Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

5,770
NASA Technical Memorandum 105303 ST e
7
-~ Real-Time Fault Diagnosis for
~ Propulsion Systems = i
(wATSA—TMIO%Oﬁ)‘@REAL ;1‘4: AULT Disonmsras e
FOR PROPULSIUN SYSTEMS (NiSi?UL; 8Iéggfséfp 211017
B Unclas :
. e e e . 63/07 0051770
Walter C. Merrill, Ten-Huei Guo, and John C. Del aat ] ,
Lewis Research Center . _ . . .. _._
Cleveland, Ohio o
and
AhmetDuyar N S o S
Florida Atlantic University
Boca Raton, Florida '
—oeee.. Prepatredforthe = = I
International Federation of Automatic Control Symposmm
- on Fauplt Detection, Supervision and Safety for B
Technical Processes — SAFEPROCESS '91
Baden-Baden, Germany, September 10-13, 1991 R )


https://core.ac.uk/display/42815767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




E-6650

REAL-TIME FAULT DIAGNOSIS FOR PROPULSION SYSTEMS

Walter C. Merrill, Ten-Huel Guo, John C. Del.aat
NASA Lewis Research Center, Cleveland, Ohio 44135 USA

Ahmet Duyar

Machanical Enginsering Department, Florida Atlantic Unliverslty, Boca Raton, Florida 33431 USA

ABSTRACT Current research toward real-time fault diagnosis for propulsion systems al the
National Aeronautics and Space Admlinistration’s Lewis Research Center is described. The
research Is being applied to both airbreathing and rocket propulsion systems. Topics include fault
detection methods including neural networks, system modeling, and real-time implementations.

INTRODUCTION

Motivated by the need for high performance and high
reliabllity aerospace and nuclear power generation systems, many
methods have been investigated lor improved fault detection. In
this paper the foplc of discusslon is resiricted to real-time fauit
detection where real-lime Is delined by the interaction of the fault
detection logic with control accommodation. Much of the llteralure
in real-time faull delection has been direcled to sensors and
actuators and has been summarlzed by Frank'. Additionally, fault
detection research specifically direcled 1o propulsion systems has
been summarized by Merrli®,

This paper describes curreni research loward real-time fault
dlagnosls for propulsion systems al the National Aeronautics and
Space Administration’s Lewis Research Center. This research is
of Importance because an analylically-based redundancy approach
can result in substantlal control system cost and welght savings
over a hardware-based redundancy approach In a high
performance propulsion system. Research with applications 1o
both alrbreathing and rocke! propulsion systems are discussed. In
paricular, this paper first discusses the results of a program’ to
delsct sensor fauits in a high-performance turbofan engine using an
advanced algorthm based on analylical redundancy. Nex! a
program fo Integrate raditional rocket control concepls with real-
{ime fault diagnostic capabiliies* is described.

SENSOR FAULT DETECTION

The objective of the Advanced Detectlon, Isolation, and
Accommodation{ADIA} program was to Improve demonsirated
rellability of digltal electronic control systems for turbine engines by
detecting, isolaling, and accommodaling sensor fauits using
analylical redundancy methods. The ADIA program was organized
Into four phases: development, Implementation, evaluailon, and
demonstration. In the first three phases the algorithm was
designed using advanced filtering and dstection methodologles,
implemented in microprocessor based hardware, and evaluated
using a real-time engine simulation running on a hybrid computer.
In the fourth phase the algorithm was demonstrated on a full scale
F100 engine in the Lewis Research Cenler altitude test facillty. The
lest objective was 1o demonstrate the predicted performance of the
ADIA algorithm on reallstic hardware aver a wide range of engine
operafing conditions. These conditions included altitude, Mach
number, and powaer varlations.

Algorithm Description

The ADIA algorithm detects, isolates, and accommodates
sensor faults In an F100 turbolan engine conirol system. The
algorithm incorporates advanced filtering and detection logic and is
general enough to be applled to different engines or other types of
control systems. The algorithm detects two classes of sensor
faults, hard and sofl. Hard faults were defined as out-of-range or
large bias errors that occur “Iinstantaneously” In the sensed values.
Solt faults were defined as small bias errors or drift errors that
Increase relatively slowly with time. The ADIA algorithm of Figure 1
consists of four elements: (1) hard sensor fault detection and
isolation logic; {2) soft sensor fault detection and Isolation logle; (3)
an accommodation filler; and (4) the switch matrix,

in the normmal or unfalled mode of operation, the
accommodatlon filter uses the full set of engine measurements 1o
generale a sel of oplimal estimates of the measurements. These
estimates(Z{1)) were used by the control law. When a sensor fault
occurs, the detection logic determines that a fault has occurred.
The isolation logic then determines which sensor Is faulty. This
struclural Information Is passed to the accommodation fliter. The

accommodation filter now remaves the faulty measurement from
turther consideration. The accommodation fMHer, however,
continues fo generale the full set of optimal estimates for the
control. Thus the control mode does not have to restructure for any
sensor fault. The ADIA algorithm Inputs as shown In Figure 1 were
the sensed engine oulput vasriables, Z, {t), and the sensed engine
input varlables, U_[1). The outpuls of the algorithm, the estimates,
Z{1), of the measured sngine outputs, Z (1), were used as input to
the proportional part of the control. During normal mode aperation,
engine measurements were used in the integral control to ensure
accurate steady-state operallon. When a sensor faull Is
accommodated, the measurement in the Integral conlrol Is replaced
with the corresponding accommodation filter estimate by
reconfiguring the Interface switch matrix.

Accommodation Filter, The accommodation filter
Incorporates an engine model along with a Kalman gain update to
generate estimates of the engine states X and the engine outputs
Z as follows.

X=F(X-X)+GU-U,) +Ke 1
Z=HX-X)+DWU-Uy)+ 2, (2}
e=2, -2 3

Here the subscript b represents the base point(sleady-state engine
operating point) and X is the model state veclor, U, the sensed
control vector, and Z_, Is the sensed outpul vector. The matrix Kis
the Kalman gain malrix and € Is the resldual vecior. The F, G, H,
and D matrices were the approprialely dimensioned model system
matrices. Their individual matrix elements along with those of K
were cofrecled by the engine inlet conditions E, and scheduled as
nonfinear tunclions of Z,. These nonlinear functions aflow
continuous correction of the model parameters throughout the flight
reglme.  This filter struclure Is the structure used in the
accommodation filter and all the hypothesis filters used in the soft
detection and Isolation logic. Reconfiguration of the
accommodation filter afler the detection and isolatlon of a sensor
fault was accomplished by forcing the appropriate residual element
to zero. The residuals generated by the accommodation filter were
used in the hard fault detection logic.

Hard Fault Detectlon and Isolation Loglc. The hard sensor
fault detection and isolation logic is straightforward. To accomplish
hard fault detection and Isolation the absolute value of each
component of the residual veclor was compared to its own
threshold. I the residual absolute value was greater than the
threshold, then a fault was detected and Isolated for the sensor
corresponding to the residual slement. Threshold slzes were based
on the standard deviatlon of the nolse on the sensors.

Solt Fault Detection and Isolation Logle. The soft fault
detectlon logic consists of multiple-hypothesis-based testing. Each
hypothesis was implemented using a Kalman filter. The soft fault
detectionfsolation logic structure Is shown in Figure 2. A total of six
hypothesis fillers are shown, one for nomal mode operation{H,)
and five for the fault modes(one for each englne output sensor, H,-
H,). The siructure for each hypothesis filter was identical to the
accommodation filter{Eqs. (1) to (3)). However, each hypothesis
filter uses a ditferent, reduced set of measursments. For example
the first hypothesis filter(H,) uses afl of the sensed engine outputs
except the first, N1, The second uses all of the sensed oufputs
except the second, N2, and so on, Thus, each hypothesis fiiter
generales a unique residual vector, ¢, From this residual each
hypothesis filter generates a statistic or likellhood based upon a
Waelghted Sum of Squared Residuals{(WSSR). Assuming Gaussian



sensor noise, sach sample of g has a cerain likeffhood or
probability p, given by

L= ple) = ke " @

where k Is a constant and WSSR, = L', with I = diag(c?). Here
T denotes matrix transposition and ¢, are the sensor nolse standard
deviations. These standard deviation values scale the residuals to
dimensionless quantities that can be summed to form a WSSR.
The WSSR stalistic was smoothed to remove gross nolse effects
by afIrst order lag with a time conslant of .1 sec. Mathematically,
when lhe log of the ralio of ikelihoods is taken, then

LA, = Iog(—l%) = WSSR, - WSSH, %)

I the maximum LR, exceeds the soft fault detection and Isotation
threshold, then a fault is delected and isolated, and accommodation
occurs. If a sensor fault has occurred in N1 for example, all of the
hypolhesis fillers except H, will be corrupted by the fauily
information. Thus each LR, will be small except for LR,. Thus, LR,
will be the maximum and It will be compared to the threshold to
delact the fault,

Adaplive Threshold. initlally, the soft {fault
detection/isolation threshold was delermined by standard staflstical
analysls of the residuals lo set the confidence level of false alarms
and missed deteclions. Next, the threshold was modified to
account for modeling error by simulation analysis. it was soon
apparent from initlal evaluation studies that translent modeling error
was dominant in determining the fixed threshold level. 1t was also
clear that ihis threshold was too large lor desirable steady-state
operalion. Thus, an adaptive threshoid was Incorporated 1o make
the algorithm more robust lo transient modeling ermor while
malntalning steady-state perlormance. The adaptive
threshold was heuristically delermined and conslsts of iwo paris.
One part is the steady-stale detection/isolailon threshold which
accounts for steady-state, or low frequency modeling error. The
second part accounts for the translent, or high frequency modeling
error.  The adaptive threshold expansion logic enabled the
threshold sleady-state value to be reduced to 40 percent of Hs
original value which results In an BO percent reduction In the
detection/isolallon threshold in steady-state. The adaptive threshold
logic Is Mustrated In Figure 3 for a PLA puise transient.

Fault Accommodation. For accommodation two separate
steps were laken. First, all seven of the filters(the accommodation
filter and the six hypothesis filters) were reconfigured to remove the
falled sensor from further use In the filters. Second, If a soft fault
was delecled, the stales and estimales of all seven fillers were
updated lo the values of the hypothesis filter which corresponds o
the falled sensor.

Detection/Accommodation Performance

The crllerla used to evaluate deleclion, isolation, and
accommodation perdormance were: (1) minimum delectable blas
values and drilt rates, (2] elapsed {ime betwaen sensor fault and
delection, (3) steady-state performance degradation after fault
accommeodation, and (4) translent response of the engine to the
filler and conkol reconfiguration resulting from fault
accommodalion. In the engine test sensor faulls were Injected
direclly inlo the conirol feedback signal and consequenily effected
englne operatlon until detection and accommodatlon. The engine
studied was a {ull scale, high performance, turbofan engine. The
engine was tested In an aititude facility over a wide range of
operating conditions. Two general faull ypes were studled, hard
and sofl sensor faulls.

The first iype of sensor faull considered in 1the
demonsiration testing was a hard faull, Because hard faulls are
easlly detected, they were examined at only one operaling
condition, 10 000 fi/Mach 0.6. The ADIA algorithm exhibited
excellant hard detecilon performance af this condltion.

The chosen englne perlormance measure, engine pressure
ralio{EPR), is almost linearly related to englne thrust. The change
In EPR followling the accommodatled hard sensor fault was used as
a measure of accommodafion performance. Here the percent
change In engine pressure ratlo(EPR}

100(EPA,, - EPR;y)
EPR.,

8EPA = (6)

Where EPR,, is the sleédy—stateﬁenglr{;p;éssme ratio before the
fault and EPR,, is the steady-state EPR after the fault, Is defined

1o be the change in steady-state engine performance. For thg

hard fault delection and accommodation experiments, the 5EPR
results were less than 6 parcent In all cases, well below the critical
level of 10 percent. In fact most of the performance changes were
negligible.

The other type of sensor fault studied was the soft fault.
Undetecled soft sensor faults, although smalt In magnitude, may
result In degraded or unsafe engine operation. Because of thelr
small size, sof faults were more ditficult to detect than hard faults.
Two solt fault modes were studied, blas and drift.

The minimum detectable magnitudes of soft sensor blas
and driit faulls were determined for each of the five sensors
consldered al each of the operating poinis defined in the test
matrlx. The minlmum detectable drift magniludes were determined
by finding the smallest detectable drift fault such that a fault was
detected approximately 5 seconds after fault Inception. In general
there was good agreament betwesn those minimum fault detection
magniludes observed in the test and those predicted by the real-
time hybrid evaluation. This agreement demonstrales the excellsnt
fidelity of the model used in the algorithm and the simulation used
In the evaluation.

The times lo detection for the soft blas faults were all iess
than .1 sec. The steady-state accommodation performancs for this
class of fault was good. Again percent changes In thrust(EPR)
were determined for several operaling points desmonstrating
subsonlc and supersonlic operallon at milltary and medium power
levels. All values obtalned were well below the 10 percent critical
level except for operaling condition 50 000 #/Mach 1.B resuils
which show a 12 percent change in thrust for an exhaust nozzle
pressure (PT6) sensor fault.

The steady-stale accommodation performance resulls
obtained for sensor drift faulls were very good with most thrust
changes being small and with none larger than the 10 percent level.
Shown in Figure 4 is a lan-speed drift fault at the 30 000-ft/Mach
0.9 operating condition al medium power. Here, a fan speed (N1)
drift fault of 1580 rpm/sec was Introduced at 1 sec. Detection and
accommeodation ccowred at 6.5 sec.(5.5 sec after fault Initiation)
and the engine required about 4.5 sec to relurn to a steady
condition. During this experiment the fan speed and nozzle
pressure Integral logic was active. The other four output responses
show good estimation accuracy and relatively small iransient
disturbances to the sensor fault accommodation.

Additionally, detection performance for sequentlal faulls was
demonsiraled. At condition 10 000 fYMach 0.6 six different
sequences of soft faulls were Injecled info the tes! bed system at
medium power and ona was demonstirated al Intermediate power.
Each of the seven sequences was a different permutation of the
{lve sensors taken four at a ime. In each case the algorthm
successiully detected and accommodated sach sensor fault in the
correct order. These tests demonstrale the ability of the algordthm
to conlinue to successiully perform aven aflter most of the sensors
have lalled.

Finally, a simultanaous soft fault of burner pressure (PT4)
and PT6(both falled at the same insltani of time} was Injected Into
the englne systern. The algorithm, although not designed for this
exlremely low probabilily event, successfully detected and
accommodated this faull scenarlo.

Aclual Sensor Hardware Fault Detection. During engline
lesting, two unplanned faults of actual sensor hardware were
detected by the ADIA logic. There were no missed detections of
sensor hardware faults by the ADIA logic. In the firs{ case the fan
discharge temperature thermocouple, which was not explicltly
covered by the ADIA logic, falled. This fauit was a hard fault, The
second sensor hardware fault was assoclated with the fan turbine
inlermediate temperalure measurement and was a soft fault
associated with the signal conditioning amplifier for the sensor. In
each case the algorithm was able to delect! the faull.

Transient Perdormance. Two power level (PLA) fransient
experiments wers used to further demonstrale the successful
accommeodatlon, or post-faull performance, of sensor faults. The
first  experiment consisted of Injecting, detecling, and
accommodating a single sensor fault and then commanding a PLA
pulse transient. Eriging performance with this accommodaled falled
sensor was compared fo normal mode engine performance.
Elghteen of these single fault PLA pulse tests were performed at 5
different operating points with excellent resuyits. S

The second accommodation perlormance experimént
(demonstrated the excelient accuracy of the engine model. In this
experiment all the engine sensors were falled and accommodated.
Then, the englne was commanded to respond to a PLA puise
fransient, For the condition 10 000 f/Mach 0.6 experiment, N1 and
PT6 resulls are shown in Figure 5. Here excellent performance




was demonstrated. Litlle or no overshool was observed and engine
sleady-slate perlormance was good. This demonstrales the
capability of safe, predictable engine operation wilhout any sensed
engine output informatlon over a slighlly restricted power range.
The fluctuallons in PT6 at high power were caused by an airflow
Interaclion between the facility and the engine.

, ADIA Symmary

Sensor fault detection and accommodation were
demonsltrated at eleven different operating points which Indluded
subsonic and supersonic conditions and medium and high power
operation. The minimum detectable faull magnitudes represent
excellent algorithm performance and compare closely to vaiues
predicted by simulation. Accommodation performance was
excellent. Translent engine oparation over the full power range with
single sensors falled and accommodated was successlully
demonstraled. Open loop engine operation(all englne output
sensors falied and accommodated) over at least 75 percent of the
power range was also demonstrated at two different operating
conditlons. Engine operation with only one sensor operational(fan
speed) was demonstrated at one operating condition.

The algorithm Is Implementable in a realistic environment
and in an update Interval consistent with stable engine operatlon.
OfH-the-shell microprocessor based hardwara and straightforward
programming procedures, including FORTRAN and floating point
arithmelic, can be used. Parallel processing was used as an
effective approach to achieving a real-time implementation using
ofi-the-shelf computer resources.

INTELLIGENT FAULT DIAGNOSIS

Intelligent Control Systems (ICS) are defined as those
contral systems which Integrate {raditlonal control cancepts with
real-time fault diagnostic and prognosiic capabliities®. Currently, the
Lewls ICS research program Is developing a real-time diagnostic
capabllity for reusable rocket engines, specifically the Space Shultle
Maln Engine (SSME). Here, diagnostics is defined as the detection
of a fault, the Isolation of the fault 1o a specific component, and the
estimation of the severlty and !lkellhood of the faull. Critical englne
components as well as sensors will be monitored for faulls. A
framework of the ICS, given In Figure 6, clearly shows the
Interaction of the control with the diagnostic subsystems.
Coordinator subsystems arbirate the potentially conflicting
objectives of the life exiension control modes, which accormmodate
engine faults, and the overall mission and engine performance
objeclives. The multilevel Implementation architecture for the
diagnostic system® shown in Figure 7 exploits paraflefism to
achieve high dala rates at the condlition monltoring and fault
deteclion layers. Each of the layers will now be descrlbed with
some discussion about current research associated with each of the
layers.

1. Sensor Layer

The Sensor layer includes all of the Instrumentation
required by the diagnostic system. Measuremsnts obtained in this
layer are communicated lo the Condltion Monltoring layer. Efforts
1o develop special purpose sensors for Improved engine diagnostic
capabliilles Is an angoing research area®.

2. Condition Monitoring (CM) Layer

The Condition Monitoring layer in the diagnostic hierarchy
Is responsible for signal processing, signal conditioning, feature
extraclion, and other necessary data absiraclion for decislon
making purposes. The exiracted features needed are defined by
the experts according to the selected faull modes to be detscted.
Typleal condillon monitoring functions are: trending of a selected
sensor over a specific time period, FFT processing of bearing
deflectometer data, and calculation of functlons of measurements,
pump suction specific speed, for example, and model-based-
residual generation’.

3. Fault Mode Detaction (FMD) Layer

The Fault Mode Deleclion layer responds fo those
conditions which indicate the possibility of a defined fault mode.
Each detector module attempls to find condilions of a single fault
mode. The emphasis at this layer is to minimlze missed detections
even at the possible expense of Increased false alarms. As
discussed in the next section, the diagnostic expert system (DES)
layer will address efiminating false alarms. Relevant information
that will be transferred to the DES layer includes an estimate of the
probabﬂny and severity of the delected fault mode.

If saveral fault modes are extremely similar and
distinguishing them is selther impossible or unnecessary at this
stage then a single module wili be used to find conditions indicating
the group. Simifar fault modes which must be distinguished will be
tesolved by the next layer in the hierarchy. The FMD layer
contains the first layer of diagnostic knowledge. H uses the

compressed sensor informalion obtained from the condition
monitors to make the first diagnoslic detection of fault modes. An
example fault mode of this moduls is Turbine Interstage Seal Wear
which can be deduced from CM layer outputs: Turbine Discharge
Temperature, Pump Shaft Speed, Pump Head vs. Flow Coelficient,
and Rotor Dynamic Instability Indicator. Anather example is the
diagnosls of actuator faults using neural networks®. .
4. Diagnoslic Expert System (DES} Layer

" The diagnostic expert system serves as the high layer
health monitor. This layer resolves any conflicting reports from the

_fault mode deteclors, determines the priorities of the detected fault

modes, does the health status assessment of the overall system,
and Issues the slatus report to the Intelligent coordination control
layer {see Flgure 6). This layer also monitors the dynamic status
(operating condltion) of the system which may pilay an important
parl In determining engine health. The DES has to gather all the
Information, including the probability of detection and the severity
of the delected modes and then declde on the status of the system.
The probabliity of the comectness of this decision, as well as the
severity layer of the fault mode are transmitted to the coordination
layer. The ICS coordinator, based on current misslon stalus, then
decides what, If any, accommodation stralegy to employ.
4.a Emergency Logic (EL) subsystem

It Is recognized that many fault modes will resull In rocket
engine shuldown. Many of these situations require a nearly
Immediale engine shutdown to prevent furlher damage 1o lhe
engine. The decentralized functionality and parallelism of the
expecled implementation of the dlagnostic system will provide
subslantlal computational throughput. However, to account lor
those sltuatlons where a direct, Irrevocable engine shutdown Is
required, an Emergency logic subsystem Is Included in the
diagnoslic system.
Example Diagnostic System

As an example of the multilevel dlagnoslic syslem just
described, a two level, neural network based archltecture has been
developed lo detect and dlagnose engine acluator fauits in the
SSME. The two level architeclure would be representative of the
Fault Detecllon Layer of the dlagnostic architeclure and would be
driven by model-based residuals generated at the Conditlon Monitor
Layer. The residual generation process Is described first.

Residual Generalion

Typically, complele nonlinear dynamic simulations of
propulsion system (SSME) performance are avallable. However,
due to thelr size and complexity {40 min. CPU time for 20 sec. of
real time operation with a VAX 8800 for the SSME), these nonlinear
simulations cannct be used o generate reslduals In real time lo
describe the normal mode of operaflon. Allernatlve approaches,
such as the linked linear model approach, have been ap?ﬂed o
accurately, yet simply, model the performance of the SSME’. Here
a system idenlificalion algorithm and the data generated from the
nonlinear performance simulation are used to obtain finear models
of the SSME at twenly {ive dilferant operaling points. The inputs of
hege models are the rolary mation of the valve acluator outputs of
the oxldizer preburner oxidizer valve (OPOV), Bgpoy. and fuel
preburner oxidizer valve (FPOV), P..oy. The models have
measurable slate variables which simplifies the model structurs.
The oulputs which are also the state varlables, are the chamber
Inlet pressure, P, mixture ratlo, MR, high pressure fuel lurbine
speed, S,,, and high pressure oxidizer turbine speed, S,,o;. The
linear models, which predict the output of the nonlinear simulation
with very good accuracy, are finked to obtain a simplified, quasi-
linear model of the SSME, valld within Its full range of operation.
The coefficients of the linear models are regressed with the
parameters which determine the nominal operaling condilions,
mixiure ratio and the chamber pressure, A comparison of the
responses of the linked modsl and the nonlinear simulation indicate
good agreement as shown In Figure 8.

With the observed state varlables, residuals are generated
belween the measured output and the output oblained using the
stale-space model as:

rasIdualS = Yppaymement =~ Ymodel 1Y)

These residuals are generated by inducing stuck valve faults In the
nonlinear dynamlc simulation of the SSME. Both the OPOV and the
FPOV are considered for this purpose. In this paper a stuck fault
Is defined such that a valve may not move above a certain angle,

called the fault severity. However, the valve may move as
commanded below this angle. Data are oblalned at varlous stuck

fault severily angles.  Using the reslduals generated by the
Condition Monltoring Layer, a two layer, neural network based



architecture has been developed to detect and dlagnose engine
actuator faults.
Neural Network Architecture

The Neural Network architecture employed in this study, as
shown In Figure 9 is a two level architecture:

1) The Classifier level where the faults are actually
classified as belonging to a particular category (fault detection);

' 2} The Severily level where the severity{magnitude)
of the fault thal was identifled in the Classifier level Is estimaled.
Classifier Level

The Classifler level consists of two nelworks, one
associaled with the chamber pressure residual and the other wilh
the mixiure ratlo residual. Each of these two nelworks are three
layer (including the inpul and output layers} feedlorward networks
with non-finear hidden and oulput unils. The weighls in these
networks are asslgned using the generalized back propagation
algorithm.

Each of these networks consist of 200 input nodes, 20
hidden nodes and 2 output nodes. The input lo one network is a
lime sequence of the chamber pressure residual of length 200.
The time slep between residuals is 0.04 seconds wilh lhe total
sequence time representing 8 secs. Simllarly the other network
receives the mixture ratio residual sequence as lis inpul. For each
of these two networks, one output node Is assoclated with the
OPOQV stuck condition while the other oulput node corresponds to
the FPOV stuck condition. in short, one output node Is activated i
an OPOV stuck condilion Is aclivated; the other Is aclivaled If an
FPOV stuck condilion is activaled. The outpul aclivations are real
numbers between 0 and 1.

Training:

For network lraining, six fault scenarios were generated
from the non-linear dynamic simulation for the following fault
conditions:

a) The OPOV valve stuck at 45, 47 and 50 degrees

respeclively.

b) The FPOV valve stuck at 53, 57 and 59.5 degrees

respectively.
Chamber pressure and mixiure ratio residuals for these scenarlos
were generated as in Equation (7) for a time span of 8 seconds In
steps of 0.04 seconds (a 200 length sequence). That Is, the
rasidual dala are generated as the difference of the actual output
of the SSME non-linear simulation and the outpul generated by the
linked model.

During training, a residual pallarn representing a fault
condition is appfied to the input level (200 nodes) and a 1
(Indicating full actlvation) is applied to the corresponding oulput
nede. For Instance, the chamber pressure residual cofresponding
to an OPOV stuck valve condition is applied o one of the Classifier
networks and an activation of 1 is imposed on the output node
corresponding lo the OPOV sluck condilion. The network welghts
are then adjusted Invoking the back propagation algorithm, thus
enabling the neural network to learn the imposad input-outpul
patlern. Each of the Classifier networks Is tralned using ali six faull
scenarios.

Seaverily Levet

The Severity level consisls of four (4) networks, two
associaled with {he chamber pressure residual (one for OPOV
saverlty and the other for FPOV severity) and the other two with the
mixture ratio resldual. Once again, sach of these networks Is a
three layer feedforward network where the welights are assigned
using the back propagation algorithm.

Each of these networks consist of 200 input nodes, 20
hidden nodes and 3 output nodes. Two of these networks recelve
the chamber pressure residual sequence as fts Input, while the
other two networks receive the mixture ratio residual sequence as
its input. The three oulpul nodes correspond to the three severity
lavels (OPOV siuck at 45, 47 and 50 or FPOV stuck at 53, 57 and
59.5 degrees).

Tralning:

The training Is similar to that used in the Classifler level.
Once the Input pattern s applied lo a network, the node
corresponding to the severily level of the Inpul paltem Is fully
aclivaled and the network weighls learned through back
propagalion. For Instance, fhe chamber pressure residual,
corresponding to the 45 degrees OPQOV stuck valve faull scenario,
is applied as the input and the output node corresponding to a 45
degree sevarity lavel Is glven an activation of 1. However, for the
Severlty level networks, only those resldual segquences that
correspond to the approprlate network are used to lrain the
network. For example only mixture ralio residual sequences are
used to train the two mixture ratio severity networks. As a result,
each of these Severity level networks is trained with three input

representations rather than six as in the Classilier level.
Resulls

Tes! data with severlty levels not used in tralning werae used
to test both the Classlfier level and the Severity level networks.
The nelwork archilecture woiks as follows. Consider a fault
scenario of the OPOV valve stuck al 47.5 degrees. The two
Classifier level networks use their corresponding inputs {one uses
the chamber pressure residual while the other uses the mixture
rallo residual) to give an outpul aclivation coresponding to the fault
(in this case the oulput node corresponding to the OPOV fault
condition Is aclivated In each of these two networks). Figure 10
Hlustrates the resulls obtained for this case.

Once the decislon has been made as o what lhe fault Is,
the Severily level networks are used lo detect the severily of the
fault.  With the OPOV stuck condilion, 2 Severity level networks
swing Into actlion {each corresponding to one of the two residuals})
to estimate the severity of the OPOV sluck valve. The other two
Severity level networks are dormant as {hey are lrained to estimale
the FPOV faull severitly levels.

Consider another lest case for the fault scenarlo of {he
FPOYV valve sluck al 55 degrees. Again the network architecture
would woik as In the previous case with the outputs of the Classifier
and Severily lavel networks shown in Figure 11. Nole that In this
case the nelwork aclually approximates the severlly level since the
welghted sum of the oulput activation magnlitudes Is 55.5. In both
cases the networks correctly identity both the fault types and thelr
severlty.

CONCLUSIONS

This paper discusses some of the ongolng research in fault
detection and dlagnosis for aerospace propuision systems
sponsored by the National Aeronautics and Space Administration’s
Lewis Research Center. The research reported is grouped in two
general areas, sensor faull detection and intelligent faull diagnosis.

Sensor fault deleclion and accommodation for a high
performance turbofan engine was demonstrated at eleven different
operating points which Included subsonlc and supersonic condilions
and medium and high power operation. Excellent detection and
accommodation performance was shown. Transient engine
operation over the full power range with single sensors falied and
accomimodaled was successiully demonstrated. Open loop engine
operation{all englne oulput sensors falled and accommodaled) over
at least 75 percent of the power range was also demonslrated at
two different operating conditions.

In the area of Inteflignet fault diagnosis a proposed
archileclure for real-time, decentralized faull diagnosls was
proposed. Within this four layer archilecture research into model
based faull detection and diagnosis using neural networks was
presented. This Included a design of a model based fault detection
and diagnosis system for the space shullle main engine. The
engine Is modeled using a discrete time, quasi-linear stale-space
representation whose model paramelers are delermined by
Identification. Residuals generated from the model are used by a
neural neiwork 1o detect and dlagnose engine component faults.
Fault diagnosis Is accomplished by training the neural network 1o
recognize the paltern of the respective lault signalures.
Preliminary results obtained from a nonlinear dynamic simulation of
the space shuitte maln engine for two falled oxldizer valve
scenarios were presented and Indicate ihat the developed approach
can be used for faull detection and diagnosis. Unequivocal
classificalions of fault type were obtalned along with accurate
estimation ol lault severity for scenarlos not included in the training

sel.
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