2,054 research outputs found

    Noise model of the cryogenic nuclear magnetic resonance spectroscopy system\u27s receiving chain

    Get PDF
    One of the challenges in modern nuclear magnetic resonance (NMR) is achieving its highest possible measuring sensitivity. This is because modern NMR samples\u27 response signals decrease, so background noise of the used NMR spectroscopy system causes bigger problems. As a solution, both software and hardware interventions were applied. However, these improvements were obtained experimentally, so the reason for their proper operation and upper limit is usually unknown. Recently, a noise model of the NMR spectroscopy system, which shows both the reason for proper operation and the upper limit of the applied improvements, was introduced. A Javascript-based calculator, based on the introduced model, has been developed and made available online as a user-friendly website that can be run on the most commonly used Internet browsers. To the authors\u27 knowledge, this calculator is the first of its kind that analyses noise properties in NMR. Using it, one can a priori make both sensitivity prediction of practical NMR systems in physics and material science and quantitative analysis of its noise properties. Consequently, overall measurement duration can be shortened down to one half of the current duration. This is an immense improvement, as some modern NMR measurements consume more than ten hours per measurement

    Solid State NMR Spectroscopy a Valuable Technique for Structural Insights of Advanced Thin Film Materials: A Review

    Get PDF
    Solid-state NMR has proven to be a versatile technique for studying the chemical structure, 3D structure and dynamics of all sorts of chemical compounds. In nanotechnology and particularly in thin films, the study of chemical modification, molecular packing, end chain motion, distance determination and solvent-matrix interactions is essential for controlling the final product properties and applications. Despite its atomic-level research capabilities and recent technical advancements, solid-state NMR is still lacking behind other spectroscopic techniques in the field of thin films due to the underestimation of NMR capabilities, availability, great variety of nuclei and pulse sequences, lack of sensitivity for quadrupole nuclei and time-consuming experiments. This article will comprehensively and critically review the work done by solid-state NMR on different types of thin films and the most advanced NMR strategies, which are beyond conventional, and the hardware design used to overcome the technical issues in thin-film research

    52nd Rocky Mountain Conference on Analytical Chemistry

    Get PDF
    Final program, abstracts, and information about the 52nd annual meeting of the Rocky Mountain Conference on Analytical Chemistry, co-endorsed by the Colorado Section of the American Chemical Society and the Society for Applied Spectroscopy. Held in Snowmass, Colorado, August 1-5, 2010

    Summaries of FY 1997 Research in the Chemical Sciences

    Get PDF
    The objective of this program is to expand, through support of basic research, knowledge of various areas of chemistry, physics and chemical engineering with a goal of contributing to new or improved processes for developing and using domestic energy resources in an efficient and environmentally sound manner. Each team of the Division of Chemical Sciences, Fundamental Interactions and Molecular Processes, is divided into programs that cover the various disciplines. Disciplinary areas where research is supported include atomic, molecular, and optical physics; physical, inorganic, and organic chemistry; chemical energy, chemical physics; photochemistry; radiation chemistry; analytical chemistry; separations science; heavy element chemistry; chemical engineering sciences; and advanced battery research. However, traditional disciplinary boundaries should not be considered barriers, and multi-disciplinary efforts are encouraged. In addition, the program supports several major scientific user facilities. The following summaries describe the programs

    Annual report / IFW, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

    Get PDF

    59th Annual Rocky Mountain Conference on Magnetic Resonance

    Get PDF
    Final program, abstracts, and information about the 59th annual meeting of the Rocky Mountain Conference on Magnetic Resonance, co-endorsed by the Colorado Section of the American Chemical Society and the Society for Applied Spectroscopy. Held in Snowbird, Utah, July 22-27, 2018

    58th Annual Rocky Mountain Conference on Magnetic Resonance

    Get PDF
    Final program, abstracts, and information about the 58th annual meeting of the Rocky Mountain Conference on Magnetic Resonance, co-endorsed by the Colorado Section of the American Chemical Society and the Society for Applied Spectroscopy. Held in Breckenridge, Colorado, July 17-21, 2016
    corecore