ith generator, in rad

ωi the relative speed of the ith generator, in rad/s

Pmi the mechanical input power, in p.u.

Pei the electrical power, in p.u

ω0 the synchronous machine speed in rad/s

Di the per unit damping constant

Hi the inertia constant, in s

E
′
qi the transient EMF in the quadrature axis, in p.u

Eqi EMF in the quadrature axis, in p.u

Efi the equivalent EMF in the excitation coil, in p.u

T
′
doi the direct axis transient short-circuit time constant, in s

xdi the direct axis reactance, in p.u.

x
′
di the direct axis transient reactance, in p.u.

Bij the ith row and jth column element of nodal susceptance matrix at the internal nodes

after eliminating all physical buses, in p.u.

Qei the reactive power, in p.u.

Ifi the excitation current, in p.u.

Idi the direct axis current, in p.u.
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Iqi the quadrature axis current, in p.u.

kci the gain of excitation amplifier, in p.u.

ufi the input of the SCR amplifier, in p.u.

xadj the mutual reactance between the excitation coil and the stator coil, in p.u.

xij the transmission line reactance between the ith generator and the jth generator, in

p.u.
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