5,826 research outputs found

    UAV/UGV Autonomous Cooperation: UAV Assists UGV to Climb a Cliff by Attaching a Tether

    Full text link
    This paper proposes a novel cooperative system for an Unmanned Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV) which utilizes the UAV not only as a flying sensor but also as a tether attachment device. Two robots are connected with a tether, allowing the UAV to anchor the tether to a structure located at the top of a steep terrain, impossible to reach for UGVs. Thus, enhancing the poor traversability of the UGV by not only providing a wider range of scanning and mapping from the air, but also by allowing the UGV to climb steep terrains with the winding of the tether. In addition, we present an autonomous framework for the collaborative navigation and tether attachment in an unknown environment. The UAV employs visual inertial navigation with 3D voxel mapping and obstacle avoidance planning. The UGV makes use of the voxel map and generates an elevation map to execute path planning based on a traversability analysis. Furthermore, we compared the pros and cons of possible methods for the tether anchoring from multiple points of view. To increase the probability of successful anchoring, we evaluated the anchoring strategy with an experiment. Finally, the feasibility and capability of our proposed system were demonstrated by an autonomous mission experiment in the field with an obstacle and a cliff.Comment: 7 pages, 8 figures, accepted to 2019 International Conference on Robotics & Automation. Video: https://youtu.be/UzTT8Ckjz1

    Detection and estimation of moving obstacles for a UAV

    Get PDF
    In recent years, research interest in Unmanned Aerial Vehicles (UAVs) has been grown rapidly because of their potential use for a wide range of applications. In this paper, we proposed a vision-based detection and position/velocity estimation of moving obstacle for a UAV. The knowledge of a moving obstacle's state, i.e., position, velocity, is essential to achieve better performance for an intelligent UAV system specially in autonomous navigation and landing tasks. The novelties are: (1) the design and implementation of a localization method using sensor fusion methodology which fuses Inertial Measurement Unit (IMU) signals and Pozyx signals; (2) The development of detection and estimation of moving obstacles method based on on-board vision system. Experimental results validate the effectiveness of the proposed approach. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved

    Learning Pose Estimation for UAV Autonomous Navigation and Landing Using Visual-Inertial Sensor Data

    Get PDF
    In this work, we propose a robust network-in-the-loop control system for autonomous navigation and landing of an Unmanned-Aerial-Vehicle (UAV). To estimate the UAV’s absolute pose, we develop a deep neural network (DNN) architecture for visual-inertial odometry, which provides a robust alternative to traditional methods. We first evaluate the accuracy of the estimation by comparing the prediction of our model to traditional visual-inertial approaches on the publicly available EuRoC MAV dataset. The results indicate a clear improvement in the accuracy of the pose estimation up to 25% over the baseline. Finally, we integrate the data-driven estimator in the closed-loop flight control system of Airsim, a simulator available as a plugin for Unreal Engine, and we provide simulation results for autonomous navigation and landing

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    Autonomous Approach and Landing Algorithms for Unmanned Aerial Vehicles

    Get PDF
    In recent years, several research activities have been developed in order to increase the autonomy features in Unmanned Aerial Vehicles (UAVs), to substitute human pilots in dangerous missions or simply in order to execute specific tasks more efficiently and cheaply. In particular, a significant research effort has been devoted to achieve high automation in the landing phase, so as to allow the landing of an aircraft without human intervention, also in presence of severe environmental disturbances. The worldwide research community agrees with the opportunity of the dual use of UAVs (for both military and civil purposes), for this reason it is very important to make the UAVs and their autolanding systems compliant with the actual and future rules and with the procedures regarding autonomous flight in ATM (Air Traffic Management) airspace in addition to the typical military aims of minimizing fuel, space or other important parameters during each autonomous task. Developing autolanding systems with a desired level of reliability, accuracy and safety involves an evolution of all the subsystems related to the guide, navigation and control disciplines. The main drawbacks of the autolanding systems available at the state of art concern or the lack of adaptivity of the trajectory generation and tracking to unpredicted external events, such as varied environmental condition and unexpected threats to avoid, or the missed compliance with the guide lines imposed by certification authorities of the proposed technologies used to get the desired above mentioned adaptivity. During his PhD period the author contributed to the development of an autonomous approach and landing system considering all the indispensable functionalities like: mission automation logic, runway data managing, sensor fusion for optimal estimation of vehicle state, trajectory generation and tracking considering optimality criteria, health management algorithms. In particular the system addressed in this thesis is capable to perform a fully adaptive autonomous landing starting from any point of the three dimensional space. The main novel feature of this algorithm is that it generates on line, with a desired updating rate or at a specified event, the nominal trajectory for the aircraft, based on the actual state of the vehicle and on the desired state at touch down point. Main features of the autolanding system based on the implementation of the proposed algorithm are: on line trajectory re-planning in the landing phase, fully autonomy from remote pilot inputs, weakly instrumented landing runway (without ILS availability), ability to land starting from any point in the space and autonomous management of failures and/or adverse atmospheric conditions, decision-making logic evaluation for key-decisions regarding possible execution of altitude recovery manoeuvre based on the Differential GPS integrity signal and compatible with the functionalities made available by the future GNSS system. All the algorithms developed allow reducing computational tractability of trajectory generation and tracking problems so as to be suitable for real time implementation and to still obtain a feasible (for the vehicle) robust and adaptive trajectory for the UAV. All the activities related to the current study have been conducted at CIRA (Italian Aerospace Research Center) in the framework of the aeronautical TECVOL project whose aim is to develop innovative technologies for the autonomous flight. The autolanding system was developed by the TECVOL team and the author’s contribution to it will be outlined in the thesis. Effectiveness of proposed algorithms has been then evaluated in real flight experiments, using the aeronautical flying demonstrator available at CIRA
    • …
    corecore