311 research outputs found

    Optimizing Dataflow Systems for Scalable Interactive Visualization

    Full text link
    Supporting the interactive exploration of large datasets is a popular and challenging use case for data management systems. Traditionally, the interface and the back-end system are built and optimized separately, and interface design and system optimization require different skill sets that are difficult for one person to master. To enable analysts to focus on visualization design, we contribute VegaPlus, a system that automatically optimizes interactive dashboards to support large datasets. To achieve this, VegaPlus leverages two core ideas. First, we introduce an optimizer that can reason about execution plans in Vega, a back-end DBMS, or a mix of both environments. The optimizer also considers how user interactions may alter execution plan performance, and can partially or fully rewrite the plans when needed. Through a series of benchmark experiments on seven different dashboard designs, our results show that VegaPlus provides superior performance and versatility compared to standard dashboard optimization techniques

    Semantic Similarity of Spatial Scenes

    Get PDF
    The formalization of similarity in spatial information systems can unleash their functionality and contribute technology not only useful, but also desirable by broad groups of users. As a paradigm for information retrieval, similarity supersedes tedious querying techniques and unveils novel ways for user-system interaction by naturally supporting modalities such as speech and sketching. As a tool within the scope of a broader objective, it can facilitate such diverse tasks as data integration, landmark determination, and prediction making. This potential motivated the development of several similarity models within the geospatial and computer science communities. Despite the merit of these studies, their cognitive plausibility can be limited due to neglect of well-established psychological principles about properties and behaviors of similarity. Moreover, such approaches are typically guided by experience, intuition, and observation, thereby often relying on more narrow perspectives or restrictive assumptions that produce inflexible and incompatible measures. This thesis consolidates such fragmentary efforts and integrates them along with novel formalisms into a scalable, comprehensive, and cognitively-sensitive framework for similarity queries in spatial information systems. Three conceptually different similarity queries at the levels of attributes, objects, and scenes are distinguished. An analysis of the relationship between similarity and change provides a unifying basis for the approach and a theoretical foundation for measures satisfying important similarity properties such as asymmetry and context dependence. The classification of attributes into categories with common structural and cognitive characteristics drives the implementation of a small core of generic functions, able to perform any type of attribute value assessment. Appropriate techniques combine such atomic assessments to compute similarities at the object level and to handle more complex inquiries with multiple constraints. These techniques, along with a solid graph-theoretical methodology adapted to the particularities of the geospatial domain, provide the foundation for reasoning about scene similarity queries. Provisions are made so that all methods comply with major psychological findings about people’s perceptions of similarity. An experimental evaluation supplies the main result of this thesis, which separates psychological findings with a major impact on the results from those that can be safely incorporated into the framework through computationally simpler alternatives

    From Ontology-enabled Services to Service-enabled Ontologies : Making Ontologies Work in e-Science with Onto <-> SOA

    Get PDF
    Top, J.L. [Promotor

    Fuzzy expert systems in civil engineering

    Get PDF
    Imperial Users onl

    Contelog: A Formal Declarative Framework for Contextual Knowledge Representation and Reasoning

    Get PDF
    Context-awareness is at the core of providing timely adaptations in safety-critical secure applications of pervasive computing and Artificial Intelligence (AI) domains. In the current AI and application context-aware frameworks, the distinction between knowledge and context are blurred and not formally integrated. As a result, adaptation behaviors based on contextual reasoning cannot be formally derived and reasoned about. Also, in many smart systems such as automated manufacturing, decision making, and healthcare, it is essential for context-awareness units to synchronize with contextual reasoning modules to derive new knowledge in order to adapt, alert, and predict. A rigorous formalism is therefore essential to (1) represent contextual domain knowledge as well as application rules, and (2) efficiently and effectively reason to draw contextual conclusions. This thesis is a contribution in this direction. The thesis introduces first a formal context representation and a context calculus used to build context models for applications. Then, it introduces query processing and optimization techniques to perform context-based reasoning. The formal framework that achieves these two tasks is called Contelog Framework, obtained by a conservative extension of the syntax and semantics of Datalog. It models contextual knowledge and infers new knowledge. In its design, contextual knowledge and contextual reasoning are loosely coupled, and hence contextual knowledge is reusable on its own. The significance is that by fixing the contextual knowledge, rules in the program and/or query may be changed. Contelog provides a theory of context, in a way that is independent of the application logic rules. The context calculus developed in this thesis allows exporting knowledge inferred in one context to be used in another context. Following the idea of Magic sets from Datalog, Magic Contexts together with query rewriting algorithms are introduced to optimize bottom-up query evaluation of Contelog programs. A Book of Examples has been compiled for Contelog, and these examples are implemented to showcase a proof of concept for the generality, expressiveness, and rigor of the proposed Contelog framework. A variety of experiments that compare the performance of Contelog with earlier Datalog implementations reveal a significant improvement and bring out practical merits of current stage of Contelog and its potential for future extensions in context representation and reasoning of emerging applications of context-aware computing

    Gridfields: Model-Driven Data Transformation in the Physical Sciences

    Get PDF
    Scientists\u27 ability to generate and store simulation results is outpacing their ability to analyze them via ad hoc programs. We observe that these programs exhibit an algebraic structure that can be used to facilitate reasoning and improve performance. In this dissertation, we present a formal data model that exposes this algebraic structure, then implement the model, evaluate it, and use it to express, optimize, and reason about data transformations in a variety of scientific domains. Simulation results are defined over a logical grid structure that allows a continuous domain to be represented discretely in the computer. Existing approaches for manipulating these gridded datasets are incomplete. The performance of SQL queries that manipulate large numeric datasets is not competitive with that of specialized tools, and the up-front effort required to deploy a relational database makes them unpopular for dynamic scientific applications. Tools for processing multidimensional arrays can only capture regular, rectilinear grids. Visualization libraries accommodate arbitrary grids, but no algebra has been developed to simplify their use and afford optimization. Further, these libraries are data dependent—physical changes to data characteristics break user programs. We adopt the grid as a first-class citizen, separating topology from geometry and separating structure from data. Our model is agnostic with respect to dimension, uniformly capturing, for example, particle trajectories (1-D), sea-surface temperatures (2-D), and blood flow in the heart (3-D). Equipped with data, a grid becomes a gridfield. We provide operators for constructing, transforming, and aggregating gridfields that admit algebraic laws useful for optimization. We implement the model by analyzing several candidate data structures and incorporating their best features. We then show how to deploy gridfields in practice by injecting the model as middleware between heterogeneous, ad hoc file formats and a popular visualization library. In this dissertation, we define, develop, implement, evaluate and deploy a model of gridded datasets that accommodates a variety of complex grid structures and a variety of complex data products. We evaluate the applicability and performance of the model using datasets from oceanography, seismology, and medicine and conclude that our model-driven approach offers significant advantages over the status quo

    Operationalized Intent for Improving Coordination in Human-Agent Teams

    Get PDF
    With the increasing capabilities of artificial intelligent agents (AIAs) integrated into multi-agent systems, future concepts include human-agent teams (HATs) in which the members perform fluidly as a coordinated team. Research on coordination mechanisms in HATs is largely focused on AIAs providing information to humans to coordinate better (i.e. coordination from the AIA to the human). We focus on the compliment where AIAs can understand the operator to better synchronize with the operator (i.e. from the human to the AIA). This research focuses specifically on AIA estimation of operator intent. We established the Operationalized Intent framework which captures intent in a manner relevant to operators and AIAs. The core of operationalized intent is a quality goal hierarchy and an execution constraint list. Designing a quality goal hierarchy entails understanding the domain, the operators, and the AIAs. By extending established cognitive systems engineering analyses we developed a method to define the quality goals and capture the situations that influence their prioritization. Through a synthesis of mental model evaluation techniques, we defined and executed a process for designing human studies of intent. This human-in-the-loop study produced a corpus of data which was demonstrated the feasibility of estimating operationalized intent

    A Formalism for Visual Query Interface Design

    Get PDF
    The massive volumes and the huge variety of large knowledge bases make information exploration and analysis difficult. An important activity is data filtering and selection, in which both querying and visualization play important roles. Interfaces for data exploration environments normally include both, integrating them as tightly as possible. But many features of information exploration environments, such as visual representation of queries, visualization of query results, interactive data selection from visualizations, have only been studied separately. The intrinsic connections between them have not been described formally. The lack of formal descriptions inhibits the development of techniques that produce new representations for queries, and natural integration of visual query specification with query result visualization. This thesis describes a formalism that describes the basic components of information exploration and and their relationships in information exploration environments. The key aspect of the formalism is that it unifies querying and visualization within a single framework, which provides a foundation for designing and analysing visual query interfaces. Various innovative designs of visual query representations can be derived from the formalism. Simply comparing them with existing ones is not enough, it is more important to discover why one visual representation is better or worse than another. To do this it is necessary to understand users’ cognitive activities, and to know how these cognitive activities are enhanced or inhibited by different presentations of a query so that novel interfaces can be created and improved based on user testing. This thesis presents a new experimental methodology for evaluating query representations, which uses stimulus onset asynchrony to separate different aspects of query comprehension. This methodology was used to evaluate a new visual query representation based on Karnaugh maps, and showing that there are two qualitatively different approaches to comprehension: deductive and inductive. The Karnaugh map representation scales extremely well with query complexity, and the experiment shows that its good scaling properties occur because it strongly facilitates inductive comprehension
    • …
    corecore