3,358 research outputs found

    Sensor authentication in collaborating sensor networks

    Get PDF
    In this thesis, we address a new security problem in the realm of collaborating sensor networks. By collaborating sensor networks, we refer to the networks of sensor networks collaborating on a mission, with each sensor network is independently owned and operated by separate entities. Such networks are practical where a number of independent entities can deploy their own sensor networks in multi-national, commercial, and environmental scenarios, and some of these networks will integrate complementary functionalities for a mission. In the scenario, we address an authentication problem wherein the goal is for the Operator Oi of Sensor Network Si to correctly determine the number of active sensors in Network Si. Such a problem is challenging in collaborating sensor networks where other sensor networks, despite showing an intent to collaborate, may not be completely trustworthy and could compromise the authentication process. We propose two authentication protocols to address this problem. Our protocols rely on Physically Unclonable Functions, which are a hardware based authentication primitive exploiting inherent randomness in circuit fabrication. Our protocols are light-weight, energy efficient, and highly secure against a number of attacks. To the best of our knowledge, ours is the first to addresses a practical security problem in collaborating sensor networks. --Abstract, page iii

    Over-the-air software updates in the internet of things : an overview of key principles

    Get PDF
    Due to the fast pace at which IoT is evolving, there is an increasing need to support over-theair software updates for security updates, bug fixes, and software extensions. To this end, multiple over-the-air techniques have been proposed, each covering a specific aspect of the update process, such as (partial) code updates, data dissemination, and security. However, each technique introduces overhead, especially in terms of energy consumption, thereby impacting the operational lifetime of the battery constrained devices. Until now, a comprehensive overview describing the different update steps and quantifying the impact of each step is missing in the scientific literature, making it hard to assess the overall feasibility of an over-the-air update. To remedy this, our article analyzes which parts of an IoT operating system are most updated after device deployment, proposes a step-by-step approach to integrate software updates in IoT solutions, and quantifies the energy cost of each of the involved steps. The results show that besides the obvious dissemination cost, other phases such as security also introduce a significant overhead. For instance, a typical firmware update requires 135.026 mJ, of which the main portions are data dissemination (63.11 percent) and encryption (5.29 percent). However, when modular updates are used instead, the energy cost (e.g., for a MAC update) is reduced to 26.743 mJ (48.69 percent for data dissemination and 26.47 percent for encryption)

    Security by Spatial Reference:Using Relative Positioning to Authenticate Devices for Spontaneous Interaction

    Get PDF
    Spontaneous interaction is a desirable characteristic associated with mobile and ubiquitous computing. The aim is to enable users to connect their personal devices with devices encountered in their environment in order to take advantage of interaction opportunities in accordance with their situation. However, it is difficult to secure spontaneous interaction as this requires authentication of the encountered device, in the absence of any prior knowledge of the device. In this paper we present a method for establishing and securing spontaneous interactions on the basis of emphspatial references that capture the spatial relationship of the involved devices. Spatial references are obtained by accurate sensing of relative device positions, presented to the user for initiation of interactions, and used in a peer authentication protocol that exploits a novel mechanism for message transfer over ultrasound to ensures spatial authenticity of the sender

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)
    • 

    corecore