7 research outputs found

    Synthetic aperture radar target detection, feature extraction, and image formation techniques

    Get PDF
    This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images

    Sensor array signal processing : two decades later

    Get PDF
    Caption title.Includes bibliographical references (p. 55-65).Supported by Army Research Office. DAAL03-92-G-115 Supported by the Air Force Office of Scientific Research. F49620-92-J-2002 Supported by the National Science Foundation. MIP-9015281 Supported by the ONR. N00014-91-J-1967 Supported by the AFOSR. F49620-93-1-0102Hamid Krim, Mats Viberg

    Space-Time Parameter Estimation in Radar Array Processing

    Get PDF
    This thesis is about estimating parameters using an array of spatially distributed sensors. The material is presented in the context of radar array processing, but the analysis could be of interest in a wide range of applications such as communications, sonar, radio astronomy, seismology, and medical diagnosis. The main theme of the thesis is to analyze the fundamental limitations on estimation performance in sensor array signal processing. To this end, lower bounds on the estimation accuracy as well as the performance of the maximum likelihood (ML) and weighted least-squares (WLS) estimators are studied. The focus in the first part of the thesis is on asymptotic analyses. It deals with the problem of estimating the directions of arrival (DOAs) and Doppler frequencies with a sensor array. This problem can also be viewed as a two-dimensional (2-D) frequency estimation problem. The ML and WLS estimators for this problem amount to multidimensional, highly non-linear optimization problems which would be expensive to solve in real-time in a radar system. Therefore, simplifications of this problem are of great interest. It is shown in this thesis that, under some circumstances, the 2-D problem decouples into 1-D problems. This means a dramatic reduction in computational complexity with insignificant loss of accuracy. The second part contains a performance analysis of the ML DOA estimator under conditions of low signal-to-noise ratio (SNR) and a small number of data samples. It is well known that the ML estimator exhibits a threshold effect, i.e. a rapid deterioration of estimation accuracy below a certain SNR. This effect is caused by outliers and is not captured by standard analysis tools. In this thesis, approximations to the mean square estimation error and probability of outlier are derived that can be used to predict the threshold region performance of the ML estimator with high accuracy. Moreover, these approximations alleviate the need for time-consuming computer simulations when evaluating the ML performance

    Space-Time Parameter Estimation in Radar Array Processing

    Get PDF
    This thesis is about estimating parameters using an array of spatially distributed sensors. The material is presented in the context of radar array processing, but the analysis could be of interest in a wide range of applications such as communications, sonar, radio astronomy, seismology, and medical diagnosis. The main theme of the thesis is to analyze the fundamental limitations on estimation performance in sensor array signal processing. To this end, lower bounds on the estimation accuracy as well as the performance of the maximum likelihood (ML) and weighted least-squares (WLS) estimators are studied. The focus in the first part of the thesis is on asymptotic analyses. It deals with the problem of estimating the directions of arrival (DOAs) and Doppler frequencies with a sensor array. This problem can also be viewed as a two-dimensional (2-D) frequency estimation problem. The ML and WLS estimators for this problem amount to multidimensional, highly non-linear optimization problems which would be expensive to solve in real-time in a radar system. Therefore, simplifications of this problem are of great interest. It is shown in this thesis that, under some circumstances, the 2-D problem decouples into 1-D problems. This means a dramatic reduction in computational complexity with insignificant loss of accuracy. The second part contains a performance analysis of the ML DOA estimator under conditions of low signal-to-noise ratio (SNR) and a small number of data samples. It is well known that the ML estimator exhibits a threshold effect, i.e. a rapid deterioration of estimation accuracy below a certain SNR. This effect is caused by outliers and is not captured by standard analysis tools. In this thesis, approximations to the mean square estimation error and probability of outlier are derived that can be used to predict the threshold region performance of the ML estimator with high accuracy. Moreover, these approximations alleviate the need for time-consuming computer simulations when evaluating the ML performance

    Feedback suppression in digital hearing instruments

    Get PDF
    corecore