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Flashback to 2015

The IFW Dresden looks back at an exciting and successful year 2015. With the results of

the evaluation, published in March, the IFW was ranked as one of the worldwide leading

research institutes in the field of Solid States and Materials Research and was recom-

mended for seven more years of funding through the Federal State of Germany and the

Free State of Saxony. In addition to that, the scientific advisory board certified that re-

search at the IFW Dresden is internationally on an outstanding level. The participation

in special research fields, the successful fundraising of ERC-Grants and numerous often-

quoted publications prove this assessment right. 

All Leibniz Institutes are institutionally funded by the federal government and by the

Germa n Länder in equal shares. The justification of this funding has to be affirmed for

each institute in intervals of seven years by an evaluation panel set up by the senate

commissio n of the Leibniz Association. The prerequisite of confirmed funding is high

quality scientific work and its high relevance for the whole society. In spring 2015, the

Leibniz Association Senate has published the final report on the evaluation of the IFW

in July 2014. The panel of renowned, international scientists confirmed the high qual-

ity of research at IFW. The evaluation report states that the IFW fulfils its “mission

extremel y successfully and has gained a place as one of the world’s leading research

institute s in this field”. Most subdivisions have been rated as “very good to excellent”.

Thus, for the next seven years we can move forward with our scientific work and strate-

gic measures according to the research program, which is organized into four large

researc h areas
� Research Area 1: Functional quantum materials
� Research Area 2: Function through size
� Research Area 3: Quantum effects at the nanoscale
� Research Area 4: Towards products

The range of materials that are investigated is broad but well-defined. It contains

Quantum Materials, a highly topical class of materials in condensed matter physics as

well as Functional Materials, representing an important part of modern materials

Prof. Dr. Manfred Hennecke and Dr. Doreen Kirmse, 
the Executive Board of the IFW Dresden
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engineerin g. In the last years Nanoscale Materials became a strong focus of present day

materials science and a crucial material class for cutting-edge developments in electri-

cal engineering. These three classes, Quantum Materials, Functional Materials and

Nanoscale Materials, provide the three materials-oriented pillars of the IFW. The research

area “Towards products” binds together materials science and engineering that is at the

borderline to prototypes or products. Establishing, fostering and promoting the contact

to industry partners is the main aspect within this activity. While being distinctly

multidisciplinar y, there is a clear common aspect to all activities of the IFW Dresden: all

researchers at the IFW Dresden investigate yet unexplored properties of novel materi-

als with the aim to establish new functionalities and applications. In this respect, 2015

was a very productive year for IFW. The appendix gives a complete record of the publi-

cations, invited talks, patent applications, completed graduations and theses, aca-

demic events, and guest stays. In the main part of this Annual Report outstanding

scientifi c results are presented for each Research Topic of the IFW’s research program.

In 2015, there have been several personnel changes in IFW’s management positions.

In April 2015, Dr. Doreen Kirmse became the new Administrative Director of IFW. To -

gether with the Scientific Director, Professor Dr. Manfred Hennecke, she belongs to the

Executive Board the IFW Dresden. Further personnel changes in management positions

concern the directorship of two of the five IFW’s institutes: (1) In April 2015, Professor

Dr. Kornelius Nielsch jointed the IFW as new Director of the Institute for Metallic Ma-

terials providing new input into the IFW’s Research Program. Together with some new

co-workers, he introduced thermoelectric materials as a new research topic. Thermo -

electric materials enable direct conversion between thermal and electrical energy. New

materials, e.g. special alloys, and the various capabilities of nanostructuring show

enhance d efficiency and promise new applications. (2) Professor Dr. Jürgen Eckert has

accepted a call to the Montanuniversität Leoben (Austria) and left the IFW in August

2015. A successor for the Institute for Complex Materials will be appointed in a joint

procedur e together with the Technische Universität Dresden. In the meantime, Dr.

Thomas Gemming heads this IFW Institute.

Work on materials for energy storage
on progress

Prof. Dr. Kornelius Nielsch, the new
Director of the Institute for Metallic
Materials at IFW 

Leibniz President Prof. Dr. Matthias Kleiner
visiting IFW
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As a Leibniz Institute the IFW is budgeted by the federal government and the German fed-

eral states in equal parts. However, a considerable extension of capability is the amount

of third party project funding which is also an important index of quality. The level of third

party funding in 2015 amounts to 10 Mio. Euro – a level at the forefront of the Leibniz

Association. Most of this project funding was acquired in a highly competitive mode from

the DFG and the EU. In particular the grant of the new Collaborative Research Centre 1143

on “Correlated magnetism: From frustration to topology” where the IFW is collaborat-

ing with the Technische Universität Dresden shows the competitive capability of the IFW.

Among the large number of third party funded projects are three DFG-Priority Programs

that are coordinated by the IFW. Additionally, IFW scientists participate in seven DFG-

Priority Programs and three DFG Research Groups. As in the previous years the IFW has

been very successful in initiating EU projects and participating in them. After having been

awarded two ERC Starting Grants in 2012 and one ERC Advanced Grant in 2013, IFW

researcher s could continue their success with this highly prestigious European funding

program in 2015 with two ERC Consolidator Grants in 2015. Dr. Christian Hess received

an ERC Consolidator Grant for his research on “Electronic order, magnetism, and uncon-

ventional superconductivity in real-space”. Dr. Alexej Popov received an ERC Consol -

idator Grant for his project titled “Surface-grafted metallofullerene molecular magnets

with controllable alignment of magnetic moments”.

Essentially publicly funded, the IFW is obliged to make its research results public. Almost

400 publications in scientific journals and conference proceedings report on the IFW’s

research results on the year 2015. In 270 invited talks the Institute’s scientists present-

ed their work at other places around the world. In 2015, twelve patents were issued for

the IFW, and applications for 17 more patents have been made. Apart from these

scientifi c communications the IFW continued its large efforts to make scientific work

accessibl e for the general public and to inspire young people to study science or engi-

neering. The IFW took part in many joint actions like the lecture series “Physics on

Saturda y”, “Junior Doctor” or the “Dresden Long Night of Sciences”. Besides these big

Photoelectron spectroscopy Dr. Julia Hufenbach (middle) receiving
the DGM Junior Award 2015
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events we organize almost weekly lab-tours for various visitor groups, from school

classes through official representatives to guests from foreign organizations. Especial-

ly the IFW’s superconducting test facility SpuraTrans in Dresden-Niedersedlitz has proved

very popular among visitors, be it representatives from companies, students groups or

politicians. Furthermore, the facility has been used for an advertising video clip where

a prominent skater surfed on a levitating board. The huge publicity of the video on

youtube and other channels brought some benefit also to the public outreach of IFW. 

A crucial part of the IFW’s identity is its vivid life including the cultivation of the scien-

tific dialogue, family-friendly working conditions, intercultural diversity and the support

of sportive and cultural activities. In 2015 the IFW organized a series of workshops,

colloqui a and talks to foster the scientific dialogue and, along the way, allow for social

and communication aspects of cooperation. Social events like the annual IFW Summer

Day, the Christmas party and vernissages to our art exhibitions also contribute to a good

working atmosphere among all IFW groups. 

The positive development of the IFW is being fostered continuously by the engagement

of colleagues and partners from universities, research institutes and industry, our Sci-

entific Advisory Board and the Board of Trustees as well as the funding organizations.

We would like to thank all our partners and friends for their support and cooperation.

Dresden, February 2016

Prof. Dr. Manfred Hennecke Dr. Doreen Kirmse

Scientific Director Administrative Director

Fellowship holders at research work in the
framework of an EU project on metallic glasses

Postersession at the Werkstoffwoche
in Dresden

New apprentices starting their professional
training at IFW in 2015
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Facts & Figures 

Organization

The Leibniz Institute for Solid State and Material Research Dresden (IFW) is one of

currentl y 89 institutes of the Leibniz Association in Germany. It is a legally independent

association, headed by the Scientific Director, Prof. Dr. Manfred Hennecke, and the

Administrativ e Director, Dr. Doreen Kirmse.

The scientific body of the IFW Dresden is structured into five institutes, the directors of

which are simultaneously full professors at Dresden, respectively Chemnitz Universities

of Technology:
� Institute for Solid State Research, Prof. Dr. Bernd Büchner
� Institute for Metallic Materials, Prof. Dr. Kornelius Nielsch
� Institute for Complex Materials, Dr. Thomas Gemming (temp.)
� Institute for Integrative Nanosciences, Prof. Dr. Oliver G. Schmidt
� Institute for Theoretical Solid State Physics, Prof. Dr. Jeroen van den Brink

Further divisions are the Research Technology Division and the Administrative Division.

Financing

The institutional funding of IFW is supplied by the Federal government and by the

Germa n states (Länder) in equal parts. In 2015, this funding was about 33.422 million

euros in total. 

In addition, the IFW receives project funding from external sources of about 9.95 mil-

lion euros. Thereof, about 43% came from German Research Foundation (DFG), 25% from

European Union programs, 13% from Federal Government projects, 13% from industry

and 6% from other donors including the Free State of Saxony. 

IFW Summer day: award ceremony
for the best paper airplanes

“JuniorDoctor” – one of the offers of the Dresden science
network. Magnetic levitation attracts the youngsters. 

View of the IFW building
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Personnel

On 31 December 2015, 498 staff members were employed at the IFW, including 108

doctorat e students as well as 19 apprentices in seven different vocational trainings and

two business students of a vocational academy. 

Gender equality, as well as work life balance, are defined goals of the IFW Dresden. In

2015, the percentage of women in scientific positions was 25% and the percentage of

women in scientific leading positions was 21 %. In 2007, the IFW qualified for the

certifica te “audit berufundfamilie” (a strategic management tool for a better compati-

bility of family and career) and was already re-audited two more times.

Number of publications and patents

In terms of publications, the qualitative and quantitative level remains high at the IFW.

In 2015, IFW scientists have published 397 refereed journal articles, a considerable

numbe r of them in high impact journals. Furthermore, IFW members held 270 invited

talks at conferences and colloquia. 

By 31 December 2015, the IFW holds 120 patents in Germany and 98 international

patents.
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Research topic 1.1

Exotic ground states and low-energy excitations in bulk systems
People: A. Alfonsov, G. Aslan-Cansever, D. Baumann, N. Bogdanov, L. T. Corredor Bohórquez, D.-N. Cho, S.-L. Drechsler, 

D. Efremov, S. Fuchs, S. Gass, M. Geyer, H.-J. Grafe, F. Hammerath, R. Hentrich, C. Hess, L. Hozoi, M. Iakovleva, V. Kataev, 

V. Katukuri, A. Maljuk, K. Manna, S. Nishimoto, K. D. Swamy Reddy, J. Schoop, F. Steckel, H. Stummer, M. Sturza, Z. Sun, 

S. Sykora, S. Reja, Y. Utz, M. Vogl, A. Wolter-Giraud, S. Wurmehl, L. Xu, R. Yadav, J. Zeisner, A. Zimmermann, S. Zimmermann

Responsible Directors: B. Büchner, J. van den Brink

Abstract: The focus of this research topic is on experimental and theoretical inves -

tigations of novel quantum magnets on the basis of complex transition metal (TM) ox-

ides where the coupling of different degrees of freedom (spin, charge, orbital etc.) can

give rise to unconventional ground states and novel spin excitations. In our research

we extensively exploit a unique combination of relevant mutually complementary

methods and expertise available at the IFW Dresden, ranging from material synthesis

and crystal growth, transport, magnetic and thermodynamic characterization to

variou s spectroscopic (ARPES, RIXS, spin-polarized STM/STS) and dynamic local spin

probe (ESR, NMR) techniques supported by numerical or analytical treatment of many-

body models and quantum chemistry calculations. 

In 2015, besides continuing investigations of 3d TM oxides that since decades provide

a rich playground for exploring intriguing Mott-Hubbard physics, we dedicated a sub-
stantial attention to the 5d materials, mainly to iridium oxides. The 5d iridates

have attracted an enormous recent interest as they enter one more ingredient to the

TM-oxide ‘Mottness’ paradigm — large spin-orbit couplings (SOC’s). SOC in 5d oxides

modifie s the very nature of the correlation hole of an electron, changes the conditions

for localization, the criteria of Mottness, and further gives rise to new types of mag -

netic ground states and excitations. 

The layered perovskite Sr2IrO4 has been recently put forward as a prototype 2D spin-

orbita l Mott insulator. Using electron spin resonance (ESR) measurements at sub-THz

frequencie s in strong magnetic fields we were able to untangle the 5d-shell electronic

structure of Sr2IrO4, in particular, the exact order of the Ir t2g levels [1]. To do that, we

have experimentally determined the spectroscopic g-tensor which appears inverted as
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compared to predictions of canonical ligand-field theory. The inversion of the g-tensor

implies an inversion of the ordering of the t2g orbital states (Fig. 1). That has been quan-

titatively confirmed by ab-initio quantum chemistry calculations and we have further

shown that the driving force behind this energy-level switching is the interlayer posi-

tive-ion charge imbalance [1]. This latter effect we identify in layered 214 iridates

opens new perspectives on orbital engineering in both intrinsically-stacked bulk oxides

and multilayered heterostructures. 

While the antisymmetric Dzyaloshinskii-Moriya coupling reaches impressively large

value s of more than 10 meV in Sr2IrO4 [1], for edge-sharing octahedra in honeycomb

iridate s it is one of the diagonal components of the symmetric anisotropy that dominates,

the recently discovered Kitaev interaction. For Na2IrO3 and Li2IrO3, two proposed real-

izations of the Kitaev honeycomb model, we have nailed down the crucial differences with

respect to the strengths of the Heisenberg and Kitaev couplings and further provided

guidelines for fine tuning of these interactions by varying the Ir-O-Ir bond angles,

either via pressure or strain [2]. The promise for exciting Kitaev-Heisenberg physics [3]

has been also evaluated in 4d-electron honeycomb compounds such as Li2RhO3 [4].

Measurements of the heat transport of single crystals of Sr2IrO4 [5] have revealed clear-

cut evidence for magnetic heat transport within the IrO2 planes which provides the

unique possibility to analyze the thermal occupation and scattering of jeff =1/2 pseu-

dospin excitations. The analysis of the magnetic heat conductivity yields a low-

temperatur e (T <∼ 75 K) magnetic mean free path lmag∼32 nm, consistent with bound-

ary scattering. Upon heating towards room temperature, the mean free path strongly

decreases by one order of magnitude due to thermally activated scattering of the

pseudospi n excitations. This reveals that the coupling of these excitations to the lattice

is radically different from that of S =1/2-excitations in cuprate analogs: while mag -

neto-elastic coupling has only a weak effect on the magnon heat transport of the

latter, it is the prevailing scattering mechanism for pseudospin excitations in Sr2IrO4.

Iridates such as Sr2IrO4 and Na2IrO3 also provide striking exemplifications of the pow-

er of modern resonant inelastic x-ray scattering (RIXS) spectroscopy. High-resolution

RIXS measurements of spin-orbital dynamics in Sr2IrO4 sustain the analogy of Sr2IrO4 to

the cuprate superconductors and have motivated intense efforts towards doping the

‘214’ iridates. We have shown that single-magnon (SM) scattering at the O K-edge is

allowe d when the TM SOC is sizable and inversion symmetry at the O site is broken. In

Fig. 1: (a) Canonical theories predict for the elon -
gated IrO6 octahedra in SrIr2O4 a positive tetragonal
splitting of the Ir 5d-orbital states δ > 0 and the 
g||-factor less than 2; (b) Frequency vs. magnetic field
dependence of the ESR modes (inset) evidence g|| > 2
implying that the ordering of the orbital states is in-
verted, as it would be the case for δ < 0 shown in the
top panel; (c) quantum chemistry calculations show
that a specific distribution of ionic charges between
the IrO2 and SrO layers yields an inversion of the Ir
5d-levels and predict g|| = 2.31 > 2 in good agree-
ment with experiment [1].

a)

c)

b)
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particula r, it is allowed for small momentum losses and forbidden for momenta close to

the magnetic ordering vector, a situation opposite to magnetic TM L-edge RIXS [6]. As

the 5d SOC is large and inversion symmetry at the O sites is often distinctly broken in

iridate s — e.g., in Sr2IrO4, CaIrO3, and ‘227’ pyrochlores — we predict pronounced SM

scattering at the O K edge of these magnetic Ir oxides.

Further, we have investigated the magnetic properties of a series of sodium ternary

iridate s Na1-xM1/3Ir2/3O2 (M = Ni, Cu, and Zn) by local spin probe techniques, muon spin

rotation (μSR) and nuclear magnetic resonance (NMR). Similar to the honeycomb iridate

Na2IrO3, the studied compounds feature hexagonal layers where the M ions were ex -

pected to substitute Na ions in the center of each honeycomb. However, the average

structure of the layers appears to have disordered M and Ir ions. Our results together with

our earlier magnetization measurements give evidence that the doping of the Ir 2D

honeycom b lattice has a remarkable impact on the magnetic properties. In contrast to

a well-defined antiferromagnetic order in Na2IrO3, our data reveal two competing

regimes at low temperatures in these frustrated materials: a long range AF ordering and

a cluster spin glass behavior with short range spin correlations. The interplay of these

regimes depends on the sort of the transition metal ion M.

Materials with 5d4 electronic configuration of a TM ion are generally considered to have

a non-magnetic ground state with the total angular momentum J = 0. But recently it was

argued that the interplay of superexchange energy and spin-orbit coupling may lead to

an excitonic type of magnetism. Moreover, Sr2YIrO6 (Ir5+ having 5d4 electronic config-

uration) was reported to exibit magnetic order at low temperature. However, it was

claimed that the distorted IrO6 octahedra cause the magnetism in this material. To

overcom e this structural contribution towards finding a better material to study this ex-

citonic mechanism, we have grown Ba2YIrO6 single crystals which crystallize in a cubic

structure. Interestingly, our study suggests the presence of small magnetic moments in

Ba2YIrO6, however, their origin is presently unclear. In particular, we find no hints on

magnetic order above 0.3 K.

As to the 3d TM compounds, the impact of strong electronic correlations, disorder and

magnetic frustration on the spin ground state and spin dynamics has been studied in

detai l in a number of new interesting materials. 

We studied the phase diagram of copper nitrate Cu(NO3)2*2.5D2O in the context of

quantum phase transitions and novel states of matter. We established this compound as

an ideal candidate to study quasi-1D Luttinger liquids, 3D Bose-Einstein-condensation

of triplons and the crossover between 1D and 3D physics [7]. Magnetocaloric effect,

magnetization and neutron scattering data provide clear evidence for transitions into

a Luttinger liquid regime and a 3D long-range ordered phase as function of field and

temperatur e. Theoretical simulations of this model material allow us to fully establish

the phase diagram and to discuss it in the context of dimerized spin systems. 

Magnetic properties of the CoAl2O4 single crystal where the Co spins form a frustrated

spin lattice with the diamond structure (Fig. 2) we addressed in detail with three local

spin probe techniques, NMR, μSR and ESR [8]. We found that in the studied single crys-

tal the degree of structural disorder due to the Al-Co site inversion is optimally tuned to

obtain insights onto its influence on the ground state and on the low energy magnetic

dynamics of the frustrated diamond spin lattice. We observed a critical slowing down of

spin fluctuations by approaching a characteristic temperature T*= 8 K which suggests

the onset of quasi-static short-range unconventional order at this temperature (Fig. 2).

Since in the phase diagram of the diamond spin lattice CoAl2O4 is located close to the
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specia l critical point which separates collinear and noncollinear spin phases, it appears

from our results that Al atoms at the Co sites acting as quenched impurities smear the

phase boundary between the two phases. This can yield a competition between the two

ground states and give rise to an inhomogeneous magnetic dynamics. We argue that our

experimental findings may have important implications for recent theories of an „order

by disorder“ mechanism in the frustrated diamond spin lattice.

Finally, we investigated the S = 1/2 antiferromagnetic Heisenberg spin chain com-

pound Sr2CuO3 doped with 1% and 2% of Ni impurities by means of 63Cu nuclear mag-

netic resonance [9]. A strong decrease of the spin-lattice relaxation rate T1
−1 at low

temperature s points toward a spin gap, while a stretching exponent λ < 1 and a fre -

quency dependence of T1
−1 indicate that this spin gap varies spatially and should rather

be characterized as a spin pseudogap. The magnitude of the spin pseudogap scales

with doping level. Our results therefore evidence the finite-size character of this

phenomeno n. Moreover, an unusual narrowing of the low-temperature NMR lines reveals

the suppression of the impurity-induced staggered paramagnetic response with

increasin g doping level which is most probably a consequence of the spin pseudogap,

which reduces low-energy antiferromagnetic fluctuations.

[1] N. A. Bogdanov et al., Nature Commun. 6, 7306 (2015).
[2] S. Nishimoto et al., Nature Commun. 7, 10273 (2016).
[3] Z. Nussinov and J. van den Brink, Rev. Mod. Phys. 87, 1 (2015).
[4] V. Katukuri et al., Sci. Rep. 5, 14718 (2015).
[5] F. Steckel et al., arXiv:1507.04252.
[6] B. H. Kim and J. van den Brink, Phys. Rev. B 92, 081105(R) (2015).
[7] B. Willenberg et al., Phys. Rev. B 91, 060407(R) (2015).
[8] M. Iakovleva et al., Phys. Rev. B 91, 144419 (2015)
[9] Y. Utz et al., Phys. Rev. B 92, 060405(R) (2015)

Large Third Party Projects: DFG-Collaborative Research Center SFB 1143 “Correlated
Magnetism: From Frustration to Topology”, located at TU Dresden, TU Bergakademie
Freiberg, HZDR, MPI Physik komplexer Systeme Dresden, MPI für Chemische Physik
fester Stoffe, and IFW Dresden.

Organization of workshops: Xenophon Zotos, C. Hess, P. van Loosdrecht, Workshop
“Quantum Magnets 2015”, 13.09.2015 - 18.09.2015, Kolymbari, Crete, Greece

Cooperation: Technical University Dresden, Max Planck Institute for Solid State 
Research Stuttgart, Technical University of Braunschweig, Helmholtz-Zentrum Berlin,
Paul Scherrer Institute Villigen, Zavoisky Physical Technical Institute Kazan, Ohio
State University

Fig. 2: (a) Co3+ (S =3/2) ions in CoAl2O4 form a frustrated diamond spin lattice with competing
antiferromagnetic interactions J1 and J2; (b) High magnetic field ESR spectroscopy reveals a broad-
ening and shift of the Co3+ ESR signal below T ~ 100 K indicating a continuous enhancement of
the correlations far above the ordering temperature T* = 8 K; (c) Temperature dependence of the
27Al NMR relaxation rate 1/T1 exhibits a broad peak at T* = 8 K both for regular and inverted Al
sites giving evidence for a crossover to a quasi-static regime of correlated Co electron spins; (d)

Temperature dependence of the correlation time τ0 of electron spins extracted from the analysis
of 27Al rates 1/T1 shows a continuous growth down to the lowest temperature implying a pro-
gressive slowing down of the electron spin dynamics across the T* [8].

a)

b)

c)

d)
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Research topic 1.2

Unconventional superconductivity: 
Mechanisms, materials & applications
People: S.-H. Baek, A. Bauernfeind, D. Baumann, S. Borisenko, P. Chekhonin, S. Ludwig Drechsler, D. Efremov, 

M. Enayat, A. Fedorov, G. Fuchs, M. Gillig, U. Gräfe, H. Grafe, V. Grinenko, F. Hammerath, E. Haubold, C. Hess, 

R. Hühne, R. Kappenberger, S. Khim, K. Koepernik, T. Kühne, M. Kühnel, Y. Kushnirenko, S. Luther, 

S. Müller-Litvanyi, P. Kumar Nag, G. Prando, S. Richter, T. Schorr, W. Schottenhamel, F. Steckel, 

M. Sturza, Z. Sun, S. Sykora, Y. Utz, R. Wachtel, A. Wolter-Giraud, S. Wurmehl, C. Wuttke, F. Yuan

Responsible Directors: B. Büchner, K. Nielsch, J. van den Brink

Abstract: The quest to rationalize unconventional superconductivity has been ad-

dressed by many research teams from IFF, ITF, and IMW, focusing on synthesis and

crysta l growth, transport, scanning probe microscopy, nuclear magnetic resonance

spectroscop y, thermodynamics, angle-resolved photoemission, theory and func -

tional thin films. The main target was the iron-based superconductors (IBS), but

othe r superconducting and related materials have been investigated as well. In these

studies, the rich spectrum of experimental techniques has been applied to various

superconductor s, many of which have been grown in IFW and in many cases a success-

ful collaboration with theorists led the collection of contributions given below.

Unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates: 139La

nuclear magnetic resonance studies [1] performed on La1.875Ba0.125CuO4 show that the

structural phase transitions in this compound are of displacive type. Our data indicate

that charge order triggers the slowing down of spin fluctuations. Below the spin-order-

ing temperature TSO = 40 K, 1/T1 reveals the development of enhanced spin fluctuations

in the spin-ordered state for H||[001], which are completely suppressed for large fields

H||[100]. Therefore, the spin order is stabilized at large fields only for H||[100] involv-

ing the spin-flop transition at ∼7 T ||[100], whereas fields perpendicular to the CuO2

planes do not suppress the spin fluctuations completely.

Crystal growth and the electronic phase diagram of the 4d doped Na1-δFe1-x Rhx As: Single

crystals of Na1-δFe1-xRhxAs have been grown and thoroughly characterized by powder

X-ray diffraction, magnetic susceptibility, electronic transport, specific heat, and ARPES
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[2]. We observe a typical dome-like shape for the superconducting part of the electroni c

phase diagram which is very similar to that of Co-doped NaFeAs (Fig. 1).

Role of orbital degrees of freedom: We have grown single crystals of Ba1-xNaxFe2As2 with

0.25 ≤ x ≤ 0.4. Neutron diffraction [3] reveals two successive magnetic transitions: Be-

sides the well-established magnetic transition where the in-plane magnetic moments are

arranged in a similar fashion as in other Fe-pnictides, while a spin-reorientation occurs

at lower T. This spin reorientation towards alignment of the magnetic moments parallel

to the c direction qualitatively agrees with the anisotropies observed in pure and in doped

BaFe2As2, and implies a nearly degenerate orbital configuration.

Breakdown of superconductivity upon Mn doping in La1−yYy FeAsO0.89F0.11: Combined

thermodynami c and NMR studies have shown that the increase in the chemical pressure

driven by Y for La substitution in La1-yYyFe1-x MnxAsO0.89F0.11 [4] leads to a less effective

suppression of the superconducting ground state by Mn doping. 19F NMR 1/T1 measure-

ments exhibit a low-T peak which indicates the onset of very low-frequency dynamics

with an amplitude directly related to the proximity of the compound to the QCP between

superconducting and magnetic phases. This behavior suggests that Tc is depressed by

the decrease in the spin fluctuations around (π/a,0), which are widely believed to

mediat e the pairing, or by the localization effect in the region close to the metal-

insulato r boundary.

Significant increase of superfluid density [5]: Applied pressure on LaFeAsO0.89F0.11

leads to a significant increase of superfluid density over effective band mass of Cooper

pairs by ∼30% while conserving the high Tc. This can be explained within a multiband

model and taking non-magnetic impurities into account. It is assumed that pressure

modifie s the ratio between intraband and interband impurity scattering rates by only

actin g on structural parameters while keeping the amount of chemical quenched dis -

order constant.

Fig. 1: Electronic phase diagram of Na1−δFe1−xRhxAs inferred from magnetization, resistivity, and
specific heat measurements. Critical temperatures of Na1−δFe1−xCoxAs are added to show the
generic behavior upon electron doping in Na1−δFeAs.
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Direct observation of spin-orbit coupling in iron-based superconductors [6]: Spin-orbit

coupling is a fundamental interaction in solids that can induce a broad range of

unusua l physical properties. In IBS its role has, so far, not been considered of primary

importanc e. Using angle-resolved photoemission spectroscopy, we directly observed a

sizeable spin-orbit splitting in all the main members of the IBS (cf. Fig. 2). We demon-

strated that its impact on the low-energy electronic structure and details of the Fermi

surface topology is decisive and the largest pairing gap is supported exactly by spin-

orbi t coupling-induced Fermi surfaces, implying a direct relation between this inter-

action and mechanism of high-temperature superconductivity.

Interaction-induced singular Fermi surface in a high-temperature oxypnictide super -

conductor [7]: In the family of IBS, LaFeAsO-type materials possess the simplest elec -

tronic structure and host superconductivity with the highest transition temperature

Tc ≈ 55K. Early theoretical predictions of their electronic structure revealed multiple large

circular portions of the Fermi surface with a very good nesting. We showed that a pro-

totypical compound of the 1111-type, SmFe0.92Co0.08 AsO possesses a distinctly different

Fermi surface, which consists of two singular constructs in the center and corners of

the Brillouin zone. Such singularities dramatically affect the low-energy electronic

pro perties of the material, including superconductivity. Occurrence of these singulari-

ties correlates with the maximum superconducting transition temperature attainable in

each material class over the entire family of IBS.

Tracing the s+– symmetry in iron pnictides by controlled disorder [8]: Consecutive proton

irradiation of IBS reduces the superconducting transition temperature monotonically.

Our systematic optical THz investigations of Ba(Fe0.9Co0.1)2As2 thin films reveal, how-

ever, that the low-energy superconducting gap is first suppressed, but recovers for

higher irradiation doses. At the same time the decrease of the superfluid density with

disorder comes to a halt. These observations agree with theoretical calculations, which

predict a disorder-induced transition of the order parameter from s+– to s++ symmetry.

Thereby, we solve the longstanding puzzle of the IBS gap symmetry in favor of s+– sym-

metry and demonstrate THz spectroscopy as a tool to determine the symmetry of the

superconductin g order parameter.

Magnetic moment formation due to arsenic vacancies in LaFeAsO-derived superconduc-

tors [9]: Arsenic vacancies in LaFeAsO-derived superconductors are nominally non-

magnetic defects. However, we find from a microscopic theory that in their vicinity

local magnetic moments form due to the bond breaking to neighboring iron atoms. The

moments emerging around an arsenic vacancy orient ferromagnetically and cause a

substantia l enhancement of the paramagnetic susceptibility in both the normal and

superconductin g state. DFT calculations show that an As vacancy gives rise to a doublet

of impurity resonances of Fe 3dyz,xz character at the Fermi level.

Strain and doping effects in Fe-based superconducting thin films: We systematically inves-

tigated the electronic and magnetic properties of Ba(Fe1-xCox)2As2, BaFe2(As1-xPx)2, and

FeSe1-xTex thin films in different tensile and compressive in-plane strain states. We found

that the strain can shift the whole phase diagram including antiferromagnetic regions

and the superconducting dome in the direction of higher or lower substitution levels

dependin g on compressive or tensile strain, respectively. A particular emphasis was

laid on the preparation of high-quality FeSe1-xTex films. The transport properties of the

films on different substrates are mainly influenced by the crystalline quality arising

from the lattice misfit towards the template [10]. However, we were able to control the

interface on selected substrates by using an isostructural seed layer resulting in improved

superconducting properties. [11]

Fig. 2: Fermi surface of LiFeAs split by spin-orbit
coupling along high symmetry directions.
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Anisotropy of critical currents and upper critical fields: High field studies on

Ba(Fe1-xCox)2As2 thin films revealed that the temperature and angular dependence of the

upper critical field is best explained by a two-band model in the clean limit (Fig. 3). The

anisotropy of the critical current Jc is influenced by the Hc2 anisotropy (and therefore

by multi-band effects) in the broad range of the field angles. However, the extended

plana r and columnar defects usually present in the samples mask the effect of the in -

trinsic Hc2 anisotropy in the vicinity to H||c and H||ab. [12] Furthermore, we found that

optimally doped BaFe2(As1-xPx)2 films show the highest Jc among IBS with a Jc of

6.3 MA/cm2 at 4.2 K even though no structural defects were observed in TEM and XRD

[13]. This suggests that rather weak structural inhomogeneities result in strong pinning

centers due to a sharp maximum in vortex core energy near the quantum critical point.

Finally, the upper critical field Hc2 anisotropy γ of Ca10(PtnAs8)(Fe2-xPtxAs2)5 (n = 3, 4)

single crystals with long FeAs interlayer distances was studied by angular dependent

resistivit y measurements. The γ values are much larger than those of other IBS. Remark-

ably, the values of γ2 show an almost linear increase with the FeAs/FeSe interlayer

distanc e for IBS. [14]

[1] S.-H. Baek et al., Phys. Rev. B 92, 155144 (2015)
[2] F. Steckel et al., Phys. Rev. B 91, 184516 (2015)
[3] F. Wasser et al., Phys. Rev. B 91, 060505(R)
[4] F. Hammerath et al., Phys. Rev. B 92, 20505 (2015)
[5] G. Prando et al., Phys. Rev. Lett. 114, 247004 (2015)
[6] S. Borisenko et al., Nature Physics (in press)
[7] A. Charnukha et al., Scientific Reports 5, 10392 (2015)
[8] M. B. Schilling, arxiv:1511.05017v1 (2015)
[9] K. Kikoin, Scientific Reports 5, 11280 (2015)
[10] F. Yuan et al., Supercond. Sci. Technol. 28, 065005 (2015)
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Abstract: Magnetic intermetallic alloys and compounds exhibit diverse physical states

which are characterized, e.g., by the size and direction of the atomic moments, their

correlation in space and time, their mutual and spin-lattice interaction energies. The

related properties and phenomena (spontaneous magnetization and order, magnetic

anisotropy, spin polarization at the Fermi energy, phase transitions, magneto-caloric,

magneto-electric and magneto-transport effects) enable these materials to be used

in energy-efficient applications. Relevant materials comprise permanent magnets for

electric motors or generators, magnetic information-storage films and magneto-

resistiv e sensors. Emerging applications include magneto-caloric cooling, direct

actuatio n with magnetic shape-memory alloys and spin-based electronic devices. In

the following, we highlight significant publications.

(i) Materials for spintronic applications
We studied the local structural and magnetic properties of Co2FeAl0.5Si0.5 Heusler films

with varying thickness by nuclear magnetic resonance (NMR) [1]. A detailed analysis of

the NMR spectra showed, that the formation of certain types of order depends not only

on the thermodynamic phase diagrams as in bulk samples, but that also kinetic control

may contribute to the phase formation in thin films. The very good quality of the films

as demonstrated by our NMR study suggests that the technique of off-axis sputtering

used to grow the films sets the stage for the optimized performance of Co2FeAl0.5Si0.5

in spintronic devices.

Research topic 1.3

Magnetic materials for energy
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(ii) Multi-caloric effects
In-situ synchrotron XRD measurements of magneto-caloric LaFe11.8Si1.2 are used to un-

derstand virgin effects and asymmetry of the magnetovolume transition. A remarkable

change of the transition kinetics occurs after the first cycle, which we attribute to the

formation of cracks originating from the volume change. Tomographic imaging reveals

that the bulk material disintegrates via an interlocked state where fragments are loose-

ly connected. Though cracks have opened between the fragments, the transition is

sharp due to magnetostatic interactions (cf. Fig.). In the cycled sample we find a strong

asymmetry between the transition interval upon heating and cooling originating in

isostati c pressure acting on parts of the sample during the cooling transition [2].

Multi-caloric stacks consisting of a magnetocaloric film on a piezoelectric substrate

promise improved caloric properties as the transition temperature can be controlled

by both, magnetic and electric fields [3]. We present epitaxially grown magneto-caloric

Ni-Mn-Ga-Co thin films on ferroelectric Pb(Mg1/3Nb2/3)0.72Ti0.28O3 (PMN-PT) substrates.

Structure and microstructure of two samples, being in the austenitic and martensitic state

at room temperature, are investigated by X-ray diffraction in two- and four-circle

geometr y, by atomic force microscopy and by high temperature magnetometry. The

combinatio n of these methods allowed separating the influence of epitaxial growth and

martensitic transformation. A preferential alignment of twin boundaries is observed

alread y in the as-deposited state, which indicates the presence of pre-stress, without

applyin g an electric field to the substrate. By temperature-magnetic field phase

diagra m the inverse magnetocaloric effect of the epitaxial Ni-Mn-Ga-Co film is demon-

strated. 

Zero-field static and dynamic 55Mn NMR experiments of bulk and powder samples of the

ferromagnetic Heusler shape-memory alloy Ni2MnGa give direct access to the sequence

of structural phase transitions in this compound, from the high−T austenitic phase

down to the low−T martensitic phase. In addition, a detailed investigation of the so-

called rf−enhancement factor delivers the local magnetic stiffness and restoring fields

for each separate structural environment, thus, differentiating signals coming from

austenitic and martensitic components. In this way we can also resolve differences in the

local spin moments of the two phases of the order of 0.08 Bohr magnetons, and reveal

precursor phenomena of the martensitic transformation well inside the parent austenitic

phase [4].

Fig.: The magnetic transition of an interlocked
particle ensemble (open squares) is very sharp
even though most particles are separated by
cracks. For a well separated particle ensemble
(solid circles), the transition broadens significantly. 
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(iii) Magneto-caloric composites 
Magneto-caloric La(Fe,Si)13 is usually very brittle and requires the combination with

anothe r material to form a regenerator that will survive millions of cycles in a device. A

novel magneto-caloric composite based on La(Fe,Si)13 particles in an amorphous metal-

lic matrix has been studied [5]. Magneto-caloric particles and a powderized Pd-based

glass were hot-compacted at the glass transition temperature of the metallic matrix.

At this temperature, the viscous matrix can easily fill the pores between the La(Fe,Si)13

particles, thereby creating a dense composite. Furthermore, the matrix acts as a buffer

during the hot-compaction and prevents crack formation in the particles, which is

otherwis e known to reduce their performance. Tuning our processing route, the mag-

neto-caloric properties of the composites are almost independent of the compaction

pressure.

Alternatively, we have combined La(Fe,Si)13-based particles of varying size with a poly-

mer matrix [6]. Such composites were pressed into thin plates. We found that a higher

filling factor can be achieved by using a mixture of several particle size fractions. This

has beneficial influence both on the magneto-caloric properties and on the thermal con-

ductivity. Tests in an active magnetic regenerator revealed that a maximum temperature

span of approximately ΔT = 10 K under a magnetic field change of μ0H = 1.15 T can be

obtained without cooling load. The stability of the measured ΔT values and the me -

chanical integrity of the sample after cyclic application of a magnetic field have been

monitored for 90,000 cycles and showed very good stability of the magneto-caloric

performanc e.

(iv) Validation of the innovation potential 
of room-temperature magnetic cooling effect (MCE) 
We developed new approaches for MCE materials for room-temperature applications,

performin g thermal analysis of active magnetic refrigeration cycles, as well as of novel

demonstrators for cooling devices. Two test benches for durability lifetime tests as

well as a thermal testbench was designed. Recently, we commissioned a novel mag -

netocaloric demonstrator. 

(v) Metamagnetic transitions in FeRh magnetocaloric materials
The fundamental mechanisms governing the metamagnetic transition in FeRh alloys

are still poorly understood. The electronic and lattice contributions to the transition are

being studied as are the effect of ternary alloying elements on the physical properties

and the role of the microstructure on the metamagnetic transition.

(vi) Permanent magnets 
The recovery of rare earths (critical materials) from magnet materials is a key demand

of modern technologies. We developed a new route for recycling of Nd from Nd-Fe-B mag-

nets by exploiting large scale phase separation phenomena upon melt metallurgical

processin g with defined Cu fractions [7].  

(vii) Rare earth free permanent magnets
The L10 phases in the binary systems Mn-Al and Mn-Ga have magnetic properties which

make them potential candidates to replace certain types of rare earth containing mag-

nets. Phase stability, intrinsic and extrinsic magnetic properties have been studied as

a function of composition in Mn-Ga [8]. In the Mn-Al system, the crystalline defects in

the material have been studied for the first time using electron backscatter diffraction,

which allowed large areas to be analysed. Three different types of twin-like defects have

been identified whose relative proportions change after various processing steps [9]. 
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(viii) Metastable phases with novel functionalities
To identify unknown metastable phases with related unexpected properties, we system-

atically investigated 24 transition metal elements in body-centered tetragonal (bct)

geometries by means of density-functional (DF) calculations. We found that the fcc

structures of Sc, Ti, Co, Y, Zr, Tc, Ru, Hf, Re, and Os, and bct Zr with c/a = 0.82 are

metastable according to their computed phonon spectra. Eight of these predicted

phase s are so far not known from the respective pressure-temperature phase diagram.

Possible ways to stabilize these phases include epitaxial growth, rapid quenching,

precipitatio n, or severe deformation [10]. 

Epitaxial growth allows us even to produce strained films with structures that are

unstabl e in the bulk. Thereby, the overlayer lattice parameters in the interface plane

determine the out-of-plane lattice parameter. We show by DF calculations that this

dependenc e can be discontinuous and predict related first order phase transitions in

strained tetragonal films of the elements V, Nb, Ru, La, Os, and Ir. At such a phase

transitio n, properties of the overlayer material are switched. This was demonstrated for

the example of the superconducting critical temperature of a vanadium film which we

predict to jump by 20% [11].
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Abstract: Existence of specific microtextures, in particular chiral skyrmions, in

condense d matter systems relies on particular couplings which are known in the

phenomenologica l Landau theory as Lifshitz invariants in the free energy for an order

parameter. Chiral skyrmions in ferromagnetically ordered acentric magnets is now a

well-established example of such states [1], but similar textures also exist in chiral

nemati c liquid crystals [2] with a very similar type of orientational order. Investiga-

tions currently are focused on the chiral helimagnet MnGe because of its particularly

anomalous properties within the class of ferromagnetic non-centrosymmetric cubic

compounds. High-pressure, high-temperature investigations now confirm an invar-like

behavior with a change of spin-state and a crucial role of magneto-elastic couplings.

New μSR investigations also confirm an anomalous fluctuating magnetic state in this

material. Progress in the crucial magnetic imaging and detection is illustrated by two

examples: (i) Tips of hard magnetic materials have been proved to allow us quantita-

tive magnetic-force microscopy of inhomogeneous states down to very small scales. (ii)

A stroboscopic illumination with polarized light and alternating angle of incidence

allow s vectorial magneto-optical microscopy of dynamical processes. Finally, theo -

retical insight into the mechanism for such twisted Dzyaloshinskii textures of an

orientationa l order has been instrumenta l to propose the existence of new types of

twisted skyrmionic phases in othe r materials. Prompted by a theoretical analysis, an

experimental search now reveal s that a liquid-like intermediate state exists in Fe1+yTe,

as a twisted or short-range-ordered precursor to an incommensurate antiferromag -

netic spin-density wave. This finding of an anomalous precursor in this centrosym -

metric magnetic system suggest s that Dzyaloshinskii textures similar to skyrmionic

phases can exist in vast classes of materials.
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Chiral helimagnetism in cubic intermetallic compounds  
In our continuing cooperation with external experimental groups, new results on the cu-

bic transition metal germanide MnGe with the acentric B20-structure now confirms that

an invar-like cross-over or transition between a high-spin and an intermediate low-spin

state is crucial to understand the anomalous behaviour of this compound in contrast to

the better investigated MnSi and FeGe, where skyrmionic phases and skyrmions have been

found earlier. This transition had been predicted earlier from electronic structure calcu-

lations within the density-functional theory. New experiments using X-ray diffraction

(XRD) and X-ray emission spectroscopy, undertaken by the group at the Laboratoire Leon

Brillouin (LLB), show that pressure drives the transition between these two spin-states

at room temperature in the paramagnetic state far above the magnetic ordering tran-

sition at about 170 K. The suppression of the local magnetic moment on Mn takes place

in two steps, first into the intermediate spin-state at about 7 GPa but with a huge hys-

teresis under cyclical application of pressure. Then, at 23 GPa the local spin-polarization

collapses. Calculated behaviour and experiment, thus, are in very good agreement and

confirm an invar-like behaviour of MnGe with many anomalies that are rooted in coupling

between magnetic spin-polarization and the lattice. The observation of a macroscopic

hysteresis in the lattice-parameter versus pressure in a paramagnet can be explained by

the long-range elastic couplings that accompanies the cross-over of the high-spin to the

low-spin-state. This finding in the chiral helimagnet MnGe, therefore, yields an impor-

tant insight into the still incompletely understood but technologically important class

of intermetallic invar-like compounds: The long-range elastic interactions via the lattice

are a crucial ingredient for anomalous behaviour in metallic systems with spin-state tran-

sition. The effects complicate, however, the understanding of the chiral helimagnetism

and the anomalous fluctuating states near magnetic ordering in MnGe, in contrast to

the helimagnets FeGe and MnSi which are basically more conventional ferromagnetic

metals. Cooperation with the LLB-group currently is extended in cooperation with P.

Bonfa and R. DeRenzi (U Parma) in a study on μ-spin-rotation (μSR) experiments. The

experiments confirm anomalous fluctuations of two different types in the ambient

pressure state of MnGe in a large temperature interval around the magnetic ordering,

in accordance with the expected invar-like spin-state transitions. Supported by ab ini-

tio calculations the trapping site of the muonium in MnGe could be identified. This holds

promise for further detailed identification of helimagnetic or skyrmionic states in the

magnetic-field-temperature phase-diagram of MnGe.

New hard magnetic sensors for quantitative MFM 
of inhomogeneous magnetization structures
For the highly resolved investigation of magnetic microtextures, pure qualitative

magneti c force microscopy (MFM) reveals too little information to reconstruct the three-

dimensional inhomogeneous magnetization structures. The advancement of quantita-

tive MFM (qMFM) at the IFW has been extended to the development of ultimate hard mag-

netic tips based on epitaxial SmCo5 films. The rigidity of the tip against large external

fields, but also against the stray field of the sample is a precondition to apply the tip

transfer function (TTF) of a calibrated tip for correctly deconvolving measured MFM

data. While typical commercial tips (CoCr based) with coercivities of only a few 10 mT fail

in that respect, the new SmCo-based nanofabricated MFM sensors do not compromise

on the hard magnetic performance. The epitaxial SmCo5 films grow on MgO (110) single

crystal substrates with a uniaxial anisotropy of more than 20 T along one well defined

in-plane substrate direction and develop coercivities above 2 T (Fig. 1a). A triangular tip

is separated from the film and attached to a cantilever in a dual beam (SEM + FIB)

nanomanipulation tool (see inset). The TTF (Fig. 1 b) is sharply peaked and compares well

in resolution with commercial MFM tips. The superiority of the new sensor is demon -

strated by imaging the domain structure of a Sm2Co17 bulk sample with large stray
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fields. While the magnetization state of commercial tips rotates uncontrollable in the

stray field of the sample the new sensors produce a well-defined branched domain pat-

tern (Fig. 1 c), only resolvable with a magnetically rigid tip.

Vectorial Kerr microscopy
A new Kerr-LED lamp was developed for wide-field Kerr Microscopy. Eight monochro -

matic LEDs are placed in an external controller box that includes electronics. The light

of the diodes is guided to the lamp house of the microscope by glass fibers. Their ends

are arranged in a cross way and are imaged to the diffraction plane of the microscope.

Various Kerr-sensitivity options (longitudinal, transverse and polar Kerr sensitivities) can

be chosen by activating different LEDs of the array. The selection is made conveniently

by computer control. The following sensitivity choices are available: (i) longitudinal sen-

sitivity with superimposed polar sensitivity, (ii) transverse sensitivity with superimposed

polar sensitivity, (iii) pure polar sensitivity. A single domain image is displayed on the

screen in each case and the LEDs are activated continuously. Further options are pos-

sible by running the LEDs in a pulsed mode in accordance with the camera: (iv) simul-

taneous display of longitudinal and transverse contrast, i.e. vectorial Kerr microscopy

in two separate frames on the screen, (v) display of pure longitudinal contrast in a sin-

gle frame, and (vi) display of pure transverse contrast in a single frame on the screen.

Alternatively, the LED lamp can also be run in a dichromatic mode: Here the controller

box contains 4 red and 4 blue LEDs with specific arrangement in the glass fiber cross. Two

images of different color and Kerr sensitivity are generated at the same time, which are

separated by a color-sensitive image splitting device between microscope and camera.

Both images are displayed simultaneously within the same frame on the screen. The

dichromatic version adds the simultaneous display of pure longitudinal and transverse

images. The vectorial option allows for quantitative Kerr microscopy of magnetization

processes that was not possible by using conventional microscopy lamps.

Fig. 1: New hard magnetic sensors for quantitative
MFM of inhomogeneous magnetization structures; 
a) hysteresis curves of epitaxial SmCo5 films (inset:
MFM tip of SmCo5 material); b) tip transfer function
of the SmCo5 tip; c) domain structure of a Sm2Co17

bulk sample imaged with a hard magnetic SmCo5 tip.
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Dzyaloshinskii textures of incommensurate spin-density wave 
Within the framework of Landau-theory for general inhomogeneous ordering modes,

modulated states with certain general wave-vectors allow for the existence of several

twisting terms, known as Lifshitz invariants, as pioneered by Dzyaloshinskii more than

50 years ago. This implies that ordinary ordering continuous phase-transitions are

impossibl e. In the intermediate range before the fully ordered state sets in, there is a

gap allowing the existence of textures like skyrmions or similar states. Spin-density waves

with rotatable polarization direction are primary candidates for such precursor states

that bear similarity with other intermediate states like chiral skyrmions in acentric mag-

nets or blue phases in chiral nematic liquid crystals. Guided by this idea, we identified

the incommensurate antiferromagnetic helix-state in the centrosymmetric tetragonal

compound Fe1+yTe as a candidate material to display such Dzyaloshinskii textures (Fig. 2).

This material is well known as the magnetic parent material isostructural with the

famil y of Fe-based ‘11’-superconductors, FeSe and Fe(Se,Te) which makes it a topical

materia l to understand its magnetism in its own right. In cooperation with the MPI-CPFS

and TU-Dresden, a detailed investigation of magnetic order has been performed by

usin g Mössbauer spectroscopy [3]. This local probe is an ideal tool to identify inhomo-

geneous magnetic textures, and the experiments provided clear evidence from internal

magnetic hyperfine fields stemming for a magnetic precursor state with a quasi-static

magnetic order in absence of true long-range order above the Neel temperature, where

the transition into the antiferromagnetic helix-state sets in. The results are in qualita-

tive agreement with the expected unconventional phase-transition and existence of

intermediat e meso-phases in this material. This first investigation into with the pos -

sibility of twisted modulated states shows that localized or skyrmionic texture on a

mesoscopi c scale should exist in a much wider range of materials including many differ-

ent magnetic materials where the basic ordering is incommensurate. It also can be

envisage d that similar textures can exist beyond magnetism, e.g. for soft-modes in

crystallin e materials undergoing driving structural phase-transitions similar texture may

eventually exist.

[1] U. K. Rößler et al., Nature 442 (2006) 797 
[2] A. O. Leonov et al., Phys. Rev. E 90 (2013) 042502 
[3] Ph. Materne et al., Phys. Rev. Lett. 115 (2015) 177203
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Fig. 2: Dzyaloshinskii textures: twisted modulated
antiferromagnetic states from one-dimensional to
three-dimensional (i)-(iii).
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Abstract: Topology is a powerful paradigm behind new developments in quantum

condensed matter. The consideration of Berry phase effects led to a novel classifica-

tion of insulators. Of particular interest, -Z2 topological insulators (T Is) offer the

possibilit y to use the topological protection of states for potential applications in spin-

tronics or quantum computation. Given the diversity and richness of topological states

and phases in condensed matter, this research is a source of inspiration for new

development s in theory, materials research and cutting-edge experiments. At IFW,

topologica l states of electrons or photons are investigated by combining skillful

preparatio n with experimental and theoretical expertise. Thus, our research on T Is

considers different aspects: fundamental theory, identification of new materials,

growth or preparation of bulk or nanoscale materials, their characterization as well as

study of their electronic structure, spectroscopic and transport properties.

It is fair to say that the principles of non-interacting topological insulating phases are

presently well understood. For this reason, the attention in fundamental research has

gradually shifted to interaction-driven topological insulating phases. Electronic cor-

relations can indeed give rise to insulating topological phases without non-interacting

analogs, such as the fractional topological insulators (TIs). They can also spontaneous-

ly generate spin (in)dependent chiral orbital currents leading to the quantum anomalous

Hall effect or the quantum spin Hall effect. For the case of a honeycomb lattice, we have

shown that specific substrate-induced electrostatic potentials can trigger the onset of

an interaction-driven topological phase. This is due to substate-induced non-Abelian
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gauge fields that reshape the Dirac cones into a quadratic band crossing point. As

demonstrated by density functional (DF) calculations, this scenario can realistically

occur in graphene placed on top of hexagonal In2Te2 monolayers [1]. The mixed-valent

compound SmO was found to be a three-dimensional (3D) strongly topological semi -

metal due to a 4f-5d band inversion at the X point. We also showed by DF calculations

that the topological non-triviality of SmO prevails for a wide range of lattice parameters,

making SmO an ideal candidate to investigate topological nontrivial correlated flat bands

in thin films. SmO/EuO thin film interfaces are suggested for realizing the quantum

anomalous Hall effect [2].

A layered bismuth compound, Bi14Rh3I9 (Fig. 1), was recently synthesized at TU Dresden

and identified as the first ever prepared weak 3D topological insulator by a combi -

nation of angle-resolved photoemission spectroscopy (ARPES) experiments and DF cal-

culations at IFW. A weak 3D TI has protected edge states on some, but not on all facets

of its surface. In particular, it may have such states on surface step edges. Scanning tun-

neling spectroscopy measurements performed at RWTH Aachen indeed disclosed conduct-

ing channels at step edges on a cleavage surface of Bi14Rh3I9. These channels are less than

1 nm broad, backscatter-free, as well as continuous in space and energy. Dedicated DF

calculations confirmed the topography and the position of the gap at the investigated

polar surface. The surface of Bi14Rh3I9 can be engraved using an atomic force microscope,

allowing networks of protected channels to be patterned with nanometer precision

[3]. We have furthermore shown that a class of weak 3D TIs can feature one-dimen -

sional Dirac electrons on their surface. The occurrence of these line degeneracies is

protecte d by a symmetry that we dubbed as in-plane time-reversal invariance [4].

The phase transition from a topological insulator to a trivial band insulator was studied

using angle-resolved photoemission spectroscopy on Bi2-xInxSe3 single crystals [5].

We traced the complete evolution of the bulk band structures throughout the transition,

Fig. 2. The robust surface state and the bulk-gap size (≈ 0.50 eV) show no significant

change upon doping for x = 0.05, 0.10, and 0.175. At x ≥ 0.225, the surface state com-

pletely disappears and the bulk-gap size increases, suggesting a sudden gap closure and

topological phase transition around x ≈ 0.175 … 0.225. We propose that the phase tran-

sition is governed by the combined effect of spin-orbit coupling and band hybridization.

Our study provided a venue to investigate topological phase transitions induced by

nonmagneti c impurities.

Fig. 1: Atomic polyhedron model of the layered
compound Bi14Rh3I9. Two ionic layer types are 
repeated in the stack: a cationic 2D TI layer (red)
and an anionic spacer layer (blue) [3].

Fig. 2: (a) ARPES intensity plots and 
(b) the corresponding second-derivative
plots of Bi2-xInxSe3 along the Γ-M direction
(h = 20 eV) [5].
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To obtain a deeper understanding of the established 3D TIs, we performed transport
experiment s on nanostructures. The investigation of surface-states transport on

Bi2Se3 or Bi2Te3 is particularly challenging as intrinsic doping causes a bulk contribution

to the conductance. To separate the surface-states contribution from the bulk contri-

bution, we carried out quantum transport experiments on nanostructures of Bi2Se3 and

Bi2Te3. Quantum interferences were measured by sweeping the magnetic field along

direction s parallel and perpendicular to the nanowire axis. The amplitude of the conduc-

tance fluctuation along the perpendicular direction was found to be modulated by an

Aharonov-Bohm flux. Numerical simulations performed at MPI PKS Dresden revealed that

this modulation is related to the opening of well-defined 1D transverse channels due to

the confinement of the TIs surface states [6]. Much effort has been spent to improve the

reproducibility and the quality of the nanostructures grown by vapor transport and to

understand their electronic properties [7, 8].

We were also able to establish a micro fabricated thermoelectric characterization

platfor m for measuring the thermoelectric and structural properties of single nanowires,

produced by dielectrophoresis. The chemical composition of the nanowires was checked

and their single-crystalline quality was confirmed by transmission electron microscopy

[9]. On this basis, thermoelectric properties of nanowires were studied on Bi2Te3, Sb2Te3

and Bi2Se3. We calculated the thermoelectric performance of TI nanowires, Fig. 3, and

showed that it does not derive from the properties of the bulk material in a straightfor-

ward way. The competition between surface states and bulk channel causes a significant

modification of the thermoelectric transport coefficients if the diameter is reduced

into the sub 10 μm range. This limits the maximum thermoelectric performance of TI

nanowires and thus their application in devices [10]. The thickness-dependent elec -

trical conductivity and the thermopower were computed in quantum well structures of

Sb2Te3. Contributions of the bulk and the surface were separated, which allowed to

identif y a clear impact of the topological surface state on the thermoelectric properties.

When the charge carrier concentration is tuned, a crossover between a surface-state-

dominated and a Fuchs-Sondheimer transport regime is achieved. These calculations

were corroborated by thermoelectric transport measurements on Sb2Te3 films, grown

by atomic layer deposition, Fig. 4 [11].

Fig. 3: The thermoelectric figure of merit ZT is plotted
as function of diameter and Fermi level EF of a Bi2Se3

nanowire. When the wire diameter is reduced, the
surface to volume ratio increases and the thermoelec-
tric transport is increasingly dominated by the surface
states calculated by a two-channel model [10].

Fig. 4: Thickness dependent transport prop-
erties of Sb2Te3 films at room temperature.
The blue dots show the normalized electrical
conductivity (a). A Fuchs-Sondheimer trans-
port and a surface state dominated transport
regime has been detected. (b) Sb2Te3 thin
film after 10000 atomic layer deposition 
cycles which corresponds to approximately
160 nm thickness [11].
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Topological insulating phases in superlattices constitute another interesting branch

of current research. The experimental realization of one-dimensional Aubry-Andrè-

Harper (AAH) systems in optical lattices and photonic waveguide arrays has triggered

the interest in this theoretical model. Intriguingly, it can be exactly mapped to the two-

dimensional (2D) Hofstadter model (HM) describing topologically non-trivial 2D quan-

tum Hall systems. We have shown that in diagonal AAH models the topological charge

pumping is fractionally quantized at well-defined fractions of the pumping period as a

result of additional symmetries in parameter space. This phenomenon can possibly be

observed in cold atomic gases as a fractional quantization of the center of mass motion

of the atomic cloud [12]. In generalized AAH models with diagonal and off-diagonal com-

ponents we have also shown the occurrence of in-gap end modes topologically protect-

ed by inversion symmetry. Using the mapping between the AAH model and the HM, we

have discovered that lattice dimerization leads to the appearance of an insulating phase

with zero Hall conductivity and concomitant presence of a protected doublet of edge

states pinned at specific momenta [13]. In spin-dependent off-diagonal AAH models,

which can be obtained for instance by curving nanowires with a conventional Rashba

spin-orbit coupling, we have shown the appearance of a novel butterfly spectrum,

Fig. 5, characterized by finite-measure complex regions of forbidden energies [14]. If

the Fermi energy lies in a gap, the system displays localized end modes protected by

topology. This novel butterfly spectrum also posses topologically non-trivial insulating

phases at half filling.
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Fig. 5: Butterfly spectrum of a superlattice system ob-
tained by curving a nanowire with Rashba spin-orbit
coupling. The spectrum clearly exhibits a self-similar
structure [14]
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Abstract: The most prominent characteristic of non-equilibrium materials is the

energeticall y unfavourable state they have adopted during their synthesis. The entire

microstructure or parts of these materials are in structural, compositional or mor -

phological metastability, which defines their unusual and interesting mechanical,

chemical and physical properties.  

A variety of non-equilibrium materials are the objects of the research conducted in

this research area. The present report shall highlight two prominent representatives

of non-equilibrium materials, i.e. bulk metallic glasses as well as high entropy alloys.

Two-phase quasi-equilibrium in Ti-based alloys 
with outstanding glass-forming ability
Bulk metallic glass (BMG) matrix composites have been developed to overcome the

detrimenta l intrinsic brittleness of monolithic amorphous alloys [1]. Very prominent

example s are BMG matrix composites containing soft β-type dendrites [2,3]. Several

alloy s are known to date, in which the supercooled liquid partially decomposes into a

β-type phase during solidification. Yet, it is still difficult to tailor and impossible to

predic t the microstructural evolution on cooling in terms of the crystalline volume

fractions and the size of the dendritic precipitates. 

The work introduced in the following paragraphs shows that in a Ti-based multicompo-

nent alloy systems a quasi-equilibrium establishes between a supercooled liquid and a

β-Ti solid solution during cooling. The unexpected large stability of both metastable

phases enables the supercooled liquid to congeal into a glass and, in addition, allows the

prediction of crystalline and glassy volume fractions [4]. Within a certain cooling rate

regime this quasi-equilibrium is independent of the cooling rate and can be treated

analogousl y to stable equilibria. 
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Fig. 1a-c depicts the microstructures of Ti45.7Zr33.0Cu5.8Co3.0Be12.5 solidified into a rod

with a diameter of 2 mm, of 10 mm and into an ingot with a weight of a 100 g, respec -

tively. From these images the secondary dendrite arms (“particle size”) as well as the

crystalline volume fraction were extracted as a function of the cooling rate (Fig. 1d).

Devitrificatio n involves nucleation and growth and hence is time dependent, which

generall y reflects in the particle sizes and volume fractions [5]. For casting diameters

above 10 mm (cooling rate about 40K/s), however, the volume fraction remains and the

dendrites only coarsen in order to reduce the overall interface energy. In other words,

the present micrographs represent snapshots of the different stages of the crystallisa-

tion process. It seems to be completed in the case of the rod with a diameter of 10mm.

This suggests that the system has attained a state of metastability, in which a further

reduction of free energy is kinetically impeded. The supercooled liquid is so resistant

against crystallisation in this quasi-equilibrium that the β-Ti dendrites cannot act as

heterogeneou s nucleation sites. Simultaneously, the glass seems to prevent the trans-

formation of β-Ti to α-Ti. The constant volume fractions are accompanied by a constant

composition of both the glass and the dendrites. Conservation of mass dictates the

followin g condition to be obeyed:

C i
β · x + C i

M' · (1– 0.125 – x) = C i,

where C i
β, C i

M', and C i are the concentrations of each element i (i: Ti, Zr, Cu, Co) in β-Ti,

in the glassy matrix and in the nominal composition, respectively. 0.125 and x are the

Be content in the overall composition and the mole fraction of β-Ti, respectively, which

has been measured from the micrographs. For any of the four elements Ti, Zr, Cu or Co a

crystalline volume fraction near 48% is predicted, which is in good agreement with the

experimental value (52%). These results can now be translated into a pseudo-binary

phase diagram as shown in Fig. 2. The solid green lines represent the equilibrium phas-

es, which comprise the liquid, a β-Ti solid solution (the transformation to α-Ti is ignored

here for better clarity) and Be2Zr and Cu10 Zr7. Ti-Zr-Cu-Co-Be is a eutectic system, which

is typical of Ti/Zr-rich glass formers [6,7]. The left two red dashed lines describe the tem-

peratures at which nucleation of β-Ti or the other crystalline phases (Be2Zr and Cu10 Zr7)

sets in. The degree of undercooling for a given composition is then determined by the

temperature difference between the equilibrium liquidus line and the metastable liquidus

line. The red dotted line at high Ti concentrations reflects the solubility of Cu, Co and Be

in β-Ti during fast cooling. Quenching of metallic melts generally results in supersatu-

ration by solute trapping at the early stages of crystallization [8] and therefore the red

dotted line is placed left of the equilibrium solidus line. β-Ti begins to precipitate in the

supercooled Ti45.7Zr33.0Cu5.8Co3.0Be12.5 liquid when the red dotted line at Tn is crossed.

The composition of the liquid is CL
Tn and that of β-Ti is Cβ

Tn. When the temperature falls

below Tn, the volume fraction of β-Ti increases quickly due to the fast growth in the

Fig. 1: The β-type dendrites are embedded in a glassy, featureless matrix. If the sample diameter
is increased from 2 mm (a) to 10 mm (b) the crystalline volume fraction increases and the sec-
ondary arms become bigger. The same crystalline volume fraction is found in the ingot (c) and
only coarsening occurs. The crystalline volume fraction and the particle size (for definition see text)
are summarised in (d). The x-axis indicates the sample diameter in mm. For sample dimensions
above 10 mm the systems attains a quasi-equilibrium.
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moderatel y undercooled liquid. This is accompanied by a relatively fast composition

change of the supercooled liquid from CL
Tn to the equilibrium value, CL

Te. Simultaneous-

ly, the dendrites alter the composition from Cβ
Tn to their equilibrium composition, Cβ

Te.

Below the eutectic temperature, the glass should decompose into various crystalline

phases (e.g. Be2Zr and Cu10 Zr7) if the system is given sufficient time. Due to the rela -

tively fast cooling and the outstanding stability of the supercooled liquid this process

is suppressed, as is the transformation of β-Ti to α-Ti. These two metastable phases are

retained and the green dotted lines describe their compositional changes on further cool-

ing. Since diffusion is restrained at such relatively low temperatures, these lines are

rather steep. This is also a result of the negligible changes in the Gibbs free energy

difference s of both phases at very low temperatures. Once a certain temperature, Tf, is

crossed, the compositions of the constituent phases can be assumed constant and

temperatur e-independent. As a final step, the supercooled liquid vitrifies at the glass

transition temperature, Tg [4]. 

To test the hypothesis of a quasi-equilibrium in the present alloy system, various rods

(diameter: 10 mm) with differing (Ti,Zr)-to-(Cu,Co,Be) ratios were cast. If the pseudo-

binary phase diagram applied, then the respective mole fractions of an alloy with

compositio n C(x) should be given by the lever rule:

C(x) = �1– x� Cglass + xCdendr , 

where Cglass and Cdendr are the compositions of the glassy matrix and the dendrites,

respectivel y. The expected volume fractions, x', can be calculated from the mole frac-

tions, x, by [4]:

x' =
x + 0.834

x
· (1– x)

.

The predictions for crystalline volume fractions exceeding 20% are very reliable [4]. For

(Cu,Co,Be)-rich alloys it seems that the outstanding glass-forming ability of the eutec-

tic composition (Ti32.02Zr30.13Cu9.01Co4.84Be24.00) slightly extends to the right in Fig. 2 [4].

The present investigations provide a better understanding of how the microstructure

in Ti-based BMG matrix composites evolves. The concept of a quasi-equilibrium can ac-

count for the observed volume fractions and more importantly is the basis for a success-

ful prediction of the respective volume fractions in this Ti-based BMG matrix composite. 

Effect of Cooling Rate on Microstructures and Mechanical Properties 
of AlCoCrFeNi2.1 Eutectic High Entropy Alloy
A new alloy design strategy for achieving superior mechanical and functional properties

has recently been proposed by two independent investigations by Yeh et al. [9] and

Canto r et al. [10] in 2004. This so-called high-entropy alloy (HEA) has been originally

defined as homogeneous solid solution alloys composed of five or more constituent

element s in equal or near equal atomic proportions with simple crystal structures such

as fcc and bcc. However, the single-phased HEAs have been found difficult to reach a

reasonabl e balance between strength and ductility. It is generally known that the fcc

phases behave ductile but not strong enough whereas bcc phases are relatively stronger

but with the price of brittleness. In order to address to this important technical issue,

Lu et al. proposed a strategy to design a composite HEA using the eutectic alloy concept

in 2014 [11]. The AlCoFeCrNi2.1 alloy composed of soft-fcc and hard-bcc phases has

been introduced. The alloy showed a balanced combination of high fracture strength

(1186 MPa) and high tensile ductility (22.8 %) at room temperature. 

In this study, the influence of the cooling rate on microstructural characteristics and con-

sequential mechanical properties of the AlCoFeCrNi2.1 eutectic HEA were investigated

in order to archive further strengthening of the alloy by microstructure refinement i.e.

refined lamellar spacing λ in this work for example (see Fig. 3). The cooling rate was con-

trolled as a parameter and it was manipulated by changing the sizes of cast samples

Fig. 2: Pseudo-binary phase diagram indicating
the stable (green solid line) and metastable (red
and green dashed lines). The vertical black
dashed line represents the composition
Ti45.7Zr33.0Cu5.8Co3.0Be12.5. 



32 Research Area 2    FUNCTION THROUGH SIZE

(Cylindrical rods of 1.5, 3.0, 5.0 and 8.0 mm in diameter). It is well known that strength

of eutectic alloys improve as the lamellar spacing refined. We found that the microstruc-

tural features i.e. lamellar spacing and volume fraction of constituent phases are

changed by different cooling rate during solidification. The increase of cooling rate leads

to a formation of relatively finer lamellar spacing and greater volume fraction of the

bcc phase. For the alloy rod of 1.5 mm in diameter a lamellar spacing of λ = 0.60 μm and

volume fraction of the bcc phase of 33 % are estimated whereas the alloy rod of 8.0 mm

in diameter shows coarsened lamellar spacing λ = 1.16 μm and reduced bcc phase

fractio n (23%). The refined microstructure with higher volume fraction of the bcc phase

cooperatively leads to the enhanced hardness and compressive strength. The alloy with

the smallest diameter (1.5mm) exhibits about 2198 MPa in compressive strength (at 25%

elongation) and 333 HV in micro hardness whilst retaining the high ductility. This new

alloy design strategy and process can be readily adapted to large-scale industrial

productio n. 

[1] J. Eckert et al., J. Mater. Res. 22 (2007) 285–301.
[2] C.C. Hays et al., Phys. Rev. Lett. 84 (2000) 2901–2904.
[3] D.C. Hofmann et al., Nature 451 (2008) 1085-1089.
[4] L. Zhang et al., Sci. Rep., DOI: 10.1038/srep19235.
[5] D. Turnbull, Contemp. Phys. 10 (1969) 473–488.
[6] D.C. Hofmann et al., PNAS 105 (2008) 20136-20140.
[7] S.Y. Lee et al., J. Mater. Res. 22 (2007) 538-543.
[8] J.C. Baker et al., Acta Metall. 17 (1969) 575-578.
[9] B. Cantor et al., Mat. Sci. Eng. A 375-377 (2004) 213-218.
[10] J.W. Yeh et al., Adv. Eng. Mater. 6 (2004) 299-303.
[11] Y. Lu et al., Sci. Rep. 4 (2014) 6200.

Funding: Iraq Ministry of Higher Education & Scientific Research; China Scholarship
Council; German Academic Exchange Service (DAAD), Germany; DFG (PA 2275/2-1 and
EC 111/28-1); DFG (EC 111/26-1); ERC Advanced Grant: INTELHYB (ERC-2013-ADG-
340025)
Cooperations: TU Dresden; TU Bergakademie Freiberg; Univ. Federal de São Carlos,
Brazil; Shenyang Nat. Lab for Materials Science, Institute of Metal Research, China;
Univ. of Vienna, Austria; Udmurt State Univ. Russia, Univ. of Cambridge, UK; 
ESRF Grenoble, France; Tohoku Univ., Japan; Oregon State Univ., USA; 
Harbin Institute of Technology, China; Institute of Minerals and Materials Technology,
India; Univ. of Bremen

Fig. 3: (a) Backscattered electron SEM images
showing the microstructure of AlCoFeCrNi2.1 
alloy depending on cooling rate, (b) Relationship
between cooling rate, lamellar spacing and Vickers
hardness, (c) Compressive stress-strain curves for
AlCoFeCrNi2.1 rods of 1.5, 3.0 and 5.0 mm in 
diameter.  
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Abstract: The main goal of Solidification and Structures is to understand and control

the phase-formation, microstructure and functional properties in multicomponent

metallic alloys. The research is carried out on nanocrystalline and amorphous mate -

rials, including multicomponent systems with miscibility gap in liquid and/or solid

state. The structure of metallic alloys is in-depth explored using state-of-the-art

experimenta l techniques such as X-ray diffraction, neutron diffraction, and extended

X-ray absorption spectroscopy, as well as simulated by molecular dynamics, reverse

Monte Carlo and density functional theory calculations.

Structure evolution of soft magnetic bulk metallic glasses (BMGs)
Ferromagnetic metallic glasses and the resulting nanocrystalline alloys, produced

through crystallization of the corresponding glassy precursors, are the softest mag -

netic materials known so far. Based on their unique magnetic properties, many products

consisting of ferromagnetic metallic glasses such as for example highly efficient mag-

netic transformers or high security labels are widely used. Within several new BMG

families developed in the last decade, (Fe–Co)–Si–B–Nb glassy alloys play an important

role due to combination of high glass-forming ability (GFA) with good magnetic and
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mechanica l properties. Therefore, several groups have tried to elucidate the influence

of a minor addition of Cu on GFA, mechanical and magnetic properties of the resulting

alloys. We added 0.5 at.% Cu to the Fe36Co36B19.2Si4.8Nb4 base alloy (hereafter named

BA100) and studied the changes induced by mechanical loading [1] as well as the in situ

structural relaxation brought by the Cu addition to the base composition [2] through

in situ X-ray diffraction (XRD) using synchrotron radiation. Interestingly, the crystal -

lization behavior is drastically changed. In case of the Cu-containing alloy, two glass-

transition events are observed (see Fig. 1). Compared to the base alloy, the first glass-

transition is slightly shifted towards a lower temperature and is followed by a large

exothermic transformation centered at 838 K. Another glass transition-like event and

subsequently a pronounced crystallization peak can be observed. Immediately above, a

last small exothermic event, most probably indicating complete crystallization of the

remainin g amorphous matrix, can be detected. Selected XRD patterns revealing the

crystallizatio n sequence in detail are plotted in Fig. 2. To correlate the diffraction data

with the DSC thermograms, the temperatures corresponding to each pattern are

marked with dotted vertical lines in Fig. 1. The inset in Fig. 1 displays the variation of

the viscosity as a function of temperature, additionally and clearly proving that the

Cu-added sample shows two supercooled liquid regions.

Structural features of plastically deformed BMGs
Although significant progress has been made recently to describe the structural

variation s characterizing the elastic deformation of BMGs, the atomic rearrangements

occurring upon plastic deformation are rather undefined, limiting the understanding of

the atomic-scale mechanism responsible for their plastic deformation. This is related to

the lack of a periodic arrangement of atoms, which renders the detailed understanding

of their deformation mechanisms a very challenging task because structural studies

canno t rely on a regular crystal structure and on the dynamics of related defects, such

as dislocations. The latest developments of high-energy synchrotron XRD, consisting

of focused hard X-ray beam, large range of the diffraction vector Q and high resolution

X-ray detectors, permit to overcome this limitation and allow to investigate the atomic

rearrangements occurring in bulk metallic glasses upon elasto-plastic deformation. In

our work, by means of high-energy XRD, we have created spatially resolved strain maps

Fig. 1: Differential Scanning Calorimetry (DSC) traces of the BA99.5Cu0.5 amorphous rod samples
with 2 mm diameter. The characteristic temperatures (Tg: glass-transition, Tx: crystallization) are
illustrated with bold characters. The inset displays the variation of the viscosity as a function of
temperature, clearly proving that the Cu-added sample shows two supercooled liquid regions.

Fig. 2: XRD patterns for BA99.5Cu0.5 amorphous rod
samples with 2 mm diameter at different tempera-
tures. The corresponding temperatures are marked
with dotted lines in Fig. 1. The patterns were meas-
ured in transmission configuration using synchrotron
radiation upon in situ continuous heating.
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of a plastically-deformed Zr52.5Ti5Cu18Ni14.5Al10 (at. %) BMG [3,4] and analyzed the

structural changes occurring in the short- (SRO) and medium-range order (MRO). Metal-

lic glasses, ideally isotropic, become anisotropic even in the elastic regime: the strain

increase s with increasing distance from the nearest-neighbor shell. Such a length-

scale dependence of the strain is retained in plastically-deformed glasses, as shown in

Fig. 3a, where the components of the strain tensor (εx x, εy y, and εx y) are plotted for the

different atomic shells (ri ). Additionally, we have experimentally identified an overall

structural signature of plastic deformation in metallic glasses, namely a strong shear

strain εx y and a considerable directional anisotropy (Fig. 3b). These findings are in

contras t to the behavior observed for elastically-deformed BMGs (data points marked

1300 MPa in Fig. 3b), which instead display no significant shear component and direc-

tional anisotropy, marking a clear difference between elastic and plastic deformation of

metallic glasses. These observations not only provide a direct experimental evidence of

the effects of plastic deformation on the atomic structure of metallic glasses, but also

contribute to the understanding of how one can positively influence the formation and

propagation of detrimental shear bands in order to mitigate the room temperature

brittlenes s of bulk metallic glasses.

Deformation behavior of BMGs and composites 
via molecular dynamics (MD) simulations
A way to improve the plasticity of BMGs is to synthesize BMG matrix composites, which

are heterogeneous microstructures combining a glassy matrix with crystalline second-

ary phases. The interactions between the reinforcing second phase and shear bands (SBs)

significantly retard fracture. A detailed atomistic understanding of the underlying

mechanism can be provided by MD simulations, showing that multiple SBs are nucleat-

ed at the amorphous-crystalline interface and are blocked by crystalline particles. In our

study [5] two 3D-periodic Cu64Zr36 BMG composites were constructed by inserting 15 B2

CuZr nanowires in the monolithic BMG. [001] nanowires of cross-sectional dimensions

of 3.22 x 3.22 nm2 and an initial length of 19.4 nm are considered. The volume fraction

of the crystalline phase was set to 14.1%. Then the deformation mechanisms of BMG

composite s have been studied under uniaxial tension parallel to the Z-direction (i.e.

Fig. 3: (a) Strain maps of the εxx, εyy, and εxy components evaluated from the different ri atomic
shells. (b) Variation of the shear strain εxy and of the angle α1 formed by the principal eigenvec-
tor with the X-axis as a function of r for the plastically-deformed BMG along with data for the
BMG deformed within the elastic regime (data points marked as 1300 MPa).
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verticall y). Figure 4 shows the local atomic shear strain together with the common

neighbo r analysis (CNA). At a strain of 10%, shear transformation zones (STZs) form

around the amorphous-crystalline interface. Also part of the nanowires shows a stress-

induced martensitic transformation from the B2 phase to an intermediated R-phase.

Increasin g the strain up to 14%, small embryonic SBs nucleate at the interface and prop-

agate through the glass, but they are immediately blocked by the next nanowires.

Moreover, the strain is distributed mostly around those nanowires which suffer severe

martensitic transformation (red atoms in Fig. 4). Once the B2 nanowires undergo

transformatio n to the R-phase, the volume increase associated with this transformation

will perturb the strain field around the nanowires, so that the glassy phase will display

a compressive strain field next to the R-phase region (gray atoms) and, in return, a

tensile strain filed along the undeformed B2 nanowire. The tensile residual strain assists

local dilatation and creation of free volume. As a result, the STZs are readily activated

in these soft regions characterized by an increased free volume, as can be seen in the

area marked with an ellips e in Fig. 4. Even at a strain of 20%, none of these embryonic

SBs become critical being confined between the crystalline nanowires, ensuring a

homogeneou s deformation of the BMG composite. In addition, all nanowires show

martensitic transformation under uniaxial tension.

In-situ studies of solidification from undercooled metallic melts
Solidification of deeply undercooled metallic liquids with help of the electromagnetic

levitatio n (EML) method (see Fig. 5) is a traditional research subject at IFW Dresden.

Currentl y, in the frame of the ELIPS program of the European Space Agency (ESA), our

Fig. 4: Local atomic shear strain and CNA for a
Cu64Zr36 BMG composite containing 15 CuZr B2
nanowires distributed along the deformation direc-
tion. In order to capture the stress-induced marten-
sitic transformation in the B2 crystalline phase, only
half of the structure and those atoms with an atomic
strain higher than 0.3 are shown.
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Fig. 5: In electromagnetic levitation the gravity is compensated due to repulsive Lorenz force aris-
ing in conductive sample placed in an alternating magnetic field of RF coil. Simultaneously, eddy
currents heat up the sample so that it can be completely melted while levitating. By blowing the
helium gas over the sample surface the melt can be undercooled well below its liquidus temper-
ature to the amount of several hundred degrees prior nucleation and growth of the solid phase.

institute participates in the international EML microgravity experiments, comprising

paraboli c flight campaigns and experiments on board of the International Space Station.

Aiming to answer the fundamental question about an influence of melt convection on

solidification process, several industrially relevant materials, such as soft-magnetic

Fe-Co and Fe-Ni alloys, as well as light-weight Ti-Al based materials, are studied [6]. To

proceed with these and other activities, a new mobile electromagnetic levitator has been

developed by joint efforts of the Department of Research Technology and our group.

Inheritin g the functionality of the old version, the new facility has received advanced

feature s, which substantially extend the non-contact diagnostics of solidification

process from undercooled melts. Of genuine importance is an installation of the high-

speed video camera with an acquisition rate up to 180.000 frames per second. This al-

lows direct observation of the advancing solidification front, analysis of its velocity, and

detection of rapid transformation events, as illustrated in Fig. 6.

The foremost distinction of the new EML lies in its mobility. In collaboration with Pho-

ton Science group at Deutsches Elektronen-Synchrotron (DESY) in Hamburg, the IFW

Dresden mobile EML is designed for in-situ X-ray diffraction experiments at synchrotron

facilities. This provides a unique possibility for direct identification of the structure of

the crystalline phase growing from an undercooled melt, its relation to the structure of

the parent liquid, as well as observation of further solid state transformations. The first

in-situ XRD experiments at PETRA III synchrotron at DESY using mobile EML is planned

for spring 2016.
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Fig. 6: Solidification of an Fe60Co40 alloy undercooled
with 255 K, acquired at 30.000 fps with a high-speed
video camera. Advanced solidification front, hot due
to release of the latent heat, is contrasted with a 
relatively cold liquid. After a short delay, a second
front is sweeping through the sample indicating the
transformation of the primary metastable δ-Fe phase
with bcc structure into (more) stable fcc γ-Fe.
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Abstract: Mechanical adaptivity of soft polymeric actuators in combination with the

imperceptibility of microelectronics paves the way towards an entirely new class of

device s – shapeable microelectronics. Being able to self-assemble, mechanically adapt

to and deterministically influence the environment electrically or mechanically, the

shapeable microelectronics will assess the physiological and electrophysiological

activit y of living species. Here we demonstrate shapeable microelectronic devices

fabricated on a novel, ultrathin (<1μm) and mechanically active polymeric platform

to interface peripheral and central nervous system. The development of a cost-efficient,

high-performance and portable magneto-encephalography equipment applying arrays

of self-assembled ultrasensitive giant magneto-impedance sensors or gently self-

attache d to nerves electronic cuff-implants would bring these unique devices to

regula r medical institutions, offering early stage disease diagnostics with a great

spatia l resolution hence helping to minimize impact upon a medical treatment. 

Living species are able to adapt their shape during the life cycle. Imitating this be -

havior, synthetic systems adapt to environmental changes as well as interact with the

environment mechanically [1], electrically or chemically [2]. Mimicking the mechanics

of living organisms, the shape of soft objects can be tailored by using stimuli-respon-

sive polymers [3]. In hydrogel composites [4], a reversible shape transformation includ-

ing elongation, twisting, or folding [5] is achieved upon external chemical or thermal

stimulation rendering these shapeable devices to be mechanically active. Although

mechanically adaptive to the environment, these soft actuators do not carry active

electronic s to assess and communicate the environmental changes. Otherwise, there are

ultra-thin and light weight mechanically flexible and even imperceptible electronics [6,

7], which are electrically active but lack reversible self-actuation. 

A new class of electronic devices, namely shapeable microelectronics can be deter -

ministically assembled tailoring stress induced physical properties in ultrasensitive

magnetic sensors, to access processes happening distantly in the brain (Fig. 1a) via
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magnet o-encephalography (MEG) techniques. Shapeable devices can be gently at-

tached to the biological tissue enabling enclosure and monitoring (Fig. 1b) of, e.g.

nerves and nervous fibers via electro-encephalography (EEG) techniques, supporting

regeneratio n of neuronal cells and guiding their growth. 

Encephalography techniques that are based on the detection of electrical potentials, are

commonly applied in medical institutions worldwide for health monitoring and are now

entering the new field of interfacing the nervous system with the smart implant solu-

tions [8, 9]. The integrated electronics of these devices enables monitoring [10] and

stimulation of the biological tissue [11]. Upon an external trigger, the mechanically

activ e cuff implants can be gently attached, applying a precise amount of force to the

neural tissue, thus opening and releasing the nervous tissue with a minimal impact. 

The magnetic counterpart of EEG, namely MEG, relies on the detection of tiny mag -

netic fields generated by the electrical currents in the nervous system [12]. Being able

to provide the same physiological information as the conventional EEG [13], MEG offers

strong advantages in terms of sensitivity and the opportunity to identify diseases, e.g.

epilepsy at early stages with a great spatial localization [14]. The development of a cheap

and even portable MEG equipment would bring these unique devices to regular medical

institutions. Furthermore, if achieved, light-weight MEG devices bear a great potential

to revolutionize the field of smart prosthetics, brain-machine and brain-brain interfaces

due to a precise volumetric localization and characterization of current sources that

correspond s to particular mental activity and that are not accessible directly by EEG

technique s. 

We aim at the realization of these ambitious goals by offering electronic nervous cuff-

implants [9] to interface the peripheral nervous system and cost-efficient giant mag-

neto-impedance (GMI) [15] sensors operating at room temperature to access [16] tiny

magnetic fields [17] stemming from the brain activity. Development of these complex

shapeable electronic components containing thin-film transistors and sensors, requires

multiple fabrication steps to be carried out in a way compatible with microelectronic

technolog y. Here we put forth a platform relying on photopatternable, thermally and

chemically stable imide- and acrylic-based polymers. To allow for the self-assembly we

use stimuli-responsive hydrogel polymers [2, 3, 18], which develop a differential strain

Fig.1: Artistic vision of shapeable microelectronic
neuronal interfaces. (a) Detection of magnetic
field generated by an epileptic seizure happen-
ing inside the brain using an array of giant mag-
netoimpedance sensors; (b) Shapeable micro-
electronics bear great potential to offer neuronal
cuff-type implants with unmatched mechanical
and electrical functionalities.

Fig. 2: Shapeable microelectronic technological
platform: (a) The planar tree-layer polymeric
stack of the sacrificial layer, the swelling 
hydrogel layer and the rigid polyimide layer; 
(b) The array of self-assembled microelectronic
devices (GMI sensors); (c) Planar IGZO electronic
devices fabricated on top of polymeric stack; 
(d) Planar GMI structures fabricated on polymeric
three-layer stack.
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during water uptake relying on reinforcement layers. Using optical lithography, we

first define sites for the electronic devices by patterning the functional stack (Fig. 2a).

The technology allows to process 100’s of devices over the entire substrate in a single

fabricatio n run. The swelling state of the hydrogel can be affected by tailoring environ-

mental conditions. This provides a full control over the shape of the device, which can

be deterministically set in a planar or bent state, as well as self-assembled into a Swiss

roll-like microtube (Fig. 2b) with tunable diameters down to 50 micrometers. By vary-

ing the 2D layout, different geometries of the electrodes, semiconductors and mag -

netic layers can be realized (Fig. 2c,d) on top of the stack. Furthermore, the developed

technological platform supports the integration of multiple functional elements form-

ing complex circuits into a single tubular architecture. 

Applying the polymeric platform, mechanically adaptive microchannels of cuff-type

were realized integrating high-performance Indium Gallium Zinc Oxide (IGZO) [7] micro-

electronics. The possibility to open/close the architecture repeatedly upon external

stimulatio n allows an automatic attachment and release of a device to/from an object

of interest in a biomimetic fashion (Fig. 3a). The mechanical functionality is appealing

for neuronal cuff implant applications to enclose and guide the growth of nerves [11].

The achieved device diameters of 50 micrometers are at least two orders of magnitude

smaller compared to the state-of-the-art neuronal cuff implants [19]. At the same

time, the elasticity of the polymeric layer forming the interior of the channel is about

17MPa (Fig. 3b), which matches the elasticity of the protective tissues of the central

nervou s system, as required for in vivo implants [1, 19]. The total radial pressure imposed

by the device upon the self-assembly process is about 600 Pa (Fig. 3c), which is well

below the harm limit of 1300 Pa characteristic for nerves and axons [20]. The small thick-

ness of the polymers of less than 1 micrometer prevents the IGZO electronics from

degradation upon severe mechanical deformations. Even in the most bent state, the

signa l amplifiers and the advanced logic gates remain intact and maintain their function-

ality. The integrated electronics could detect ionic signals (mV range) which is sufficient

for monitoring the action potential of neuronal axons. 

Using the same technology, we developed self-assembled GMI sensors (Fig. 4a) as an

alternativ e to superconducting quantum interference devices (SQUID) [12] for MEG

equipment, which would be in the spirit of the conventional EEG devices. Although

SQUID-based devices have proven their relevance in neurological disease treatment [11],

rather high fabrication and maintenance costs limit their wide spread applicability. In

Fig. 3: Mechanical properties of the shapeable micro-
electronic platform: (a) Hooking up several devices 
to Cu wires with a diameter of 50 μm (top row) and
100 μm (bottom row); The rolled/unrolled state of
the devices can be controlled by adjusting the 
content of isopropanol in the water solution; 
(b) Force-distance curve measured for different 
polymeric layers using AFM; (c) Change of the 
pressure measured using AFM upon self-assembly 
of the devices. 
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this respect the GMI devices operate at room temperatures [21] and reveal remarkable

sensitivity to small magnetic fields down to the pico-Tesla regime [22]. Self-assembly

of initially planar GMI heterostructures could be achieved into an array of three-dimen-

sional tubular architectures (Fig. 4b) possessing enhancement of GMI response in

compariso n to planar structures. Fabricated GMI systems reveal a stable effect with an

amplitude in the range of 50%/Oe [16] below 100 MHz (Fig. 4c) and characteristics

comparabl e to state-of the art GMI devices. 

In conclusion, we put forth a novel method relying on strain engineering [9, 16, 18] to

realize on-chip integrated GMI sensors as well as nervous cuff-type implants with

integrate d microelectronics, including signal amplifiers and logics based on high-

performanc e IGZO transistors. The shapeable microelectronics constitutes a major step

towards three-dimensionally assembled microelectronics for direct or distant neural

networ k monitoring via encephalography techniques, stimulation and regeneration of

neural tissue. Fabrication of complex logic circuits in combination with sensors on

mechanicall y active polymers is attractive for channel multiplexing on the micro scale

to reduce the number of interconnect applied at self-confined neural cuff implants.

Matched mechanical properties should be of great value, reducing the injury of bio -

logical tissue and promoting the biocompatibility. 
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Fig. 4: Giant magnetoimpedance sensors: (a) Sketch
of an integrated self-assembled GMI sensor with a
pick-up coil; (b) An array of self-assembled GMI 
sensors on a glass substrate; (c) The response of a
self-assembled GMI sensor demonstrating a charac-
teristic double peak profile.
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Abstract: Nanoscale magnets range from single molecules to entities of a few million

atoms. Due to their inherently small size and their large surface-to-volume ratio, the

coupling of magnetic cores to the local chemical environment significantly affects

their magnetic moments and anisotropies. Understanding and controlling the proper-

ties of such nanomagnets at different length scales is thus the heart of this research

topic. The report reviews our work on nanoscale magnets in 2015. The materials rela-

ted research on molecular magnets, magnetic nanoparticles and nanowires is comple-

mented by efforts to develop novel methods and techniques which are particularly

suited for characterizing magnetic materials at smallest possible length scales and with

ultimate resolution. 

Endohedral metallofullerenes as single molecular magnets
Endohedral metallofullerenes (EMFs) encapsulating lanthanide ions (Ln) are of particu-

lar interest because of the specific magnetic properties resulting from the combination

of the partially filled 4f shell of metal ions, their exchange interactions in endohedral

clusters, and the shielding role of the carbon cage, which protects endohedral spin states

from the outer environment. The inhomogeneous environment of Ln ions inside the clus-

terfullerenes induces a magnetic anisotropy and results in a number of magnetic phe-

nomena. In particular, Dy-based nitride clusterfullerenes, DySc2N@C80 and Dy2ScN@C80,

were the first EMFs to exhibit single molecular magnet (SMM) behaviour [1]. Recently

we found that in the presence of Ti, the central nitride ion can be replaced by carbon,
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yielding M2TiC@C80 with a double Ti = C bond [2]. The Dy analogue, Dy2TiC@C80, exhi-

bits single molecule magnetism, but is softer than the isostructural Dy2ScN@C80 [3]. At

the same time, an analogous EMF with two carbon atoms in the endohedra l cluster,

Dy2TiC2@C80, was also discovered and found to have poorer SMM properties than

Dy2TiC@C80 (Fig. 1).

An important advantage of the EMF-SMMs is their high thermal and chemical stability,

which enables sublimation without decomposition. Monolayers of Dy2ScN@C80 on a

Rh(111) surface were obtained by vacuum sublimation. X-ray magnetic circular di-

chroism (XMCD) showed that the first monolayer of Dy2ScN@C80 strongly interacts

with the metal surface resulting in alignment of the endohedral clusters parallel to the

substrate. Importantly, the EMF retains its SMM behaviour on the metal even in sub -

monolayers [4].

Whereas SQUID and XMCD are of particular use for the study of the low-temperature

effect s, magnetic properties of EMFs at room-temperature are conveniently addressed

by paramagnetic NMR spectroscopy, since paramagnetic chemical shift is proportional

to the anisotropy of magnetic susceptibility. Systematic 45Sc and 13C NMR studies of the

series of LnSc2N@C80 molecules (Ln runs through the whole 4f row) allowed us to

analyz e the magnetic anisotropy of the lanthanide ions in nitride clusterfullerenes [5].

We showed that the crystal field is quasi-uniaxial with very large splitting of mJ levels.

Determination of the electron spin density on the N-donor atoms of 
Cu(II)-(bis)oxamidato complexes by a pulse ELDOR detected NMR
Transition metal-(bis)oxamidato complexes can be utilized as suitable building blocks

for the synthesis of the respective polymetallic complexes which are considered as pos-

sible candidates for the use in molecular electronic devices. Understanding of exchange

pathways in such complexes is therefore important for a rational design of new materi-

als with improved intramolecular magnetic interactions between the metal ions. The spin

density distribution in Cu(II) containing (bis)oxamidato type mononuclear complexes

[nBu4N]2[Cu(opboR2)] (R = C2H5 1, C3H7 2) studied in the present work [6] (Fig. 2) can

be an indicator of the strength of the magnetic superexchange interaction in correspon-

ding trinuclear complexes and thus provide a clue to the control of the interaction

pathway s. The spin density distribution can be inferred from the analysis of a tensor of

the transferred hyperfine (HF) interaction between the electron spin of Cu and the

nuclea r spins of the nitrogen ligands. To determine the HF tensor we have employed the

Fig. 1: Molecular structures and SQUID
magnetization curves of Dy2TiC@C80

T = 1.8 K (black) and Dy2TiC2@C80 (red). 
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method of pulse electron double resonance (ELDOR) spectroscopy, which can detect the

nuclear magnetic resonance (NMR) transitions with a much better sensitivity than the

traditional NMR spectroscopy [6]. 

We used a microwave (mw) pulse of frequency ωmw
(1) to excite a forbidden electron-

nuclear level transition (Δms = ±1 and ΔmI = ±1) and to “burn holes” in the electron spin

resonance line. The free induction decay signal after a second mw pulse of frequency

ωmw
(2) is recorded as a function of the frequency difference ωmw

(1) - ωmw
(2) (Fig. 1). The-

oretical modeling of such ELDOR spectrum (Fig. 1) yields the HF tensors. From them,

the Cu(II) spin density ρ on nitrogens can be estimated. The value of ρ appears to be

smaller on Nethyl (ρ∼ 9.4 %) and Nprop atoms (ρ∼ 7.1 %) for 1 and 2, respectively, as com-

pared to Nphen atoms (ρ ∼ 12 % for 1 and ρ ∼ 9.9 % for 2). This finding has enabled us

to identify the relevant superexchange paths in the respective tri-metallic complexes

and in particular to conclude that the Cu-Nphen-O-Cu exchange path is stronger than the

Cu-Nethyl-O-Cu and Cu-Nprop-O-Cu paths.

Growth model for ternary intermetallic nanoparticles 
probed with 59Co-NMR
We studied the formation and growth of assemblies of ternary intermetallic magnetic

Co2FeGa nanoparticles as model systems inside Carbon nanotubes (CNT’s). The CNTs were

used as containers for the nanoparticles since they provide a template for the formation

of intermetallic nanoparticles with well-define sizes and protective carbon shells

hinderin g oxidation. 

The evolution of particle size and compositions as well as of magnetic properties was

studied as a function of progressing annealing time. The challenging observation of the

chemical compositions and local structural properties of the nanoparticles was realized

by means of 59Co-NMR. Here, it was clearly shown - in agreement with results from TEM

and magnetization data - that short and intermediate annealing times (e.g. 20 h, see

upper part in Fig. 3) result in particle assemblies with heterogeneous particle compo-

sitions reflected in broad NMR spectra with contributions stemming not only from

Co2FeGa (186 MHz) but also from various other byproducts. In contrast, a sufficiently

long annealing treatment of 40 h yields homogeneous Co2FeGa nanoparticles. This

Fig. 2: (top) Structure of the (bis)oxamidato type 
mononuclear complexes [nBu4N]2[Cu(opboR2)] 
(R = C2H5 1, C3H7 2). Due to covalency of the 
chemical  bonds the Cu(II) electron spin density is 
distributed towards the nitrogen ligands; (bottom)

Experimental and theoretical ELDOR detected NMR
spectrum. The intensity of the free induction decay
signal after application of the detection pulse at
ωmw

(2) is plotted as a function of the frequency 
difference [ωmw

(1) – ωmw
(2) ]/2π, where ωmw

(1)

is the frequency of the first exciting pulse. 

Fig. 3: 59Co NMR spectrum of Co2FeGa@CNT 
measured at 5K, after 20h (upper part) and 40h 
(lower part) of annealing.
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finding is highlighted by the significant reduction of additional contributions in the

NMR spectra (see lower figure part). As a consequence of the annealing treatment, ini-

tially small particles (∼ 10-12 nm) with heterogeneous compositions have evolved to

chemically homogeneous particles in the size range of ∼ 35 nm, where a further increase

of the mean particle diameter is limited by the confining geometry of the inner cavity

of the carbon nanotubes.

Quantifying the ratio of orbital to spin magnetic moments 
on individual FePt nanomagnets
Electron energy loss magnetic chiral dichroism (EMCD) is the electron wave analogon

of X-ray magnetic circular dichroism (XMCD). It allows to study magnetic properties

quantitativel y and with element specificity at the nanoscale in a transmission electron

microscope (TEM). We have used a classical EMCD setup, where the sample is illumina-

ted with an electron plane wave thereby acting as a beam splitter. Although this approach

is meanwhile established to an extend that it reliably reveals dichroic signals, quanti-

tative results on the orbital and spin magnetic moments obtained from EMCD mea -

surements are only scarcely reported, if at all. We have used a close to parallel electron

beam with a diameter of 20 nm to measure EMCD on individual FePt nano islands with a

thickness of roughly 10 nm and lateral extensions of some 30 – 50 nm. From the resul-

ting experimental EMCD spectra (cf. Fig. 4), the ratio between the angular magnetic

momen t and the spin magnetic moment was determined to be ml /ms = 0.084 ± 0.076.

This value is in agreement with ml/mS data obtained from XMCD measurements on

ensemble s of solution-chemically prepared FePt nanoparticles thereby highlighting

the potential of EMCD for quantitative magnetic investigations with highest lateral

resolution.

TEM investigation on the local microstructure of Fe-Ga nanowires
One-dimensional, high aspect ratio nanoscaled magnets are prepared by electrodepos-

ition within nanoporous templates. In recent years the focus was on iron-based alloys

with specific magnetic properties such as Fe80Ga20 showing high magnetostriction or

Fe70Pd30 exhibiting a shape memory effect. Stable electrolytic baths have been achie-

ved by complexing the metallic components and the deposition mechanisms were

investigate d in detail in order to identify deposition conditions for the reproducible

preparation of homogeneous, defect free nanowires.

The local microstructure of Fe–Ga nanowires is investigated by TEM considering the

dependenc e on the deposition technique. Using a complexed electrolyte, smooth and

homogeneou s Fe80Ga20 nanowires are electrodeposited into anodic aluminum oxide

templates by either applying pulse potential or potentiostatic deposition technique. At

optimized deposition conditions the wires show the desired composition of Fe80 ± 2Ga20 ± 2

without a gradient along the growth direction. Composition distribution, structure and

microstructure are examined in detail and found to be almost independent of the depo-

sition method. Line EELS and crystal lattice measurements reveal a negligible oxygen

content for both preparation routine s. Neither Fe/Ga oxides nor hydroxides were found.

Both potentiostatically deposite d as well as pulse deposited nanowires exhibit a

preferre d (110) orientation, the latter with slightly larger crystallites. Different contrast

patterns were found by TEM that appear more pronounced in the case of pulse deposi-

ted wires. High resolution transmission electron microscopy analysis and comparison of

differently prepared focused ion bea m lamellas reveal that these contrasts are caused

by the alternating potential mod e and are not induced during the TEM preparation pro-

cess (Fig. 5). The alternating potential mode causes periodic growth thereby inducing

different layers with reduced wire thickness/defects at the layer interfaces [7].

Fig. 5: TEM image (top) of a FeGa nanowire showing
exemplarily the periodic layer growth caused by the
pulsed deposition regime (bottom).

Fig. 4: Electron energy loss spectra (EELS) in the 
vicinity of the L3,2-Fe absorption edge as obtained
under three-beam conditions from an individual FePt
nano island. The EMCD signal is determined from 
the intensity difference of the two spectra acquired
with the spectrometer entrance apertures placed 
off-axially at position labelled with a red and green
circle in the diffraction plane, respectively.
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Quantifying magnetostatic nearest neighbor interactions 
in nanowire arrays by MFM
The magnetostatic interactions in a nanowire array complicate the reconstruction of

the ensemble averaged behaviour of the individual nanowires, such as the intrinsic

switching field distribution. Simply correcting the shearing of the hysteresis in a mean-

field approach does not account for the locally fluctuating demagnetizing field which

originates from the individual magnetization configuration in the close surrounding of

each nanowire. We proposed a statistical evaluation method of nearest neighbour

histogram s, which potentially allows judging the strength of the local magnetostatic

interaction s against the magnitude of the intrinsic switching field distribution.

To this end an in-field Magnetic Force Microscopy (MFM) study of electrochemically pro-

duced Co48Fe52 nanowires is performed, in which the influence of the magnetic nearest

neighbour configuration on the switching behaviour of the individual embedded

nanowires is clearly detected. The as-prepared demagnetized nanowire array is mag -

netized in successively larger magnetic fields and the nearest neighbour configuration

around each non-switched (bright) wire is evaluated by counting all neighbouring

switched (dark) wires. By considering all non-switched wires in a given MFM measure-

ment, a distribution function is constructed and evaluated for its mean value <n> (see

Fig. 6a and b). The deviation of this average nearest neighbour number <n> from the

statistica l expectation value is a measure of the strength of the local magnetostatic

interaction s. Fig. 6c shows the results for 6 μm long Co48Fe52 nanowires with 70 nm

diamete r arranged on a hexagonal grid with 100 nm centre-to–centre distance in

compariso n with the expectation values for non-interacting and strongly interacting

wires [8].

High sensitivity cantilever magnetometry based 
on a co-resonantly coupled sensor
Studying magnetic properties of materials is an important task in the development of

new applications for example in spintronics [9]. One method to do this is cantilever mag-

netometry which allows for the investigation of small magnetic particles and thin films.

Therefore, a magnetic sample is placed onto the cantilever which is driven to resonant

oscillations and the interaction between an external magnetic field and the sample

changes the cantilever’s oscillation properties. The oscillation is usually detected with

laser deflection or laser interferometry. With decreasing sample size, the signal strength

is reduced as well, requiring the development of more sensitive cantilevers. This can be

met by the use of nanocantilevers but they lead to an increased complexity of the

detectio n methods. 

We are presenting a novel approach based on the coupling of a micro- and a nanocan-

tilever with matched resonance frequencies which induces a strong interplay between

the two cantilevers [10]. This leads to the possibility of detecting very small magnetic

interactions between a sample attached to the highly sensitive nanocantilever and an

external magnetic field. These interactions change the oscillatory state of the coupled

system which can easily be detected at the micorcantilever.

We validated the concept by using a commercially available silicon cantilever as micro -

meter sized oscillator and an iron filled carbon nanotube as nanocantilever (Fig. 7). 

The magnetic properties of such FeCNTs have already been investigated [11,12], making

the sample suitable to demonstrate the applicability of the coupled sensor for obtain-

ing magnetic information. 

Fig. 6: (a) MFM measurement (1.5μm x 1.5μm) 
of a CoFe nanowire array with normalized net
magnetization m = 0.67, (b) nearest neighbour 
distribution function normalized to 100% for the 
experimental case (black) and a simulated, non-
interacting wire ensemble (green), (c) average 
nearest neighbour number <n> as a function of 
the normalized net magnetization m.

Fig. 7: SEM image of a co-resonantly coupled
sensor.
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Our measurements show an increase in signal strength by several orders of magnitude

compared to cantilever magnetometry experiments with similar nanomagnets and at the

same time could be used to determine the expected magnetic properties of the iron

nanowire. 

With this experiment we do not only demonstrate the functionality of our sensor design

but also its potential for very sensitive magnetometry measurements while maintaining

a facile oscillation detection with a conventional microcantilever setup [13]. 

Tailored manipulation of fluids in magnetic gradient fields 
by electrodeposited magnetic structures
Downscaling and miniaturization of conventional fluidic systems approach their phys-

ical limitations. The classical fluid mechanical approaches have to be combined with

interfacia l interactions. Studying the interactions of different driving forces to ma -

nipulate fluids or particles is a challenging task. One of the main issues is to realize the

transport of fluids and particles in small gaps by magnetic and electric fields and their

gradients using defined arrangements of electrodes and magnets on the microscale. A

microchannel test system has been simulated and prepared using electrodeposited

CoFe soft micromagnets arranged underneath Au electrodes (Fig. 8). The potential

change caused by the expected enrichment of paramagnetic ions in regions of high

magneti c field gradients [14, 15] is measured and used to move the fluid frictionless

along the designe d structures. 
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Fig. 8: Schematic image of magnet and electrode
arrangement (left), electrodeposited CoFe structure
and simulated strayfield (middle), cell design (right).
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Research topic 2.5 

Materials for Energy Efficiency, Storage & Conversion
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C. Bonatto Minella5, C. Cierpka3, K. Eckert 1, N. Fechler 4, G. Mutschke2, X. Yang1

Responsible Directors: B. Büchner, K. Nielsch, T. Gemming 

Abstract: 2015th research brought highlights in stabilizing the performance of lithium-

sulfur batteries by a mesoporous carbon-modified separator, giving new detailed

insight s into the formation of hydrogen bubbles on electrodes during water-splitting

in a magnetic field and how a mesoporous nitrogen-doped carbon can influence the

dehydrogenatio n and hydrogenation mechanism in the view of thermodynamics of

nanoconfined lithium borohydride.

Functional Hybrid Separators for Advanced Lithium-Sulfur Batteries
Due to the exceptional high theoretical specific energy density of 2.6 kWh kg−1, the

lithium–sulfur (Li-S) battery has emerged as the promising candidate for next-gener-

ation rechargeable batteries skilled to meet forthcoming energy storage targets set

for battery-electric vehicles and smart grids connected with solar/wind power

systems.1 However, two of the main causes of the poor cycling life of the Li-S batteries

are due to the insulating nature of sulfur and the so-called shuttle effect of lithium poly-

sulfide intermediates, which decrease the active material utilization [1]. In order to solve

these issues, we proposed the modification of the cell configuration by integrating func-

tional carbon interlayers [2] or hybrid separators [3-5] with large electrochemically

activ e surface between the anode and the cathode.

We focus our research work on the development of functional hybrid separators by a

straight forward coating modification of a commercial Celgard polypropylene separator

with meso porous carbon materials. The Li-S cells with a mesoporous carbon-coated sep-

arator retain capacities of the order of 700 mAh g–1 after 500 cycles at 1 C, despite the

use of a simple cathode mixture containing a high sulfur/non-porous carbon (Super P)

ratio of 7:2 [3]. The enhanced electrochemical performance of the Li-S batteries is

attribute d to the unique features of the mesoporous carbon-coating, which effectively

reduces the resistance of the sulfur cathode, prompts fast electron/lithium ion transport

through the carbon network, successfully sequestrates, stores and maintains available

the sulfur active material for further reutilization and buffers the large volume changeFig. 1: Functionalized separator [3]
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during sulfur/Li2S conversion reaction. In addition, the cyclic stability of the Li–S cells

were improved by using a polypropylene-supported N-doped MPC hybrid separator as

polysulfide adsorbent [4, 5]. The N-doping of the carbon-coating allows to chemically

adsorb and reinforce the confinement of lithium polysulfide intermediates through

coupling interactions between charged lithium polysulfide and the polarized nitrogen-

neighboring carbon surface that restrains active sulfur material loss.

Our work highlights the importance of the rational design of modified separators with

mesoporous carbon structures and this proof of concept may bring reliability for advanced

high-performance Li-S batteries.

Hydrogen bubbles generated at a Pt-microelectrode – 
Dynamics of evolution and dissolution
Novel and efficient energy storage solutions stay in the focus of energy research. One

challenge is making water electrolysis economically competitive due to fast H2 detach-

ment and transport away from the electrode to minimize overpotentials. Studies of H2

bubble nucleation, growth, detachment, dissolution and single bubble behavior in ex-

ternal magnetic fields at a Pt microelectrode are key issues for a detailed understand-

ing of the underlying mechanisms and further increase of efficiency. The combination

of electrochemical measurements, extensive image processing by high speed microscopy

and particle as well as astigmatism tracking velocimetry allows evaluating the dynam-

ics of bubble evolution and detachment process with respect to bubble radius, contact

angle and complex velocity field around the bubble in particular, and due to the impact

of superimpose d magnetic fields [6]. For the first time it was figured out that single

bubbl e dissolution proceeds over a three step mechanism. The experimental results are

supported by numerical analysis. 

Improving the hydrogen storage properties 
of LiBH4 through nanoconfinement 
LiBH4, a complex hydride, contains the highest amount of hydrogen among the solid

hydroge n storage materials and is thus a promising material for mobile applications.

Unfortunatel y, the hydrogen release occurs only at unfavorably high temperatures and

may be accompanied by the release of toxic byproducts. Recently, however, it was shown

that both the thermodynamics and the reaction kinetics of complex hydrides can be ef-

fectively influenced by confining them in scaffolds with nanoscopic pore sizes. We have

therefore studied the effect of nanoconfining LiBH4 in aerogel-like nitrogen-doped

carbon scaffolds prepared by salt templating. Such scaffolds are easily prepared. They

offer large pore volumes, are chemically stable, and their pore size can be effectively

Fig. 2: Current-time behavior of one bubble period
generated potentiostatically at EMSE = –1.5 V in 
1 M H2SO4 at a Pt microelectrode (Ø 100 μm) and
characteristic stages of bubble evolution [6].
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tuned. Comprehensive investigations using differential scanning calorimetry (DSC),

X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) in com-

bination with electron energy loss spectroscopy (EELS) reveal, that for LiBH4 loadings

of 40 wt % the hydride is solely contained in the smallest pores of the carbon scaffold

(pore diameters smaller < 5 nm) and that the LiBH4 is amorphous. Thermogravimetric

(TG) measurements and mass spectrometry (MS) confirm, that the hydrogen desorption

temperature, which is above 400°C for the bulk hydride, is reduced to 310°C upon this

nanoconfinement with an onset temperature as low as 200°C (cf. Fig. 3) [7]. Partial re-

hydrogenation can be achieved under moderate conditions (60 bar hydrogen, 300°C).

In-situ STEM EELS measurements at temperatures up to 400°C show, that the boron re-

mains within the carbon scaffold also in the de-hydrogenated state. Unlike reports on

LiBH4 nanoconfined in highly ordered nanoporous carbon, an ejection of LiH from the

carbon pores does not occur, neither in case of the in-situ heating in the electron micro-

scope nor for the DSC heated sample. Apparently, both decomposition products (B and

LiH) remain inside the pores of the carbon scaffold. The relatively small degree of re-

hydrogenatio n is, however, yet to be explained and will be a subject of further research.
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Fig. 3: Hydrogen mass spectrometry of pure LiBH4

(black curve), LiBH4 nanoconfined in the carbon 
scaffold with a loading of 40 wt.% (green), and the
nanoconfined LiBH4 after rehydrogenation at 100 bar
hydrogen and 300°C for 3 h (red).
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Research topic 2.6

Thermoelectric materials
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Abstract: In this research topic we develop thermoelectric materials, processing

technique s and intelligent concepts for device integration. Hereby, conventional

telluriu m-based compound semiconductors with high performance at room tempera-

ture serve as a thermoelectric model system to explore novel device strategies, both

for generator s or coolers. To develop integrated thick film devices, we employ electro-

chemical deposition of (BixSb1-x )2Te3 which is a low-cost and easily scalable method.

Although electrochemical deposition is not a standard process in semiconductor

fabricatio n techniques, compatibility would be technologically feasible. Hence, this

researc h topic benefits from the fruitful combination of long standing expertise in elec-

trochemical deposition techniques and micro-manufacturing as well as measurement

techniques at the IFW Dresden. In this article, we focus on work performed in the frame

of an EU-funded project on Thermally Integrated smart Photonics Systems (TIPS).

Introduction
Next generation electronic devices require intelligent thermal management strategies

in order to remove high density heat fluxes from the active electronic parts. The thermal

challenge grows with advancing levels of integration. Jointing more and more function-

ality into ever-decreasing space increases the thermal budget, i.e. the heat flux densi-

ties. Especially optoelectronic devices demand a very precise thermal stabilization in

orde r to produce a precisely defined wavelength. Hence, hardware solutions for a smart

and efficient thermal management are sought for.

Fully integrated micro-scale coolers together with heat pumps, heat spreaders, heat

exchanger s and heat sinks are the envisioned combination for this problem within the

TIPS project, addressing the multiple dimensions of heat transport. In case of success,

high band-width optical communication could greatly benefit: An intelligent circuit which

can control its own operations thermally could be up to five times more efficient than

today’s technology, is estimated within the ambitious objectives of the project. 
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One corner-stone of the thermal management strategy for future photonic communica-

tion systems are micro-scale thermoelectric coolers which are being developed at the IFW

within the TIPS cooperation. The requirements with respect to thermoelectric material

and fabrication technology are hereby manifold: The material needs to provide a high

thermoelectric figure of merit at room temperature and be stable and reliable under

operatio n. The fabrication should be done by a highly scalable, low-cost deposition

techniqu e and furthermore be fully compatible with CMOS fabrication requirements.

Amongst the variety of thermoelectric materials and processing technologies, we picked

electrochemical deposition of standard tellurium-based thermoelectric thick films

combine d with micro-structuring by lithography to best possible fulfil these high-end

specifications.

Within this article we report on the electrochemical deposition of ternary Bi2(TexSe1-x)3

and (BixSb1-x)2Te3 films. Hereby, the parameters of the electrochemical deposition

were optimized to obtain defined film morphology and crystalline structure as well as

best-possible thermoelectric properties. Smooth films of n-type and p-type doping are

reliably produced. Their integration into micro-scale thermoelectric coolers is current-

ly being developed.

Results and discussion

Electrochemical deposition of thick films
The previously reported bath chemistries and pulse plating procedures for both, the

n-type material, Bi2(TexSe1–x)3, and the p-type material, (BixSb1-x)2Te3 [1], were used

as the starting point and optimized with regard on implementation in the device fabri-

cation process. The desired composition of the ternary compounds and thus the Seebeck

coefficient were adjusted by a careful selection of the pulse deposition potentials. In ad-

dition, an improvement of the p-type film compactness was achieved by applying longer

pulse times for both the deposition as well as the relaxation step. The film thickness can

be easily adapted by the number of pulses applied. Finally, the electrolyte composition

was modified. In particular the addition of a small amount of a surfactant, namely

sodium dodecyl sulfate (SDS), significantly reduced the surface roughness of the films

(see Fig. 1) thereby strongly improving its suitability for further processing steps such

as contacting.

Micro-structuring of thick films for device integration
The construction of the micro-scale thermoelectric cooler proposed in the TIPS project

requires several lithographic steps in order to electrochemically deposit the different

n-type and p-type chemical compositions of the thermoelectric materials next to each

other. The masks for the electrochemical deposition were fabricated by means of micro-

patterning. In order to achieve the optimal geometry complying with the requirements

of device integration defined by the envisioned application, thick photoresist was used

and the exposure parameters were optimized in order to achieve the best structure res-

olution. Due to substrate-mask-electrolyte interactions, the electrochemical deposition

Fig 1: SEM cross section images of (BixSb1-x)2Te3

electrodeposited samples. (a) Short pulse times results
in dendritic growth. (b) Long pulse times and addi-
tives allow for leveled and compact growth. Scale
bars are 2 μm.

Fig 2: SEM cross section images of electrodeposited
20 μm x 20 μm squares of Bi2(TexSe1-x)3 (a) and
(BixSb1-x)2Te3 (b). Scale bars are 2 μm. Insets show
patterned array of the mentioned squares.
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into a photo-pattered micrometer size cavity of the ternary systems of concern is not

trivia l. However, the electrochemical conditions were further optimized obtaining com-

pact and well defined structures of both n- and p- type materials down to 20 μm x 20 μm

feature size (Fig. 2). Subsequently, a two-step lithography was demonstrated for the

successiv e deposition of both materials yielding well adhesive micro blocks suitable for

further processing.  

Thermoelectric properties
The transport properties of the thermoelectric (BixSb1-x)2Te3 thick films can be sensi -

tively adjusted by the choice of the parameters of the electrochemical deposition. This

is demonstrated for the Seebeck coefficient exemplarily in Fig. 3 in which the off-poten-

tial E(off) is varied between 0 and 0.2 V. The variation of the off-potential results in

detectabl e changes of the chemical composition of the sample evidenced in Fig. 3a by

means of energy dispersive X-ray (EDX) analysis of the thick films. Within this series

of samples, the tellurium content increased from 57 at.% to 70 at.% induced by the

variatio n of the off-potential. This in turn results in a dramatic change of the Seebeck

coefficient with maximum values around 140 μV K-1 and a minimum of -9 μV K-1. Even

the type of majority carriers changes from p-type to n-type (Fig. 3b). Fig. 3c combines

both measurements to emphasize the dependence of the Seebeck coefficient on the

telluriu m content.

The reason for the observed variations in the Seebeck coefficient is given by the defect

chemistry of the material, tailored by the deposition process: Metal chalcogenides

such as Bi2Te3, Sb2Te3 and the mixed crystals of the type (BixSb1-x)2Te3 are usually intrin-

sically doped by antisite defects. Hereby, a Te- atom on a (Bi/Sb)-lattice site, [Te]Bi,

provide s the crystal with one additional electron, while a (Bi/Sb)-atom on a Te-lattice

site, [Bi]Te, depletes the crystal by one electron. The tellurium-rich thick films therefore

tend to show n-type behaviour, while tellurium-depleted thick films demonstrate p-type

behaviour. The zero-crossing of the Seebeck coefficient is characterized by balanced

concentration s of both types of defects, [Te]Bi ∼ [Bi]Te.

The Bi/Sb ratio needs to be carefully tailored as well. The formation energies of the

antisit e defects depend on the specific chemical composition within the mixed crystal

series, resulting in different concentrations of the antisite defects and therewith dif-

ferent doping levels, being directly reflected by the Seebeck coefficient. With the

completel y optimized parameter set (including electrolyte composition, pulse potentials,

and pulse times) as-deposited p-type samples show a Te concentration of about 59 at.%

and a Bi/Sb ratio of about 0.6 with a maximum value of the Seebeck coefficient of

163 ± 8 μV K-1. The control of all parameters of the electrochemical deposition is there-

fore not only necessary to obtain a defined film morphology but also for optimal

thermoelectri c transport coefficients. 

Fig. 3: Film composition obtained by EDX (a)

and Seebeck coefficient (b) of electrodeposited 
Bi-Sb-Te thick films in dependence on the poten-
tial of the relaxation step (“off” potential) in the
pulsed electrochemical deposition regime; 
(c) Dependence of Seebeck coefficient on the 
Te content of the as-deposited films showing the
transition from p-type to n-type behavior.
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Outlook
The research topic 2.6, thermoelectric materials, is currently in its early stage of devel-

opment. While the TIPS project already presents a strategic topic, combining the ex -

pertise of different teams within the IFW, new projects and collaboration will be fostered

in 2016. These include innovative processes for the fabrication of bulk thermoelectric

nanomaterials employing deformation methods typically used for metallic materials or

functionalizing nanoparticles by a hybridization technique.

[1] Schumacher et.al., Adv. Energy Mater 3 (2013) 95
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Abstract: In virtually all modern nanoscale devices interfaces play a crucial role.

Genuin e electronic and magnetic interface effects, not existent in bulk materials,

emerge due to distinct electronic, compositional, as well as structural properties

present at interfaces. 

In the following we focus on three examples of ongoing research activities in this field

in the IFW. The systems covered include polar oxide heterointerfaces, metal/oxide/

electrolyte interfaces, as well as layered heterostructures for magnetic tunnel junctions

(MTJ). Advanced deposition techniques as well as sophisticated measurement tech-

niques that precisely reveal interface properties are used in order to understand and

exploit the potential of these interface-dominated materials. Important scientific ad-

vances in the understanding of the electronic structure of polar oxide heterointerfaces

have been made by combining density functional theory (DFT) calculations with orbital

sensitive x-ray absorption spectroscopy (XAS). At solid/electrolyte interfaces, widely

tunable interface magnetism has been detected by in situ Anomalous Hall Effect

(AHE) and in situ Ferromagnetic Resonance (FMR) measurements. For MTJs, the pre-

cise preparation of a high performance thin film heterostructures is achieved by the

combination of physical vapor deposition techniques (PVD) and atomic layer deposi-

tion (ALD).

1. Strain dependence of the electronic structure 
of polar oxide heterointerfaces
A conceptually appealing aspect of the research on polar oxide heterointerfaces is the

possibility to design interface properties at will by the right choice of the constituent

materials. For this to become truly operative numerical methods are needed that are

reliabl e enough to predict key interface parameters - and guide, thereby, the materials

development.
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The most prominent property of polar oxide heterointerfaces is the appearance of a

metallic state above a certain thickness threshold in LaAlO3 /SrTiO3. This effect roots in

the formation of a two-dimensional electron gas (2DEG) at the interface. The lowest

d-level that becomes occupied is the dx y orbital as has been explicitly shown by orbital

sensitiv e XAS.

Here, we apply density functional theory (DFT) to calculate the orbital resolved elec-

tronic structure of the LaAlO3 /SrTiO3, NdGaO3 /SrTiO3, and LaGaO3 /SrTiO3 series of

interface s, which all show a metal insulator transition at n = 4 unit cells. The system

(La,Nd)(Al,Ga)O3 is of model character due to its ionic, isovalent and isostructural

character. We have previously investigated the electronic structure of this series by

photoemissio n spectroscopy and found clear similarities among the materials. But an

importan t difference is the lattice constant. Here we consider the influence of varying

lattice mismatch and strain at the interface in an otherwise similar environment.

The splitting of the d-levels is a ground state property. Fig. 1 presents DFT calculations

of the orbital and layer resolved density of states (DOS) for the 2 unit cells samples. The

DOS has been normalized to the first peak in all cases, because we are interested in the

states that become occupied first when the 2DEG forms at the interface. Indeed the

degenerac y of the dxy vs dxz/yz orbitals is lifted. The effect is most pronounced for the

first layer, as expected, and decreases for deeper layers. The energy separation is largest

for LaAlO3 /SrTiO3 and smallest for LaGaO3 /SrTiO3.

As mentioned above, the energy position of the d-levels can be measured by orbital

sensitiv e XAS, which is most conveniently presented as x-ray linear dichroism (XLD). Fig.2

presents the XLD spectra for all the materials and for different yield modes (partial

electro n yield – PEY, total electron yield – TEY), which are differently depth sensitive. 

The spectra in Fig. 2 can be evaluated by the help of standard multiplet theory. The

informatio n thereby extracted from Fig. 2 is twofold: i) from the shape the d-level

hierarch y is confirmed to be the same for all the compounds and led by the dx y orbital.

ii) The magnitude is largest for LaAlO3 /SrTiO3 and smallest for LaGaO3 /SrTiO3, which re-

flects the magnitude of the dx y vs dxz/yz splitting in agreement to the DFT. The splitting

is directly linked to the strain state at the interface.

This work represents a step towards the quantitative understanding of oxide heteroin-

terfaces which could be exploited for future materials design.

Fig. 2: X-ray linear dichroism in different yield modes at the Ti-L edge.Fig. 1: Orbital resolved density of states for different materials and layers.
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2. Interfacial control of magnetism in hybrid heterostructures 
by faradaic effects
Electric field control of magnetization at metal interfaces is of great interest for low

powe r spintronic devices, nanofluidic systems as well as magneto-nanoelectromechan-

ical systems [1]. The voltage dependency of interfacial properties of metals charged in

solid or liquid electrolytes has already been successfully exploited for tunable monolay-

ers or ultrathin metallic films. Changes of the electronic band filling in the uppermost

atomic layers obtained by capacitive electronic charging, as well as a change of interface

chemistry have been suggested as interfacial origin. The latter is related to electric field

induced ion migration and charge-transfer, leading to a reversible change of the oxida-

tion state of, e.g., Fe or Co species [2, 3]. These faradaic reactions at oxide/metal

interface s are not restricted to the uppermost atomic layers but depend on the reaction

layer thickness. In principle, composition, phases, structure and microstructure can be

changed, promising tremendously larger magnetic property changes achievable by

electrochemical reactions than by sole electronic charging.

We demonstrated that voltage controlled tuning of surface magnetization of metal

layer s can be achieved in reaction volumes even well above monolayered regions. Liqui d

electrolytes are of advantage here, as ionic mobility is enhanced in comparison to soli d

electrolytes where heating or significantly higher voltages are required for measurable

effects [2]. As a model system we chose several oxide/metal heterostructures polarized

in liquid electrolytes. We are able to in situ characterize the voltage dependence of mag-

netism during polarization in the electrolyte by in situ FMR and in situ AHE measure-

ments. To demonstrate all-electrochemical control, we investigated 10 nm thick

electrodeposite d Fe films with native oxide layer polarized in 1 M KOH. The measured

FMR signal is depicted in Fig. 3. In the measurement geometry, the direction of the

externa l magnetic field lies within the easy plane of the dominating part of the Fe film.

Thus, for the most part, magnetization is collinear to the external magnetic field. This

allows to correlate changes of the FMR intensity given by A(ΔB)2 with relative changes

in saturation magnetization. More than 90 % change of magnetization is estimated when

polarizing between -1.26 V and -0.18 V. This is a remarkably large impact, especially in

comparison to 10 nm thick sputtered Fe film where only 13% voltage-induced variation

of magnetization was achieved. It can be concluded that defect-rich structures and a high

surface/volume ratio, as present in our electrodeposited Fe films, favor kinetics of

electrooxidation and electroreduction. In a volume appropriate for nanoscaled applica-

tions, large magnetization changes at room temperature and for a voltage change of

merely 1V are demonstrated. 

Fig. 3: FMR spectra of 10 nm electrodeposited
Fe in as deposited state and during polarization
at different voltages in 1 M KOH. 
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3. HfO2 based magnetic tunnel junctions 
Magnetic tunnel junctions (MTJs) are generally prepared by physical vapor deposition

(PVD) techniques such as sputtering, molecular beam epitaxy or thermal evaporation.

In most cases, the tunnel barrier in these devices consists of magnesia or alumina. 

These alumina and magnesia based MTJs are well studied and show very good properties

in many different applications. But it also leaves many opportunities for different bar-

rier materials and some of these materials might require a non-PVD deposition technique.

In general, atomic layer deposition (ALD) leads to high-quality, pinhole-free thin films

with low impurity content because of its self-limiting, well-defined chemical reactions

of gaseous precursors with the surface moieties of the substrate.

As an example for ALD/PVD heterostructures, we prepared HfO2 based MTJs. HfO2 has

rarely been used as a barrier material and has a well-known ALD process. The electrodes

of the MTJs were magnetron sputtered and the barrier was prepared from a tetrakis

hafniu m precursor. 

Figure 4 shows a major loop of the tunnel magnetoresistance (TMR) ratio as a function

of the applied magnetic field at room temperature. We observed a TMR ratio of 10%

betwee n the parallel and antiparallel magnetization states and an increase of the TMR

ratio to 19% was observed at 2K. Both, the increase in the resistance and the increase

in the TMR ratio with decreasing temperature have also been observed for MgO and Al2O3

based systems and can be explained in terms of magnon- and phonon-assisted tunnel-

ing modes.

Next, we measured the TMR ratio as a function of the applied bias voltage. Here, an asym-

metry of the TMR ratio between negative and positive bias voltages was observed. This

asymmetry might be attributable to the vacuum breaks between the sputtering of the

lower stack and the ALD of the barrier oxide as well as after the ALD and before the sput-

tering of the top stack. This will be addressed by the next iteration of devices prepared

in a thin film cluster tool without vacuum breaks. 

We conclude that the proposed process is a very simple and reliable procedure for the fab-

rication of HfO2-based MTJs, as HfO2 is compatible with  the commonly used processes

for Si semiconductors. It also serves as a proof-of-concept for ALD/PVD heterostructures.

[1] F. Matsukura et al., Nature Nanotechn. 10, (2015) 209
[2] U. Bauer et al., Nature Mater. 14, (2015) 174
[3] K. Leistner et al., Phys. Rev. B 87 (2013) 224411
[4] S. Fabretti et al., Appl. Phys. Lett. 105 (2014) 132405
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MIWF/NRW

Cooperations: 1CNR SPIN, Complesso Universitario Monte S. Angelo, Napoli, Italy; 
2Dipartimento di Fisica, Universita „Federico II“ di Napoli, Italy; 3BESSY II, Berlin,
Germany; 4Univ. Hamburg, Inst. Appl. Phys., Hamburg, Germany; 
5Physics department, Univ. Bielefeld, Germany

Fig. 4: Major loop of an HfO2-based MTJ at
300K and an applied bias voltage of 10 mV.
The maximum observed TMR ratio was 10.3%.
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Hybrid plasmon-photon resonant mode in a microcavity

Abstract: The coupling between photon and plasmon in optical microcavities has at-

tracted extensive interests from both fundamental and applied physics. Despite some

preliminary reports, the role of light polarization in exciting hybrid plasmon-photon

resonant modes in microcavities has not been clarified so far. Here we investigated

polarizatio n-dependent excitation of hybrid plasmon-photon resonant modes in a

rolled-up microtube cavity coated with a gold nanocap. Two exceptional phenomena

were revealed: 1) we demonstrated that the transverse magnetic polarized light

predominantl y excites hybrid resonant modes in optical microcavities; 2) it was found

the thin wall of the microcavity significantly promotes optical energy transfer from the

inner dielectric medium to the gold surface, resulting in a strongly enhanced exterior

field. Both finite element method calculations and an effective potential approach

confirm our experimental observations. Our work reveals the basic physical mecha-

nisms responsible for exciting hybrid modes in opto-plasmonic microcavities and as

such is relevant for both fundamental and applied studies in photonics and plasmonics,

paving a way for enhanced light-matter interactions in optical microcavities.

Surface plasmon polaritons (SPPs), which can confine the electromagnetic (EM) field

at metal surfaces, possess many unique properties. In particular, metal-coated optical

cavities have been investigated to study SPPs in combination with optical whispering-

gallery-mode (WGM) resonances, which result in SPP resonant and/or hybrid plasmon-

photon modes localized at the metallic surface. These kinds of plasmonic resonant

cavitie s are capable to accommodate intense resonant EM fields on the metal layer sur-

faces suitable for various applications such as enhanced light-matter interactions in a
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microcavity. Despite some preliminary reports, the role of light polarization in exciting

hybrid plasmon-photon resonant modes in microcavities has not been clarified so far.

In this context, it is of fundamental interest to identify the basic factors, such as the

polarizatio n state and the distribution of the EM field in the cavity, which excite the

hybri d plasmon-photon WGM modes in microcavities.

The microtube cavity was prepared by the roll-up of a prestrained nanomembrane. In

brief, a photoresist sacrificial layer was patterned by lithography to obtain an array of

specially designed U-shape profiles. A 30 nm thick SiOx bilayer was then deposited onto

the patterned photoresist by electron beam evaporation. The nanomembranes rolled up

into microtubular structures (∼ 5 μm in diameter) to release strain upon dissolving the

photoresist sacrificial patterns. To increase the structural stability of the rolled-up

microtube s, a 30 nm thick HfO2 layer was conformally deposited on the microtubes via

atomic layer deposition. Finally, an 8 nm thick gold layer was deposited by electron beam

evaporation onto the top of the microtubes, resulting in a gold nanocap on the tubular

cavity. 

To clarify the role of light polarization in exciting hybrid plasmon-photon resonant

mode, we investigated polarization-dependent excitation of hybrid resonant modes sup -

ported by a gold-coated microtube cavity. Both transverse magnetic (TM) and transverse

electric (TE) modes were used to excite the hybrid resonant modes. In contrast to pre-

vious reports, we demonstrate that the TM polarized light is favorable for the excitation

of hybrid plasmon-photon resonant modes. The distributions of the EM field energy

densitie s were calculated by a finite-element analysis method, where the formation of

hybrid modes is identified by the energy transfer from the inner dielectric tube wall to

the gold surface, generating a greatly enhanced exterior field strength. The mechanism

of the excitation of hybrid photon-plasmon modes was further explored by an effective

potential approach to illustrate the influence of the tube wall thickness on the enhance-

ment of the exterior field at the gold surface. In addition to the excitation polarization,

the tube-wall thickness was found to play an important role in the formation of hybrid

resonant modes. The investigation of the polarization-dependent excitation of hybrid

modes in thin-walled microtubes is relevant to both fundamental and applied physics,

paving the way for enhanced light-matter interactions in opto-plasmonic microcavities.

[1] Y. Yin, et al., Phys. Rev. B 92 (2015) 241403(R).

Fig.: Schematics of resonant light supported by 
a microtube cavity coated with a gold nanocap.
As shown in the inset of the left panel, strongly
hybridized resonant modes are formed in the
gold-coated section compared to that without
the gold coating. Right panel shows EM field 
distributions at the gold surface and within the
dielectric tube wall.
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High yield and ultrafast sources of electrically-
triggered entangled-photon pairs based on 
strain-tunable quantum dots

Abstract: Entangled-light-emitting-diodes based on semiconductor quantum dots

are among the most promising sources that can potentially address the communication

tasks in quantum information science. However, entangled-light-emitting-diodes are

plagued by a source of randomness, which results in a very low probability of finding

quantum dots with sufficiently small fine-structure-splitting for entangled-photon-

generation. We overcome this hurdle by introducing the first strain-tunable entangled-

light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum

dots for entangled-photon-generation. We demonstrate that up to 30% of the quan-

tum dots in strain-tunable entangled-light-emitting-diodes emit polarization-

entangle d photon s, and high entanglement-fidelity up to 0.83 has been achieved.

Driven at the highest speed ever reported so far (400 MHz), strain-tunable entangled-

light-emitting-diodes emerge as promising devices for high-data rate quantum

application s.

We demonstrate a quantum device by integrating ELEDs onto a piezoelectric actuator

featurin g giant piezo-electric response and capable of delivering anisotropic strain

fields. The device – which we call strain-tunable ELED (ST-ELED) – is schematically

shown in Fig. 1a. A 440 nm-thick n-i-p nanomembrane containing InGaAs QDs is

integrate d onto a 0.3 mm-thick [Pb(Mg1/3Nb2/3)O3]0.72[PbTiO3]0.28 (PMN-PT) single

piezoelectric crystal. The detailed fabrication process is described elsewhere 2, 3. In or-

der to control the fine structure splitting (FSS)4, 5 of the QDs embedded in the diode, the

crystal axes [1-10] and [110] of the GaAs nanomembrane were aligned along the x and

y axes of the PMN-PT actuator, respectively (see Fig. 1a). Representative plots of the FSS

(s) of different QDs as a function of FP are shown in Fig. 1b. We note that the tuning

behavio r is determined by the exciton polarization angle at zero strain fields (θ0) with

respect to the predefined direction of the strain. Fig. 1c-g show the exciton polariza-

tion direction θ0 with respect to the strain axes for the five studied QDs. Specifically,

owin g to the exact alignment between the exciton polarization angle and the strain

axes for dot D and E, their FSS can be reduced well below 1 μeV3. 

The ability to tune the FSS of the QDs to zero allows us to investigate the capability of

the ST-ELED to generate polarization-entangled photon pairs with an ultrafast speed.

Fig. 2a shows the results of polarization correlation measurements at 400 MHz for the

Fig. 1: (a) Sketch of the diode structure. 
(b) Representative variation of s as a function
of FP for five QDs. The insets show sketches
of biexciton cascade. (c – g) s0 and Θ0 for the
five studied QDs at FP = 0 kV cm-1. 
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dot E. We observe correlations in the HV and DA bases and anti-correlation in the RL

basis for co-polarized two photons. In Fig. 2b the degrees of correlation in given bases

are reported. We find a state fidelity as high as 0.66 ± 0.02, which exceeds the classical

limit of 0.5 and thus proves, for the first time, generation of entangled-photon pairs at

400 MHz5. Furthermore, a statistical study from 82 randomly selected QDs revealed that

the majority of QDs in our ST-ELED device have θ0 oriented close to the [1-10] crystal

axis. To determine the entanglement fidelity as a function of the tuned FSS, polarization

correlations were performed for each value of the FSS and entanglement was equivalent-

ly quantified by measuring the degree of correlation. As shown in Fig. 2c, the maximum

fidelity f += 0.75 ± 0.02 is achieved when the FSS is tuned close to zero. For FSS values

larger than 3 μeV, the fidelity decreases below the classical limit (see the dashed line).

From the statistical investigation we find that 27 QDs can be tuned below 3 μeV (see

Fig. 2d), which indicates a probability as high as 33% of QDs that can be exploited as

entangle d-light emitters in our ST-ELEDs3. 

We have presented ST-ELEDs in which anisotropic strain fields are used to tune QDs for

entangled-photon generation. We have demonstrated that up to 30% of QDs are ca-

pable of emitting polarization entangled-photon pairs and achieved triggered entangled-

photon emission at a repetition rate of 400 MHz. 

[1] O. Benson et al.,  Phys. Rev. Lett. 84 (2000) 2513.
[2] J. X. Zhang et al., Nano Lett. 13 (2013) 5808.
[3] J. X. Zhang et al., Nat. Commun. 6 (2015) 10067.
[4] D. Gammon et al., Phys. Rev. Lett. 76 (1996) 3005.
[5] M. Gong et al., Phys. Rev. B 89 (2014) 205312.
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01BQ1034; Q.Com-H project, No. 16KIS0106; The European Union Seventh Framework
Programme 209 (FP7/2007-2013) under Grant Agreement No. 601126 210 (HANAS); 
China Scholarship Council (CSC, No. 2010601008); DFG SPP 1599
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Fig. 2: (a) Normalized correlation functions with
400 MHz repetition rate. (b) Degree of correlation 
in given basis. (c) Fidelity as a function of FSS. 
(d) Histogram of the distribution of smin tuned by
the externally induced strain fields in the ST-ELED
device.
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Abstract: Molecules and molecular solids characterized by π-derived electronic states

are in the particular focus of research activities world-wide. The research activities in

the IFW Dresden presently focus on the investigation of electronic properties of

particula r members of this large class of materials: endohedral metallofullerenes and

organic semiconductors. We study these systems with a variety of techniques to pro-

vide a thorough understanding of their physical behavior. In the following we present

selected results that have been achieved in the field recently.

Low energy exciton pocket at finite momentum 
in tetracene molecular solids
The excited state dynamics in organic semiconductors plays an important role for many

processes associated with light absorption and emission. We have studied the momen-

tum dependence of the lowest singlet excitons in tetracene molecular solids, an arche-

type system for other organic semiconductors [1]. Excitons are bound electron-hole pairs,

and the character and dynamics of excitons are decisive for the photophysical behavior

of the respective materials, also in view of potential applications in organic electronic

devices [2]. 

We have applied electron energy-loss spectroscopy (EELS) in transmission [3] to obtain

a comprehensive picture of the singlet exciton dispersion in tetracene along funda -

mental reciprocal lattice vectors at low temperature. Such studies require high quality

single crystals of the materials under investigation, which have been grown in-house us-

ing physical vapor transport in an inert gas stream [4]. To illustrate our spectroscopic

results, we show in Fig. 1 the excitation spectra of tetracene along the reciprocal lattice

direction a*. Figure 1 summarizes selected excitation spectra in the left panel, and the

full energy-momentum behavior (i.e. the dispersion) of the excitons in tetracene in the

right panel.
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The excitation feature at lowest energy in the left panel of Fig. 1 represents the excitons

in tetracene that have been studied in our work. The data clearly demonstrate that the

lowest singlet exciton is characterized by a strong momentum dependence as it shifts

to higher energies with increasing momentum. A strong dispersion has also been

observe d for other directions within the a*, b* reciprocal lattice plane. 

The analysis of the exciton band structure along the two fundamental directions a* and

b* is summarized in Fig. 2. 

Our data in Fig. 2 reveal a surprising new observation - the exciton for momentum trans-

fers (q) along the b* direction arrives at an energy lower than the lowest excitation

energ y at very small momentum values (q ∼ 0 Å-1). The formation of a low energy

excito n pocket as indicated in Fig. 2 can have important consequences for the photo -

physical behavior of tetracene. Excitations at higher energy might be able to relax into

this pocket from where they cannot decay radiatively any more in a direct process due

to momentum conservation. This would quench part of the fast photoluminescence and

might be responsible for the differences between the behavior of tetracene and its close

relative pentacene. In particular, in view of singlet fission as a process to generate

multipl e excitons and to achieve high efficient organic photovoltaic cells a momentum

dependence of the excitons as revealed in Fig. 2 might be a disadvantage, since the

relaxatio n into the low energy pockets can compete to the fission process. Our results

emphasize the general importance of the exciton band structure for a thorough under-

standing of the photophysical behavior of organic semiconductors.

Fig. 1: Electronic excitation spectra of tetracene at
low temperature (20 K) as a function of momentum
transfer along the reciprocal lattice direction a* as
obtained using EELS.

Fig. 2: Band structure of the energetically lowest 
(singlet) excitons in tetracene parallel to the two 
fundamental reciprocal lattice directions a* and b*.
The gray lines are intended as a guide to the eye. 
The green shaded area denotes the low energy 
exciton pocket observed for momentum transfers
along the b* direction. 
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Crystal growth and charge transfer properties 
of new coronene charge transfer complexes
A revival of interest in organic charge-transfer (CT) systems in the last years is

predominantl y caused by their new applications in molecular electronics. A theoretical

analysis of the charge transport performed for a series of CT mixed crystals revealed that

the transfer integral can be much larger than in the best single-component semiconduc-

tors. A typical two-component charge-transfer complex consists of an electron-donor and

electron-acceptor molecule, respectively. These partner molecules should have match-

ing boundary orbitals and complementary spatial shapes to provide effective interaction

and ordered structure. We have successfully grown high quality single crystals of novel

charge transfer compounds based on coronene, a model system close to organic

semiconductor s, and F4 -TCNQ, a very strong electron acceptor [5]. These crystals have

been obtained using physical vapor transport in closed quartz ampoules. Moreover, they

have been thoroughly characterized by a number of methods, among them x-ray

crystallograph y, IR-spectroscopy and electrochemistry. 

In Fig. 3, we show the result of the crystal growth in the ampoules as well as a fraction

of the crystal structure of the novel charge transfer compound (Coronene)2(F4 -TCNQ).

These crystals demonstrate that novel charge transfer compounds based on polycyclic

aromatic hydrocarbons can be grown with the prospect of new and interesting physical

properties.

Selective synthesis of new family of endohedral fullerenes 
and charge transfer properties
Broad applications of endohedral metallofullerenes (EMFs) are still limited by the fact

that their yield in the arc-discharge synthesis is only a fraction of that of empty fullerenes

[6]. With this respect, development of the synthetic procedures aiming at improved se-

lectivity and hence simplified work-up procedures are in focus of endohedral fullerene

research. Recently, we have discovered a new type of endohedral metallofullerenes

with the central carbon atom and a double Ti = C bond [7]. The first member of the fam-

ily had the formulae Lu2TiC@C80 and its structure was unambiguously characterized by

single crystal X-ray diffraction. In on-going efforts to increase the yield of such EMFs,

we have found that the use of methane as a reactive gas in the arc-discharge process

dramaticall y improves selectivity of the synthesis. The whole family of M2TiC@C80 car-

bide clusterfullerenes (M = Y, Nd, Gd, Dy, Er, Lu) has been synthesized as the main EMF

products, whose isolation from the fullerene mixtures was then accomplished in a

singl e chromatographic step (usually multistep chromatographic separation is required

for such EMFs) [8].

Due to the predominant localization of the LUMO on the Ti atom, M2TiC@C80 cluster-

fullerenes have specific redox properties: the reduction of the compound changes the

valence state of the endohedral Ti ion, whereas the fullerene cage serves as an elec -

tron- transparent “container”. Interestingly, in spite of predominant localization of the

LUMO on Ti, reduction potential of M2TiC@C80 exhibits pronounced dependence on the

Fig. 3: Left panel: Quartz ampoule after growth 
procedure. The insets show a detailed view of the 
obtained crystals of pure coronene (right), pure 
F4-TCNQ (left) and coronene/F4-TCNQ charge 
transfer crystals (2:1) (middle). 
Right panel: Fragments of crystal packing showing
herring-bone packing in (Coronene)2(F4-TCNQ) 
crystals.
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ionic size of the lanthanide (Fig. 4). The reason for such behaviour is in the increase

of the ionic radius of Ti from 0.61 Å in Ti4+ (neutral M2TiC@C80) to 0.67 Å in Ti3+ (anion

M2TiC@C80
− ). As a result, the endohedral cluster becomes more strained and hence

highe r energy (more negative potential) is required to reduce the M2TiC@C80 contain-

ing large r lanthanides. At the same time, all M2TiC@C80 compounds exhibit almost

identical oxidation potential assigned to the cage-localized HOMO.

Spectroelectrochemical study of the unconventional redox behaviour 
of perfluoroalkylated fullerene
Functionalization with electron-withdrawing groups, such as fluorine or perfluoralkyl

radicals, is one of the common methods to increase an electron affinity and improve

n-type properties of organic semiconductors. Perfluoroalkylated fullerenes, showing

broad tunability of the electron accepting properties in dependence on the number of

added CF3 groups and their distribution on the fullerene surface, is one of the prominent

examples [9]. Electrochemistry is a common tool to characterize electron accepting

propertie s of molecular organic materials, whereas spectroelectrochemistry, the com-

bination of in situ spectroscopy and electrochemistry, is a versatile tool in elucidation

of redox mechanisms. In this work we studied the mechanism of the electrochemical

reductio n of the most abundant isomer of C70(CF3)10, which is a rare example a per -

fluoroalkylated fullerene exhibiting electro-chemically irreversible reduction [10].

Fig. 5: (a) cyclic voltammetry of C70(CF3)10 with 
different scan rates (irreversible reduction at 5 mV/s
and reversible at 500 V/s); (b) in situ NMR spectro-
electrochemistry (upper curves are measured during
reduction, bottom curves – during reoxidation; thick
red curve corresponds to the pristine compound, and
thick green curve – to the reduced state; arrows show
change of the intensity); (c) conclusion on the redox
mechanism at moderate scan rates: reversible 
dimerization of the mono-anion radical.

Fig. 4: (a) Cyclic voltammetry curve of the representative
M2TiC@C80 (M = Dy): the first reduction and oxidation
steps are reversible (thick red curve), whereas increase 
of the potential window in the kathodic range results in
irreversibility; (b) HOMO and LUMO of M2TiC@C80; 
(c) dependence of the first reduction potential of
M2TiC@C80 on the ionic radius of M3+.
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We showed that although reduction is irreversible at moderate scan rates, electro -

chemical reversibility is achieved at scan rates higher than 500 V/s (Fig. 5). This points

to the follow-up chemical process following formation of the anion radical (so called EC

mechanism). A plethora of spectroelectrochemical techniques was then applied to

clarif y the mechanism. Although in situ ESR spectroelectrochemistry proved formation

of the ESR-active anion radical, quantitative ESR study showed that only a small fraction

(less than 10%) of the reduced C70(CF3)10 is present in such form, whereas the rest of the

compound is diamagnetic. To clarify the nature of the diamagnetic product, we devel-

oped and applied, for the first time, in situ 19F NMR spectroelectrochemistry. This study

showed that the reduced form of C70(CF3)10 indeed exhibits the 19F NMR spectrum typi-

cal for diamagnetic compounds, which is similar but still different from the spectrum of

the neutral form. Detailed analysis of the spectrum proved that the number and positions

of CF3 groups are not changed upon electrochemical as well as chemical reduction. In

combination with mass-spectrometry and DFT calculations, the spectroelectrochemical

study revealed that the C70(CF3)10
− radical monoanion is in equilibrium with a singly-

bonded diamagnetic dimeric dianion. The 19F NMR spectroelectrochemistry developed

in this work is shown to be a convenient and useful tool for studying redox reactions of

fluorinated organic compounds.
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Research topic 4.1

Surface acoustic waves: Concepts, materials & applications
People: S. Biryukov, E. Brachmann, R. Brünig, A. Darinskii1, C. Faust, T. Gemming, S. Harazim, V. Hoffmann, F. Kiebert, 
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A. Sotnikov, M. Spindler, H. Turnow, U. Vogel, H. Wendrock, S. Wege, M. Weihnacht3, R. Weser, A. Winkler

Responsible Directors: B. Büchner, K. Nielsch, T. Gemming, O. G. Schmidt

Abstract: The interdisciplinary research topic 4.1 on Surface Acoustic Waves (SAW) com-

prises the whole field of acoustoelectronics from fundamentals, e.g. effects of wave

propagation, dynamic behavior of polar dielectrics and acoustofluidic interaction

phenomena, to advanced applications with exploitation by innovation-oriented small

and medium-sized enterprises. For the precision and lifetime of advanced SAW devices

with increased temperature and power capability, incorporating piezoelectric sub-

strates and thin film electrodes, material-related aspects are crucial. In 2015, the

emphasi s of this research topic was mainly put on i) emerging piezoelectric sub-

strates, ii) appropriate electrode material systems and iii) SAW-driven microfluidics

and aerosol generators.

i) Advanced piezoelectric substrate materials
Piezoelectric single crystals of the langasite (LGS) family are of current interest as very

promising materials for microacoustic devices like bulk- and surface acoustic wave

based sensors for harsh environments providing wireless interrogation as well as ID tag

functionality. These crystals do not only survive at high temperatures and relevant

gaseous atmosphere, but can be also operated in the extremely low (cryogenic) tem -

perature range. Moreover, specific features of low temperature dielectric and elastic

propertie s of LGS family materials are important for the basic understanding of the

crystal s’ lattice dynamics.

Here, emerging piezoelectric single crystals from LGS family CTGS (Ca3TaGa3Si2O14) and

SNGS (Sr3NbGa3Si2O14) as well as the parent material LGS (La3Ga3SiO14) were char -

acterized regarding their dielectric, elastic and piezoelectric properties in extra-wide
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temperature range from 4.2 K to about 1173 K [1-4]. High precision measurements of

acoustic wave velocities of longitudinal and shear bulk modes propagating in various

crystallographic directions (X, Y, Z and Y ± 45°) allowed the precise derivation of the com-

plete set of acoustic material constants including elastic and piezoelectric behavior as

well as dielectric permittivity in an extra-wide temperature range. On the one hand a

strong decrease of sound attenuation was found at cryogenic temperatures (Fig. 1a),

while on the other hand, reasonably strong ultrasonic excitation using the ‘internal’

piezoelectric effect of the crystal was demonstrated as well. As for dielectric properties,

it was shown for the first time that dielectric permittivity ε33 for CTGS and LGS crystals

exhibit incipient (quantum) ferroelectric-like behavior (i.e. an increase with decreasing

temperature followed by saturation at low temperatures, Fig. 1b) while SNGS demon-

strates ordinary dielectric temperature dependence (i.e. dielectric permittivity de-

creases down to cryogenic temperatures).

ii) Thin film electrode material systems with high thermal stability
At high operation temperatures, thin film electrodes of interdigital transducers under-

go rapid degradation due to agglomeration, delamination or chemical interaction with

the environment and the surrounding materials. Due to favorable properties in -

cluding high-melting points (>2000°C) as well as relatively low electrical resistivity

(<50 μΩcm), metallization systems based on RuAl, W/Mo and TiAl including dedicated

covering layers seem to be well suited for devices operating under these conditions and

can be deposited as thin films via magnetron sputtering or electron-beam evaporation.

The high temperature stability translates to minimal creep-related damages, improved

compliance of the coefficient of thermal expansion as well as reliable operation over

many temperature cycles. 

In order to obtain a better understanding of the microstructure of the film-substrate

composite under thermal treatment, chosen metallization systems deposited on high-

temperature stable piezoelectric substrates LGS and CTGS have been studied up to a

temperatur e of 800°C. Thereby, different materials characterization techniques such

as X-ray diffraction and reflectivity measurements, scanning and transmission electron

microscopy (TEM), Auger electron spectroscopy and atomic force microscopy were car-

ried out. Our studies reveal the stability of highly conductive W/Mo films on CTGS up

to 800°C under vacuum [5]. For LGS substrates, a diffusion barrier layer like sputtered

alumina is required due to the inherent instability of the substrate with respect to Ga/O

diffusion under vacuum annealing. Besides deposition, also structuring of the tungsten

based interdigital transducer electrodes has been successfully performed using a wet-

chemical etching process.

Fig. 1: a) Ultrasonic pulse-echo patterns for the
shear mode propagating along Y crystallographic 
direction in CTGS single crystal at 292K (black line)
and at 4.2K (red line); b) Temperature dependence
of the dielectric permittivity e33 for CTGS single 
crystal in a wide temperature range starting at 4.2K.

a) b)
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The material system RuAl was extensively studied during the last year. To inhibit the

observe d oxidation of RuAl on LGS and CTGS substrates after annealing in high vacuum

at 800°C for 10 h [6, 7], several possible barrier layer systems (SiO2, Al2O3 and W) with

thicknesses of 10 and 100nm have been investigated. The heat treatment at 800°C unde r

high vacuum conditions showed a strong dependence of the RuAl film quality on the

thickness and the material of the barrier layer. TEM investigation (Fig. 2) on the Al2O3

barrier system for 110 nm RuAl films on LGS prove that oxidation from the substrate side

can be minimized using a thin SiO2 barrier layer. In contrast to this, Al2O3 barrier layers

do not sufficiently hinder the oxidation from the substrate side and a complete demix-

ing into Al2O3 and Ru takes place. Thin W barrier layers, however, are strongly stressed

and exhibit cracks after heat treatment, which makes them unsuitable as oxidation bar-

riers, while thicker barriers are stable. Additional investigations were carried out to re-

duce oxidation of RuAl films via pre-annealing of the LGS substrates. For this, substrates

were heated to 800°C under high vacuum conditions, analyzed and subsequently

coated with RuAl alloy films. A severe degradation of the LGS substrates was observed

due to formation of cracks and a system of channels below the substrate surface,

leadin g to enhanced outward diffusion of Ga [8].

iii) Acoustofluidic fundamentals and applications
Microacoustic actuators enable the noninvasive manipulation of fluids in microfluidic

vessel s, whereby these fluids can additionally be loaded with particles or cells. Because

of their small dimensions in combination with a high power density, SAW-based acoustic

actuators are especially well suited for microfluidic applications like fluid mixing at low

Reynolds numbers and acoustic tweezers. However, for designing an optimal acoustoflu-

idic setup it is mandatory to choose proper operating parameters, e.g. the acoustic wave-

length, geometric dimensions and surrounding material of the fluid reservoir. In order

to ensure a comprehensive understanding of the acoustic and acoustofluidic interactions,

investigations of involved physical phenomena were carried out via simulations and

accompanyin g experiments (Fig. 3a) [9-11].

Furthermore, SAWs can be utilized to generate aerosols with micrometer-sized droplets

without any moving parts or nozzles. As SAW chips show great potential for on-chip

integratio n and can lead to an economic production of hand-held and even disposable

devices, this technique could find versatile fields of applications including medical

inhalator s, thin film deposition systems, olfactory sources and mass-spectrometry. In

order to exploit the full potential of SAW fluid atomization technique, a new approach

for reliable and cost-effective mass-scale manufacturing of SAW atomizer chips with on-

chip integrated fluid supply was developed [12]. Using this technique, a precise and sta-

ble fluid atomization with almost ideal aerosol plume geometry (Fig. 3b) and the in-situ

alteration of the droplet size distribution can be achieved. Furthermore, an innovative

thin film deposition method based on the SAW atomization principle [13] was developed.

Fig. 2: TEM images of RuAl films on LGS with various
barrier layers (SiO2, Al2O3, W with thickness of
10nm) after heat treatment at 800°C for 10h under
high vacuum (protection layer used for focused ion
beam analysis).
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This method can be divided into three subsequent steps: In a first step, high frequency

surface acoustic waves atomize a metalorganic precursor solution (sol) into an ultra-fine

aerosol. In a second step, the aerosol condensates on the substrate surface which is, in

a third step, pyrolized into a crystalline thin film. The technique was demonstrated for

the deposition of La2Zr2O7 buffer layers on biaxial textured Ni5%W tapes, but is gen-

erally relevant for the deposition of other oxides. Aerosols with median droplet diame-

ters of 4 and 7.5 μm were produced from Lanthanum/Zirconium precursor solutions

based on propionic acid or water, respectively. X-ray diffraction studies of the crystal-

lized films with a thickness of about 100 nm show a high crystalline quality with a strong

(001)-orientation. 
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Fig. 3: a) Volumetric measurement of acoustic
streaming in water induced by surface acoustic
waves, yellow traces show particle trajectories 
obtained via particle image velocimetry, green zone
(lobe) shows the area of maximum fluid velocity;
b) Side view on SAW-based fluid atomization

a) b)



Research Area 4    TOWARDS PRODUCTS 73

Research Topic 4.2

Materials for biomedical applications
People: M. Calin, A. Gebert, M. Guix, S. Hampel, F. Hebenstreit, V. Magdanz, 

M. Medina-Sánchez, A. K. Meyer, L. Schwarz, S. Weiz, H. Xu,

Responsible Directors: B. Büchner, T. Gemming, O. G. Schmidt

Abstract: Over the past few years, novel materials have drawn interest for use in

variou s biomedical applications such as biosensing, dentistry, tissue engineering and

therapeutics. This has resulted in a better understanding of the interactions between

materials and biological entities, from the macro to the nanometric scale. At the IFW,

interdisciplinary groups have dedicated numerous efforts to the development of new

materials that exhibit particular properties (i.e. magnetism, superconductivity, low

elastic modulus, excellent corrosion resistance, etc.) and applied them for diagnosis,

targeted drug delivery, tissue regeneration and reproduction. The use of such mate-

rials represented a great progress in their respective fields in terms of biocompati -

bility, unique functionalities and ultra-sensitivity. One highlight topic of IFW is the

projec t: ‘Spermbots’, a new type of hybrid micromotors that could help women trying

to conceive. The important innovation of such micromotors is that they could be

applie d for in vivo fertilization, decreasing the risk of failure by preserving the natu-

ral microenvironment in which sperm and oocyte come together. 

Artificially motorized sperm cells
Miniaturized vehicles that perform tasks and interact with living cells inside the human

body appears to be one of the 20th century dreams that today’s engineers finally become

ready to tackle. In recent years, numerous approaches have emerged from various labs

to employ such micromotors that can be powered and controlled on a scale that allows

them to assist or interfere with cellular processes [1–3]. Most of these micromotors are

directly inspired by their natural counterparts which are, for example, flagella or cilia

of living microorganisms [4, 5]. These nature-approved propulsion strategies were

mimicked successfully with the help of external power sources like electric or magnetic

fields, ultrasound, light, or chemical fuels [6–8]. However, to carry out tasks in the

comple x surroundings of living cells requires more than just miniaturized motion alone.

Active transport of microscopic cargo should be reasonably fast, and complex micro -

carrier movements should be directly controllable both spatially and chronologically. In
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addition to these micro-engineering aspects, the operation in biologically active

environment s brings about a whole new set of problems that involves interactions with

living matter that mostly happen on the nanoscale. Biocompatibility in this case not

only means that the synthetic microcarrier must not be toxic to cells, but also implies

that the microcarrier has to actively take part in cellular and biomolecular interactions

in order to fulfill its task as biosensor, drug distributor, or micro-surgeon. 

In our group, so-called ‘Spermbots’, have been introduced as a novel type of hybrid

micromoto r. Specifically, a spermatozoon was coupled to a ferromagnetic microtube as

on-board power supply. The external magnetic field allows remote control while the

sperm tail provides propulsion [9, 10]. This approach has opened up novel applications

for micromotors such as new alternatives for assisted reproduction biology and related

medical and fundamental studies [11].  

The state-of-the-art of assisted reproduction methods involve artificial insemination,

which is a relatively low-cost technique that has a limited success rate together with ad-

ditional limitations such as the sperm motility requirement and obstacles in the female

reproductive tract that sperms have to face. Moreover, in vitro fertilization and intra -

cytoplasmic sperm injection have been widely used because of their effectiveness, when

conventional methods like surgery or medication failed. However, these are compli -

cated methods that require several steps, including hormones injection to initiate

oocyte maturation, followed by their extraction from the body, fertilization in a petri

dish, cultivation of embryos, and their reimplantation into the uterus. All these steps add

to the stress that cells suffer along the procedure decrease the chance of conception. 

‘Spermbots’ established a new approach that could be implemented for in vivo fertiliza-

tion. Previous works have been focused on the use of microtubes made by rolled-up

nanomembranes, which are coupled to motile sperm cells, serving as a guiding element

to bring the sperm to the egg location in its natural state.  To further this approach, we

employ magnetic microhelices for active transportation of a sperm cell to the oocyte with

the goal of fertilization. We show the capture and transportation of immotile, but

otherwis e functional, sperms [12, 13] to the oocyte by coupling them to artificial heli-

cal micromotors that can be actuated by rotating magnetic fields (see Fig. 1). Artificial

propulsion of immotile sperms has potential for use in reproduction, because poor

sperm motility is one of the major causes for male infertility, and despite numerous

innovation s in the field of assisted reproductive technology, can still not be countered

in a satisfactory way [14, 15].

We have chosen magnetic helices as micromotors because of their relatively simple

mechanism of motion that is widely understood and easy to control in 3D by a common

setup of axial pairs of Helmholtz coils that create a rotating magnetic field. This control

and actuation method is biocompatible [16, 17], which is crucial for its potential in in

vivo applications.  

We report the fabrication of polymer microhelices by direct laser writing [18], with soft-

magnetic Ni/Ti bilayer coatings, which show controllable 3D motion with speeds

comparabl e to fast microorganisms like sperms (up to 70μm/s), under the influence of

rotating magnetic fields that are generated by a customized set of Helmholtz coils. These

microhelices are shown to be able to capture, transport, and release single live sperm

cells under physiological conditions (in sperm medium with adapted viscosity and tem-

perature). Successful delivery of sperm cells to the oocyte cell wall, in order to fertilize,

was achieved. However, for successful in vitro fertilization further challenges to have the

optimal experimental conditions should be addressed. 

Fig. 1: An immotile sperm is captured by a remotely
controlled magnetic helix and delivered to the oocyte
for fertilization.
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In order to use sperm-microhelix hybrid swimmers as a tool for assisted fertilization with

immotile sperms requires proper means of sperm selection to distinguish immotile, but

otherwise healthy, from completely infertile sperm cells. We chose the Hypoosmotic

swelling test (HOS) for this purpose since it is a well-established method to indicate

viable sperm cells without damaging them. HOS method is also reversible, which means

that the sperm cell can return to its original state by changing the osmolarity of the

surroundin g media [19]. Swelled sperms in HOS medium and how the swelled tails

correspon d well to cell viability are shown in Fig. 2(a). Figure 2(b) shows the same for

membrane integrity (blue = intact, green = damaged). As a side note, the partial curling

of swelled sperm tails also facilitates sperm coupling significantly. 

A sperm cell is successfully captured when its tail is confined inside the cylindrical lu-

men of the microhelix, while its head sticks out at the front end of the helix and is loose-

ly bound by the front ring that acts like a noose to prevent the sperm head from slipping

back through the helix (see Fig. 3(a)). This coupling mechanism is considered to be the

most efficient since it does not involve any sticking or piercing mechanisms that could

damage the sperm cell, while it also doesn’t impair the helical propulsion of the arti -

ficial microswimmer in terms of helix rotation and steerability. A severe impairment of

the helix movement would result in a drastic speed decrease, as well as a loss of direc-

tionality, i.e. the ability of the helix to follow the directions given by the orientation of

the rotating magnetic field. Figure 3(b) compares speeds before and after coupling of

six different cases and reveals an average speed decrease of the hybrid microswimmers

to ca. 39.4 % of the initial helix velocity, with a relative standard deviation of 23.2 %.

Such deviation is attributed to the variability of differently swelled sperms and their

influenc e on the lose coupling between sperm tail and microhelix.

As next step, transportation of an immotile sperm cell to the oocyte cell wall is also

demonstrated with the helical micromotors. In Figure 4, the sperm delivery procedure

is shown in different steps: i) coupling, ii) transportation, iii) oocyte approach, and iv)

sperm release. Although the helix velocity decreased due to the cell load and the distur-

bance caused by the sperm tail, it was possible to transport the sperm towards the oocyte

and release it once it adhered to the oocyte wall by inverting the helix rotation via

reversa l of the magnetic field rotation.

Fig. 2: Hypoosmotic swelling test (HOS), 
a) green: live sperm, red: dead sperm, 
b) blue: intact acrosome, green: defect acrosome,
red: dead sperm.

Fig. 3: a) Trajectory of a steered microhelix transport-
ing a sperm cell over 18 sec, b) Velocity before and
after coupling.



76 Research Area 4    TOWARDS PRODUCTS

We successfully fabricated biocompatible microhelices that can be actuated and con-

trolled precisely in 3D by a customized Helmholtz coil set-up that generates a rotating

magnetic field. We implemented these helices as microcarriers that can actively capture

and transport single live sperm cells that would otherwise be immotile due to patho -

logical defects. In order to set up an environment that would allow these artificially

motorize d sperm cells to fertilize an oocyte, we mimicked in vivo conditions and imple-

mented hypoosmotic swelling as a method for sperm selection. Unfortunately, similar

to many promising applications in biomedical engineering, it appears to be still a long

way from artificially motorized sperm delivery to actual oocyte fertilization. There is a

lot of future work to do, considering proper oocyte culturing, functionalization of helices

to create important biochemical cues, and further improvement of targeted sperm

captur e and delivery, in order to achieve a critical rate of fertilization trials that would

lead to successful in vitro fertilization. It remains to stress that, ultimately, the strength

of this novel fertilization approach lies in its potential in vivo applicability, since it will

not be necessary to explant (and re-implant) oocytes for artificial reproduction if we can

target and fertilize the oocyte in its natural environment.   
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Fig. 4: Sperm cell coupling (i), transport (ii), approach
to the oocyte membrane (iii), and release (iv). 
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Abstract: The increasing demand of industry for equipment (tools, devices, machine

parts, accessories etc.) with excellent durability under extreme loading conditions

promote s the development of innovative materials possessing e.g. high strength,

hardness, wear resistance, ductility and corrosion resistance. The basic idea is to

transfer sophisticated technologies combined with specific newly developed mate -

rials towards industry. Besides the large variety of materials under investigation in

this research area, the present report focusses on high strength lightweight hybrid

structures, and new filler materials based on FeCrMoVC as well as Cu-Ag40-Ga10. 

Hybrid nanostructured Aluminum alloy with unprecedented strength
Methods to strengthen aluminum alloys have been employed since the discovery of

the age-hardening phenomenon in 1901. The upper strength limit of bulk Al alloys is

∼0.7 GPa by conventional precipitation strengthening and increases to >1 GPa through

grain refinement and amorphization. Unfortunately, the non-equilibrium state and

the limited thermal stability of nanostructured and amorphous Al alloys limit their use

at high temperatures. In order to overcome these limitations, we have developed a

microstructura l strategy for the production of high-strength Al-based alloys with good

thermal stability. 

Our processing strategy [1] consists of three steps: gas atomization, ball milling and hot

pressing. Gas atomization is used to produce the amorphous particulate precursor with

composition Al84Ni7Gd6Co3 (Fig. 1a). The rapidly cooled small gas atomized particles

are amorphous, whereas the slowly cooled large particles display minor amounts of crys-

talline phases. The powders are then treated by ball milling, which has the purpose to

designedly vary the microstructure and the crystallization behavior of the amorphous

precursor (Fig. 1b). Finally, the powders are consolidated into highly dense bulk
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sample s by hot pressing at a relatively high temperature, where the combined devitri-

fication and consolidation of the amorphous particulate precursor take place (Fig. 1c).

The microstructure of the bulk samples clearly resembles the composite structure of

the parent milled powder (compare Figs. 1b2 and 1c2) and consists of a bimodal-like mi-

crostructure with coarse and fine precipitates regions. At the nanoscale, the material

exhibit s hybrid structures composed of nanostructured fcc-Al and intermetallic com-

pounds. Such a hybrid microstructure leads to high strength at both room and high

temperature s along with large Young’s modulus, which adds a new and promising region

to the Ashby map of specific yield strength versus the specific Young’s modulus (Fig. 2). 

The basic principles for achieving such high strength are based on the composite

structure and the effect of the mutual confinement between the nanosized phases.

Confinemen t can effectively prevent the nanocrystalline fcc-Al and intermetallics from

premature brittle fracture, thereby providing the possibility to deform plastically and

to exhibit intrinsic strength rather than the flaw-controlled strength. The microstruc-

tural strategy can, in principle, be applicable to other materials and may thus provide

a potential approach to developing high-performance hybrid materials.

Fig. 1: Processing of the Al84Ni7Gd6Co3 alloys:
Gas atomization (a(1– 4)), ball milling (b(1– 4))
and hot pressing (c(1– 4)). Schematic processing
methods (a1, b1 and c1) and corresponding 
SEM backscattered electron (BSE) imaging (a2,
b2 and c2), XRD (a3, b3 and c3) and differential
scanning calorimetry (a4, b4 and c4) results of
obtained microstructures.

Fig. 2: (a) Comparison between the present 
alloys and other Al alloys with the compressive
ultimate strength versus testing temperature.
(b) Ashby map of specific yield strength versus
specific Young’s modulus.
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Development of FeCrMoVC wires as novel filler material for 
hardfacing and repair welding of high-performance steel tools
The increasing processing of high-strength alloys and composites in automotive indus-

try and mechanical engineering requires robust, high-performance tools. In order to

exten d the service lifetime of the highly loaded tool components, deposition and

repai r welding provides a cost-efficient and resource-conserving alternative compared

to a continuous acquisition of new tool parts. By an appropriate welding process and a

suitable filler material, hard surface layers with high strength, wear resistance and good

toughness can be generated and worn areas as well as damaged edges can be rebuilt.

Especiall y for complex profiles (e.g. mold inserts, punching plates) and localized geome-

tries very thin filler wires with diameters down to 0.2 mm are required. Therefore, the

manual laser welding is a favorable method due to the high local energy density and the

possibility to focus the beam on a very small area. 

At the IFW Dresden high-strength iron-based alloys are developed which exhibit high

macrohardness (≥ 59 HRC), excellent compressive strength (up to 5500 MPa) and

superio r wear resistance already in the as-cast state [2-4]. Thereby, the patented

Fe85Cr4Mo8V2C1 (wt%) cast alloy [5, 6] was already successfully applied as tool mate-

rial for e. g. bucket teeth or cutting tools. Besides the outstanding mechanical proper-

ties first welding tests with thin Fe85Cr4Mo8V2C1 rods already demonstrated a very good

weldability. 

Within the framework of the ZIM project “EISI” (founded by Federal Ministry for Eco -

nomic Affairs and Energy) innovative filler materials are developed and implemented in

the repair and deposition welding process of high-performance tools in cooperation with

the TU Chemnitz, LPT Laserpräzisionstechnik GmbH and quada V+F GmbH [7]. The devel-

oped processing technology allows to fabricate filler wires with diameters down to

0.3mm out of Fe85Cr4Mo8V2C1 (Fig. 3). Furthermore, the laser welding process for

differen t wire diameters was adjusted to transfer the excellent properties of the

Fe85Cr4Mo8V2C1 alloy on the base material to get crack-free, wear-resistant deposition

layers with a high hardness (≥ 60 HRC) (Fig. 4).

The forming technology of Fe85Cr4Mo8V2C1 wires was developed on an industrial scale.

After casting a cylindrical bar the microstructure is composed of a complex carbide net-

work and a mainly martensitic matrix leading to a very high hardness. By subsequent

forging of the cast bar at about 900°C the carbide network breaks up and due to a tai-

lored soft annealing process the hard martensitic phase is transformed into soft ferrite.

Afterwards, wires with different thicknesses are produced with the help of an adjusted

sequence of drawing/rotary swaging and annealing. The suitable laser parameters for

the application of the FeCrMoVC wires were determined by parameter variation studies.

By comprehensive welding tests with competing welding materials, a lower suscepti -

bility to cracking and a higher hardness as well as an enhanced wear resistance of the

Fe85Cr4Mo8V2C1 deposition layers could be confirmed. This opens up the possibility

to introduce this alloy as a novel filler material for hardfacing and repair welding of

high-performance steel tools.

Fig. 3: (a) Fe85Cr4Mo8V2C1 wire with 0.3 mm in
diameter and (b) scanning electron micrograph of
its cross-section showing finely distributed carbides
embedded in soft ferritic matrix.

Fig. 4: Profile of Vickers microhardness over the
Fe85Cr4Mo8V2C1 deposition layer, the heat-
affected zone (HAZ) and the X155CrMo12-1
base material.
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New filler metal with improved properties
Many industrial applications demand versatile braze filler materials with optimized

properties. Similar like welding, brazing is a widely-used joining technique to fabricate

technical products with a variety of shapes. Also the combination of materials to be

joined by means of brazing is vast. Hence, a multitude of materials properties have to

be considered, which all affect the mechanisms occurring at the interface between the

substrate and the braze filler during brazing. Understanding the mechanisms is crucial

for the development of new braze fillers.

Together with Umicore AG & Co. KG a new Cu-based vacuum braze filler was created and

patented [8]. The ternary alloy Cu-Ag40-Ga10 exhibits a similar behavior in terms of

wettin g and strength of the joint like the current standard braze fillers AgCu28. It

fulfill s all industrial requirements and consequently constitutes a suitable substitution

of the eutectic, Ag-rich braze metal AgCu28. 

One of the most important properties of braze fillers is the wetting behavior on the dif-

ferent substrates. According to the Young equation, the surface tension of the molten

braze filler influences the contact angle and thus the wetting. Next to the viscosity and

the vapor pressure also the surface tension of the new developed alloy was investi -

gated in depth and compared with similar alloys. Reducing the Ag content increases the

surface tension and the viscosity but the addition of Ga in turn improves the wetting

behavio r of the ternary alloy Cu-Ag40-Ga10 significantly.

Contact angle measurements verified that the new ternary alloy shows better wetting on

steel substrates than the current standard alloys. In the next step, the wetting mecha-

nism was investigated more in detail. During brazing the following processes occur at

the liquid-solid interface (see Fig. 5): After melting Cu diffuses along the grain bound-

aries into the substrate (see Fig. 5b). This is followed by the diffusion of Ga from the

liquid into the uppermost steel grains of the substrate. Simultaneously, the steel grains

are depleted in Ni (Fig. 5c). Due to the modified composition inside the steel grains, a

phase transformation from face-centered cubic (fcc, austenite) to body-centered cubic

(bcc, ferrite) takes place (see Fig. 5d). This effect was confirmed by a detailed EBSD

analysis (see Fig. 6). In those regions of the steel grains, where the Ga content rises, a

bcc structure was detected [9, 10].

As a result of the phase transformation, the original steel surface is partially dissolved

and also natural oxide layers disappear, which generally impede wetting. So next to the

reduction of the Ag content by more than 40% in the new developed braze filler, which

is of economical interest, also the wetting behavior has been understood in depth.
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Fig. 6: SEM image (a) and EBSD mapping (b) of the
CuGa25-304L interface in cross section after a
spreading test (dashed line indicates former steel sur-
face). While the steel and the Cu-based phase remain
face-centered cubic (fcc, red), the new phase has a
base-centered cubic (bcc) structure (purple).

Fig. 5: Schematic process of the interfacial reactions:
a) initial state; b) diffusion of Cu along the grain
boundaries; c) diffusion of Ga into the steel grains,
which is accompanied by a depletion in Ni; 
d) phase transformation of austenite to ferrite; 
e) separation of steel grains in the liquid braze filler.
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Abstract: Future electronic skin aims to mimic nature’s original in both, functionality

and appearance. While some of the multifaceted properties of human skin may remain

exclusive to the biological system, electronics opens a unique path that leads beyond

imitation and could equip us with unfamiliar senses. Here we demonstrate giant mag-

netoresistive sensor foils with high sensitivity, unmatched flexibility and mechanical

endurance. They are less than 2 μm thick, extremely flexible, lightweight (≈3 g m-2) and

wearable as imperceptible magneto-sensitive skin that enables proximity detection,

navigation and touchless control. On elastomeric supports, they can be stretched

uniaxially or biaxially reaching strains of more than 270 % and endure over 1,000 cy-

cles without fatigue. These ultrathin magnetic field sensors readily conform to

ubiquitou s objects including human skin and offer a new sense for soft robotics,

safet y and healthcare monitoring, consumer electronics and electronic skin devices.

Electronics of tomorrow will be compliant and will form a seamless link between soft,

livin g beings and the digital world. Inspired by natures antetype, electronic skin is an

intriguing technological platform already able to perceive temperature changes[1],

mimic the sensation of touch [2] or monitor physiological conditions [3]. Concepts that

enable even self-healing [4] will lead to durable, multifunctional artificial skin. Other

functionalities, however, especially those which are unfamiliar to human beings, have

hardly been addressed so far.

Magnetoception is a sense which allows for example insects and sharks to detect

magneti c fields for orientation and navigation, humans are however unable to perceive

magnetic fields naturally Electronic skin could soon help to gain access to this hidden

medium in an intuitive and appealing manner. Soft and flexible sensorics to monitor

physiological conditions are at the forefront of multidisciplinary research efforts

bridging materials science, electrical engineering, and medicine. Magnetosensorics is
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a versatile tool to monitor mechanical movements or implement navigation and

orientatio n capabilities. On-skin and in vivo operation requires very specific mechani-

cal properties of the sensing elements, such as high bendability, stretchabilities ex -

ceeding 100% as well as a sensitivity for small magnetic fields, all of which are met by

our recently demonstrated imperceptible magnetic sensors [5], making them ideally

suite d for wearabl e, yet unobtrusive orientation and manipulation aids.

With this development we go beyond just imitating the features of human physiology and

introduce e-skins with a magneto-sensory system [5], that equips the recipient with a

“sixth sense” able to perceive the presence of static or dynamic magnetic fields. We

demonstrated an on-skin magnetic proximity detection systems for touch-less human-

machine interaction, motion and displacement sensorics applicable for soft robots [6]

or functional medical implants [7] as well as magnetic functionalities for epidermal

electronic s [8]. 

In this work, we constructed highly sensitive giant magnetoresistive (GMR) sensor ele-

ments on ultrathin, 1.4 μm polyethylene terephthalate (PET) foils. The substrate foil is

commodity scale, commercially available PET (Mylar® 1.4 CW02) that is fully compatible

with lithographic processes, which allows for accurately patterned individual devices, yet

large area and low-cost manufacture. Weight and flexibility are key figures of merit for

large area electronics or robotic skin, as they critically influence the mechanical response

and perception of the artificial sensory system. With just about 1.5 μm total thickness,

the imperceptible magneto-electronic foils are light (≈ 3  g  m-2 ) and unmatched in

flexibilit y (radii of curvature <3 μm). The extreme light-weight and compliant nature of

the sensor elements is demonstrated in the top of Fig. 1, where an array of magnetic

field sensors is floating on a spherical soap bubble. Impressively, the magnetoelec -

tronic devices adapt their shape readily to the soft and fragile surface, rather than vice

versa. Despite their imperceptible design, our GMR sensors exhibit excellent magne -

toresistive properties, identical to their counterparts on rigid Si/SiO2 wafer substrates.

Nevertheless, our sensor foil is so flexible yet highly durable; it can withstand for

exampl e severe crumpling between the fingertips without performance degradation, as

corroborated by comparative GMR characteristics on the bottom of Fig. 1. 

Imperceptible magnetoelectronics can be readily worn directly on the skin (e.g. the palm)

as demonstrated in Fig. 2. Here, a set of GMR sensors intimately conforms to the inner

hand and unobtrusively follows the motions and deformations of the skin when the hand

Fig. 1: GMR sensors on ultra-thin PET. left: Ultralight and compliant array of five Co/Cu multi-
layer elements on 1.4 μm-thick PET foil floating on a soap bubble, and (center) crumpled between
fingertips. right: GMR characteristics of one element as prepared (blue curve), after crumpling as
shown above (red curve) and in comparison to a reference sample on a rigid silicon wafer (dashed
gray curve).
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is moved. The resistance of one on-skin sensor element is recorded while moving the

finger s and opening and closing the hand, which shows a stable signal during these

motion s. Applying a magnetic field with a permanent magnet induces a strong resistance

drop and alternating the distance of the magnet results in a corresponding real-time

signa l. 

Biological skin is soft and flexible but also stretchable, a feature that is most desirable

for an artificial equivalent. Imperceptible electronic foils [9] offer an elegant route to

facilitate very high levels of strain without any sacrifices in device performance by a facile

one-step post fabrication transfer onto a pre-strained elastomer, which also provides an

encapsulation of the functional magnetic nanomembrane. The magnetosensitive capa-

bilities of the presented elements are not affected by this process. The top of Fig. 3 shows

a stretchable GMR sensing element, mounted into the stretching stage and contacted

for in situ magnetoelectrical characterization in a relaxed and stretched state. The very

high stretchability is demonstrated by GMR curves recorded at different tensile strain

level s, which are congruent with each other. Hence, the prepared sensors can reversibly

attain tensile strains up to 270% with no influence on their magnetosensitive capabil-

ities. The progression of the GMR magnitude and the relative resistance change of the

sensor are presented as a function of the uniaxial deformation in bottom of Fig. 3. Both

values remain unchanged, which highlights the strain-invariant behavior of the prepared

sensor elements.

Further experiments [5] revealed a remarkable long-term durability with 1,000 exten-

sive stretching cycles showing no fatigue, which renders the presented imperceptible

and stretchable GMR elements suitable for “real world” electronic skin applications. The

outstanding resilience against high mechanical deformations is attributed in particular

to the ductile properties of the materials [10] involved in the GMR multilayer stacks. In

addition, biaxial stretchability as well as the real-time monitoring of a soft diaphragm

actuator was demonstrated.

In conclusion, these ready-to-use imperceptible and highly sensitive magnetic field sen-

sors with unique mechanical properties extend the cognition of electronic skin systems

to a medium that by no means can be detected by human beings. They are ultra-light

weight, conform to arbitrary surfaces and seamlessly follow deformations or distortions

without performance degradation. For the emerging field of stretchable magnetoelec-

tronics, the here presented GMR sensors outperform all previously introduced elements

[11, 12] in terms of stretchability, reliability and fabrication potential by a multiple. The

device structure can be adapted and scaled to meet the requirements for specific

application s and design concepts. Future work will focus on optimizations to interface

electrically and mechanically with other electronic components enabling for example

wireless readout and remote sensing. The integration of magnetoelectronics with

Fig. 3: Stretchable GMR sensors. top: Stretchable
Py/Cu sensor stripe (in red frame) contacted and
mounted to the in situ stretching stage relaxed and
fully elongated. center: GMR curves recorded for in-
creasing uniaxial strains along the stripe up to 270%.
bottom: GMR magnitude (red dots) and resistance
change normalized to 0% strain (black squares) as a
function of applied strain.

Fig. 2: Imperceptible on-skin magnetic detection. 
Imperceptible GMR sensor array on a human palm
with one element connected to a readout circuit 
during rest (right), moving the hand (center) and in
proximity to a permanent magnet (left) as well as the
recorded resistance of the sensor element (bottom).
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other ultrathin functional elements like solar cells [13], light emitting diodes [14],

transistors [15] as well as temperature [10] and tactile sensor arrays [9], will enable au-

tonomous and versatile smart systems with a multitude of sensing and actuation features.

In the scope of the FlexMag initiative that was launched by the IFW Dresden, new

facilitie s for roll-to-roll fabrication should validate this and other recently introduced

technology platforms for shapeable magnetic sensorics [16, 17] towards economically

feasible large-scale production and initialize development efforts for specific applica-

tion scenarios with industry participation. Several companies already evinced their

interes t in this novel sensorics and first collaborations have been established. We

forese e our work to inspire a diverse number of devices that will benefit from a “sixth

sense” magnetoception.
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Fig. 1: TEM-EDX analysis of BYNTO doped YBCO on
Ni-5at.%W tape showing a rich distribution of nano-
sized Y2O3 or BYNTO plates and BYNTO nanorods. 
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Abstract: Superconducting materials are so far mainly used as high field research

magnet s and moderate field MRI magnets for medical diagnostics. High temperature

superconductors have the potential to drastically extend the application range towards

power systems like motors, cables, fault current limiters as well as ultra-high field

magnet s and levitation based applications. Therefore, the central aim of this research

topic is to tailor the properties of these materials for the envisaged applications and

to develop selected demonstrator systems with superconducting components. Some

highlights of our work performed in the last year are summarized in the following. 

Improved YBCO coated conductors
The work on this topic is embedded in the framework of the European project Eurotapes,

where 20 partners from universities, research centers and industry aim to integrate the

advanced materials development on REBa2Cu3O7-x high temperature superconductors in-

to longer length coated conductors. The main focus of our contributions in the last year

was on the preparation of thick YBa2Cu3O7-x (YBCO) layers with artificial pinning centers

on buffered textured templates provided by industrial partners. These tapes were either

based on Ni-W substrates prepared by the rolling biaxially textured substrates (RABiTS)

approach or on ion-beam textured YSZ layers deposited on stainless steel using the

alternatin g beam assisted deposition (ABAD) scheme. The superconducting layers were

grown at IFW with pulsed laser deposition from mixed targets with BaHfO3 (BHO) or

Ba2Y(Nb,Ta)O6 (BYNTO) additions. Some recent results are given in the following section.

At first, we realized 1.6μm thick BYNTO doped YBCO films on fully CSD-buffered

Ni5W substrates with a reasonable growth rate of 1.6 nm/s [1]. Nanosized BYNTO rods

par allel to the YBCO c-axis and BYNTO as well as Y2O3 plates parallel to the YBCO ab-plane

are incorporated with biaxial orientation into the YBCO matrix (Fig. 1). Inductive
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measurement s show only a slight decrease in the critical temperature Tc for the doped

film. An improved local homogeneity of the critical current density Jc over the sample was

evaluated from trapped field profiles measured using a scanning Hall probe micro-

scope. The mean Jc in rolling direction of the tape is 1.8 MA/cm2 (77K) and doubles the

value of the undoped sample. Angular dependent measurements of the critical current

density, Jc(θ), show a decreased anisotropy of the doped film for various magnetic fields

at 77K as well as 64 K. At lower temperatures, a c-axis peak becomes visible. Adjustment

of the deposition parameters temperature and growth rate are on the way and might

furthe r enhance the Jc(B,θ) characteristics of BYNTO-doped YBCO films on biaxially

texture d Ni-W tapes.

Secondly, 6 mol% BHO doping was successfully implemented into YBCO based coated

conductor s prepared on CeO2 buffered ABAD-YSZ templates [2]. The self-field Jc at 77K

reaches 1.1 MA/cm2 in the doped sample compared to 2.5 MA/cm2 in pure YBCO, at a film

thickness of around 1μm. Above a magnetic field of 2.2 T along the B//c direction, the

Jc of the BHO-doped sample exceeds the Jc of the undoped film. In general, the Jc

anisotropy curves of the doped sample show a large and broad peak at B//c and a

strongl y reduced anisotropy at all temperatures and fields compared to the pure sam-

ple. As a result, the BHO sample shows at 40 K and 4 T a better performance at all angles

in comparison to the undoped reference sample (Fig. 2). A complex defect structure with

YBa2Cu4O8 intergrowths, Y2O3 precipitates and BHO nanocolumns with a fan-shaped

structur e is observed by TEM investigations, which can explain the measured Jc(B,θ)

behavio r. 

Finally, major efforts were directed to study the influence of granularity on the local

curren t transport in YBCO layers prepared on technical substrates. Therefore, high res-

olution EBSD measurements were performed on superconducting YBCO layers prepared

on Ni-RABiTS tapes as well as on ABAD-YSZ based templates [3]. Whereas the orienta-

tion of YBCO on the Ni-9at.%W substrate varies strongly from grain to grain (Fig. 3),

which is attributed to the different orientation of the Ni substrate grains with regard to

the surface normal, orientation variations were observed on the sub-micrometer scale

only for YBCO on ABAD-YSZ originating from the finer granularity of this template.

Presently, the structural data are compared to micro-Hall scans performed by our

cooperatio n partner at the Technical University Vienna to correlate the local Jc in such

YBCO layers to the structural data.

Superconducting magnetic bearings in 
rotating high-speed textile machines
The unique properties of superconducting magnetic bearings (SMB) - passive load

bearin g and contact-less motion - have been intensely studied in recent years e.g. for

motors, flywheel energy storage systems and other high-speed rotating machines. In the

framework of a joint DFG project with the Institute of Textile Machinery and High Per -

formance Material Technology (ITM) at the TU Dresden we investigated the replacement

of the conventional ring traveler twist element in ring spinning machines with a super-

conducting magnetic bearing. The limiting process factors in the industrial production

of short staple yarn by ring spinning are frictional wear and heat in the twist element. 

We developed and built a SMB, consisting of a permanent-magnetic NdFeB ring act-

ing as yarn driven traveler and a stationary superconducting YBa2Cu3O7-x ring cooled on

77 K in a flow-through cryostat. It allows spinning yarn with up to 25.000 rpm, which is

the current production speed limit [4, 5] (Fig. 4). The yarn properties and the interac-

tion between the yarn and the SMB were both describe theoretically and measured

experimentall y. Polyester yarn spun with the SBM twist element has similar properties

to conventional yarn. Furthermore, the yarn surface of the SMB-yarn is more even and

less hairy due to the reduced friction and heat in the SMB twist element. The decay

constan t δ of the SMB was found to depend strongly not only on the field cooling

Fig. 2: Jc(θ )-curve for the pure and the BHO doped
YBCO sample at an magnetic field of 4 T and a 
temperature of 40 K.

Fig. 3: EBSD mapping (step size 1 μm) of YBCO 
deposited on Ni-9at.% W tape showing the absolute
misorientation from the ideal cube texture. White
dots are non-indexed areas; at black dots the 
misorientation exceeds 12°.

Fig. 4: Yarn spining at 15 000 rpm with super-
conducting magnetic bearing twist element
(high speed camera image).
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distanc e but also on the initial radial displacement Δr. Since damping in SMB is caused

by the depinning of flux lines during oscillation, the linear increase of δ with Δr can

be attributed to an increase of the average number of pinning centers within the

displacemen t distance [6]. 

The newly developed ring spinning machine with superconducting magnetic bear-

ing twist element was exhibited at the world leading International Textile Machinery

Exhibition ITMA in Milan (Italy) in November 2015 and created a large interest on this

new technological solution.

Large Scale Application: SupraTrans II
The test drive facility SupraTrans II was continuously used to study the behavior of mag-

netic levitation under practical operation conditions and to develop new components

such as electromagnetic tracks and fast switchable electromagnetic turnouts. A first

prototyp e of an electromagnetic track was realized using superconducting tapes to

creat e the magnetomotive force needed. This prototype is used for field and force meas-

urements in order to confirm the topology modelled and optimized by FEM simulations.

Simultaneously, the test drive facility is constantly used for a general dissemination of

superconductivity to the wider public (pupils, students, vocational training etc.) as well

as for professional presentations to contact potential users of this new technology.

Within the last year, a monorail levitation system was realized in cooperation with

industrial partners for Lexus International using existing track segments of the Supra-

Trans II test facility. The system allowed studying new track elements as segments with

gradients, slopes, water covered tracks or lateral twists as well as the influence of

interrupte d tracks on such a transport system. Therefore, the track was installed in a

speciall y designed skate park near Barcelona/Spain, where an impressive PR movie was

created showing the possibilities of magnetic levitation based on superconducting

material s using a levitating hoverboard (Fig. 5).
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Colloquium of the Materials Department, University of Oxford, Oxford/ England, 23.4.15 (2015).

228) H. Schwab, J. Eckert, F. Palm, U. Kuehn, Selektives Laserstrahlschmelzen von Titanlegierungen - Herausforderungen und 
Perspektiven, Symposium zum 3D-Druck, Erding/ Germany, 14.-15.10.15 (2015) (2015).

229) H. Schwab, U. Kuehn, F. Palm, J. Eckert, Selektives Laserstrahlschmelzen der Legierung Ti-5553: Chancen und Herausforderungen, 
Werkstoffwoche 2015: „Werkstoffe der Zukunft“, Dresden/ Germany, 14.-17.9.15 (2015).

230) S. Scudino, Effect of mechanical pretreatment on the mechanical behavior of bulk metallic glasses, 2nd Industry-Network Meeting – 
VitriMetTech ITN, “Mechanical Properties of Vitrified Metals“, IFW Dresden, Dresden/ Germany, 14.-17.9.15 (2015).

231) S. Scudino, H. Shakur Shahabi, M. Stoica, I. Kaban, G. Vaughan, U. Kuehn, J. Eckert, Strain Analysis of Plastically-deformed Bulk 
Metallic Glasses, 22nd International Symposium on Metastable, Amorphous and Nanostructured Materials (ISMANAM 2015), 
Paris/ France, 13.-17.7.15 (2015).

232) M. Sparing, D. Berger, A. Berger, M. Hossain, A. Abdkader, C. Chokri, L. Kuehn, T. Espenhahn, G. Fuchs, L. Schultz, 
Superconducting Magnetic Bearings, Magnetics in a Green Future (UKMagSoc), Copenhagen/ Denmark, 2.-3.11.15 (2015).

233) M. Stoica, Mechanical properties of bulk glassy alloys studied by means of X-ray diffraction, Seminar of the Department of Physics, 
University of Balearic Islans, Palma de Mallorca/ Spain, 11.11.15 (2015).
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234) M. Stoica, Preparation of Bulk Metallic Glasses, The seminar of the Institute of Metallurgy and Materials Science, Polish Academy 
of Sciences, Krakow/ Poland, 2.10.15 (2015).

235) M. Stoica, Structure evolution of {[(Fe0.5Co0.5)0.75Si0.05B0.20]0.96Nb0.04}100-xCux (x = 0 and 0.5) bulk glassy alloys, 
Joint CMAC-Intelhyb workshop, Dresden/ Germany, 30.9.15 (2015).

236) M. Stoica, Bulk Metallic Glasses (BMGs) and their composites, The seminar of the Institute of advanced manufacturing technology, 
Krakow/ Poland, 8.10.15 (2015).

237) M. Stoica, (Fe36Co36B19.2Si4.8Nb4)100-xCux (x = 0 and 0.5) BMGs, Crystallisation Behavior and magnetic properties, 
XXIV International Materials Research Congress, Cancun/ Mexico, 16.-20.8.15 (2015).

238) M. Stoica, S. Scudino, I. Kaban, P. Ramasamy, M. Nicoara, J. Eckert, (Fe36Co36B19.2Si4.8Nb4)100-xCux (x = 0 and 0.5) Bulk 
Amorphous Alloys, Structure Evolution and Soft Magnetic Properties, Global Research Laboratory Korea- Germany Workshop on 
Bulk Metallic Glasses and Nanostructured Materials, Munich/ Germany, 10.-11.7.15 (2015).

239) M. Stoica, S. Scudino, I. Kaban, P. Ramasamy, M. Nicoara, J. Eckert, Structure evolution and soft magnetic properties of Cu-free 
and Cu-added Fe-Co-B-Si-Nb BMGs, Advanced Materials and Structures AMS’15, Timisoara/ Romania, 16.-17.10.15 (2015).

240) M. Stoica, S. Scudino, I. Kaban, P. Ramasamy, M. Nicoara, J. Eckert, (Fe36Co36B19.2Si4.8Nb4)100-xCux (x = 0 and 0.5) Bulk 
Amorphous Alloys, Structure Evolution and Soft Magnetic Properties, 22nd International Symposium on Metastable, 
Amorphous and Nanostructured Materials (ISMANAM 2015), Paris/ France, 13.-17.7.15 (2015).

241) R. Streubel, Imaging spin textures on curved magnetic surfaces, Seminar, Helmholtz-Zentrum Dresden-Rossendorf, Dresden/ 
Germany, 18.6.15 (2015).

242) R. Streubel, D. Makarov, Curved magnetic nanomembranes, International Magnetics Conference (INTERMAG), Beijing/ China, 
11.-15.5.15  (2015).

243) A. Surrey, C. Bonatto Minella, N. Fechler, M. Antonietti, L. Schultz, B. Rellinghaus, Nanocrystalline MgH2 and nanoconfined LiBH4 
for solid state hydrogen storage, ANM2015 1st International conference on Hydrogen Energy, Aveiro/ Portugal, 20.-22.7.15 
(2015).

244) J. van den Brink, Resonant Inelastic X-ray Scattering on high Tc cuprates and magnetic iridates, Nordita Physics Seminar, 
Stockholm/ Sweden, 15.12.15 (2015).

245) J. van den Brink, Magnetic Resonant Inelastic X-ray Scattering - an overview, 9th international conference on Inelastic X-ray 
Scattering, Hsinchu/ Taiwan, 22.11.15 (2015).

246) J. van den Brink, Resonant Inelastic X-ray Scattering on high Tc cuprates and magnetic iridates, V International Symposium on 
Strong Nonlinear Vibronic and Electronic Interactions in Solids, University of Tartu, Tartu/ Estonia, 1.5.15 (2015).

247) J. van den Brink, Resonant Inelastic X-ray Scattering on high Tc cuprates and magnetic iridates, BIT’s 4th Annual World Congress 
of Advanced Materials, Chongqing/ China, 29.5.15 (2015).

248) J. van den Brink, Insights into the electronic and magnetic structure of iridates from Resonant Inelastic X-ray Scattering and 
Quantum Chemistry, Workshop on Competing Interactions and Colossal Responses in Transition Metal Oxides, Telluride/ USA, 
6.6.15 (2015).

249) J. van den Brink, 40 years of Resonant Inelastic X-ray Scattering - accomplishments and remaining challanges, Kai Siegbahn Prize 
Ceremony, Uppsala/ Sweden, 14.9.15 (2015).

250) J. van den Brink, The quantum nature of skyrmions and half-skyrmions in Cu2OSeO3, APS March Meeting Invited Talk, San Antonio/ 
USA, 4.3.15 (2015).

251) J. van den Brink, Magnetic Resonant Inelastic X-ray Scattering, 5th Annual Niels Bohr International Academy Workshop-School 
on ESS Science: Condensed Matter Theory and Advanced software, Copenhagen/ Denmark, 11.11.15 (2015).

252) J. van den Brink, Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr2CuO3, Physics Colloquium, University of 
Toronto, Toronto/ Canada, 12.2.15 (2015).

253) J. van den Brink, Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr2CuO3, Condensed-Matter Physics and 
Materials Science Seminar, Brookhaven National Laboratries, Brookhaven/ USA, 9.2.15 (2015).

254) J. van den Brink, Resonant Inelastic X-ray Scattering on high Tc cuprates and magnetic iridates, Physics Seminar, University of 
Toronto, Toronto/ Canada, 12.2.15 (2015).

255) J. van den Brink, Resonant Inelastic X-ray Scattering on high Tc cuprates and magnetic iridates, COST TO-BE Spring Meeting Plenary 
Presentation, University of Avero, Avero/ Portugal, 1.4.15 (2015).

256) J. van den Brink, Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr2CuO3, Leopold Infeld Colloquium, 
University of Warsaw, Warsaw/ Poland, 22.10.15 (2015).

257) J. van den Brink, Resonant Inelastic X-ray Scattering on high Tc cuprates and magnetic iridates, Transregio Seminar, University of 
Augsburg, Augsburg/ Germany, 28.4.15 (2015).

258) U. Vogel, M. Spindler, S. Wege, T. Gemming, Calculation of surface acoustic waves on a piezoelectric substrate using Amazon Cloud 
Computing, Comsol Conference, Italy/ Grenoble, 14.-16.10.15 (2015).

259) S. Wicht, V. Neu, L. Schultz, V. Metha, S. Jain, S.H. Wee, O. Hellwig, D. Weller, B. Rellinghaus, The relevance of structure 
information at the atomic level for a better understanding of FePt-based media, The 26th Magnetic Recording Conference 
(TMRC 2015), Minneapolis/ USA, 17.-19.8.15 (2015).
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260) A. Winkler, Einfuehrung in die akustoelektronische Mikrofluidik, Einzelvorlesung im Rahmen der Vorlesung Mikrobiologie der 
TU Dresden (ILBT), TU Dresden, Institut fuer Lebensmittel und Bioverfahrenstechnik, Dresden, 5.2.15 (2015).

261) U. Wolff, The variety of scanning probe methods - investigating magnetic and superconducting structures, BIT’s 1st Annual World 
Congress of Smart Materials-2015, Busan/ South Korea, 23.-26.3.15 (2015).

262) T.G. Woodcock, The Influence of Atomic-Scale Microstructural Features on the Properties of Permanent Magnets, Seminar at the 
Institute of Ion Beam Physics and Materials Research, Helmoltz-Zentrum Dresden-Rossendorf, Dresden, 22.4.15 (2015).

263) S. Wurmehl, Disentanglement of intrinsic and extrinsic properties in highly functional Heusler materials, Physics colloquium, 
TU Dresden. Dresden/ Germany, 21.7.15 (2015).

264) S. Wurmehl, Complex, novel materials for modern applications- A crystal growth perspective, IKZ Berlin and HU Berlin, 
Berlin/ Germany, 19.2.15 (2015).

265) S. Wurmehl, Disentanglement of intrinsic and extrinsic properties in highly functional Heusler materials, Kolloqium, Uni Bielefeld, 
Bielefeld/ Germany, 23.-24.11.15 (2015).

266) S. Wurmehl, L. Harnagea, S. Aswartham, I. Morozov, A. Wolter-Giraud, H.-J. Grafe, F. Steckel, U. Graefe, D. Bombor, C. Hess, 
B. Borisenko, B. Buechner, Crystal growth and properties of pnictide superconductors, International Conference on Magnetic and 
Superconducting Materials (MSM), Antalya/ Turkey, 30.4.-3.5.15 (2015).

267) S. Wurmehl, C. Hess, H.-J. Grafe, V. Kataev, S. Borisenko, L. Harnegea, S. Aswartham, R. Beck, I. Morozov, F. Hammerath, 
F. Steckel, D. Bombor, D. Evtushinskiy, B. Buechner, Pnictide superconductors-a crystal growth perspective, 14th International 
Union of Materials Research Societies-International Conference on Advanced Materials 2015 (IUMRS-ICAM), Jeju Island/ 
South Korea, 25.-29.10.15 (2015).

268) F. Zhu, Novel organic nanostructure devices based on rolled-up nanomembranes, Seminar, Changchun Institute of Applied 
Chemistry, Chinese Academy of Sciences, Changchun/ China, 2.11.15 (2015).

269) F. Zhu, Novel organic/hybrid electronic devices based on rolled-up nanomembranes, The AVS Shanghai Thin Film Conference 
Shanghai, Shanghai/ China, 24.-25.10.15 (2015).

270) F. Zhu, Organic thin film engineering and novel organic/hybrid electronic devices, Seminar, University of Electronic Science and 
Technology of China, Chengdu/ China, 29.10.15 (2015).
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Patents 

Issues of patents (issue decision date)

DE 10 2009 002 308 Verfahren und Anordnung zum Anregen von elektroakustischen Aktuatoren (09.10.2015)
(10909 DE) Inventors: Raimund Brünig, Hagen Schmidt, Karsten Mensel

EP 2422347 Magnetisches Legierungsmaterial und Verfahren zu seiner Herstellung (08.06.2015 )
(10914 AT) Inventors: Julia Lyubina, Oliver Gutfleisch

EP 2422347 Magnetisches Legierungsmaterial und Verfahren zu seiner Herstellung (08.06.2015 )
(10914 CH/LI) Inventors: Julia Lyubina, Oliver Gutfleisch 

EP 2422347 Magnetisches Legierungsmaterial und Verfahren zu seiner Herstellung (08.06.2015 )
(10914 DE) Inventors: Julia Lyubina, Oliver Gutfleisch

EP 2422347 Magnetisches Legierungsmaterial und Verfahren zu seiner Herstellung (08.06.2015 )
(10914 FR) Inventors: Julia Lyubina, Oliver Gutfleisch 

EP 2422347 Magnetisches Legierungsmaterial und Verfahren zu seiner Herstellung (08.06.2015 )
(10914 GB) Inventors: Julia Lyubina, Oliver Gutfleisch 

DE 10 2014 222 535.3 Ultrakompakter Mikrokondensator und Verfahren zu seiner Herstellung (01.12.2015 )
(11415 DE) Inventors: Daniel Grimm, Martin Bauer, Oliver G. Schmidt 

DE 10 2014 223 873.0 Verfahren zur Herstellung eines aufgerollten elektrischen oder elektronischen Bauelementes (16.10.2015 )
(11429 DE) Inventors: Daniel Grimm, Dmitriy Karnaushenko, Martin Bauer, Daniil Karnaushenko, Denys Makarov, 

Oliver G. Schmidt

CH 001321_2013 Aufspul- und Dralleinrichtung einer Ringspinn- oder Ringzwirnmaschine sowie Ringspinn- 
(11137 CH/LI) und Ringzwirnverfahren (15.09.2015 )

Inventors: Anwar Abdkader, Dietmar Berger, Chokri Cherif, Oliver De Haas, Lars Kühn, Ludwig Schultz

US 13/202,228 ISOLATIONSMATERIAL FÜR INTEGRIERTE SCHALTKREISE UND DEREN VERWENDUNG (25.08.2015 )
(10903 US) Inventors: Ehrenfried Zschech, Helmut Hermann, Konstantin Zagarodniy, Gotthard Seifert

DE 10 2012 206 393.5 Akustisches Oberflächenbauelement (10.04.2015 )
(11207 DE) Inventors: Günter Martin, Bernd Steiner

DE 10 2010 028 007.0 Wandler mit natürlicher Unidirektionalität für akustische Oberflächenwellen (24.02.2015 )
(11006 DE) Inventors: Günter Martin, Manfred Weihnacht, Sergey Biryukov, Alexander Darinski, Bert Wall 

Patent applications (application date)

PCT/EP2015/077070 Verfahren zur Herstellung eines aufgerollten elektrischen oder elektronischen Bauelementes (19.11.2015 )
(11429PCT) Inventors: Daniel Grimm, Dmitriy Karnaushenko, Martin Bauer, Daniil Karnaushenko, Denys Makarov, 

Oliver G. Schmidt 

PCT/EP2015/075822 Ultrakompakter Mikrokondensator und Verfahren zu seiner Herstellung (05.11.2015 )
(11415 PCT) Inventors: Daniel Grimm, Martin Bauer, Oliver G. Schmidt

DE 10 2015 224 938.7 Verfahren und Vorrichtung zur Ermittlung von Kraftfeldern, Kraftfeldgradienten, Materialeigenschaften 
(11528 DE) oder Massen mit einem System aus gekoppelten, schwingungsfähigen, balkenartigen Komponenten 

(11.12.2015 )
Inventors: Christopher Reiche, Thomas Mühl, Julia Körner       

PCT/EP2015/068723 Hochfeste, mechanische Energie absorbierende und korrosionsbeständige Formkörper aus Eisenlegierungen 
(11413 PCT) und Verfahren zu deren Herstellung (14.08.2015 )

Inventors: Josephine Zeisig, Julia Kristin Hufenbach, Uta Kühn, Jürgen Eckert      

DE 10 2015 221 268.8 Verfahren und Vorrichtung zur Regelung des Spaltmaßes in supraleitenden Magnetlagern (30.10.2015 )
(11520 DE) Inventors: Dirk Lindackers, Christoph Mühsig



Patents    117

PCT/EP2015/073540 Kompakter Kondensator und Verfahren zu seiner Herstellung (12.10.2015 )
(11426 PCT) Inventor: Oliver G. Schmidt 

DE 10 2015 219 696.8 Verfahren zur Herstellung eines kompakten Mikro- oder Nano-Kondensators und kompakter Mikro- 
(11521 DE) oder Nano-Kondensator (12.10.2015 )

Inventor: Oliver G. Schmidt         

DE 10 2015 220 766.8 Verfahren zur Herstellung eines umgeformten Körpers aus vollkristallinen, metastabilen Materialien und 
(11523 DE) umgeformter Körper aus vollkristallinen, metastabilen Materialien (23.10.2015 )

Inventors: Simon Pauly, Konrad Kosiba, Uta Kühn, Jürgen Eckert      

EP 15 193 411.4 Vorrichtung zur Flüssigkeitszerstäubung und Verfahren zu ihrer Herstellung (06.11.2015 )
(11430 EP) Inventors: Andreas Winkler, Stefan Harazim, Jürgen Eckert, Oliver G. Schmidt      

PCT/EP2015/063638 Batterieträger (17.06.2015 )
(11414 PCT) Inventors: Markus Herklotz, Jonas Weiß, Lars Giebeler, Michael Knapp      

PCT/EP2015/051650 Verfahren zur Herstellung der Beweglichkeit von immobilen Zellen (28.01.2015 )
(11402 PCT) Inventor: Oliver G. Schmidt         

DE 10 2015 108 950.5 Keramische Drucksensoren mit im thermischen Ausdehnungskoeffizient an die Keramik 
(11432 DE) angepasstem Aktivhartlot (08.06.2015 )

Inventors: Andreas Roßberg, Elke Schmidt, Markus Rettenmayr, Peter Siegmund, Uta Kühn, Simon Pauly    

DE 10 2015 203 272.8 Magnetoelektrische Funktionselemente (24.02.2015 )
(11501 DE) Inventors: Tobias Kosub, Denys Makarov, Oliver G. Schmidt       

DE 10 2015 214 177.2 Drehbarer Batterieträger (27.07.2015 )
(11508 DE) Inventors: Markus Herklotz, Jonas Weiß, Eike Ahrens, Lars Giebeler 

DE 10 2015 204 112.3 Biologisch abbaubare Eisenbasislegierungen und ihre Verwendung (06.03.2015 )
(11503 DE) Inventors: Julia Kristin Hufenbach, Uta Kühn, Annett Gebert, Jürgen Eckert  

DE 10 2015 205 443.8 Anodenmaterial für Lithium-Ionen-Batterien (25.03.2015 )
(11506 DE) Inventors: Maik Scholz, Rüdiger Klingeler, Marcel Haft, Sabine Wurmehl, Silke Hampel, 

Franziska Hammerath, Bernd Büchner   

DE 10 2015 200 643.3 Verfahren zur Herstellung von neuronale Zellen enthaltenden strangförmigen Kapseln und 
(11410 DE) strangförmige Kapseln (16.01.2015 )

Inventors: Andreas Winkler, Anne K. Meyer        
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Graduation of young researchers

Habilitations 

Dr. Mihai Stoica Fe-based bulk metallic glasses: alloy optimization, focused on understanding the influences of impurities 
on the glass formation, Politehnica University Timisoara, Romania

Dr. Steffen Sykora Interferenz von Quasiteilchen als Zugang zum Paarungs-Mechanismus eisenbasierter Supraleiter, TU Dresden

PhD Theses 

Somayeh Abdi Investigation of new Ti-based metallic glasses with improved mechanical properties and corrosion 
resistance for implant applications, TU Dresden

Stefan Böttner Rolled-Up Vertical Microcavities Studied by Evanescent Wave Coupling and Photoluminescence Spectroscopy, 
TU Chemnitz

André Fischer Advanced cluster methods for correlated-electron systems, TU Dresden

Arne Helth Optimierung der biofunktionellen Eigenschaften der Legierung Ti-40Nb für Knochenersatzanwendungen, 
TU Dresden

Deng Junwen Strain engineered nanomembranes as anodes for lithium ion batteries, TU Chemnitz

Vamshi Mohan Katukuri Quantum chemical approach to spin-orbit excitations and magnetic interactions in iridium oxides, 
TU Dresden

Jin Young Kim Synthesis and characterization of bulk metallic glasses, composites and hybrid porous structures by powder 
metallurgy of Ni59Zr20Ti16Si2Sn3 glassy powders, TU Dresden

Markus Klose Zur Verwendung einer metallorganischen Gerüstverbindung als Präkursor für poröse, kohlenstoffbasierte 
Energiespeichermaterialien, TU Dresden

Fritz Kurth High Magnetic Field Properties of Fe - Pnictide Thin Films, TU Dresden

Shilong Li Probing and modeling of optical resonances in rolled-up structures, TU Chemnitz

Lukas Löber Werkstoffwissenschaftliche Aspekte des Leichtbaus von laserstrahlgeschmolzenen Titanaluminiden, 
TU Dresden

Benjamin Mahns Elektronische Eigenschaften dotierter polyzyklischer aromatischer Kohlenwasserstoffe, TU Dresden

Sami Makharza Graphene Oxide Nanohybrids as Platforms for Carboplatin Loading and Delivery, TU Dresden 

Janek Maletz Low-energy electronic structure of iron chalcogenide superconductors, TU Dresden 

Pasquale Marra Theoretical approach to direct resonant inelastic X-ray scattering on magnets and superconductors, 
TU Dresden

Michael Melzer Stretchable Magnetoelectronics, TU Chemnitz

Rafael Gregorio Mendes Synthesis, characterization and toxicological evaluation of carbon-based nanostructures, TU Dresden 

Robert Niemann Nukleation und Wachstum des adaptiven Martensits in epitaktischen Schichten der Formgedächtnislegierung 
Ni-Mn-Ga, TU Dresden

Ilya Okulov Microstructure and mechanical Properties of new composite structured Ti-based alloys, TU Dresden

Santosh Kumar Pal Anisotropic hard magnetic nanoparticles and nanoflakes obtained by surfactant assisted ball milling, 
TU Dresden

Diana Pohl Elektrochemische Fe-Ga-Legierungsabscheidung zur Herstellung von Nanostrukturen, TU Dresden 

Tobias Ritschel Electronic self-organization in layered transition metal dichalcogenides, TU Dresden 

Martha Scheffler Microscopic tunneling experiments on atomic impurities in graphene and on magnetic thin films, TU Dresden 

Thomas Schied Zum Sauerstofftransport in Li-O2-Zellen: Eine Computermodell-unterstützte Experimentalstudie, TU Dresden

Hamed Shakur Shahabi Study of deformation – induced structures in Zr-based bulk metallic glass via high energy x-ray diffraction, 
TU Dresden

Wenping Si Designing Electrochemical Energy Storage Micro-Devices: Li-Ion Batteries and Flexible Supercapacitors, 
TU Chemnitz
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Frank Silze Entwicklung und Untersuchung Ag-reduzierter Vakuumhartlote auf Cu-Basis, TU Dresden

Frank Steckel Thermische und elektrische Transportuntersuchungen an niederdimensionalen korrelierten 
Elektronensystemen, TU Dresden 

Robert Streubel Imaging Spin Textures on Curved Magnetic Surfaces, TU Chemnitz

Juliane Thielsch Wechselwirkungsdomänen in permanentmagnetischen Seltenerd-Übergangsmetall-Verbindungen, 
TU Dresden

Uwe Treske Valence changes at interfaces and surfaces investigated by X-ray spectroscopy, TU Dresden 

Daniel Wadewitz Ternäre 3d Übergangsmetalloxide als Konversionselektroden in Lithiumionenbatterien, TU Dresden

Eugenio Zallo Control of electronic and optical properties of single and double quantum dots via electroelastic fields, 
TU Chemnitz

Jiaxiang Zhang Single- and entangled-photon emission from strain tunable quantum dot devices, TU Chemnitz

Diploma and Mater Theses 

Wei Ding Nonvolatile capacitance switching in BiFeO3 coated metal-insulator-semiconductor diodes, TU Chemnitz 

Konstantin Firlus Anpassung des selektiven Laserschmelzens auf die höchstfeste Eisenbasislegierung Fe85Cr4Mo1V1W8C1, 
TU Dresden

Martin Fritzsche Untersuchung eines CNT-basierten schwammartigen Materials für die Anwendung in 
Lithium-Schwefel-Batterien, TU Dresden

Hagen Fuchs Models and simulations of chiral magnetic systems, TU Dresden

Clemens Gütter Streufeldverteilungen von aufgerollten ferromagnetischen Nanomembranen, TU Dresden

Carsten Habenicht Electron Energy-Loss Spectroscopy on MoS2, TU Dresden

Robert Heider Nanoskalige Sn-Co-Verbindungen durch Füllen von CNT, BTU Cottbus-Senftenberg

Michael Hering Thermisch induzierte Segregationsprozesse in kohlenstoffreichen Übergangsmetall-Nanopartikeln, 
TU Dresden

Christian Kozalla Realisierung ultradünner granularer Eisen-Platin-Schichten auf SrTiO3 zur Behandlung in einem Elektrolyten, 
TU Dresden

Bandari Vineeth Kumar Fabrication of Organic Single Crystal Transistors, TU Chemnitz

Till Meißner Konstruktion und Entwicklung eines Kryo-Magnetkraftmikroskops, HTW Dresden

Georg Mühsig Umbau einer Gifford - McMahon -Kältemaschine für den Einsatz als kryotechnischer Praktikumsversuchsstand, 
HTW Dresden

Georg Rutkiewicz Umbau einer Hochrate-Zerstäuber-Beschichtungsanlage mit drei Magnetrons für den Gleichstrom- bzw. 
Hochfrequenzbetrieb, Staatliche Studienakademie Riesa

Marco Schmidt Strukturänderungen in Cu-Zr-Al-basierten metallischen Gläsern durch Rascherhitzung, TU Dresden

Sebastian Schneider Zirkularer magnetischer Elektronenenergieverlustdichroismus an Eisen-Platin-Nanopartikeln, TU Dresden

Tobias Schorr Kernspinresonanz-Spektroskopie an eisenbasierten Supraleitern, speziell BaFe2As2, unter uniaxialam Druck, 
TU Dresden

Franziska Seifert Synthese von dotiertem polykristallinien Mn Si und Charakterisierung, TU Bergakademie Freiberg

Florian Senftleben Einfluss der Abkühlbedingungen auf die Phasenbildung martensitischer Ti-Nb Legierungen, TU Dresden

Anne Vornberger CuTi-Dünnschichtsystem für SAW-Bauelemente - Darstellung und Charakterisierung von Dünnschicht-
systemen aus Cu-Ti-Mehrfachlagen für Elektrodenstrukturen von SAW-Bauelementen, TU Dresden

Clemens Wagner Strukturelle und elektronische Eigenschaften von Titan (III) phosphat, TU Dresden 
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Calls and Awards 

Professorships

Prof. Dr. Jens Freudenberger Honorary Professor at Bergakademie TU Freiberg 

Awards

Dr. Julia Hufenbach DGM Nachwuchspreis 2015

Dr. Robert Streubel Ernst-Eckhard-Koch-Prize 2015, for outstanding doctoral thesis in the field of research 
with synchrotron radiation

Prof. Dr. Ludwig Schultz DGM-Honorary Membership 2015
IEEE Distinguished Lecturer 2015

Juan Balach Poster Award of the 8th International Conference on Materials for Advanced Technologies 
(ICMAT2015) in Singapore 

Bo Liu Most Excellent Paper Award, 3rd International Conference on Renewable Energy and Environment

Dr. Guodong Li Outstanding Poster Award, 34th International Conference on Thermoelectrics

Dmitriy Karnaushenko Best Poster Prize, 581. Wilhelm und Else Heraeus-Seminar on Flexible, Stretchable and 
Printable High Performance Electronics

IFW Awards

Dr. Robert Niemann IFW Junior Research Award 2015

Dr. Robert Streubel Tschirnhaus-Medal of the IFW for excellent PhD theses 

Dr. Michael Melzer Tschirnhaus-Medal of the IFW for excellent PhD theses 

Dr. Frank Steckel Tschirnhaus-Medal of the IFW for excellent PhD theses

Dr. Tobias Ritschel Tschirnhaus-Medal of the IFW for excellent PhD theses

Dr. Arne Helth Tschirnhaus-Medal of the IFW for excellent PhD theses

Dr. Markus Klose Tschirnhaus-Medal of the IFW for excellent PhD theses

Dr. Juliane Thielsch Tschirnhaus-Medal of the IFW for excellent PhD theses

Dr. Robert Niemann Tschirnhaus-Medal of the IFW for excellent PhD theses

Dr. Maria Krautz Tschirnhaus-Medal of the IFW for excellent PhD theses

Dr. Veronika Hähnel Tschirnhaus-Medal of the IFW for excellent PhD theses
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Scientific conferences and IFW colloquia 

Conferences

Jan. 12 –14 581. Wilhelm und Else Heraeus-Seminar Flexible, Stretchable and Printable High Performance Electronics

July 3 – 4 3rd German-Korean Workshop on Thermoelectrics, Dresden

July 27– 29 Condensed Matter Summer School 2015, Prague, Czech Republic

Aug. 3 Workshop „Zukunftsperspektiven supraleitender Anwendungen“, Dresden

Aug. 28 – Sept. 4 Summer School Spectroelectrochemistry

Aug. 31 – Sept. 3 Workshop on the two-dimensional chalcogenides: exotic electronic orders, superconductivity and magnetism

Sept. 4 Symposia „International Symposium on light scattering in superconductors“

Sept. 13 –19 Quantum Magnets Workshop, in Kolymbari, Crete

Sept. 14 –17 Workshop on Mechanical Properties of Vitrified Metals – VitriMetTech

Quantum Matter Colloquium 

14.01.2015 Prof. Dr. Andreas Mayer, HS Offenburg - University of Applied Science, Acoustics wedge waves: 
Effects of anisotropy and nonlinearityc spacers

08.04.2015 Prof. Thomas T. M. Palstra, University of Groningen, Netherlands, Controling the electrical properties of 
perovskites by organi 

22.04.2015 Prof. Dr. Philippe Mendels, University of South Paris in Orsay, Quantum Kagome Spin Liquids 

13.05.2015 Prof. Dr. Patrick M. Woodward, Ohio-State University, Competing superexchange interactions in osmate double 
perovskites 

20.05.2015 Prof. Dr. Eugene Mele, University of Pennsylvania and Loughborough University, The Winding Road to Topological 
Insulators 

03.06.2015 Prof. Ilya Eremin, Ruhr-Universität Bochum, Spin excitations in layered magnetic superconductors: Cooper-pairing 
and itinerancy effects 

10.06.2015 PD Dr. Arthur Ernst, Max-Planck-Institute of Microstrukture Physics, Halle, Magnetism from first-principles 

17.06.2015 Prof. Dr. Rossitza Pentcheva, University of Duisburg-Essen, Designing electronic phases in (001) and (111) oriented 
perovskite superlattices 

01.07.2015 Prof. Dr. Dipl.-Ing. Alois Loidl, Universität Augsburg, Ferroelectric skyrmion phase in multiferroic GaV4S8 

22.07.2015 Prof. Dirk K. Morr, University of Illinois at Chicago, Magnetically Mediated Cooper Pairing in Heavy Fermion 
Superconductors

30.09.2015 Prof. Dr. Sebastian Eggert, University of Kaiserslautern, Quantum phase transitions in anisotropic and 
frustrated systems

02.10.2015 Prof. Dr. Igor Mazin, Center for Computational Material Science, Washington, Magnetic, structural and superconducting 
phase diagram in bulk Fe-chalcogenides: nematic fluctuations and biquadratic exchange 

28.10.2015 Prof. Dr. Ute Kaiser, University of Ulm, Properties of quantum materials obtained by low-voltage aberration-
corrected TEM 

24.11.2015 Prof. Dr. Angel Rubio, Max Planck Institute for Structure and Dynamics of Matter, Hamburg, Group IV two-dimensional 
materials: Novel electronic and structural properties 

02.12.2015 Prof. Dr. Thomas Pichler, University of Vienna, Unravelling advanced 1D and 2D carbon systems 
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Guest scientists (stay of 4 weeks and more)

Name Home Institute Home country

Dr. Bachmatiuk, Alicja Wroclaw Research Centre ILT Poland

Dr. Bollero, Alberto Univ. Canto Blanco Spain

Prof. Dr. Brenig, Wolfram TU Braunschweig Deutschland

Dr. Darinskiy, Alexander Institute for Crystallography Moscow Russia

Das, Sujit MLU Halle Wittenberg Germany

Dr. Garcia Javier Univ. Hamburg Spain

Prof. Dr. Garifullin, Ilgiz Zavoisky Phys.-techn. Institute Kazan Russia

Dr. Guix Noguera, Maria Catalan Institute of Nanotechnology Spain

Dr. Huang, Shao-Zhuan Wuhan Univ. of Technology China 

Prof. Dr. Inoue, Akihisa Josai Univ. Educational Corporation Tokyo Japan

Dr. Jiang, Chongyun Institute of Semiconductors Beijing China

Dr. Jung, Hyoyun Yonsei Univ. Korea

Dr. Jung, Kyubong Univ. of Tokyo Korea

Dr. Kandpal, Hemchandra Indian Institute of Technology Roorkee India

Dr. Kataeva, Olga A. E. Arbuzov Institute Kazan Russia

Prof. Dr. Kikoin, Konstantin Univ. Tel-Aviv Israel

Dr. Krupskaya, Yulia Univ.Genf Russia

Dr. Kumar, Sanjeev IISER Mohali, Faculty of Physics India

Prof. Kusmartsev, Fedor Univ.Loughborough UK

Dr. Kuzian, Roman Institute for Materials Science Kiev Ukraine

Dr. Lebernegg, Stefan MPI CPfS Dresden Austria

Dr. Liu, Fupin Univ. of Science and Technology Hefei China 

Dr. Liu, Xianghong Renmin Univ. Beijhing China 

Dr. Machata, Peter Slovak TU Bratislava Slovakia

Dr. Mandarino, Angelo Instituto C. Elio Vittorini, San Pietro Clarenza Italy

Dr. Mikhailova, Daria MPI CPfS Dresden Russia

Dr. Morozov, Igor Staatliche Univ. Moscow Russia

Dr. Naidyuk, Yurii Verkin Institute Kharkov Ukraine

Assoc. Prof. Dr. Nicoara, Mircea Politehnica Univ. Timisoara Rumania

Dr. Nishimoto, Satoshi TU Dresden Japan

Dr. Otalora, Jorge Univ. Tecnica Federico Santa Maria Chile

Park, Kyoung-Tae KITECH Korea

Dr. Parzych, Grzegorz TU Dresden Poland

Prof. Patra, Ajit Kumar Central Univ. of Rajasthan India

Pessoa, Davi Felipe TU Dresden Brazil

Dr. Prando, Giacomo TU Dresden Italy

Dr. Rata, Diana MLU Halle Wittenberg Rumania

Dr. Ray, Rajyavardhan TU Dresden India

Dr. Reja, Sahinur Univ. of Cambridge India

Dr. Rezaev, Roman Tomsk Polytechnic Univ. Russia

Dr. Rienks, Emile TU Dresden Netherlands

Prof. Dr. Rossetti, George Andrew Univ. of Connecticut USA

Dr. Sakalas, Paulius TU Dresden Lithuania

Prof. Saporiti, Maria Fabiana Sonia Univ.Buenos Aires Argentina

Dr. Seo, Seok-Jun KITECH Korea

Dr. Setti, Thirupathaiah Indian Institute of Science Bangalore India
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Prof. Dr. Sheka, Denys Taras Shevchenko National Univ. of Kyiv Ukraine

Dr. Smirnova, Elena Ioffe Phys.-Techn. Institute St. Petersburg Russia

Prof. Dr.Stremy, Maximilian Slovak TU Bratislava Slovakia

Dr. Sturza, Mihai-Ionut Argonne National Lab. Rumania

Dr. Sulka, Martin Slovak TU Bratislava Slovakia

Dr. Sulkova, Katarina Slovak TU Bratislava Slovakia

Dr. Vavilova, Evgeniia Zavoisky Phys.-techn. Institute Kazan Russia

Dr. Volegov, Alexey Ural Federal Univ. Russia

Dr. Yerin, Yuriy Verkin Institute Kharkov Ukraine

Dr. Zaripov, Ruslan Zavoisky Phys.-techn. Institue Kazan Russia

Prof. Dr. Zotos, Xenophon Univ. of Crete Greece

Scholarships

Name Home country Donor

Dr. Dassonneville, Bastien France Alexander von Humboldt Foundation

Dr. Ghimire, Madhav Prasad Nepal Alexander von Humboldt Foundation

Dr. Kim, Beom Seok Korea Alexander von Humboldt Foundation

Dr. Prando, Giacomo Italy Alexander von Humboldt Foundation

Dr. Zhang, Yang China Alexander von Humboldt Foundation

Dr. Kumar, Sarvesh India DAAD

Dr. Moravkova, Zuzana Czech Rep. DAAD

Dr. Thota, Subhash India DAAD

Pylypovskyi, Oleksandr Ukraine DAAD

Chakraborty, Abhra India DAAD

Chatterjee, Riddhi Pratim India DAAD

Harihara, Subramonia Anand India DAAD

Potnis, Gaurav India DAAD

Ghunaim, Rasha Palestinian territories DAAD

Madian,Mahmoud Egypt DAAD

Salazar, Enriquez C. D. Columbia DAAD

Shahid, Rub Nawaz Pakistan DAAD

Dr. Alfonsov, Alexey Russia DFG

Linnemann, Julia Germany Deutsche Bundesstifung Umwelt

Surrey, Alexander Germany Graduiertenakademie TU Dresden

Vieira, Rafael Portugal EU Erasmus

Metelkova, Radka Czech  Rep. EU Erasmus

Miyakoshi, Shohei Japan SEEDS Foundation Chiba Univ.

Martins dos Santos, Jonadabe Brazil Capes Brazil

Dr. Du, Yun China China Scholarship Council

Zhang, Jing China China Scholarship Council

Deng, Liang China China Scholarship Council

Liu, Lixiang China China Scholarship Council

Lu, Xueyi China China Scholarship Council

Pang, Jinbo China China Scholarship Council

Sui, Yan Fei China China Scholarship Council

Sun, Xiaolei China China Scholarship Council

Wang, Pei China China Scholarship Council

Wang, Pei China China Scholarship Council

Xi, Lixia China China Scholarship Council
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Xu, Haifeng China China Scholarship Council

Yin, Yin China China Scholarship Council

Yuan, Feifei China China Scholarship Council

Yuan, Xueyong China China Scholarship Council

Zhang, Long China China Scholarship Council

Chirkova, Alisa Russia International Graduate School

Güzeltürk, Burak Turkey International Graduate School

Liu, Bo China International Graduate School

Miyazaki, Taisuke Japan Graduate School Niigata Univ.

Iakovleva, Margarita Russia Foundation in home country

Zrodowski, Lukas Poland Foundation in home country

Günes, Taylan Turkey Foundation in home country

Dr. Krupskaya, Yulia Russia Foundation in home country

Lopatina, Elena Russia Foundation in home country
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Guest stays of IFW members at other institutes

Christian Becker 07. - 17.10.2015, IMDEA Nanoscience Madrid/Spain, Measurements and 
research cooperation

Jeroen van den Brink 07. - 30.09.15, University of California, Santa Barbara/USA, Workshop 
„New Phases and Emergent Phenomena in Correlated Materials with 
Strong Spin-Orbit Coupling“

Bastien Dassoneville 16.07.2015 - 11.08.2015, Instutut Néel, Grenoble/France, 
research cooperation

Jörg Fink 13.07.2015 - 26.07.2015 and 28.09.2015 - 11.10.2015, 
BESSY HZB Berlin, ARPES Measurements and research cooperation

Vadim Grinenko 05.05.-06.06.2015, University Nagoya/Japan, Research cooperation

Erik Haubold 24.08.2015 - 06.09.2015 BESSY HZB Berlin, ARPES Measurements and 
research cooperation

Arne Helth 26.03.2015 - 17.06.2015, Korea Institute of Industrial Technology 
(KITECH), Seoul Rep. Korea, research cooperation

Julia-Kristin Hufenbach 26.03.2015 - 05.06.2015 Korea Institute of Industrial Technology 
(KITECH), Seoul Rep. Korea, research cooperation

Vladislav Kataev 17.04.2015 - 03.05.2015, Zavoisky Physical Technical Institute, Kazan, 
Russia, Measurements and research cooperation on magnetic 
resonance spectroscopy 

Andriy Leonov 01.11. - 27.12.15, RIKEN, Hirosawa, Wako, Saitama / Japan, 
Research cooperation

Jinbo Pang 14.09.2015 -14.10.2015 and 01.11.2015 - 23.12.2015, Center of 
Polymer and Carbon Materials of Polish Academy of Sciences, Zabrze, 
Poland, research cooperation

Johannes Schoop 18.05.2015 - 31.07.2015 Friedrich Alexander University Erlangen-
Nürnberg, R&D cooperation on Electron beam lithography 

Mihai Stoica 1.10.2015 - 15.10.2015 The Institute of Advanced Manufacturing 
Technology and Institute of Metallurgy and Materials Science, 
Polish Academy of Sciences, Krakow, Poland

31.10.2015 - 22.11.2015, University of Balearic Islands, 
Palma de Mallorca, Spain, guest lecturer 
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Board of trustees

Jörg Geiger, Saxonian Ministry of Science and Art - Head -

Dr. Herbert Zeisel, Federal Ministry of  Education and Research

Prof. Dr. Gerhard Rödel, TU Dresden

Prof. Dr. Konrad Samwer, Univ. Göttingen (up to 31.12.2015)

Prof. Dr. Sibylle Günter, MPI for Plasma Physics (from 01.01.2016 on)

Scientific Advisory Board

Prof. Dr. Maria-Roser Valenti, Univ. Frankfurt, Germany - Head -

Prof. Dr. Silke Christiansen, HZB Berlin, Germany (from 01.10.2015 on)

Prof. Dr. Andrey Chubukov, Univ. of Minnesota, USA (from 01.10.2015 on)

Prof. Dr. Philippe M. Fauchet, Vanderbilt Univ., USA

Prof. Dr. Matthias Göken, Univ. Erlangen-Nürnberg, Germany 

Prof. Dr. Alan Lindsay Greer, Univ. of Cambridge, U.K.

Prof. Dr. Rudolf Gross, Walter Meißner Institute Garching, Germany (up to 30.09.2015)

Prof. Dr. Rolf Hellinger, Siemens AG Erlangen, Germany

Prof. Dr. Xavier Obradors Berenguer, Univ. Autònoma de Barcelona, Spain

Prof. Dr. Roberta Sessoli, Univ. di Firenze, Italy

Prof. Dr. Eberhardt Umbach, Karlsruhe Institute of Technology, Germany
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Picture credits

Jürgen Lösel   Page 3, 9, 25, 39, 43, 56, 69,

Matthias Hultsch  Page 13, 29, 33, 60, 73, 77, 81, 85    

Jürgen Jeibmann  Page 4 (right photo), page 5 (left photo), page 8 (right photo)  

Jose Poblete on behalf of DGM  Page 5 (right photo), page 6 (right photo) page 8 (middle photo) 

All others: IFW Dresden
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Research organization of IFW Dresden

Institute for
Metallic Materials (IMW)

Prof. Dr. Kornelius Nielsch - 104

Secr.: Svea Fleischer - 102

Chemical synthesis of materials

Dr. Heike Schlörb - 230

Functional oxide layers and 
superconductors

Dr. Ruben Hühne - 716

Magnetic materials

Dr. Thomas G. Woodcock - 221

Functional magnetic films

Dr. Sebastian Fähler - 328

Quantum materials and devices

PD Dr. Andy Thomas - 746

Thermoelectric materials 
and devices

Dr. Gabi Schierning - 1875

Metal physics

Prof. Dr. Jens Freudenberger- 550

Magnetic microstructures

Prof. Dr. Rudolf Schäfer - 223

Metastable and nanostructured 
materials

Dr. Bernd Rellinghaus - 754

Institute for
Solid State Research (IFF)

Prof. Dr. Bernd Büchner - 808

Secr.: Kerstin Höllerer - 300
Katja Schmiedel  - 805

Surface dynamics

Dr. Hagen Schmidt - 278

Transport and scanning probe 
microscopy

Dr. Christian Heß - 533

Chemistry of nanomaterials

Dr. Alexey Popov - 871

Magnetic properties

Dr. Vladislav Kataev - 328

Electronic and optical properties

Prof. Dr. Martin Knupfer - 544

Synchrotron methods

Dr. Sergey Borisenko - 566

Crystal growth and synthesis 
of inorganic materials

Dr. Sabine Wurmehl - 519

Institute for
Complex Materials (IKM)

Dr. Thomas Gemming - 298
(temp.)

Secr.: Brit Präßler-Wüstling - 217
Janett Schuster - 198

Solidification processes and 
complex structures

Assoc. Prof. Dr. Mihai Stoica - 644

Magnetic composites and 
applications 

Dr. Anja Waske - 846

Micro- and nanostructures

Dr. Thomas Gemming - 298

Chemistry of 
functional materials

Dr. Annett Gebert - 275

Electrochemical energy storage

Dr. Lars Giebeler - 652

Alloy design and processing

Dr. Uta Kühn - 402

Metallic glasses and composites

Dr. Simon Pauly - 451

Institute for
Integrative Nanosciences (IIN)

Prof. Dr. Prof. h. c. 
Oliver G. Schmidt - 800

Secr.: Kristina Krummer - 810

Tubular Nanomembrane 
Materials and Devices

Prof. Dr. Oliver G. Schmidt - 800

Rolled-up photonics

Dr. Libo Ma - 1153

Integrated nanophotonics

Dr. Fei Ding - 752

Micro- and nanobiomedical 
engineering

Dr. Mariana Medina Sanchez - 489

Institute for Theoretical
Solid State Physics (ITF)

Prof. Dr. 
Jeroen van den Brink - 400

Secr.: Grit Rötzer - 380

Theoretical Solid State Physics

Prof. Dr. Jeroen van den Brink-400

Quantum Chemistry 

Dr. Liviu Hozoi - 1829

Quantum theory of complex 
nanoarchitectures

Dr. Carmine Ortix - 352

Numerical solid state physics

Dr. Manuel Richter - 360

Date: January 2016
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engineering
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Theoretical Solid State Physics

Quantum Chemistry

Quantum theory of complex
nanoarchitectures

Numerical solid state physics

Prof. Dr. 
Dirk Lindackers -580

Secr.: Nicole Büttner -505

Electrical Engineering
and Electronics

Mechanical Engineering

Information Technologies

Dipl.-Kffr.          - 620
Friederike Jaeger

Secr.: Ulrike Nitzold -621

Finance Deparment

Human Resources

Purchase and Disposal

Library

Facility Management

Public Relation, Media Project Funding,
EU-office   

Internal Auditor

Confidential Representative
(Ombudsperson)

Representative Body for
Disabled Employees

Equal Opportunity 
Commissioner

Labour Council

Scientific-Technical 
Councill (WTR)

Data Security Officer

Safety Officer Controlling

Administrative Director
Dr. Doreen Kirmse 

Ass.: Kristin Koßmann    -376
Secr.: Anja Hänig      -200

Visitor’s Address 

Helmholtzstrasse 20
D-01069 Dresden

Mailing Address

PF 27 0116
D-01171 Dresden

Phone

Tel.: +49 351 46 59-0
Fax: +49 351 46 59-540

Internet
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info@ifw-dresden.de Date: January 2016

Head: MDgt Jörg Geiger
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