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Preface

T o me the end of my PhD work signifies the end of a long journey through the vaults

of knowledge at two universities. It began in 1996 in the Kharkov State Technical

University of Radio Electronics (KhTURE) in Ukraine. I spent 9 semesters in the city of

Kharkov studying Decision Support Systems. At that time I was very much fascinated by

and overwhelmed with the vastness of Computer Science so I did not even think about doing

any research in that area.

In 2000 I got an opportunity to take part in an exchange program between KhTURE

and Vrije Universiteit Amsterdam (VU). In the end of 2000 I arrived to the Netherlands and

enrolled into the master’s program in AI. The AI study was fascinating but it was something

else that discovered the joys of research for me. At VU I joint the group of Dieter Fensel as

a part-time junior researcher. Being part of this dynamic, international, inspiring and very

supportive team has helped me greatly to adjust to the new way of studying and working.

Having spent two years as a junior researcher it became easier to see myself as a full-

time PhD student which I became in the end of 2002 in a different group and with a new

supervisor.

After graduating VU with a master’s degree in AI I became a PhD student there under

supervision of Jan Top. The subject of my research, the Semantic Web, was very much

familiar to me from my previous experience but the work environment has changed signif-

icantly. It took me some time to fully realize what had changed and to adjust accordingly.

At the end, doing PhD was not as joyful as I thought after working two years as a junior

researcher. It turned out to be difficult and challenging work, on many occasions hard and

sometimes even frustrating. But as we all know – the greater the challenge, the greater the

reward.

To me the greatest reward is what I have learned and I believe I have learned a lot doing

my PhD. I learned to do research independently, I realized that often your work is judged not

only by using logic and objective criteria but also by probing how confident you are about
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it. I learned to accept critique more readily, and try to get the most out of it to improve

my research and papers. I learned to make an effort not to reject ideas too hastily, to take

my time to try to find a context in which an idea would start making sense to me. Often it

helped me to better understand the subject in question and why it was presented this way.

Through my PhD journey I have met quite a few people that have affected its direction

in a significant way, helped me to shape my research and made it possible for me to learn.

I am very much grateful to all of them and I hope that I also was (or will be) able to give

something back in return. In particular I would like to thank Jan Top both for his significant

contribution to my work and for his dedication to manage the unmanageable. I would

like to thank all my colleagues from VU and the Agrotechnology & Food Sciences Group

from the Wageningen University Research Center as they largely created the environment

in which my research was developed. I would like to thank Dieter Fensel for showing that

research can also be fun and visionary. I especially would like to thank my friends (notably

Borys Omelayenko) and family (furthermost my wife Zhanna) for being there for me and

supporting me all this time.
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Chapter 1

Introduction

1.1 Knowledge Reusability

Although there is still an ongoing debate on what knowledge is (see [2, 3, 4] for some

of proposed definitions), it is indisputable that it plays a prominent role in the advance-

ment of humanity. The modern notions of knowledge-based society and knowledge worker

[5] are confirmations to that. Knowledge and intelligent behavior closely relate to each

other. This connection is well illustrated with the field of Artificial Intelligence within

which many knowledge-related disciplines such as Knowledge Representation, Knowledge

Management, Knowledge-based Systems have emerged over the years. Thus, we believe

that knowledge possesses certain intrinsic qualities that enable such profound impact. In

this section we will outline some of these qualities and how we can both benefit from them

and further enhance them.

In this dissertation we consider usability and reusability to be among these enabling

characteristics of knowledge. The reusability characteristic is most prominent in declar-

ative knowledge that is typically expressed in descriptive sentences stating what exists in

a domain of discourse [6]. Declarative knowledge is often opposed to procedural knowl-

edge that instructs on how to perform a certain task in the most effective and efficient way.

Procedural knowledge is considered to be less reusable than declarative knowledge due to

its tight coupling to a single task whereas declarative knowledge can be exploited in var-

ious and unforeseen applications. However, we believe that for exactly the same reason,

procedural knowledge is much easier to utilize in a given context, implying better usability.

The development of mankind has been accompanied with new and more advanced

means for knowledge acquisition and expression. The appearance of spoken languages has

1



2 CHAPTER 1. INTRODUCTION

enabled human beings to externalize knowledge. By expressing and sharing it with others

we achieve continuity of knowledge across generations. Hence, we can assume that one of

the key qualities of knowledge is that it is transferable from one carrier to another. Knowl-

edge transfer normally relies on a language (e.g., a spoken language) to express knowledge

and communication means (e.g., act of speech) to deliver it to another party.

Written languages and writing systems such as book printing provided a more effective

medium for knowledge communication. This has further improved precision of knowledge

transfer and made accumulation of knowledge scalable beyond the capacity of a single

individual. Ancient libraries already contained vast amounts of knowledge that no single

person could ever accumulate and pass on relying on speech only. Written languages have

further improved means to express, communicate and accumulate knowledge thus greatly

contributing to its transferability making more knowledge available to a greater number of

people.

The pioneer thinkers of Ancient Greece (Plato and Aristotle) have laid a basis for the

notion of knowledge as we know it now (epistemology of Plato and numerous Dialogues,

Aristotle’s scientific method [7]). Their work has been further developed by Descartes (and

others) into what has become the scientific method [8]. The scientific method has drasti-

cally changed the way knowledge is acquired and allowed to acquire objective knowledge

– knowledge that is not specific to a certain person or situation. Being objective – inde-

pendent from its source – knowledge acquires more potential destinations, becomes more

transferable and further increases its outreach.

The scientific method has also greatly facilitated progressive construction of scientific

theories that heavily relied on their predecessors. In just a few hundred years the critical

amount of knowledge has arguably triggered (or at least significantly contributed to) the

industrial revolution [9]. This gave start to a dramatic transformation of society making

it ever since dependent on knowledge. The technological progress made more resources

available to science. The combination of effective scientific method and ever increasing

resources contributed to the explosive growth of information and knowledge.

At one point, creation, distribution and use of information have become dominant ac-

tivities transforming the industrial society into an information/knowledge-based one. To

support and manage this growth and large scale distribution information technologies em-

powered by Computer Science (Knowledge Management) have been employed. To keep up

with the accelerating growth novel methods and solutions are required to effectively manage

distributed information and knowledge.
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The scientific method is primarily a tool for understanding the world around us, i.e. for

acquiring knowledge. The advances in scientific method made this tool ever more efficient.

However, it still remains a challenge to find out how to represent acquired knowledge in

such a way that it can be efficiently applied. We believe that application of knowledge

(extraction of utility from it) is the final phase of knowledge transfer. In this work we focus

on the application of knowledge and will use usability, as a characteristic of knowledge that

enables its effective and efficient application.

The trade-off between usability and reusability of knowledge seems inevitable. The

well-established separation of knowledge into declarative (i.e. reusable) and procedural

(i.e. usable) is an illustration of that fact. In the Knowledge Representation field declarative

knowledge has received most attention so far, whereas traditional Software Engineering

typically is centered on procedural knowledge. In our work, however, we bring procedural

knowledge into the focus striving to bridge these two types of knowledge. More specifically,

we seek for an approach that enables flexibility in shifting the balance between usability and

reusability of knowledge representation.

Usability represents the pragmatic (utilitarian) perspective on knowledge. From this

perspective, knowledge transfer is effective only when a receiving party can efficiently ex-

tract utility from the acquired knowledge. In this work we define a method that facilitates

application of knowledge. The presented method expands upon two existing Knowledge

and Software Engineering techniques: ontologies and services. We claim that the presented

approach contributes to efficiency and effectiveness of both of its underlying techniques.

1.2 Ontologies

The increasing size of the World Wide Web is a prominent example of the rapid and explo-

sive growth of information usage on a truly global scale. In just about a decade the Web

has grown into a world wide, densely connected information network. Modern information

technology is scalable enough to store and transfer large amounts of data. However, the

capabilities of information analysis methods are insufficient to effectively manage and use

all these resources.

The main reason for this is that software (agents, applications, components, etc) cannot

cope with the high degree of variety and human-orientation of Web resources. To address

these problems, Tim Berners-Lee has proposed the vision of the Semantic Web – an evolu-

tion of the Web where disparate and decentralized software agents can “understand” Web

resources and facilitate their exploitation [10]. To enable this understanding the Semantic
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Web relies on ontologies to facilitate effective knowledge transfer between creators of Web

resources and software that exploits these resources.

Since we focus on the pragmatic side of knowledge, we assume that effectiveness and

efficiency of ontologies are determined by the amount of utility (effectiveness) a software

agent can extract from it and by how much effort (efficiency) is required for that. Therefore,

we seek to improve these two qualities of ontologies by introducing elements of procedural

knowledge into the predominantly declarative knowledge representation employed in the

state of the art ontology languages.

Having been borrowed by AI/KR researchers from philosophy, ontologies were exposed

to a wide range of research fields such as Intelligent Agents, Knowledge Management,

Semantic Web. In philosophy Ontology is the study of things that exist. The first reference

to the term ontology is considered to be in the works Ogdoas Scholastica (1606) by Jacob

Lorhard (Lorhardus) and Lexicon philosophicum (1613) by Rudolph Gockel. However,

the subject of Ontology – the study of what exists – was addressed already at the times of

Aristotle. From the very beginning Ontology attempts to describe the world in terms of

categories and relations between entities. The same concepts are still employed in the state

of the art ontology languages.

In Artificial Intelligence one of the earliest and the most frequently cited definitions of

an ontology is given by T.R. Gruber: an ontology is an explicit specification of a concep-

tualization [11]. Undeniably, it is hardly possible to define an ontology in one sentence,

therefore numerous additions to that definition have followed. Already in 1995 clarifica-

tion was required on what the term ontology means in the fields of Artificial Intelligence

and Knowledge Representation [12]. Recently, because of the activities of the World Wide

Web Concortium (W3C) (RDF/S [13, 14], the OWL family of ontology languages [15],

the Semantic Web [16]) ontologies have attracted even more interest. Nevertheless, we be-

lieve that the definition by T.R. Gruber has largely defined the perception of ontologies in

numerous research fields.

The dream of Artificial Intelligence – making computers understand – is yet to come

true but ontologies are expected to play a key role in achieving it. Ontologies aim to achieve

the effect of understanding in software agents through ontological commitment – a shared

agreement on what a concept means. Ontologies in the Semantic Web are not directly con-

cerned with what a concept actually means to humans. Instead, they aim at achieving a

wide-enough agreement about its meaning between software agents. An ontology speci-

fies this meaning by declaring what kind of relationships a concept maintains with other
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concepts. Such declarative knowledge can then be employed to validate how a concept is

interpreted by a software agent.

Domain knowledge described in ontologies can be employed to enrich information and

data resources and make them more understandable to software agents. The ontology-based

annotations of Web pages [17], Web services [18, 19] are typical examples of such an ap-

proach. Application of ontologies can potentially improve the accuracy and effectiveness

of analysis of annotated resources, facilitating such tasks as information and document re-

trieval [20]. However, the declarative nature of the represented knowledge leaves a signif-

icant gap between what constitutes a domain and how that domain can be exploited, thus

making ontologies less suitable for a direct utilization. We believe that by introducing pro-

cedural elements into ontologies we can transform them into knowledge sources suited for

direct consumption by software agents.

To facilitate large-scale ontological commitment modern ontology languages employ

formal declarative representation techniques such as Description logics [21]. These tech-

niques allow to describe what a concept means thoroughly and unambiguously (with respect

to the underlying formal foundation). The benefits of this approach are numerous and unde-

niable. However, so are the obstacles to overcome on the way to effectively and efficiently

employ concepts defined in such a way:

• Formal methods rely on abstraction to reduce the number of represented aspects of

a concept. The main consequence of this is that a formally represented concept may

lack aspects crucial for unforeseen application scenarios and may clash with intuitive

understanding of the meaning of the concept.

• Different formal methods often employ non-complementary (or even incompatible)

modeling techniques making their integration very difficult and often even impossi-

ble.

• Complexity of formal methods requires highly trained personnel to create ontologies

and then to apply them. Significant effort (investment) is required to design ontolo-

gies and even then it is not immediately clear how to apply them to a problem at hand

(let alone to an unforeseen application).

• Declarative specification of what a concept means does not directly imply how we

can extract utility from it.
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If we refer back to Gruber’s definition of ontologies we conclude that there is a limita-

tion: this definition encapsulates the essence of an ontology in the notion of conceptualiza-

tion without defining the latter. Moreover, the definition implies that the specification and

conceptualization mechanisms are independent. However, since the capabilities of formal

representation mechanisms (traditionally employed in ontology languages) are inherently

limited, they dictate the conceptualization. Such a link between specification and concep-

tualization does not pose a problem for artificial and abstract domains (e.g., mathematics),

however it poses significant difficulties if applied to the domains grounded in real-world

(physics, biology, business domains, etc).

The prevalence of specification over conceptualization implies that knowledge to be

captured in an ontology has to be conceptualized according to the formal mechanism un-

derlying the ontology language. Such conceptualization of knowledge is likely to be signifi-

cantly different from (misaligned to) a conceptualization employed by a domain expert. We

believe that this negatively affects the usability of ontologies, preventing efficient extraction

of utility relevant to the domain of the ontology.

Moreover, if we consider all stakeholders (domain experts, ontology engineers, software

engineers) involved into the creation and exploitation of an ontology (in software) then the

effect of misalignment is amplified significantly. This, we believe, prevents effective use of

ontologies in software applications.

To summarize, ontologies aim to achieve shared understanding through a wide scale

commitment. However, by choosing a formal and declarative approach they not only intro-

duce a significant gap between what exists in a domain and how it can be exploited, but also

lead to the domination of specification over conceptualization resulting in a misalignment

between the captured meaning of a concept and its understanding by a domain expert. The

gap and the misalignment decrease the usability of ontologies and hinder their acceptance.

In our work we aim to mitigate these drawbacks and to improve the usability of ontologies

by extending them with non-declarative and non-formal elements.

To improve the usability of ontologies and knowledge captured therein we propose to

expand their underlying specification mechanism beyond the formal ones. This will provide

more flexibility in choosing knowledge conceptualization, thus making it less dependent on

specification. We expect the proposed extension to allow for better alignment between

ontological conceptualization and an expert’s perception of a domain as well as to provide a

readily-available utility to software agents. We propose to use a service to carry ontological

utility directly exploitable by software agents.



1.3. SERVICES AND SERVICE-ORIENTED ARCHITECTURES 7

1.3 Services and Service-Oriented Architectures

Arguably, the success of the Web has been the single most important factor behind the rise

of services. Companies have recognized the value of openness and accessibility of the Web

and started offering business services accessible via the Web. The raise of Web shops, hotel

and ticket reservation services gave birth to e-commerce and e-services.

World-wide penetration makes the Web very attractive not only for reaching potential

customers but also as a global medium for business-to-business communication. In the same

manner as the Web has enabled Web pages to refer to each other, it enables inter-software

communication on a global scale. Each of the many approaches to distributed computing

(distributed objects, client/server, remote procedure calls, services, etc) can benefit from

such communication medium. Services and Service-Oriented Architectures (SOA) attract a

significant amount of attention in industry and academia by promising to provide an effec-

tive way to reuse (transfer and apply) business functionality captured in software compo-

nents. This will enable enterprises to timely respond to changes in the business environment

by either adjusting existing or providing new services.

The exact meaning of what a service is differs across communities [22]. In this work

we do not attempt to embrace all existing viewpoints on a service. Instead, we consider

a service to be a software component and focus on its two arguably most distinguishing

characteristics – business alignment and loose coupling:

• Loose coupling means that a consumer (e.g., a software component) can employ a

service using only a small number of assumptions about its interface. No knowledge

of internal implementation details is required.

• Business alignment determines the effectiveness of a service by ensuring that a ser-

vice directly supports a business process. Business alignment also implies that a

service encapsulates a coarsely-grained functionality visible at the business-level.

We consider a service as a means to efficiently deliver functionality readily exploitable

by software agents. The delivered functionality, on the other hand, must be effective for the

purpose at hand. Thus, we believe that ontologies and services can complement each other

and have a potential to:

• improve effectiveness (i.e. business alignment) of services by employing proper do-

main conceptualization specified in ontologies;
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• improve usability of ontologies by allowing them to exploit services as carriers of

procedural domain knowledge directly available to software agents;

• improve overall knowledge transfer by using a combination of an ontology (contain-

ing declarative knowledge) and a service (containing procedural knowledge) to cap-

ture knowledge preserving intuitive domain conceptualization and making it readily-

available for consumption by software agents.

We do not claim that this work contains a complete account of a new ontology- and

service-based knowledge representation technique. However, our belief is that by applying

the introduced framework to real life e-Science problems we provide a sufficient evidence

of the potential of the proposed approach, and the combination of ontologies and services

in general.

1.4 e-Science

Normally the term e-Science refers to computationally intensive and massively distributed

numerical computing for scientific purposes [23]. However, recently the term has gained a

broader meaning and refers to a scientific process facilitated by advanced information and

knowledge processing means. One of the reasons for this expansion of the term’s meaning

is that science itself, the primary cause of knowledge explosion, started requiring more

advanced techniques to manage vast amounts of accumulated knowledge. Over time the

depth of scientific explorations has grown, implying an ever more narrow specialization of

a growing number of (sub-)fields and disciplines. These fields departed from each other,

increasing the effort required to reuse knowledge across fields. Presently, interdisciplinary

fields (bioinformatics, biophysics, etc) experience these problems the most. To provide

effective support to scientists in managing and applying volumes of existing knowledge

novel approaches are required.

In this dissertation we apply techniques and ideas originated in the field of the Semantic

Web (ontologies) and Software Engineering (services) to the field of e-Science. e-Science

supplies us with practical problems that we employ as use cases that are addressed with the

proposed framework.

Generally speaking, the scientific process can be seen to consist of the following activi-

ties:

• Define a research question.
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• Gather and analyze relevant information and knowledge.

• Form a hypothesis explaining or answering the question.

• Plan and perform an experiment.

• Analyze the results (data) of the experiment to confirm or reject the hypothesis. If

necessary refine and re-evaluate the hypothesis.

• Publish results (acquired knowledge).

The effectiveness and efficiency of these steps depends on the capability of scientists

to discover, assess and apply various types of knowledge and information. For example,

to gather and analyze knowledge (normally in the form of publications, reports, results of

experiments, etc) a scientist has to be able to quickly locate it and assess its relevance to the

question at hand.

For experiment execution and subsequent analysis of results a scientist has to be able to

effectively apply knowledge sources discovered at the preceding steps. This indicates that

we should assist the scientist not only in processing (discovering, estimating relevance, etc)

static descriptions of knowledge but also in actual applications of existing knowledge.

Finally, when new knowledge is acquired it has to be expressed and published in a form

that facilitates its future (re-)use (discovery, assessment and application).

Providing an automated support for these activities is a challenging task due to a great

variety of forms scientific knowledge and information take, their distribution, interconnect-

edness, disparate origin and so forth. These characteristics make the challenge rather similar

to the general task of improving accessibility of Web resources addressed in the Semantic

Web. More specifically, software agents experience difficulties in coping with weak struc-

ture, ambiguity and conceptual incompatibility of resources.

There is also a number of features that distinguish the field of e-Science and its environ-

ment from the Web in general:

• e-Science is knowledge intensive: it is concerned with producing new knowledge

by using available knowledge sources as much as possible. In particular a strong

dependency on mathematics sets e-Science apart from other areas of application.

• e-Science is interdisciplinary: knowledge sources come from a variety of fields and

many of them are based on rather unique and disjoint conceptual systems.
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• e-Science is computation intensive: many e-Science fields require extensive simula-

tion, computational processing of obtained data, etc. However, even when a knowl-

edge resource is well specified, it is still a problem to apply it: the step from a de-

scription of knowledge to executable software is a non-trivial one.

• e-Science varies in scale: the scale of knowledge reuse and application differs signif-

icantly from a single scientist, to a laboratory, research institutions, research commu-

nity, discipline, field, etc. Most of the day-to-day activities take place on a small to

medium scale in labs and research teams.

In e-Science information and knowledge resources are expressed in a variety of forms.

In our work we employ use cases that address the tabular representation of data (e.g., spread-

sheets), executable models (expressed in the Matlab language), reports and publications.

We believe that ontologies and services can provide the means to improve many e-Science

activities. More specifically they have a potential to:

• improve accessibility of static knowledge resources to software agents, thus improv-

ing effectiveness (e.g., precision) of specific computer-facilitated tasks such as infor-

mation retrieval;

• make knowledge resource (methods, algorithms, computational models) readily ap-

plicable;

• improve compatibility and integration of various knowledge sources both static and

dynamic;

• facilitate development of software solutions supporting e-Science by enhancing the

development process and by enabling a greater degree of reuse of existing knowledge

components.

In this thesis we demonstrate that by applying the proposed ontology- and service-based

framework we can indeed realize many of these benefits.

1.5 Research Questions

In our work practical application of knowledge plays a central role. Therefore our initial

research question is:
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1 How can typical e-Science tasks be facilitated with ontology-enabled software solu-
tions? In this research question we specifically investigate how the following e-Science

tasks (employed as use cases) can be facilitated with an ontology-enabled and service-

oriented technique:

• 1.1 The document retrieval task is about finding documents by matching a given

query against a collection of documents (publications, experimental results, etc).

• 1.2 The unit conversion task is about finding a conversion factor that can be used to

convert one unit of measure into another (e.g., meter to inch).

• 1.3 The task of checking consistency of models and datasets in terms of the units of

measurement and dimensions used.

• 1.4 The integration of tabular data with an ontology-ready data-model such as
RDF is about making results of experiments represented in a tabular form (e.g., in

spreadsheets) available to RDF-aware systems.

The initial research question outlines the application context of this work – e-Science.

To answer this question we have to find a uniform ontology- and service-oriented framework

that can be employed to provide solutions to the above-mentioned tasks. Thus, we arrive at

the central research question of this work.

2 How can ontologies and services (Service-Oriented Architectures) be integrated into
a framework facilitating application of knowledge in e-Science (and beyond it)? The

answer to this question constitutes an abstract framework consisting of general, ontology

language and technology independent, design principles and guidelines. In order to validate

this abstract framework and to be able to actually employ it to the target use cases we have

to answer two more specific sub-questions:

• 2.1 How can we integrate RDFS ontologies with REST services? In this sub-

question we apply the general design guidelines to the RDF and RDFS ontology lan-

guages and REST-like services. The result should provide us an operational frame-

work applicable to the described e-Science tasks.

• 2.2 How can ontology-enabled services work together? Composition of services

enables effective construction of complex functionality from simpler artifacts and,
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thus is an important component of a service-oriented approach. To answer this re-

search question we will design and implement a composition framework for onto-

logy-enabled services.

By employing tools such as ontologies and services to e-Science tasks we gain insights

in what constitutes usability and how ontologies and services themselves benefit from the

integration with each other. In addition to the main research questions we will address a

number of more general issues that summarize our experience gained while pursuing the

central research question. These general issues are:

3 How can we attach a service to an ontology and what does this imply for ontologies?
To answer this question we investigate the effect of ontologies and services on each other’s

usability. We will also analyze the framework proposed to address the second question

from the ontological perspective by re-interpreting it as a service-enabling mechanism for

ontologies.

4 How do ontologies affect characteristics of software development such as software
quality and development effort? In this question we analyze the overall potential of on-

tologies with respect to Software Engineering practice. The answer to this question will

allow us to estimate the overall practical feasibility of ontology-enabled Software Engi-

neering.

An important orthogonal requirement to the aforementioned research questions is that

the proposed solutions should be easily deployable by both software and knowledge en-

gineers. This requires us to maintain an acceptable level of complexity, reusing well-

established design principles and combining existing methods and technologies in a novel

but still natural and intuitively understandable way.

1.6 Research Method

In this work we employ the constructive research method [24]. We aim to provide feasible

(implementable in a prototype) and specific solutions to the stated research questions. At the

same time we strive to make the proposed approach general enough (or easily generalizable)

and outline the boundaries of its applicability.

Whenever possible and practically feasible we build prototype implementations of the
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proposed solutions. In some case this requires further specialization of the proposed so-

lution. Hence, our answers to the research questions can be considered on three levels of

generality:

• a general technology, and ontology language independent framework applicable as

widely as possible (Ontology-enabled Services, Service-enabled Ontologies, Black-

board-style Collaboration of Ontology-Enabled services);

• operationalization of the proposed frameworks and their implementation in a cor-

responding prototype middleware or application program interface (API) (RDF/S-

enabled REST Services, the FDR2 approach for linking relational and RDF models);

• a concrete application of an operationalized framework to the use cases that results in

a proof-of-concept (Web) application.

The border between the first two types of abstractions is not defined strictly. We allow

for a transition of assumptions and design choices between these two levels. Therefore, the

combination of the abstract framework and its operational counterpart (e.g., the Ontology-

enabled Services and RDF/S-enabled REST Services frameworks) should be regarded as a

single approach even if they are described in several chapters.

The operational frameworks are employed in the target e-Science use cases. In all use

cases, except one, the novelty is in the application of the proposed approach to design and

implement the solution rather than in the details of the solution itself. In other words, we

employ the use cases to illustrate the design choices guided by the proposed approach to

arrive at an ontology-enabled service-oriented architecture. However, internally in the com-

ponents composing this architecture we employ existing techniques for document retrieval,

unit conversion and consistency checking. The exception to this is the use case 1.4 (the in-

tegration of relational and RDF models) where both the proposed solution and the approach

to its implementation are novel.

In two chapters we use a more theoretic (speculative) approach. In Chapter 3 we re-

interpret the proposed ontology-enabled service-oriented framework from the Ontology En-

gineering perspective. In Chapter 7 we perform a theoretical estimation of the impact of on-

tologies on Software Engineering practice in general. The argumentation employed in these

chapters is derived from our experience in implementing ontology- and service-enabled so-

lutions to the target use cases. We believe these chapters provide valuable insights into

relationships between ontologies and services and, more generally, Ontology and Software

Engineering practices.
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1.7 Summary of Contributions

The main contributions of this dissertation are the following:

• Onto⇔SOA – a framework that combines ontologies and services to facilitate repre-

sentation and application of knowledge.

– Definition of a restricted document-oriented service model that emphasizes the

domain alignment and loose coupling characteristics of Service-Oriented Ar-

chitectures.

– Ontology-enabled Services – an approach aimed at improving effectiveness of

Service-Oriented Architectures by enhancing their domain alignment and loose

coupling characteristics by means of ontologies.

– A Blackboard-style Service Composition mechanism extends Ontology-enabled

Services to provide an application-independent way to combine such services in

a simple yet effective way.

– Service-enabled Ontologies – a general mechanism that couples a service to an

ontology to provide domain-specific inferences capabilities and capture appli-

cation semantics of domain concepts.

• The MoRe framework – an operationalization of Onto⇔SOA that employs the RDF

data-model, RDFS ontologies and REST-like services.

• A number of solutions for the e-Science domain have been designed and implemented

in a novel ontology- and service-enabled way according to the Onto⇔SOA frame-

work:

– the Document Retrieval, Unit Conversion, Unit and Dimension Consistency

Checking services and demo applications;

– the FDR2 approach and corresponding services for connecting relational-like

(tabular) data to the RDF-data model.

• An estimation of the effect of ontologies on the quality of web application and de-

velopment effort has been given. This indicates when we can expect benefits from

introducing ontologies into software engineering practice.



Chapter 2

Ontology-enabled Services and
Service-Oriented Architectures

In this chapter we address the central research question of the dissertation: “How can ontologies and services

be integrated into a framework facilitating application of knowledge in e-Science?”. To answer this question

we introduce Onto⇔SOA – a framework that integrates ontologies into Service-Oriented Architectures. The

framework is based upon a restricted service model defined as an architectural style that focuses on domain

alignment and loose coupling of services. In Onto⇔SOA we propose to employ ontologies to further enhance

these service characteristics. We propose to use an ontology as a service schema that defines a document-

oriented service interface. Through this interface a direct exchange of ontology-based messages between a

service and its consumer takes place. In this chapter we employ the Document Retrieval use case as a running

example that demonstrates the main ideas behind Onto⇔SOA.

�
Maksym Korotkiy and Jan L. Top: Onto⇔SOA: From Ontology-enabled SOA to Service-enabled On-

tologies. In proceedings of International Conference on Internet and Web Application and Services
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Maksym Korotkiy: Towards an Ontology-enabled Service Oriented Architecture. In proceedings
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Nowadays Web Services and Service-Oriented Architectures (SOA) attract a signifi-

cant amount of attention in industry and academia by promising to provide an effective and

15
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efficient way to use functionality captured in software components. This will enable enter-

prises to timely respond to changes in the business environment by either adjusting existing

or providing new services.

In this work we assume that effectiveness and efficiency of a service are largely deter-

mined by its business alignment and loose coupling characteristics. Hence, the main goals

of this chapter are:

• to identify factors effecting the business alignment and loose coupling characteristics

of a service;

• find a way to further enhance these characteristics by means of ontologies;

• provide guidelines on how to design an ontology-enabled service-oriented architec-

ture that possesses the target characteristics.

Web Services [25] are the most widely established technology that can be used to im-

plement SOA on the Web. From the perspective of our work, Web Services can be eval-

uated by how well they support the loose coupling and business alignment characteristics

in SOA. Web Services supply means for implementation. However, they do not provide

design guidelines on when (in what application scenarios) and how to apply Web Services

to obtain a business aligned and loosely coupled architecture. Web Services support loose

coupling on the implementation level by:

• facilitating service discovery (via service registries);

• reducing (the cost of) dependency on a concrete protocol employed in the messaging

layer between a service and a consumer.

Web Services have proven to be a rather effective way to implement SOA. However,

they do not provide sufficient support for business alignment. Web services can establish

agreement on a service interface at the data level only, lacking the means to facilitate con-

ceptual interoperability.

As in many other fields practitioners of Web Services formulate accumulated experience

in the form of design guidelines or patterns [26, 27]. In Onto⇔SOA we include many of

these guidelines into the framework itself. Therefore, one of the key differences between

Web Services in general and the proposed approach is that we focus on design of services

rather than on their implementation.
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Semantic Web Services (SWS) take an approach in which, like in Onto⇔SOA, on-

tologies are introduced into services. SWS provides an ontology-enabled layer on top of

Web Services to further improve their effectiveness through automation. OWL-S [28] and

WSMO [29] are two of the most well-known SWS approaches. Both OWL-S and WSMO

provide extensive ontology-based description frameworks for Web Services to enable au-

tomation of tasks such as discovery, invocation, choreography and orchestration. This au-

tomation will primarily reduce the effort required from a consumer to find or invoke a single

service or to compose multiple services. These SWS approaches rely on extensive ontology-

based meta-data available about a service, thus increasing the effort required from a service

provider to roll out a service. The additional effort is likely to be off-set on the long term

by simplifying composition of complex services from simpler ones.

The SWS goal of automation is very challenging due to its unrestricted scope (all va-

rieties of services are targeted) and the finite capabilities of formal ontology languages

employed in OWL-S and WSMO. Moreover, the SWS approaches simultaneously target

a number of tasks each of which is complex in itself. All this significantly increases the

complexity of the SWS approaches and requires a significant up-front effort investment by

a service provider, thus hindering the overall effectiveness of SOA.

Our intuition is that the level of complexity observed in SWS approaches is not inher-

ently required to improve the effectiveness of SOA by means of ontologies. We illustrate

this with the Onto⇔SOA framework. To reduce complexity, we focus on the single task of

service invocation and rely upon a number of assumptions about services. These assump-

tions shape the scope of the framework such that Onto⇔SOA and SWS become different,

though overlapping approaches to improve the effectiveness of SOA (and Web Services).

The main differences between SWS and Onto⇔SOA are:

• SWS rely on automation of tasks normally involving multiple services annotated ac-

cording to an ontology-based description framework.

• Onto⇔SOA constrains properties of individual services and provides design guide-

lines on how to integrate an ontology into SOA.

Another key difference between SWS and Onto⇔SOA is that we do not employ onto-

logy-based meta-data to describe a service. Instead, we propose to use ontology-based

messages as a direct input to a service with a corresponding underlying ontology playing

the role of a service schema. This differs from the more traditional data-oriented approach
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in which a conceptual domain model is considered as an intermediate step in system design

rather than a direct input.

Furthermore, we define the service model underlying Onto⇔SOA from the perspective

of Software Architectures. This reduces the scope of possible interpretations of the notion

of service, provides a basis for the analysis of the target SOA characteristics and supplies a

framework for defining design guidelines.

To validate Onto⇔SOA we have employed it in a number of use cases from the e-

Science domain. In this chapter we describe the Document Retrieval case where we design

an ontology-enabled service-oriented solution to the problem of finding documents that

match a given query. In e-Science this is a task faced by scientists almost daily.

To sum up, the main contributions of our work reported in this chapter are the following

(in the order of appearance in the text):

• the definition of a restricted service model, presented as an architectural style, that fo-

cuses on the domain (business) alignment and loose coupling characteristics of SOA;

• the definition of Onto⇔SOA – an approach aimed at improving effectiveness of a

service-oriented architecture by enhancing its domain alignment and loose coupling

characteristics by means of ontologies;

• the application of an Onto⇔SOA solution to the Document Retrieval case.

This chapter is organized as follows. In Section 2.1 we introduce the Document Re-

trieval case that will be a running example throughout this chapter. Sections 2.2 and 2.3

introduce the Onto⇔SOA approach. After that, we use the Document Retrieval case to

illustrate an Onto⇔SOA based solution in Section 2.4. In Section 2.5 we describe the dif-

ferences between the Onto⇔SOA service model and the broader notion employed in Web

Services. In the same section we highlight the differences between the proposed approach

and Semantic Web Services. Finally, in Section 2.6 we discuss some issues raised by the

proposed framework and conclude with Section 2.7.

2.1 Use Case: Document Retrieval

Effective document retrieval can significantly contribute to various stages of the scientific

process. For example, to efficiently analyze existing publications and reports a scientist

needs to be able to quickly retrieve relevant documents from available collections. We will
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employ the task of retrieving documents as a case to demonstrate the main characteristics

of the Onto⇔SOA approach and its underlying service model.

From the user1 perspective the document retrieval task can be defined as follows. Given

a collection of documents and a text query, find all documents from that collection that

match the given query. We will refer to this definition as the Document Retrieval application

(or business) domain – a conceptual description of the problem domain as perceived by the

user. In this case, the application domain is described with concepts directly extracted from

its definition: document, document collection, query, retrieved documents (see the left-hand

part of Figure 2.1).

In this chapter we consider two alternative approaches to designing a software solu-

tion for the document retrieval task. We employ Lucene2 – a well-known open source Java

API for document retrieval – as a reference object-oriented (OO) design. Our experience

indicates that it is common practice to design Web Services as thin, often automatically gen-

erated, wrappers around existing objects. Such an approach preserves most of the original

OO design characteristics and differs from OO primarily in data serialization and commu-

nication layers. We, therefore, can employ the Lucene’s OO design as an approximation to

this Web Services practice and will contrast it to the Onto⇔SOA service model.

Lucene’s approach to document retrieval consists of two main steps implemented by a

number of objects, as depicted in the right-hand part of Figure 2.1:

1. Document Indexing is supported by the Parser, Analyzer and IndexWriter objects.

Parser extracts the structure and the content from a document. Then, Analyzer ap-

plies Natural Language Processing techniques (stop-words filtering, stemming, etc)

to the document’s content. IndexWriter precomputes statistical information (term and

document frequencies) and stores it in an index along with a term-document map. The

main purpose of the index is to improve the performance of the document retrieval

process by providing access to the precomputed statistics and documents containing

a given term.

2. Document Search is supported by the IndexReader object that takes a text query,

processes it with Analyzer and accesses the index to obtain the precomputed statistics

and documents containing query terms. These statistics are used to compute the ranks

of the retrieved documents reflecting how well each document matches the query.

1A user is one who is familiar with an application domain and who directly interacts with a service-oriented

system by, for example, developing a client application or a service consumer component.
2http://lucene.apache.org/
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In Lucene the described steps must be coordinated in several ways:

• Document Indexing must precede Document Search, otherwise the index may contain

no data about the documents being queried;

• the same type of Analyzer must be employed in both steps, otherwise processed doc-

ument terms may not match processed query terms;

• at each of the two steps, the index to be employed must be explicitly identified.

This coordination requires the user (a client object or a service consumer) to implement

a complex protocol. According to this protocol the user must carry out steps in a correct

order and all steps must be configured in the same way (Analyzer and index must be the

same across steps). The user must be aware of these peculiarities of Lucene’s approach in

order to successfully employ the API.

Lucene’s approach to document retrieval can be seen as a refinement of the initial more

general definition of the Document Retrieval application domain. The main purpose of this

refinement is to construct a rather fine-grained domain model that is expected to increase

the probability of components reuse.

This reusability is obtained by exposing the components’ internal details, introduc-

ing inter-component dependencies (e.g., Analyzer can be seen as an internal detail of In-

dexWriter) and complex interaction protocols (document retrieval is realized as a sequence

of indexing and index search). Consequently, the user not only has to understand the appli-

cation domain, but also to understand the finer-grained implementation model of the API.

The user’s overall conceptualization has to include the corresponding API concepts such as

analyzer and index. However, strictly speaking, these concepts are irrelevant to the original

definition of the Document Retrieval application domain.

In the rest of this chapter we introduce the Onto⇔SOA approach before applying it to

the above Document Retrieval case. We begin by employing the Software Architectures

perspective to introduce a service model underlying Onto⇔SOA (Section 2.2) and to an-

alyze the loose coupling and domain alignment characteristics. After that, we introduce

ontologies to that service model to enhance these characteristics.

2.2 The Underlying Service Model

Different communities discuss business and engineering merits of service orientation. Dif-

ferent viewpoints on and definitions of a “service” exist in these communities [22]. And
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Figure 2.1: The application domain of the Document Retrieval case

(left-hand part) and an object-oriented model of a

Lucene-based solution to it (right-hand part).

even within the Software Engineering field alone there is no agreement on what “a service”

is [30].

In Software Engineering there is a perception that any software component or applica-

tion can be implemented as a service by making it accessible via the Web. This accessibility

is most often achieved by introducing an interface description (e.g., a WSDL-based one),

transport (e.g., HTTP) and messaging protocols (e.g., SOAP) into the essentially unmodi-

fied component. Such a view addresses only the implementation aspects of loose coupling.

However, the design aspects of both business alignment and loose coupling are disregarded

in this perspective. In this dissertation we focus on the design aspects and assume that a

software component should be first designed as a service, and only then implemented as

one.

We consider loose coupling and business alignment to be the key properties of an effec-

tive service. To account for this we use Software Architectures to introduce a service model

as an architectural style [31] restricted to business-aligned and loosely-coupled services.

Surprisingly, we have not come across any attempts to define SOA as an architectural style.

We would like to emphasize that the interpretation and constraints we apply to services and

SOA should be considered primarily within the context of this work (Onto⇔SOA) rather
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than as an attempt to give a general definition of a service and SOA. We discuss the main

differences between the introduced service model and the more traditional interpretations

of services in Section 2.5.1.

By defining the Onto⇔SOA service model as an architectural style we pursue a number

of goals:

• to analyze the relationships between the business alignment and loose coupling char-

acteristics of a service and its internal properties to determine how we can further

support these characteristics by means of ontologies;

• to limit the scope of SOA to only those services that possess the business alignment

and loose coupling characteristics;

• to provide guidelines on how to design business-aligned and loosely-coupled services

and architectures, and then to link these design recommendations to the implementa-

tion level constraints.

Software Architectures [32] is a field of Software Engineering that strives to provide

guidelines for design and analysis of software systems that possess certain characteristics.

In [31] an architectural style is defined as “a coordinated set of constraints on architectural

elements and relationships among those elements within any architecture that conforms to

that style”. The same work defines a software architecture as “an abstraction of run-time

characteristics of a software system during some phase of its operation”. As an abstraction,

an architecture provides a simplified view on a software system with only relevant charac-

teristics highlighted. Since we can combine architectural characteristics in multiple ways,

a software system can have many architectures (or rather architectural views). However,

there is a limited number of characteristics (coupling, cohesion, distribution, etc) that are

relevant in practice.

A software architecture provides the means to analyze the characteristics of a system

but it does not instruct on how an architecture should be designed to possess those charac-

teristics. An architectural style addresses this issue by imposing constraints on architectural

elements, thus inducing desired characteristics on an architecture.

In Software Engineering general architectural elements are processing components,

connectors and data [31]. Processing components can transform data elements. Connectors

provide an abstract mechanism that mediates communication, coordination or cooperation

between components [33]. From the processing component perspective, connectors transfer
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Figure 2.2: Elements of a service-oriented architecture.

data without modifying them. Nevertheless, internally a connector can contain a complex

subsystem that subjects the data to a number of intermediate transformations.

Typical elements of a service-oriented architecture are shown in Figure 2.2:

• Consumer – is a processing component that initiates communication with a service,

sends a message request to it and receives a response message from a service. We

regard a consumer as a processing element because it is responsible for instantiation

of messages.

• Service – is a processing component that accepts message requests from a consumer,

processes them and responds with a message containing the result of processing.

• Message – is a data element that contains either a request from a consumer or a

response from a service.

• Schema – is a connector element that facilitates communication between a service and

its consumer by specifying agreements (syntactical, structural, etc) about the content

of messages or provides meta-information about the service itself (e.g., preconditions,

process model, etc).

We define the service model underlying Onto⇔SOA as an architectural style that con-

strains the above-mentioned service elements to induce the loose coupling and domain (or

business) alignment characteristics. In the subsequent sections we analyze these character-

istics to identify design decisions that allow to realize their benefits as fully as possible. We

define these design guidelines by means of architectural constraints that in many instances

have the form of (or are inspired by) fairly well-known design (architectural) patterns.
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2.2.1 Loose Coupling

Generally speaking, loose coupling implies a weak dependency between system compo-

nents. This characteristic is beneficial for systems subjected to frequent changes because

components of a loosely coupled system can be modified independently from each other.

What constitutes loose coupling varies across different types of software systems. In

Object-Oriented (OO) design loose coupling often refers to an interface-mediated relation-

ship between objects [34]. An interface describes what types of messages an object can

process. Internally objects may be implemented in different ways but as long as they use

the same interface they can communicate with each other. In other words, in OO a design

is loosely coupled if objects do not depend on the concrete implementations of each other

but rather on abstract interfaces (Figure 2.3). If taken literally, this type of loose coupling

can be rather easily implemented by merely introducing interfaces of these concrete imple-

mentations. For example, in the Java language this can be done by extracting signatures

of (public) methods into interfaces. Though such an approach does provide some merits of

loose coupling, we believe it does not realize its full potential.

We approach loose coupling on a more general level and use it to refer to reduction

of dependencies between processing components. The interface-mediated relationship can

then be seen as one of the means to improve loose coupling by reducing dependency on

how functionality is actually implemented in a host object. This aspect of loose coupling is

readily-achievable in SOA through service schemas. Therefore, in our analysis we have to

consider additional ways to reduce dependencies between a service and its consumer.

In services and, more generally SOA, dependencies are either described in a schema (an

interface of a service, its location, etc) or expressed in the form of underlying assumptions

(schema language, service model, etc) that are agreed upon and left outside the schema.

These underlying assumptions determine what is described in a schema and how it is ex-

pressed. Our aim is to improve loose coupling by minimizing both categories of dependen-

cies.

In the extreme (and hypothetical) case, a service that does nothing (e.g., its schema

specifies a service location only) and that can be invoked in the simplest possible way (e.g.,

by opening a socket connection and sending arbitrary data to it) will approach a perfect

loose coupling with its consumers. Obviously, although such a service is very easy to use

(understand and invoke) or replace, its very low (absent) utility does not make it attractive

to consumers. Therefore, our task is to find a balance between how easy it is for consumers

to understand and invoke a service, and the ability of a service to carry sufficient utility.
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Figure 2.3: Loose coupling as an interface-mediated relationship

between objects.

We analyze loose coupling by means of artificial and real dependencies [35] between

the consumer and service components. Real dependency exists if a component requires

another component’s functionality. Artificial dependency exists if a component must use a

particular API, protocol and so forth in order to employ that functionality. Both artificial

and real dependencies always exist, therefore the design goal is to reduce them (or their

costs) as much as the context permits.

In the Document Retrieval case there is a real dependency between the IndexWriter

and Analyzer objects: IndexWriter requires Analyzer to perform text processing. Artificial

dependency appear as follows:

1. In order to interact with Lucene’s IndexWriter object a client object must use a Java-

compatible invocation mechanism.

2. A consumer must coordinate service invocations as described in Section 2.1.

In the Document Retrieval case the first artificial dependency cannot be significantly

reduced because an invocation mechanism is always required. The costs of the invocation

mechanism, however, can be reduced. For example, Web Services aim at reducing the

cost of dependency on an invocation mechanism by using SOAP as a platform-independent

invocation mechanism. In our service model we abstract away operational details of the

connector mechanism making it independent from a particular technology such as SOAP or

REST.
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Figure 2.4: Loose coupling as reduction of a number of real (functional)

dependencies achieved by introducing a Facade object that

encapsulates multiple objects and exposes the composite

functionality through a simpler, more coarsely-grained

interface.

The second dependency can be reduced by simplifying the required coordination. Fig-

ure 2.4 depicts an approach to simplify an interaction protocol by introducing an interme-

diate Facade object [36] that encapsulates part of the original protocol hiding it from a

consumer.
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Inducing Loose Coupling in Onto⇔SOA

To reduce artificial dependency between a service and a consumer in the Onto⇔SOA ser-

vice model we impose three constraints on the connector and data elements:

• Connectors must be simple, generic and application independent. This allows us

to deploy the connector elements across different application domains and make them

less affected by changes in the application domain.

• Data elements must contain descriptive messages. A descriptive message describes

what problem is to be solved rather than how to solve it. Descriptive messages require

fewer assumptions than prescriptive ones. A prescriptive message must specify an

operation to apply and the required input data. Whereas a descriptive message will

require only the input data.

• The schema and message language(s) must be able to address a wide range of
application domains. Preferably the same (or compatible) languages should be

used to express a schema and the messages. Such a language supplies interoperat-

ing components with a unified syntax and structure required to express the schema

and messages. Since we keep the connectors simple and application independent, the

messages should be able to accommodate all application-specific details and, there-

fore, the underlying language must be capable to address a wide range of application

domains.

In document-oriented messaging3 – a well-known message design pattern – a service

and a consumer exchange messages, referred to as documents, that can be directly linked

to concepts in an application domain (a purchase order or a document corpus, for exam-

ple). This contrasts with the lower-level data-oriented messaging such as SOAP-RPC where

communicated data structures often reflect the algorithms employed rather than domain con-

cepts.

A document is a more coarsely grained entity than a SOAP-RPC request. The latter

is often broken down into separate parts representing operation name, its parameters and

result, etc. A document assumes which operation(s) should be performed on it, therefore

the elements of a document are best described with a noun (e.g., purchaseOrder) rather than

with a verb (e.g., submitPurchaseOrder) used as an operation name in SOAP-RCP.

3Document-oriented messaging should not be confused with the document-based encoding style supported

by SOAP. For more info see: http://java.sun.com/developer/technicalArticles/xml/jaxrpcpatterns/



28 CHAPTER 2. ONTOLOGY-ENABLED SERVICES

In the proposed service model we favor document-oriented messaging because it is

descriptive and coarsely grained. This allows to establish a link between a document, con-

tained terms and domain (business) concepts, thus facilitating understanding of a service by

its users.

In SOA there is a unidirectional real dependency between a consumer and a service: a

consumer depends on the functionality provided by the service, whereas a service is inde-

pendent from its consumers. This kind of a relation is also present in Client-Server archi-

tectures. Decoupling between a consumer and a service is increased when we simplify their

interaction protocol. Session-stateless service is a design pattern that allows to achieve that.

Under session-stateless interaction we understand a non-conversational interaction be-

tween a service and a consumer. One way interaction is an example of a stateless inter-

action. However, we believe that the utility of such type of interaction is not sufficient for

many application domains. Therefore, we extend the interaction to a single request-response

interaction.

Session-stateless interaction contributes to the scalability of a service, simplifies com-

munication with a service, facilitates its monitoring and recovery after failures. It also

ensures that a service does not rely on a client to perform a complex sequence of actions to

exploit the service’s functionality. This implies a simpler interaction protocol and reduces

artificial dependency.

Loose Coupling in Web Services

In Web Services loose coupling is attributed to service discovery and late binding as means

to reduce the costs of artificial dependency between a service and a consumer. Via ser-

vice discovery a consumer learns about the existence of a service capable of providing the

required functionality. The result of service discovery is an identity of a service and a cor-

responding WSDL [37] description. The WSDL description provides not only an abstract

interface but also binds it to concrete transport and message layers (HTTP and SOAP, for

example). We consider service discovery to be an operational detail that is outside the scope

of the Onto⇔SOA service model. We assume that a consumer knows about a service (via

its schema) but how the consumer has obtained this knowledge is outside the scope of the

core Onto⇔SOA approach. We also consider the transport and message layers to be an op-

erational part of the connector upon which we do not elaborate in this chapter (in Chapter 5

we will return to this subject). This illustrates the main difference in the interpretation of

loose coupling in the proposed service model and in Web Services: in the case latter we
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reduce the costs of artificial dependency at the operational level only, whereas the former

case we decrease artificial and real dependencies at the architectural level.

Knowledge-Oriented View on Loose Coupling

Given the introduced constraints we can interpret the communication between a service

and its consumers from the Knowledge Representation perspective. Since the connectors

are generic, all application-specific semantics must be expressed in descriptive messages

that communicate an initial description of a domain from a consumer to a service. These

messages specify what is known to a consumer about its application domain but not how

a service must process the available facts. The consumer is unaware about how exactly a

service processes a document.

A service acts as a knowledge source [38] that makes the application domain expertise

available to a service consumer. A consumer assumes that a service will apply this exper-

tise to infer domain facts from the facts supplied by a consumer. Since a service contains

domain expertise (i.e. procedural knowledge), the schema effectively specifies a vocabulary

(i.e. an ontology) required to utilize it. This view on a schema in the Onto⇔SOA service

model enables a natural transition from a schema to an ontology that becomes an integral

component of a service.

For example, in the Document Retrieval case in order to act as a knowledge source, a

service has to provide a schema that enables consumers to describe what is known about the

state of the domain. The consumer can use descriptive statements to specify facts such as:

1. There exists a concrete corpus C.

2. This corpus contains documents D0,..,Dn.

3. There is also a text query consisting of terms t1 and t2.

The consumer communicates these facts to the document retrieval service and expects it

to infer new facts from the provided description, i.e. a list of documents matching the given

query. The consumer does not know how exactly the service arrives to new facts (which

would be the case with the RPC-style communication through Lucene API).

The proposed service model unifies the intent of the communication (inference of new

facts) between the service and the consumer. The target service domain is described in the

service ontology containing all application-specific concepts. The declarative (descriptive)

character of the service ontology reduces the coupling between domain conceptualization
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and a concrete implementation of the service. At the same time, by unifying the intent and

assuming the presence of a service we can facilitate extraction of utility from the declarative

service ontology. We elaborate on this ontology-oriented perspective in Chapter 3.

2.2.2 Domain Alignment

In [39] business alignment is succinctly defined as the delivery of the required results. In

SOA services are often characterized as business aligned entities. Thus, services are re-

garded as software components that are (highly) effective within a target business (or appli-

cation) domain.

More specifically, we understand business alignment as the property of a service that

characterizes its ability to support, facilitate or enable business processes or meet business

requirements. We translate business alignment into the more general domain alignment

characteristic, that we define as the ability of a service to have a direct relationship (support,

facilitate, enable, etc) with most (ideally all) entities (processes, requirements, etc) in a

target domain. Domain alignment is beneficial not only for the effectiveness but also for

the usability of a service:

• The effectiveness (the delivery of the required results) is improved by ensuring that a

service operates within the boundaries of the target application domain.

• The usability is enhanced by eliminating the gap between a service interface and

domain concepts, thus making the interface more understandable to users.

The extent to which a service is domain aligned can be defined as the degree of overlap

between the concepts in the application domain and in the service interface. We assume that

the perfect domain alignment is achieved when a service directly affects all concepts in a

target application domain (Figure 2.5). We will consider any deviation from the perfect do-

main alignment as a misalignment. Several types of misalignment are depicted in fragments

A, B, C and D of Figure 2.5.

The misalignment in the fragment A results from an application domain having a broader

scope than supported by the service. This misalignment can be dealt with by either expand-

ing the scope of the service or decomposing the application domain. For example, if we ex-

tend the Document Retrieval application domain to include ranking of matching documents

then a service that retrieves documents but does not provide the ranking is considered mis-

aligned to the service domain. To resolve this we can extend the functionality of the service

to rank retrieved documents as well.
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Fragment B depicts an application domain covered by several services. We consider

this case to be a misalignment because each of the services is not perfectly aligned. More-

over, the coordination of multiple services requires a conceptual support that is likely to

fall outside the application domain scope. This type of misalignment can be resolved by

either merging the services into one or by decomposing the application domain. Domain

decomposition is preferred if the services have no real dependency between each other. To

give an example for the latter case, we can consider a domain of “document parsing and

term analysis” and two services responsible for parsing and analysis. Each of these services

is misaligned with the target service domain because it does not affect all domain concepts.

Since the two services are independent the best way to resolve such misalignment is to de-

compose the service domain into two domains: “document parsing” and “term analysis”.

Each of the two services then becomes perfectly aligned to the corresponding application

domain.

The misalignments in fragments A and B can be explained with too fine granularity of

the service. A finer grained object is often considered more suitable for reuse because it is

expected to fit to a larger number of application scenarios than a coarsely-grained object.

However, a fine-grained object has to be combined with other objects to provide sufficient

utility. This increases the number of dependencies, complicates interaction protocols be-

tween objects and makes the overall design more difficult to understand, thus hindering

reuse. The right balance between the granularity of a component and its reusability is diffi-

cult to arrive to. We propose to use domain alignment as an indicator of the right degree of

granularity of a service.

Fragment C shows a misalignment caused by a service exposing concepts alien to the

application domain. This is often the case when a generic, configurable service is being

reused in a new task/domain. This misalignment can be resolved by either extending the

scope of the application domain to include the alien concepts or by encapsulating such

concepts within a Facade [36] service. Which way is preferred depends on whether the

increased complexity of the application domain incurred by the inclusion of new concepts

still contributes to the effectiveness of such a service.

The misalignment D occurs if a service (interface) and an application domain share no

concepts, implying that the service has no direct relation to that domain. However, this

service may have an indirect relation through another service directly related to the domain.

The resolution strategy for misalignment C can be employed in this case as well. However,

extension of the application domain will be less desirable because of a greater conceptual
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distance between the application domain and the service. To illustrate this misalignment we

can consider the indexing service in the Document Retrieval domain. The concept of index

falls outside the scope of the target application domain. However, the indexing service can

be required to provide a real dependency to the document retrieval service. The indexing

service is misaligned to the Document Retrieval domain. If we include the concept of index

into the Document Retrieval domain then the users are likely to be confused because they

do not expect index to be relevant to the task of retrieving documents. We, therefore, believe

that the better way to resolve such misalignment is to encapsulate the indexing component

into the document retrieval service, completely hiding it from consumers of the document

retrieval service.
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Figure 2.5: An illustration of the perfect domain alignment and four

types of misalignment (A,B,C,D).

Figure 2.6 illustrates the alignment situation for the Document Retrieval domain and

the interface domains of the Lucene objects required to implement the use case. We can see

that the alignment situation is a composition of misalignments C and D. We can employ

the Facade service to effectively resolve these types of misalignment by hiding the irrele-

vant concepts (index, analyzer, etc) and exposing domain-aligned concepts only. We will

elaborate on this in Section 2.4.
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Figure 2.6: Domain alignment in the Document Retrieval case.

We believe there is a connection between domain alignment of a component (a ser-

vice, an object, etc) and its granularity. A coarsely-grained component encapsulates com-

plex functionality that is likely to have a direct connection to the application domain.

From our definition of domain alignment it follows that a perfectly aligned service is the

most coarsely-grained component in that application domain. Inversely, the more coarsely-

grained a component is – the closer it is to perfect alignment to the target domain, and

therefore, the better it is suited to become a service.

The connection between domain alignment and granularity of a processing component

implies that it should be always possible to define exactly one the most coarsely-grained

processing component for a target service domain. This allows us to formulate a constraint

to induce the domain alignment characteristic in the Onto⇔SOA service model: For a
given domain, a number of Onto⇔SOA services should be reduced as much as possi-
ble, preferably to one.

Omnipotence of a service is a direct consequence of the strict enforcement of this do-

main alignment characteristics. Omnipotence is ascribed to a self-contained service that
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Figure 2.7: The proposed service model: constraints, architectural

elements affected by them and induced characteristics.

requires no other services to provide its functionality. A service is omnipotent if it has no

real dependency on other services. By favoring omnipotent services we reduce real depen-

dencies between services, and thus contribute to loose coupling. Omnipotence does not

restrict interaction between services that belong to different domains (or Onto⇔SOA ser-

vice models). Nevertheless, such cross architectural interaction is outside the scope of the

core Onto⇔SOA framework.

In the Document Retrieval case the IndexWriter and Analyzer components are well

aligned to their actual application domains (document indexing and natural language pro-

cessing). However, none of these components is directly related to the Document Retrieval

domain, thus does not fit well to become a service in that domain. We arrive to the same

conclusion by observing that none of the components is omnipotent, i.e. sufficient to solve

the Document Retrieval case on its own.

Figure 2.7 summarizes the introduced constraints, architectural elements effected by

them and the induced characteristics. We assume that an ontology is a domain-aligned

entity (it fully specifies concepts that exist in a target application domain), and therefore has

a potential to further support domain alignment of services. In the next section we describe

how to realize that potential.
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2.3 Onto⇔SOA: Ontology-enabled Services

The restricted service model described in the previous section provides a foundation for

Onto⇔SOA. In this section we extend this service model with ontologies to define the

core of the Onto⇔SOA framework. We assume that an ontology is capable of supplying a

domain-aligned conceptualization, and thus has the potential to enhance the corresponding

service characteristic. We elaborate on other distinguishing characteristics of ontologies in

Chapter 3.1. To incorporate ontologies into the service model we introduce a direct ex-

change of ontology-based, document-oriented messages between a service and a consumer.

We will also supply additional constraints on the connector and data elements (messages)

of a service-oriented architecture.

In Onto⇔SOA we propose to employ ontological conceptualization in a service sche-

ma. To achieve this we require to design a service schema by using ontology engineering

or other knowledge engineering methods, ensuring that the resulting conceptualization is

domain aligned. While designing a schema existing concepts from external ontologies may

be reused as well as new ones created.

Consequently, we require that an ontology language is used to express a service schema

and communicated messages. In Onto⇔SOA we assume that both a service and its con-

sumer are aware about the ontology underlying the messages. In this way we abstract away

the syntactical and structural aspects of messages and focus on the conceptual aspects de-

fined in an ontology. We will refer to a schema designed as an ontology and expressed using

an ontology language as a service ontology – a specification of a conceptual document-

oriented interface to a domain-aligned, loosely-coupled and omnipotent service.

Onto⇔SOA emphasizes the role of a service as a Knowledge source. This implies that:

• a consumer employs a service ontology to present facts that describe an incomplete

domain situation (e.g., a document collection and a certain text query);

• this description of an initial domain situation is sent to a service that contains domain

expertise in the form of procedural knowledge (e.g., a Lucene-based implementation

of a document retrieval algorithm);

• the service applies its domain knowledge to extend the domain situation with new

facts (e.g., a list of retrieved documents) and sends it back to the consumer.
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Figure 2.8: Onto⇔SOA elements.

2.3.1 Service Ontology

An ontology language provides a service ontology with a unified syntax and structure as

well as a minimal set of conceptual primitives. The primitives must be simple, aligned to

target application domain(s) and readily understandable to the domain users. We do not

require the language to have a well-defined formal semantics because in Onto⇔SOA we

ground the meaning of concepts in a service and the user’s domain understanding.

When choosing an ontology language for an Onto⇔SOA service we seek to fulfill the

constraints of the service model and to further enhance the domain alignment and loose

coupling characteristics. This implies that an ontology language should:

• provide a simple yet flexible structure (i.e. data-model) that can be related to con-

ceptual primitives widely accepted by experts in a range of target service domains.

We believe that graph-based data models (e.g., directed labeled graphs – DLG) have

proven to be generic and flexible enough in a wide range of domains (semantic net-

works, bond graphs [40], etc). The elements (nodes and arcs) of the DLG data model

underlying the RDF/S languages are translated into primitives such as subject, predi-

cate and object that are both expressive and understandable by experts in a variety of

domains.

• not an introduce expensive artificial dependency. This implies that a language spec-

ification should be simple and publicly accessible allowing anyone to employ this

language with as little overhead as possible. Furthermore, a language should not be

tied to any specific task. The only task a language is required to support is expression

of facts. Everything beside that we treat as an artificial dependency that should be
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avoided in Onto⇔SOA service ontologies.

In a service ontology we can distinguish two types of concepts:

1. conceptual primitives that provide basic modeling building blocks not affecting ser-

vice behavior. So far, in all use cases we have employed subject, predicate, object as

conceptual primitives. It is equally possible to employ other primitives such as Entity

- Relation as long as there is a sufficient shared understanding of their meaning among

the target domain users. This shared understanding of conceptual primitives is estab-

lished outside Onto⇔SOA, for example by means of standards, formal specifications

or background domain knowledge.

2. domain concepts that affect service behavior. The semantics of these domain con-

cepts is grounded in an Onto⇔SOA service. These concepts constitute an interface

to a service, needed to describe domain facts. Unlike with conceptual primitives,

Onto⇔SOA can facilitate shared understanding of domain concepts: in Chapter 3

we will transform Onto⇔SOA into a mechanism capable of grounding application

semantics of domain concepts in a service.

A service ontology always contains domain concepts because they are required to in-

terface with the domain knowledge contained in the service. At the same time, we believe

that conceptual primitives are optional. Or, in other words, the role of conceptual primi-

tives can be played by domain concepts. Conceptual primitives can be seen as an auxiliary

means for modeling service domains that are neither simple enough to be specified using

a few domain-specific terms (e.g., document, corpora, query, etc) nor developed enough to

contain own primitives.

Onto⇔SOA is an abstract framework. In order to operationalize it we have filled in

the missing details and devised MoRe [41] – an extension of Onto⇔SOA that employs the

RDF/S languages [13, 14] to express a schema of a document-oriented HTTP-based service.

We dedicate Chapter 5 to a detailed description of the MoRe framework.

2.3.2 Reusing Service Ontologies

In Onto⇔SOA our focus is on usability of a service. The main step in designing an

Onto⇔SOA service is to identify and scope a domain of a service. At this step we can

consider existing services and their relations to the target domain. If expertise contained

in existing services can be employed in the target domain then there is an opportunity for
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service reuse. Onto⇔SOA opens up the possibility to analyze the properties of such reuse

from the ontological perspective.

Internally an Onto⇔SOA service can have an arbitrary architecture which can, in turn,

contain other service(s). We consider this kind of composition to be an implementation de-

tail that should not be exposed via the service ontology. Nevertheless, if an internal service

architecture contains ontologies, we would like to investigate what are the relationships

between the service ontology and external ontologies (such as other service ontologies or

application-independent domain ontologies)?

In Onto⇔SOA we assume that there is a 1-to-1 relation between a service and its service

ontology. This acknowledges the underlying assumption that each service exists in a unique

context that determines the meaning of the associated ontological concepts. In other words,

our default assumption is that, concepts in a service ontology are unique (exclusively belong

to the corresponding service). If we intend to reuse a concept across application domains,

we have to guarantee consistency of interpretation of this concept. This means that ontolo-

gies of services employed internally by default are not exposed through a service ontology

of an enclosing service (even if it seems natural to expose some of the concepts).

For example, let us assume that the Document Retrieval service can internally reuse

the Analyzer and Parser services. Such internal reuse is not visible (does not take place)

from the Onto⇔SOA viewpoint. To determine the effect of this internal reuse we have

to determine conditions under which the Document Retrieval service ontology will expose

some of the concepts borrowed from the Analyzer and Parser ontologies. If we choose to

design an exclusive ontology for the Document Retrieval service then no internal concepts

are exposed, and therefore, no reuse takes place (from the Onto⇔SOA perspective).

We assume that concepts from internal service ontologies may be exposed in a service

ontology if there is means to control the environment where these services (e.g., the Docu-

ment Retrieval, Analyzer and Parser) are employed. We can distinguish at least three ways

to achieve this control:

1. A domain ontology can employ formal semantics to establish consistent interpretation

of concepts within a certain logical framework. Such an ontology can be shared

between several Onto⇔SOA services, and in this way an indirect reuse of concepts

from service ontologies will take place.

2. If a target application domain itself provides means to establish a consistent interpre-

tation of concepts then domains that include such an application domain can rely on

the provided consistency.



2.4. SOLUTION TO THE USE CASE 39

3. Some control is achieved by the fact that the services are designed given the same set

of assumption. This happens if, for example, the services are designed by the same

team with service reuse in mind.

Applying the first scenario to the Document Retrieval case we could rely on “Linguistic”

ontology containing concepts such as term and document. Both Document Retrieval and

Parser services could then commit to this ontology and reuse the concept of document.

To illustrate the second scenario, let us assume that the Document Retrieval domain

belongs to a broader domain of Document Management. If we assume that the Document

Management domain is a well-established one, then this domain should be capable of facil-

itating consistent interpretation of its concepts. This can be achieved through, for example,

international or industry-wide standards. Therefore, we can rely on this common foundation

to supply concepts unambiguously understood across sub-domains of Document Manage-

ment.

In the third scenario there would be no shared formal ontology. Instead, we would intro-

duce the document concept in the Parser service ontology keeping in mind its future reuse

in other services we develop. The Document Retrieval service would be such a service.

Since we control both services, we can directly reuse the document concept in the Docu-

ment Retrieval service. In this example, no concept from the Analyzer domain is reused

in the Document Retrieval service because concepts such as term, stem, lemma etc are not

aligned with the Document Retrieval application domain.

2.4 Solution to the Use Case

In this section we describe the design of an Onto⇔SOA-based solution for the Document

Retrieval case introduced in Section 2.1. The solution has been implemented using the

MoRe framework described in detail in Chapter 5. In the following sections we elaborate

on the design of the two major Onto⇔SOA artifacts: the service (Section 2.4.1) and the

service ontology (Section 2.4.2).

2.4.1 Document Retrieval Service

As introduced in Section 2.1, the application domain of the Document Retrieval case con-

sists of a corpus containing a number of documents. The user provides a query that is used

to find a set of matching documents. To design a document retrieval service we first con-

sider components of the Lucene API shown on Figure 2.1. By applying the Onto⇔SOA
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constraints we determine that:

• None of the components is well aligned to the Document Retrieval domain. The In-

dexWriter and IndexSearcher objects require an index – a concept not present in the

target application domain. Neither Parser nor Analyzer perform functions directly

related to the Document Retrieval domain. We illustrated this mis-alignment in Fig-

ure 2.6.

• The components are of the same granularity and depend on other components. This

does not allow distinguishing a single, omnipotent component that can provide the

required service to a consumer: the consumer has to interact with at least two compo-

nents (IndexWriter and IndexSearcher) to realize the document retrieval functionality.

• To find documents matching a given query the user has to follow a rather complex

interaction protocol: the interaction with IndexWriter and IndexSearcher must be co-

ordinated using consistent identifiers of the index and Analyzer. Such coordination is

likely to require a stateful session to maintain these identifiers across component invo-

cations that must also be properly ordered. According to Onto⇔SOA this represents

an artificial dependency undermining loose coupling.

The mis-alignment between the Lucene components and the target Document Retrieval

domain causes the service schema to expose concepts (an index, an analyzer, a parser, etc)

alien to that domain. These concepts are forced onto a consumer. They unnecessarily

complicate the document retrieval task, compromise loose coupling and domain alignment

by exposing implementation details, and ultimately hinder usability of the service.

As stated before, we consider the index to be an implementation detail irrelevant to the

functionality of the Document Retrieval service. The sole non-functional purpose of the

index is to contain precomputed data to speed up the retrieval process. Even if the index

contains data relevant to a consumer (e.g., term and document frequencies) then only the

associated concepts should be exposed, but not the index itself. In such a case the service

domain should be redefined accordingly to include the concepts of term and document fre-

quencies. This would effectively result in an application domain distinct from the Document

Retrieval domain as defined in this use case and, therefore in a service different from the

Document Retrieval service.

To fulfill these constraints we can employ the Facade pattern [36] to design a service

as a component with a domain-aligned and loosely-coupled interface. This interface con-

fronts the user with the concepts from the Document Retrieval application domain only,
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Figure 2.9: An Object-Oriented architecture with a Facade object for

the Document Retrieval case.

while hiding the peculiarities of Lucene’s approach to document retrieval (Figure 2.9). The

Document Retrieval Facade component meets the Onto⇔SOA constraints:

1. It is well aligned to the target domain: its interface exposes only concepts that occur

in the Document Retrieval domain.

2. It is the most coarsely-grained component because it provides the required function-

ality and encapsulates a number of finer-grained components (IndexWriter, Analyzer,

etc). It is omnipotent: it depends on no other services to provide the required func-

tionality.

3. It does not require a stateful session: neither the index nor the analyzer concepts are

exposed, thus there is no need to maintain their identities across service invocations.

We have employed the MoRe framework to implement the Facade component as a

domain-aligned, session-stateless, omnipotent and document-oriented service. The service

accepts an RDF description of an initial situation in the Document Retrieval domain and

returns another RDF document describing the situation extended with inferred facts. The

terminology for both types of documents is defined in the Document Retrieval service on-

tology expressed in RDFS. We describe this service ontology in the next section.
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Concept Description Provided by
DocumentRetrieval the top-level container for the domain consumer

– hasCorpus points to a document collection consumer

– hasQuery points to a query to be matched against corpus documents consumer

– hasRetrievedDocuments points to a solution of a DR problem service

Corpus contains a collection of documents consumer

– containsDocument points to a document that belongs to this corpus consumer

Query represents a query consumer

– hasQueryString contains a literal value with a query consumer

Document consumer

– hasURL contains an URL of a document consumer

RetrievedDocuments contains documents that match the given query service

– hasRetrievedDocument points to a retrieved document that belongs to a solution service

RetrievedDocument represents a matched document service

– hasDocument points to a document from the problem Corpus service

– hasScore contains match score for the retrieved document service

Table 2.1: The Document Retrieval service ontology.

2.4.2 Document Retrieval Service Ontology

The Document Retrieval service ontology specifies a document-oriented interface to the

Document Retrieval service. This service ontology provides conceptualization required to

describe an instance of the Document Retrieval case. The conceptualization consists of a

number of classes and properties summarized in Table 2.1.

The Document Retrieval service ontology is aligned to the Document Retrieval domain:

all concepts can be readily found in the original domain definition. There is no conceptual

gap between the consumer’s view of the service domain (this was the basis for the definition

of the Document Retrieval domain in the first place) and the interface to the service.

A consumer employs the Document Retrieval service ontology to describe an initial

situation in the target domain: a corpus consisting of a collection of documents and a text

query (the left-hand side of Figure 2.2). The service, in turn, will use this service ontology

to express the facts inferred from that initial situation; i.e., a collection of ranked documents

that match the query (the right-hand side Figure 2.2).
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-DocumentRetrieval
hasQuery aQuery
hasCorpus aCorpus

-aQuery
type Query
hasQueryString ‘‘dairy’’

-aCorpus
type Corpus
containsDocument document1
containsDocument document2
containsDocument document3

-document1
type Document
hasURL ‘‘.../index.htm’’

-document2
type Document
hasURL ‘‘.../OntoSOA.pdf’’

-document3
type Document
hasURL ‘‘.../Quality.pdf’’

-DocumentRetrieval
hasRetrievedDocuments retrievedDocs

-retrievedDocuments
type RetrievedDocuments
hasRetrievedDocument rDocument1
hasRetrievedDocument rDocument2

-rDocument1
type RetrievedDocument
hasDocument document1
hasScore 0.65255654

-rDocument2
type RetrievedDocument
hasDocument document2
hasScore 0.9764538

Table 2.2: An example of the initial Document Retrieval domain

description (the left-hand side) and the extension to it (the

right-hand side) inferred by the Document Retrieval service.

2.5 Related Work

In Onto⇔SOA we employ a service model that is more restricted than the one that is com-

monly considered in the fields of Web Services and its semantic extension – Semantic Web

Services. In the consequent subsections we outline the main differences between the two

approaches and the most important implications of these differences.
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2.5.1 Web Services

The term “Web Services” most often refers to WSDL/SOAP-based services, that can be seen

as the most popular approach and the standard way to implement SOA on the Web. WSDL

(Web Service Description Language) is an XML-based language and a corresponding de-

scription framework for Web Services [37]. WSDL is primarily used for service invocation.

The SOAP [25] protocol provides for a standard to structure messages that can be carried

over a variety of transport protocols, with HTTP being most frequently used.

WSDL/SOAP services are often implemented by wrapping existing software compo-

nents with a SOAP-based messaging layer. This makes such components accessible via the

Web to a wide range of consumers. Presently, development of Web Services is primarily

concerned with how to implement a service by means of WSDL/SOAP standards, and is not

concerned with how to design a service. What kind of software components suit best (or do

not suit at all) to be transformed into a service is not restricted by the standard WSDL/SOAP

approach.

We consider Web Services and the Onto⇔SOA service model to occupy two different

levels of Service-Oriented Software Engineering. We consider Web Services to belong to

the implementation level. Web Services are defined as a collection of specifications (and

standards) that define a communication layer between services and their consumers. On the

other hand we position the Onto⇔SOA service model at the design (architectural) level. It

expresses a set of design constraints and guidelines that induce the targeted characteristics

of domain alignment and loose coupling.

The two approaches interact at the border between the implementation and design lev-

els. The implementation means defined in Web Services affect the way service-oriented

software is designed. In our service model we explicitly limit the choice of implementa-

tion methods to those that are capable of meeting the proposed constraints. This interaction

between Web Services and the Onto⇔SOA service model allows us to compare them.

In the Onto⇔SOA service model we do not assume that just any software component

can be transformed into a service, regardless of its application (i.e., business) context. We

require that to be considered as a service, a software component must be sufficiently well

aligned with the functionality and concepts observed in the target domain. For example, in

the Document Retrieval case such a component must communicate in terms of documents

and search query only. IndexWriter cannot become a service associated with this inter-

face. On the other hand, in the domain of indexes and documents IndexWriter could be the

appropriate candidate for a service.
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One of the most notable differences between Web Services and the Onto⇔SOA service

model is in the favored messaging style. In Web Services, only the RPC (Remote Procedure

Call) communication style was initially supported4. With SOAP 1.2 the RPC style has

become optional and the document-oriented flavor was introduced. Nevertheless, SOAP-

RPC approach still attracts most of the attention in the Web Services community.

From the Onto⇔SOA perspective, application of RPC introduces an artificial depen-

dency between a consumer and a service hindering loose coupling between them. This

dependency results from the requirements of the RPC interaction protocol a consumer must

be aware of: the name of the operation, its input arguments and the external effects of invo-

cation. In many application domains this artificial dependency can be reduced by employing

the document-oriented communication style.

Furthermore, the RPC messages tend to be prescriptive rather than descriptive. With an

RPC message a consumer commands a service how to solve a problem rather than describ-

ing what is to be solved. The prescriptive nature of RPC Web services often leads to stateful

sessions as a way to coordinate multiple commands to a service. A stateful session leads to

a complex interaction protocol that further strengthens the artificial dependency between a

service and a consumer.

Web Services require a significant number of conceptual and architectural elements [42].

A considerable part of them is devoted to the RPC communication style that is to be avoided

in Onto⇔SOA. Moreover, in many practical cases a document-oriented invocation that is

performed via a well-established communication interface such as HTTP is enough to de-

fine an operational SOA. In Chapter 5 we will discuss in more detail the benefits of such

lighter approach to services.

2.5.2 Semantic Web Services

The state of the art Semantic Web Services approaches (SWS) [43] such as OWL-S [28]

and WSMO [29] employ ontologies to provide formal ontology-based descriptions of Web

Services to automate discovery, invocation and composition of such services. Service mod-

els employed in SWS closely follow the Web Services model with a service consisting of a

number of operations that have inputs, outputs, preconditions, effects, etc. SWS approaches

propose formal service description frameworks (often expressed as ontologies) that can be

combined with external ontologies to build a description of a concrete service. Such formal

4http://www.xml.com/pub/a/ws/2001/04/04/soap.html
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description can then be employed to, for example, automatically discover services capa-

ble of providing a sought for functionality or even to automatically combine a number of

services (or operations) to realize such functionality.

SWS employ ontologies to enrich implementation artifacts (e.g., a WSDL description)

of Web Services with formal semantics. Consequently, ontologies employed in SWS fo-

cus on implementation aspects of a service. In contrast, in Onto⇔SOA we propose to

employ ontologies to improve service characteristics through design. This makes the two

approaches complementary rather than competitive. However, as we will demonstrate with

the Blackboard-based composition mechanism (Chapter 4), explicit design decisions made

according to the proposed guidelines can significantly simplify implementation issues of

service composition.

From the Software Architecture perspective, SWS can be seen as a complex connector

between a service and its consumer. Internally, the connector relies on ontologies to match

consumer requests to available services, to ensure conceptual compatibility of messages,

etc. However, the service still operates on data-level requests (SOAP-RPC in most cases)

rather than conceptual, ontology-based content. Although the WSMO approach has the

potential to use ontologies directly, in practice the SWS approaches rarely address a direct

exchange of ontology-based messages.

As in traditional Web Services, in SWS there is a tendency (more visible in OWL-S

than in WSMO) to disregard the characteristics of a service and, thus, to assume that any

software component can be formally described to support the target tasks. This results in

fairly extensive frameworks that require a large amount of meta-data to describe a service.

Moreover, since the internal properties of a service are disregarded, it is difficult to provide

guidelines on how to translate between the internal service properties and a corresponding

SWS model, i.e. how to design a service or provide a meta-data description for an existing

one.

The tasks targeted by SWS (discovery, composition, orchestration, etc) are of differ-

ent natures and, therefore it is very challenging to cover all of them within a single formal

approach (e.g., by a single ontology language with fixed formal semantics). For example,

in order to support automated service discovery an ontology language capable of describ-

ing (and providing corresponding reasoning support) about hierarchically-organized domain

concepts may be sufficient. On the other hand, automated service composition requires a

language capable of describing workflows, pre- and post-conditions of operations, etc. By
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targeting such distinct tasks within a single language the end result will be of high complex-

ity and will introduce a significant entry barrier.

We argue that such high level of complexity is not inherently required to enable integra-

tion of ontologies and services. In Onto⇔SOA we focus on applying the ontology primarily

for the invocation task. By means of the restricted service model we constrain the internal

properties of a service. This simplifies the model of a service, reduces the amount of meta-

data required to describe it and provides guidelines on design of Onto⇔SOA services.

In the remainder of this section we employ OWL-S [44] to further illustrate the differ-

ences between SWS and Onto⇔SOA. OWL-S defines three models to describe the imple-

mentation of a Web service from different perspectives:

• Process models the internal details of a service in terms of input/output parameters,

preconditions and effects. The purpose of Process is to assist in service composition.

• Grounding maps domain concepts to data-types (usually the XML ones) required

to express requests to a service. The purpose of Grounding is to facilitate service

invocation.

• Profile describes the functionality of a service in domain terms. Its main purpose is

to assist service discovery.

In Onto⇔SOA we focus on service invocation. We hide internal non-domain-aligned

details of a service from the consumer. Moreover, we focus on architectures consisting of

an omnipotent service and we do not address inter-SOA interactions. All this eliminates the

need for the Process model in Onto⇔SOA.

Onto⇔SOA services directly accept messages expressed in an ontology language. In

other words, a consumer and a service interact via a conceptual domain description rather

than lower level data structures. In Onto⇔SOA the data model of all messages is uniform

(e.g., the RDF data model in MoRe described in Chapter 5) and all application-specific

aspects are captured in domain-aligned concepts. This eliminates the need for Grounding

in Onto⇔SOA.

There is a certain similarity in the purpose of OWL-S Profile and an Onto⇔SOA service

ontology: they both can facilitate service discovery. Still, there is a significant difference

in how this purpose is realized. Profile describes a service in terms of, usually externally-

defined, domain ontologies. In Onto⇔SOA the default assumption is that the service ontol-

ogy is dedicated to the service domain. The service ontology may be employed exclusively
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with this service because we assume that the meaning of the ontological concepts (appli-

cation semantics introduced in Chapter 3) is defined solely by the service. The service

ontology may be directly related (e.g., by means of ontology mapping [45] or concept im-

port) to concepts from an externally defined ontology. However, this should be done with

care because of the possible differences between the pragmatic service-oriented application

semantics in Onto⇔SOA and the formal semantics defined in an external ontology.

2.6 Discussion

In this section we elaborate on the relations between usability and reusability of Ontology-

enabled Services and more traditional software components. Also we discuss in what type

of application domains Onto⇔SOA can be most effective.

2.6.1 Balancing Reusability and Usability

In Onto⇔SOA we aim to improve domain alignment and loose coupling of services. These

characteristics primarily represent the viewpoint of a service consumer. The proposed con-

straints and guidelines, however, are aimed at service designers. With these constraints we

strive to reduce the impact of the implementation concerns on how efficiently and effectively

a service can be utilized.

We believe that very often the implementation concerns over-emphasize engineering

(non functional) properties of a service at the cost of effectiveness of actual utility and

usability delivered to its consumers. The internal properties of software artifacts such as

reusability (of code or components) are focused on by software engineers in an attempt to

reduce the development effort. This however, comes at the cost of additional complexity

and effort required to create reusable components and then to actually use them.

The increased internal complexity must be contained to not inhibit usability of an end

product. In desktop software this is achieved with user-friendly human-computer interfaces

designed to reduce effort required from users to learn and operate the product. By reusing

what the users already know and expressing the interface in terms familiar to them we can

make an application more easily (intuitively) understandable to the users. Although ser-

vices are intended for programmatic consumption, with Onto⇔SOA we propose to employ

ontologies to design user-oriented (i.e., domain aligned) service interfaces that consist of

concepts from the domain of the service consumers. By doing so we re-emphasize usability

and utility of a service and make it more attractive to its consumers.
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Inevitably, there is a trade-off between usability (how easy it is to employ component’s

utility) and reusability (in how many distinct and unforeseen application domains a com-

ponent can be applied). For example, application-specific components are the easiest ones

to use. However, they are limited to a single application domain and, therefore are of lim-

ited reusability. On the other hand, highly reusable components (frameworks, libraries, etc)

require special knowledge to apply them in different scenarios, and therefore have lower

usability.

Another example of this trade-off is the balance between fine- and coarsely-grained

objects. Fine-grained objects offer increased possibility for their reuse. However, when

reused fine-grained components require extra effort to manage dependencies between them,

to design complex interaction protocols and, ultimately, to understand the whole system.

Improved reusability by means of fine granularity is an example of what we can refer to

as software reuse. In this type of reuse the main goal is to employ existing software element

(function, class, component, etc) in as many places as possible to reduce development effort.

In many cases usability of software components has a lower priority than their reuse and is

readily sacrificed to increase the number of reuse opportunities. In Onto⇔SOA however, we

make usability our main priority and we believe that reusability of a service follows from it.

This demonstrates one of the crucial differences between traditional software components

and Onto⇔SOA services.

Unlike a more traditional software component, an Onto⇔SOA service is not designed

to be reused in as large number of software systems as possible. Instead, a service is de-

signed to be usable in a target application (business) domain, thus effectively supporting

it. Figure 2.10 illustrates a scenario in which software reuse can take place during the de-

sign of an Onto⇔SOA service. However, our main goal is not to maximize reuse but to

build a service which is well aligned to the target application domain. Such a service will

in turn provide domain-aligned, and thus efficiently utilizable, functionality to a business

application (developers).

Reuse of an Onto⇔SOA service can take place across a probably much smaller number

of application domains. This type of reuse is not so much about reducing the development

effort but about discovering overlapping functionality in application domains and ’outsourc-

ing’ it to dedicated services. Figure 2.11 demonstrates a scenario in which two business

processes include another sub-process. If we design an Onto⇔SOA service well aligned to

that sub-process, then this service can be reused in business applications dedicated to the

other two processes. Therefore, by facilitating domain-alignment of services Onto⇔SOA
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Figure 2.10: Usability in Onto⇔SOA services vs software reuse.

Software reuse can take place during construction of an

Onto⇔SOA service. However, the service itself is not

designed to maximize reuse but rather to effectively

support target domain (business) processes and to deliver

its functionality in a usable way to business application

(developers).

ensures that reuse that already takes place in an application domain can be exploited by

business application developers.

2.6.2 Serviceable Domains

Due to our focus on the domain alignment characteristic, the notion of application domain

becomes crucial to Onto⇔SOA. We require to scope a service domain thoroughly, other-

wise neither a service nor its schema can be defined. We employ constraints to design a

service such that it directly relates to the target application domain. With this we aim at

enforcing that service provides the exact functionality required by the application domain

and does not go beyond that.

The degree to which the proposed guidelines can be followed (and constraints met) in
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Figure 2.11: Reuse in Onto⇔SOA services. By focusing on domain

alignment Onto⇔SOA becomes open to a ’natural’ reuse

of services. This type of reuse takes place when a target

application domain already contains (or can be

decomposed) into sub-domains (sub-processes) exploitable

in multiple business applications.

a given application domain indicates how effectively that domain can be supported with an

Onto⇔SOA service. In other words, we believe that these constraints can characterize an

application domain or business process with respect to how well (if at all) domain alignment

and loose coupling can be supported in that domain.

By restricting services to omnipotent and session stateless entities we aim to reduce

real dependency, however by doing so we also limit the range of application domains

where we can employ such services. Consequently, there are application domains to which

Onto⇔SOA should not be applied.

If impossible to follow, the design guidelines can indicate directions in which the orig-

inal application domain has to be modified (reshaped or decomposed) to facilitate design

of a loosely-coupled and domain-aligned architecture. We believe, that domain decomposi-

tion guided by Onto⇔SOA constraints can provide a valuable aid in, for example, business

process analysis allowing to distinguish sub-process most suitable for ’outsourcing’ into

services.
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We propose to use the notion of a serviceable domain to refer to an application domain

that can sufficiently well meet the Onto⇔SOA constraints. Thus, we define a serviceable

domain as a distinguishable, independent and established application domain that consists

of a limited set of entities required to support a single task (or a coherent collection of

dependent tasks) exploitable through a simple protocol.

A service ontology is, therefore, an ontology of a serviceable domain, an Onto⇔SOA

service is an encapsulation of expertise of a serviceable domain.

A serviceable domain:

• is established when most of its characteristics are well-understood and can be ac-

quired directly from experts or indirectly from other sources;

• is distinguishable and independent when the scope of the domain can be defined pre-

cisely, and when the domain has as few as possible dependencies with other domains;

• can be described with a finite (limited) set of entities that will constitute the service

interface;

• contains expertise that can be represented as a single/atomic task. This expertise can

be exploited through a simple protocol, and has value of its own and is likely to be

transferable/applicable to other application domains.

Onto⇔SOA should not be applied in a domain that neither has a dedicated utility nor

a target user group. For example, a programming language API such as Lucene covers a

collection of dependent tasks that are intended to be employed in a wide range of application

scenarios, therefore, the application domain covered by it is not serviceable.

Another example, is a typical research project in its early stage at which there is no (yet)

clear understanding of the target application scenario (utility to be delivered). In this case,

the prototypes should be developed and experimented upon, after which the application

scenario(s) can be defined outlining a serviceable domain.

Yet another example of domains that are not serviceable is so called application-inde-

pendent domains. A traditional domain ontology is often intended to be used as widely

as possible and, therefore has little utility of its own unlike a service ontology. A specific

application context can supply utility to a domain ontology (or some parts of it).
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2.7 Conclusions

In this chapter we have addressed the central question of this dissertation: “How can ontolo-

gies and services be integrated into a framework facilitating application of knowledge?”.

As the answer to this question we have introduced Onto⇔SOA – a framework that inte-

grates Service-Oriented Architectures and ontologies to emphasize usability of services.

The proposed framework is based on a restricted service model that constrains the in-

ternal properties of a service to induce the domain alignment and loose coupling character-

istics. These constraints simplify the model of a service, reduce the amount of meta-data

required to describe it, and allow to provide guidelines on design of Onto⇔SOA services.

Onto⇔SOA builds upon the proposed service model to address a direct exchange of

ontology-based messages between a document-oriented service and its consumer. The

framework employs an ontology as a service schema (referred to as a service ontology)

that describes a domain-aligned interface to a service.

We have demonstrated the Onto⇔SOA-based design of services and corresponding ser-

vice ontologies for the Document Retrieval use case and elaborated on the main differences

between the proposed approach and Semantic Web Services.

Although we intentionally restrict Onto⇔SOA to the service invocation task only, we

believe that the proposed constraints will also facilitate other service-related tasks such as

composition, discovery, etc. In Chapter 4 we support this claim (and answer the corre-

sponding research question) by demonstrating how Onto⇔SOA enables effective service

composition using a Blackboard-based mechanism.



Chapter 3

Service-enabled Ontologies

The integration of services and ontologies can be viewed from two perspectives. In the previous chapter we

provided the service-oriented perspective. In this chapter we introduce the ontology-oriented perspective that

will be used to answer the research question: “How can we attach a service to an ontology and what does

this imply for ontologies?”. In this perspective we shift the focus from services to ontologies and re-interpret

Onto⇔SOA as a mechanism that allows to attach a service to an ontology making it service enabled. Such

service-enabled ontologies are capable of capturing procedural (behavioral) domain aspects in a way that makes

them readily-exploitable in software systems. We argue that the proposed service-enablement of ontologies not

only offers greater flexibility for ontology engineering but also enables provision of readily-exploitable utility

to ontology users.

�

Maksym Korotkiy and Jan L. Top: Onto⇔SOA: From Ontology-enabled SOA to Service-enabled On-

tologies. In proceedings of International Conference on Internet and Web Application and Services

(ICIW’06). Guadeloupe, 2006.
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User Aspects of the Semantic Web Workshop. European Semantic Web Conference. Crete, 2005.
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In Onto⇔SOA we integrate an ontology and a processing component (a service), bring-

ing together both the conceptual domain aspects declared in the ontology and the applica-

tion-specific procedural (behavioral) aspects encapsulated in the service. We refer to the

relation between these two aspects as the application semantics that defines the meaning of

ontological concepts in terms of the behavior of the corresponding services. By shifting the

focus from a service to an ontology we can interpret Onto⇔SOA as a general mechanism
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to attach a service to an ontology. We will use Service-enabled Ontologies to refer to this

interpretation. Unlike formal semantics, application semantics of ontologies has not been

directly addressed in ontology-related research.

We motivate the notions of the application semantics and service-enabled ontologies by

pragmatic concerns of ontology engineering and application of ontologies in software. In

Knowledge Representation there is a history of systems that supported so called procedural

attachments (CLASSIC [46], KL-ONE [47], CLIPS [48]), enabling direct invocation of

procedures from within a formal representation mechanism (e.g., production rules). We

can explain the need for these attachments by pragmatism: complex real-life application

scenarios are cumbersome (and often infeasible) to address with formal mechanisms only.

Such procedural attachments were regarded as a temporary workaround because they

endangered properties (decidability, consistency, etc) of formal foundations. In contrast to

this, in Service-enabled Ontologies we propose to employ services to explicitly address the

application semantics of domain concepts. By integrating a service into an ontology we

re-enable a hybrid semi-formal or semi-declarative approach to Ontology Engineering.

In Service-enabled Ontologies we regard a service as a container of domain-aligned

functionality that brings the behavioral aspect, captured in a non-formal “procedural” way,

to conceptual and declarative domain models. The main distinction of such approach from,

for example, rule-based approaches, is that a service is not limited to a particular represen-

tation mechanism. We believe that the flexibility of Service-enabled Ontologies simplifies

development and application of ontologies, thus improving their usability and facilitating

their application.

Therefore, Onto⇔SOA can be seen as an approach that integrates ontologies and ser-

vices unifying two perspectives:

• the Ontology-enabled Services perspective introduced in Chapter 2, and

• the Service-enabled Ontologies perspective introduced in this chapter.

Such integration of these two perspectives is enabled by our emphasize on

• domain alignment: both ontologies and services model an application domain at the

level that is close to the user;

• utility of ontologies and services: we assume that they both have to be designed to

provide their users with ready-to-use utility.
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In Chapter 5 we introduce MoRe as an implementation of Ontology-enabled Services

that integrates RDFS ontologies into REST-like services. However, we can also interpret

MoRe from the viewpoint of Service-enabled Ontologies as a mechanism that allows con-

necting a REST-like service to an RDFS ontology. In this chapter we will describe how the

ontology-oriented perspective is employed to the Document Retrieval scenario introduced

in Chapter 2.

This chapter is organized as follows. Section 3.1 elaborates on our viewpoint on on-

tologies and introduces the notion of application semantics. In Section 3.2 we approach

Onto⇔SOA as a mechanism that allows to attach a service to an ontology. We, then, dis-

cuss the potential Ontology Engineering benefits of this approach in Section 3.3. After that,

we return to the Document Retrieval case to illustrate the ontology-oriented perspective

(Section 3.4). Finally, we conclude with Section 3.5.

3.1 Ontologies and Application Semantics

Ontologies have been exposed to a wide range of communities. Already in 1995 clarifi-

cation was required on what the term “ontology” means in different research fields [12].

Recently, because of the W3C activities (RDF/S [13, 14], Web ontology languages [15],

the Semantic Web [16]) ontologies have attracted even more interest increasing the num-

ber of possible interpretations of the term. The main role of an ontology is to facilitate an

agreement between parties (either human or artificial) on the intended meaning of domain

concepts.

There are many ways to classify the variety of ontologies according to their degree of

formality, generality [49], detail [50], etc. Normally, an ontology is considered as a domain

model that captures application-independent semantics of concepts. Nevertheless, since we

seek to employ an ontology in a certain application context, the applicability of an ontology

in a particular scenario becomes an important factor.

One of the underlying assumptions behind our work is that to be effective an ontol-

ogy (conceptualization) should be created within a clearly defined application context. The

more precisely the context is defined, the fewer efforts is required to design an ontology and

then extract utility from it. In ontology engineering methodologies [51, 52] the phase of

determining the competence area (targeted application scenarios) of an ontology is widely

acknowledged. However, we believe that in practice it does not receive due attention, re-

sulting in ontologies that have no clearly defined application boundaries and therefore lack

directly exploitable utility.
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For example, in the document retrieval case introduced in Section 2.1 we deliberately

limit the application domain to the task of retrieving of matching documents. If we do not

restrict ourselves to the target domain, it would be tempting to include the notion of index

into the ontology of that domain. However, since the definition of the document retrieval

case does not contain the concept of index, neither may the ontology associated with the

document retrieval service include it (even though the service uses this notion internally).

An ontology facilitates consistent interpretation of concepts (i.e., shared understanding)

by un-related and de-centralized agents. The agent’s interpretation of an ontology-based

message must be validated by the original carrier of this domain knowledge – the domain

expert. However, the effectiveness of such validation is limited by the availability, costs and

quality of domain experts.

By constructing a formal model of the expert’s knowledge and applying it to validate the

interpretation we can mitigate these limiting factors. Presently, many attempts are made to

establish shared understanding by defining formal knowledge representation standards such

as RDF/S and OWL. However, there is always a tension between the expressiveness of these

generic, application-independent languages and the ability to solve specific tasks in real-life

applications. The effectiveness of the formal approach depends on a number of factors such

as: expressiveness of the representation mechanism, the complexity of constructing and

employing formal domain models, the range of provided reasoning services, adequacy of

the formal approach to the application area, etc.

In the end, it is always the behavior of the (software) agent that displays the actual in-

terpretation of ontological concepts. Here we propose to extend the consequences of this

observation: consistent interpretation of an ontology (and concepts described therein) can

be achieved by providing widely accessible and directly exploitable software components

that serve as the reference for the intended interpretation by displaying the required behav-

ior.

In Ontology-enabled Services the goal of an ontology is to transfer domain concepts into

a service and to facilitate consistent interpretation of these concepts. An extensive formal

foundation of the underlying ontology language can provide a valuable support for ontology

construction and validation, however it is not the only means for expressing semantics.

In a pragmatics-driven software design process the interpretation of domain concepts by

software is predominately validated by domain experts.

We therefore can distinguish the following types of semantics of concepts contained in

an ontology (Figure 3.1):
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Figure 3.1: Kinds of semantics of concepts captured in an ontology.

• domain semantics represents the meaning of a concept as understood by a domain

expert;

• formal semantics employed in ontology languages such as the OWL-family is based

on Description Logics. The state of the art ontology engineering heavily relies on this

approach to ontology construction;

• application semantics is determined by how a software agent interprets the concepts

defined in an ontology.

So far, formal semantics of ontologies has attracted most of the research effort in On-

tology Engineering. However, the complexity of the formal foundation of modern ontology

languages hinders their usability and adoption by practitioners. The belief that advanced

tool support will bring such ontology languages to a wide audience is yet to materialize.

On the other hand, ontology-enabled applications are needed to implement the Semantic

Web vision [53, 54]. In this chapter we focus on the more pragmatic aspect of applying

ontologies: the application semantics. In Section 3.2 we propose to use services to ground

the application semantics of concepts and relations captured in an ontology.

When an ontology is employed in a software system, the application semantics imple-

mented by that system may overtake the original domain or formal semantics. F. P. Brooks

in [55] described “specification by implementation” – a phenomenon where an implemented

software system, rather than its (formal) specification, becomes the reference point for in-

terpretation of concepts exported into other systems. By assuming high availability and

accessibility of the reference system we can validate application semantics against it.
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The application semantics of a concept (and an ontology in general) is grounded in a

software component that implements the application logic. From the Knowledge Repre-

sentation perspective, this can be interpreted as attachment of a domain- and task-specific

inference component to an ontology. We propose to employ a service to represent such

inference component. Such a service can be seen, for example, as a problem solver or a

knowledge source [56] designed for the domain of an ontology.

From the application perspective, the ability of an ontology to capture such procedural

(behavioral) domain knowledge is very attractive because it provides software agents with

ready-to-use utility. Presently, standard RDFS reasoners provide such utility to some (rather

limited) extent: in many practical applications computation of transitive closures for the

rdfs:subClassOf relationship is the only directly exploitable utility. OWL reasoners

are able to provide more inference services. Nevertheless, they are notoriously difficult

to employ in software systems without a sufficient knowledge of the underlying formal

foundations. Moreover, despite contrasting application and formal semantics we do not

intend the former to replace or exclude the latter. As a matter of fact, OWL reasoners can

be seen to provide the application semantics for OWL in the domain of logical reasoning.

There is an ongoing research on how to extend the capabilities of formal ontology lan-

guages by combining them with additional formal mechanisms more capable of expressing

behavioral aspects. For example, a number of rule languages such as SWRL1 and RuleML2

have been proposed for this purpose. However, complexity and lack of flexibility of rule

languages make it rather difficult to employ by practitioners. In many cases a non-formal

approach is the only alternative viable in practice. For example, rule languages typically do

not cover numerical reasoning, which is quite a limitation for applying them in e-Science,

in particular. We believe, however, that rule languages themselves could be supported by

services.

3.2 Attaching Services to Ontologies

In the previous section we have alluded to the difficulty in using formal methods to address

the ever-changing requirements of real-world problems. This issue has been addressed in

many Knowledge Representation systems (CLASSIC [46], KL-ONE [47], CLIPS [48]) by

1http://www.w3.org/Submission/SWRL/
2http://www.ruleml.org/
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including a limited ability to interface with procedures implemented in traditional program-

ming languages. We also consider procedural attachments to be an approach to capture

application semantics of domain concepts. We believe that the ability to incorporate appli-

cation semantics can contribute to the effectiveness of ontology languages in such a diverse,

dynamic and pragmatic environment as the Web. Onto⇔SOA already contains components

required to realize that ability.

To design an Onto⇔SOA architecture we have to create two main components: a ser-

vice and a service ontology. Since in our approach a service ontology is the only specifi-

cation of a service available to consumers, we can see the design of an ontology-enabled

service-oriented architecture primarily as development of a service ontology3.

By emphasizing the need for a service ontology we can re-interpret the Onto⇔SOA

framework as a mechanism that: enables to attach a service to an ontology, thus defining

application semantics of concepts captured in this ontology.

Since the Service-enabled Ontologies perspective covers the same components as the

Ontology-enabled Services, it is subjected to the same constraints. The effect of the con-

straints, however, should be re-interpreted to reflect the change of focus from a service to an

ontology. This re-interpretation will also explain the difference between a service ontology

and a more traditional application-independent domain ontology.

A service ontology describes an application domain that can be seen as a combination

of a certain domain (e.g., the document corpora domain) and a task applied to that domain

(e.g., the retrieval task). On the other hand, a domain ontology is intended to cover an

application-independent domain.

A concept such as “document” gains different facets of meaning when employed in

different tasks. For example, for the retrieval task we assume that a document contains a

natural language text that determines the relevance of a document to a given query. In other

tasks, such as document archiving for example, the actual content may be irrelevant but

other properties become important (creation and modification dates, size, etc).

There are always implicit assumptions that affect (a particular facet of) the meaning

of a concept but that have to be left outside a formal model. These assumptions create

a unique application context within which a domain concept is interpreted. An ontology-

enabled service captures this context, thus potentially complementing a formal (declarative)

representation of the concept.

3We also believe that the inverse should hold: development of an ontology that captures application seman-

tics is largely equivalent to development of an Onto⇔SOA architecture.
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Figure 3.2: The relations between concepts, a service ontology and a

corresponding service.

Our initial assumption is that each application context is unique, therefore there is only

one service attached to concepts from a given application domain (model). A service ontol-

ogy contains a collection of related concepts, the application semantics of which is deter-

mined by the shared application context. These concepts cannot be employed outside that

context because the implicit assumptions will be lost, thus potentially hindering consistency

of interpretation of these concepts.

In Onto⇔SOA we have made it explicit that a concept can belong to one service ontol-

ogy only (see Sections 2.2.2 and 2.3.2) that, in turn, can have only one service associated

to it (Figure 3.2). This makes it trivial to use a concept within its application domain but

explicitly requires additional measures (e.g., ontology mapping) to reuse this concept across

different application domains. This property of service ontologies contrasts to domain on-

tologies that are expected to contain concepts ready to be reused across applications. Nev-

ertheless, this contrast should not be perceived as a sign of a conflict but rather as an explicit

acknowledgement of the problem of concept reuse across application domains.

Onto⇔SOA also suggests a solution to this problem of reuse: by preserving a link

between a concept, its service ontology and a corresponding service we are able to reuse

that concept in different application domains as long as the corresponding service is used

to interpret the concept.

By integrating a service and an ontology, we combine the Software Engineering and

Knowledge Representation perspectives on services. As we will demonstrate in Chapter 4,

the latter allows to approach a service as a knowledge source. Knowledge Sources have

been introduced as independent, self-contained computational components that carry do-

main knowledge. We find these characteristics of Knowledge Sources to match well to
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those of Onto⇔SOA services.

We have already stated that the full formal semantics of advanced languages such as

OWL may be too complex or restrictive for practical applications. Nevertheless, modern

ontology languages such RDFS and OWL are de-facto standard means for specifying on-

tologies. Therefore, we will provide some guideline on how to service-enable these ontol-

ogy languages and more generally languages with a strict formal semantics.

One of the approaches is to release part of the formal interpretation and allow for ap-

plication semantics to overtake it. For example, the OWL restrictions can be interpreted

(slightly) differently from their formal definition (see Section 5.4). The only requirement

is that the software developer and the knowledge engineer ensure that the service displays

behavior that complies with the expectations of the domain expert. In other words, we can

allow for a short-cut between expert knowledge and service behavior using a light-weight

interpretation of formal semantics of the ontology language used.

Another approach is to fully respect the formal semantics of an ontology language but

select a language with less restrictive formal semantics. In this case the more extensive and

restrictive it is – the more difficult its service-enablement can be due to a likely conflict

between formal and application semantics. This implies, for example, that since RDFS has

much less restrictive formal semantics than the languages from the OWL family, the former

can be integrated with a service with less concerns about possible semantic conflicts.

3.3 Potential Benefits of Service-enabled Ontologies

In the rest of this section we outline the capabilities of service-enabled ontologies which we

believe can make them more usable than strictly formal ontologies.

Refining Domain Models In Chapter 1 we have argued that although it is assumed that

a specification mechanism underlying an ontology and domain conceptualization are inde-

pendent, in practice it is not the case with ontology languages that have restricted formal

semantics. In these languages the underlying formal foundation often forces a particular

approach to domain conceptualization. This can lead to a mis-alignment between the mean-

ing of a concept as understood by a domain expert and the formal meaning of the domain

model.

Service-enabled ontologies deliver a facility to ground the meaning of a concept in a

service. This provides ontology engineers an additional means to stay closer to the domain

meaning of concepts. Such a hybrid approach makes the relation between a specification
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mechanism and domain conceptualization more flexible allowing for a better alignment

between an ontology and the expert’s understanding of the domain.

One of the consequences of this increased flexibility is the ability of a service-enabled

ontology to specify refined domain models. Often a traditional ontology language lacks the

ability to describe a domain at the level of detail required in, for example, e-Science appli-

cations. For example, in the Unit Conversion case described in Chapter 5 we had to capture

the mathematical aspects of the property that represents the conversion factor between two

units of measure. None of the modern ontology languages is able to express this type of

mathematical knowledge, let alone to provide the corresponding reasoning support. The

only option the user has is to wait for an ontology language extension supporting mathe-

matical expressions. On the other hand, in many domains including e-Science mathematical

aspects play a very important role and have to be dealt with already now.

By enabling the mathematical aspect of the considered property to be captured in a

dedicated service, we allow an ontology engineer to create a deep domain model with some

aspects exposed formally and others captured in a service. We believe this significantly

simplifies ontology development.

Efficient Inference Services In any practical situation the trade-off between generality

and efficiency is inevitable. General-purpose reasoners and inference engines are always

less efficient than reasoners tuned for a specific domain. Traditionally, reasoning support

for an ontology language can be made more efficient by reducing the expressiveness of

the language. Service-enabled Ontologies open up additional ways to improve computa-

tional efficiency by introducing domain-specific inference services. This can be achieved

by choosing the most efficient domain-specific inference procedure and using it as a foun-

dation for domain modeling. This not only provides optimal performance but also supports

creating refined domain models. This inference mechanism can be either symbolic (e.g.,

logic programming or rule-based), computational (neural network, evolutionary) or an ar-

bitrary software component.

Incremental Development Usually, it is much easier to initially capture knowledge in

a procedural way because it does not restrict the user to a particular declarative represen-

tation. Later on, some parts of the procedural knowledge can be exposed in a declarative

way through an ontology. In this way, Service-enabled Ontologies allow for an evolutionary

transition from procedural to declarative knowledge representation by specifying a declar-

ative interface to procedural knowledge. We believe that all this improves the utility of an
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ontology, improves its usability and facilitates application of ontologies in software.

3.4 Ontology-oriented Perspective on Document Retrieval Case

In Chapter 2 we have described a solution to the Document Retrieval case from the perspec-

tive of Ontology-enabled Services. In this section we complement that description with the

Service-enabled Ontologies viewpoint.

The formal semantics of the RDFS and OWL languages is supported by corresponding

reasoning services. The formal semantics of these languages is usually hidden from the

users (an ontology engineer, for example) by means of an advanced tool support. The

reasoning services, however, are likely to be encountered by the users because they can

facilitate ontology development (consistency checking service, etc). When we seek to apply

an RDFS or OWL ontology the available reasoning services become less valuable because

they offer little utility for the majority of application scenarios.

Computation of transitive closures in RDFS is an example of a reasoning service valu-

able in applications. The transitivity of the rdfs:subClassOf relation is described in

the RDFS language specification [14] that defines the corresponding inference procedure by

means of inference rules. These rules are implemented in middleware either as a dedicated

inference service (inference models in Jena API [57], for example) or as part of an ontology

query language (SPARQL [58]).

Unlike consistency checking services, computation of transitive closures is often applied

not at the ontology design stage only but also at the deployment stage. Computation of

transitive closures by a software component can be seen as an example of the application

semantics of the rdfs:subClassOf relationship. The application domain in this case

can be described as RDFS reasoning.

Let us for example compare reasoning services in the domain of the RDFS language

and that in the application context of our Document Retrieval case. There are similarities

between the application semantics of the rdfs:subClassOf relation and concepts from

the Document Retrieval service ontology:

• in both cases we have an initial domain situation described by a number of facts that

are then extended with new facts inferred by a reasoning service. In the rdfs:sub-

ClassOf case we can have a hierarchy described by two facts (A rdfs:sub-

ClassOf B; B rdfs:subClassOf C) and in the Document Retrieval case we

have a description of a document corpora and a text query (the left-hand part of
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Fugure 2.2). Having applied the transitive closure reasoning service we obtain a

new fact (A rdfs:subClassOf C) and by applying the Document Retrieval ser-

vice – facts describing a collection of matching documents (the right-hand side of

Fugure 2.2);

• in both cases the reasoning service determines the application semantics of an onto-

logical concept. In the rdfs:subClassOf case we compute the transitive closure

and in the Document Retrieval case we parse the documents, analyze their content

with respect to a given query to find matching documents;

• in both cases an (RDFS) ontology provides the terminology to describe initial domain

situations and inferred facts.

A notable difference between the transitive closure and the Document Retrieval services

is that the former is defined in a formal way and the latter is not. However, we believe that

from the application perspective this is not very important as long as the corresponding

inference services can be implemented in software.

The formal definition of transitive closures assures consistency between different im-

plementations (e.g., the Jena middleware versus the RDQL/SPARQL query engines) of a

corresponding reasoning service. Nevertheless, as we proposed in Section 3.1, a widely

accessible and directly exploitable implementation of such a service can be employed to

facilitate consistent interpretations. We do not argue to abandon formal semantics. We

do argue, however, that ontological concepts not always have to be defined formally to be

effective in practice. We believe, that an ontology can carry both formal and application

semantics of domain concepts.

To summarize, the Document Retrieval service ontology captures a complex relation-

ship between concepts supplied by a consumer and concepts inferred by a service. With

Service-enabled Ontologies we define a mechanism that allows to attach a service to a Doc-

ument Retrieval ontology preserving the application semantics and making it available to

the ontology users.

3.5 Conclusions

We have introduced the ontology-oriented perspective on Onto⇔SOA. This perspective

provides us with an answer to the research question: “How can we attach a service to an

ontology and what does this imply for ontologies?”. By shifting the focus to a service
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ontology we can re-interpret Onto⇔SOA as a mechanism that allows to attach an arbitrary

service to an ontology, thus capturing application semantics of domain concepts.

We believe that the proposed integration of services into ontologies has a number of

beneficial implications:

• decoupling of the inference service from the ontology language makes conceptual-

ization less dependent on the representation capabilities of the ontology language;

• increased flexibility in specifying conceptualization reduces the gap between the mean-

ing of concepts as defined by an ontology and expectations of domain experts;

• it provides the ability to provide efficient domain-specific reasoning services;

• the user is able to decide what type inference mechanism (symbolic, computational

or procedural) suits best to represent domain knowledge;

• and, ultimately, this approach bridges Software and Ontology Engineering.

Overall, we believe that the ontology-oriented viewpoint on Onto⇔SOA demonstrates

the potential of integrating procedural and declarative knowledge that allows us to benefit

from usability of the former and reusability of the latter.



Chapter 4

Service Collaboration in Onto⇔SOA

In this chapter we investigate the research question: “How can ontology-enabled services work together?”.

To answer this question we propose an approach to service composition based on the ideas from Blackboard

Systems extensively investigated in AI in 1970-80s. We combine these ideas with Onto⇔SOA. The proposed

Blackboard-style composition approach requires neither an extensive service model nor an explicit workflow

specification and enables composite functionality to emerge by bringing a number of services together and

making them interact via a shared repository. We illustrate that a Blackboard-style mechanism combined with

a restricted service model is a feasible approach for non-trivial service composition scenarios. To demonstrate

our approach in the e-Science domain we compose a number of services to check consistency of units of

measurement in mathematical statements.
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Services are seen as software components that can be effectively combined to provide

complex functionality to their consumers. A variety of SOA frameworks and approaches

to service composition exists. The field of Semantic Web Services (SWS) is closest to the

area of our research. OWL-S [28] and WSMO [29] are the two most well-known SWS

approaches. Both of them rely on extensive ontology-based semantic service models to

automate tasks such as discovery, invocation, choreography and orchestration of Web Ser-

vices. The extensive formal frameworks defined by these approaches achieve, to a certain

extent, the goal of automated service composition [59]. However, as these frameworks aim

to cover the widest possible range of services, they tend to become highly complex hinder-

ing their overall acceptance.
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In Chapter 2 we have proposed the Onto⇔SOA framework as a simple yet effective

ontology-enabled approach to designing usable (and reusable) services. We aim to improve

the usability of services by enforcing their domain alignment and loose coupling charac-

teristics. To achieve that we have defined a restricted service model that exposes only a

conceptual service interface captured in a schema referred to as a service ontology (Fig-

ure 2.8).

The service model in Onto⇔SOA requires a service to be document oriented, in con-

trast to communication in terms of remote procedure calls (RPC) commonly employed in

(Semantic) Web Services. A service ontology, therefore, is a specification of a document-

oriented service interface. It describes vocabulary employed in documents communicated

to and from a service and exposes no other details about a service such as preconditions, ef-

fects and process model. In Onto⇔SOA a service is limited to a single operation: extending

a request document with new facts.

Onto⇔SOA aims exclusively at the task of service invocation. Service discovery and

composition are not targeted by the core framework. However, we believe that these tasks

will be also facilitated by our approach. In this chapter we support this statement by fur-

ther extending the framework with a composition mechanism based on Blackboard Sys-

tems [56].

The principle behind Blackboard Systems is best explained by drawing the analogy

with a team of experts cooperatively solving a complex problem on a blackboard. The ex-

perts are independent, belong to different domains and do not directly interact with each

other. Instead, they observe the current state of the problem solving process captured on

the blackboard, and opportunistically contribute to it by applying their domain knowledge.

Blackboard Systems exhibit the ability to supply a general and flexible composition mecha-

nism capable of organizing multiple components and have been proven to work in a variety

of application areas such as speech recognition, process contro, and case-based reasoning.

Our work is motivated not only by the need to address collaboration between services

(i.e. the task of service composition). The service model defined in Onto⇔SOA bears many

similarities with Knowledge Sources – one of the key components in Blackboard systems.

Additionally, by introducing an ontology into a service we extend the latter in the direction

of Bnowledge-based Systems, of which Blackboard Systems is a prominent representative.

In short, in this chapter we demonstrate that the Blackboard-based mechanism is a vi-

able approach to service composition in Onto⇔SOA. The proposed approach is general and
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application-independent. We also show that despite being intentionally restricted the ser-

vice model in Onto⇔SOA is capable of supporting collaboration between services. More

generally, we submit that in many non-trivial scenarios no extensive description of a service

model or workflow is required to enable effective composition of services.

To support these claims we employ a use case from the e-Science domain. This use case

addresses the problem of detecting inconsistent use of units of measurement and dimensions

in mathematical statements. To solve this task we implement a number of Onto⇔SOA

services and make them collaborate using a Blackboard-based approach.

We organize this chapter as follows. In Section 4.1 we describe the use case. After

that, in Section 4.2 we describe the main components of Blackboard Systems as employed

in AI. Next, in Section 4.3 we adjust the traditional Blackboard composition mechanism to

Onto⇔SOA and apply it to the consistency checking use case in Section 4.4. We elabo-

rate on the design of two services and describe a sample composition run in Section 4.4.3.

Finally, we discuss some issues of the proposed Blackboard-style service composition in

Section 4.5 and conclude with Section 4.6.

4.1 Use Case: Checking Consistency of Units of Measurement
in Mathematical Statements

In many engineering and scientific applications consistent use of units of measurement and

dimensions is an important quality assurance tool. There are numerous examples of severe

losses resulted from inconsistent use of units of measurement. To name one, we can refer

to a 125$ million Mars orbiter lost in 1999 because engineering teams used units from

different measurement systems1. A loss like this could have been prevented if an automated

unit consistency checking would have been implemented.

In order to determine consistency2 of an expression (e.g., F = m× a) we have to know

what units are assigned to each of the variables (e.g., F – Newton, m – kilogram, a – meter

per second squared). Given this information we can apply knowledge from the domain of

units of measurement and determine consistency of that expression (e.g., Newton can be

expressed as kilogram times meter per second squared, hence the assignment is consistent).

We will address this use case by designing a demo application that relies on a consis-

tency checking service composed from a number of independent services. The workflow as

1http://www.cnn.com/TECH/space/9909/30/mars.metric.02/
2Here and further on we use consistency to refer to consistency of units of measurement and dimension.
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Figure 4.1: A screenshot of the Unit Consistency Checker demo

application. In this example we can see that the assignment

expression is inconsistent with respect to units of measure

but consistent with respect to dimensions. The easiest way

to fix this inconsistency is to replace the slug unit with

kilogram.

implemented in the demo application consists of three steps which are clearly recognizable

in the GUI (Figure 4.1). In the first step the user types in an expression. Next, the user

assigns units of measurement to identifiers (variables) employed in the expression. Finally,

the user activates the consistency checking procedure, analyses a consistency report, and if

necessary reassigns units of measurement.

4.2 Blackboard Systems in AI

Blackboard Systems have been extensively researched in AI in 1970-80s. They have been

applied in numerous application areas such as process control, planning and scheduling

and speech recognition (see [60] for an extended introduction into the field). As we have

already mentioned in the introduction the main idea behind Blackboard Systems can be

illustrated by comparing it to a team of experts that cooperatively solve a problem via a

blackboard. The experts are allowed to interact via the blackboard only and their access

to the blackboard is managed by a dedicated, application-specific controller. Thus, we can
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distinguish three main elements in Blackboard Systems: the Knowledge Sources (experts),

the Blackboard and the Controller (Figure 4.2).

Knowledge Sources are mutually independent functional components capable of inspect-

ing and modifying the Blackboard. In many Blackboard Systems a knowledge source con-

sists of trigger and action procedures. The trigger procedure allows a knowledge source to

determine if a blackboard contains facts sufficient to contribute to it. The purpose of a trig-

ger is similar to the purpose of service preconditions employed in Semantic Web Services

(SWS) approaches; a trigger can detect whether all required data are available for a com-

ponent to start processing. However, unlike preconditions in SWS, triggers are normally

neither specified declaratively, nor are they employed for automatic construction of work-

flows. Triggers enable the Controller to schedule Knowledge Sources to achieve the most

efficient problem-solving process.

The Blackboard is a heterogeneous repository (fact storage) shared by all Knowledge

Sources and the Controller. The Blackboard serves as a shared repository enabling cooper-

ation among Knowledge Sources. It can also serve as a temporary buffer. The Blackboard

can contain a symbolically represented and, often, hierarchically organized solution space.

It also can store control data employed by the Controller. The structure of the Blackboard is

usually application specific to achieve the most efficient communication among Knowledge

Sources and the Controller. It is assumed that there is a certain syntactic and semantic com-

patibility between Knowledge Sources. This allows them to (at least partially) understand

the content of the Blackboard and extend it with new facts, which in turn can be understood

by other Knowledge Sources.

The Controller synchronizes and coordinates Knowledge Sources to establish an ef-

fective and efficient problem-solving process. The overall application-specific problem-

solving strategy is normally embedded in the Controller. The strategy is flexible enough to

enable arbitrary scheduling of Knowledge Sources that is decided upon by the Controller

on the basis of trigger procedures.

In AI the following benefits of Blackboard Systems are emphasized most often [38, 56]:

• Blackboard Systems are arguably considered to be the most general and flexible ar-

chitecture for building knowledge-based systems.
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Figure 4.2: Major components of a Blackboard System.

• Blackboard Systems provide for an excellent integration framework for components

(Knowledge Sources) that employ heterogeneous representations and expertise. This

characteristic of Blackboard Systems is very attractive for Enterprise Application In-

tegration for which SOA is also often employed.

• The Separation of concerns between the Controller and Knowledge Sources allows a

Blackboard System to make dynamic control decisions: the Controller can steer the

problem-solving process depending on its state and the information supplied by the

triggers. This property is also very attractive for SOA deployed in the very dynamic

environment of the Web.

• The inherent modularity of a Blackboard System and independence of Knowledge

Sources provide for significant software engineering benefits: for example, each com-

ponent can be implemented, adjusted and tested independently from others.

As summarized in [38] the main disadvantage of Blackboard Systems is that they do

not scale down very well to simple problems. In addition, they are considered to be use-

ful only during prototyping. For performance reasons, production systems are usually re-

implemented with more conventional means providing better performance. Finally, the

components of traditional Blackboard Systems appeared to be rarely reused: in most cases

Blackboard Systems were designed from scratch. We will revisit these issues later in this

chapter in the context of Onto⇔SOA.
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4.3 Blackboard-style Service Collaboration in Onto⇔SOA

The generality and flexibility of Blackboard Systems make the underlying composition

mechanism very attractive to Service-Oriented Architectures. Although Onto⇔SOA ser-

vices share many properties with Knowledge Sources, there are also considerable differ-

ences between the organization of Blackboard Systems and the way we propose to design

services in Onto⇔SOA:

• In Blackboard Systems Knowledge Sources are designed to work together on a spe-

cific, predefined task. On the other hand, Onto⇔SOA services are not aware of the

complex application scenarios in which they participate.

• Blackboard Systems emphasize flexible and dynamic control that is to a significant

extent achieved by employing triggers. Usability of Knowledge Sources is not a

design goal as such. Contrary to this, in Onto⇔SOA usability of services is the most

important concern. One of the main means in improving usability in Onto⇔SOA is

by hiding implementation details of a service such as triggers.

Therefore, we will have to adapt the Blackboard-style composition mechanism to apply

it in Onto⇔SOA. When doing so we will maintain the simplicity and usability of our frame-

work. In the following subsections we describe the three main elements of Blackboard-

style composition as applied in Onto⇔SOA: the Controller, services acting as Knowledge

Sources and the Blackboard.

4.3.1 The Controller

We begin by defining the Controller because it requires considerable adjustments to meet

the restrictions of the Onto⇔SOA service model. According to this model the Controller

belongs to the connector mechanism because it is responsible for coordinating communi-

cation between a service and its consumers, or between services. Therefore, being part

of the connector the Controller must be designed as a simple and application-independent

component.

The Controller can be employed either as a stand-alone service or as a component in-

cluded into a service that internally combines several services. In both cases, however, the

Controller itself does not contain any application-specific logic that is to be contained ei-

ther in one of the services or in the service consumer. Such an application-independent

Controller allows Onto⇔SOA services to be easily combined and employed in different
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application contexts. We assume that the Controller knows which services participate in

collaboration but not what they do. At this point we do not elaborate on how the Controller

discovers the services to be composed.

In Onto⇔SOA the Controller uses the following basic composition procedure:

1. The Controller sequentially invokes all services to be composed in a non-predefined

order. Each service is invoked exactly once per cycle. During each invocation the

Controller sends the (relevant part of the) content of the blackboard to one of the

services as an input document. The service sends its output document back to the

blackboard.

2. Another invocation cycle follows if the content of the blackboard has been modified

after invoking all services. Otherwise, the process stops.

In the simplest scenario the Controller submits the complete content of the blackboard to

a service. However, since it is likely that only part of the blackboard’s content is relevant to a

given service, the Controller can extract from the blackboard a fragment limited to concepts

used in the corresponding service ontology. In this way the efficiency of the communication

between the Controller and Knowledge Sources can be improved.

Presently, for simplicity reasons (in the spirit of Onto⇔SOA) and to avoid concurrency

related problems, we assume that during composition at any given moment at most one

service may access the blackboard.

Since the Controller contains no application-specific logic and the composed services

expose their conceptual interfaces only, the Controller cannot predict whether a service

can contribute to the blackboard at a given iteration. Hence, unproductive invocations –

service invocations that do not add new facts to a blackboard – cause additional overhead.

The Controller can reduce this overhead by inspecting the changes on the blackboard and

adjusting the service invocation order for next iterations. We discuss this issue in some

detail in Section 4.5. However, finding a generally applicable composition optimization

mechanism is outside the scope of our work at the moment.

4.3.2 Onto⇔SOA Services as Knowledge Sources

Knowledge Sources are traditionally seen as domain-specific problem solvers. In the pro-

posed Onto⇔SOA framework we treat services in a more general way as experts capable

of applying their (procedural) knowledge to infer facts about the domain of discourse. A

few additional assumptions and clarifications are required to enable the participation of
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Onto⇔SOA services in Blackboard-style composition as described in the previous subsec-

tion.

First, the services must be compatible with each other on both the conceptual (semantic)

level and data-model level. In MoRe, a specific implementation of Onto⇔SOA, we use the

RDF data-model for expressing documents. To achieve semantic compatibility between the

collaborating services we require that each service ontology overlaps with at least one other

service ontology. This overlap enables a flow of facts through the services allowing them to

benefit from each other’s expertise.

Both semantic and data-model incompatibility can, in principle, be resolved via me-

diation mechanisms. However, we do not consider such mediation mechanisms to be an

integral part of the composition framework. The main reason for not assigning any special

role to them is that mediation services can be effective by participating in the blackboard-

based composition in the same way as any other services.

Second, the introduced composition procedure terminates when none of the services

modifies the blackboard anymore. We take measures to reduce chances that (conflicting)

interaction between services prevents normal composition termination. For this we require

that the services may only add new facts to the blackboard. They may neither remove nor

modify existing facts. In addition, to prevent infinite expansion of the blackboard we require

that a service does not modify a document generated by the same service: i.e. submitting

an output document of a service to the same service will not modify the document.

However, there are still many scenarios in which composition does not terminate nor-

mally. In those cases termination could be achieved by enforcing a maximum number of

service invocations. Such kind of abnormal termination is not preferred because it would

require to expose internal details of a composition procedure hindering both domain align-

ment and loose coupling of such a service. The preferred approach to resolve such cases

is to consult the application domain where service composition takes place. If this do-

main corresponds to a complex business process then this process should already contain a

mechanism (business rules) that covers such abnormal termination of the process. By en-

capsulating this mechanism into the composed services we ensure that service composition

always terminates in a way aligned to the underlying business process.

Finally, in Onto⇔SOA we favor session-stateless services. This implies that the collab-

orating services should not use the Blackboard as a buffer for internal intermediate results.

Under intermediate results we understand facts that are of no utility to a consumer (for ex-

ample, because they are superseded by other facts or reflect internal details of the reasoning
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process) or other services being composed.

4.3.3 The Blackboard

The Blackboard contains information (a collection of facts) shared between services par-

ticipating in composition. In Onto⇔SOA the Blackboard has a homogeneous structure,

compatible with the data-model employed in the documents communicated to and from the

collaborating services. For example, if we aim to compose MoRe services then the corre-

sponding Blackboard must use the RDF data model. In Onto⇔SOA the Blackboard as such

is conceptually neutral – it does not enforce any conceptual structure (e.g., a hierarchically-

organized solution space as in traditional Blackboard Systems).

The Blackboard is used exclusively to enable interaction between services. As stated

previously, we do not allow it to serve as a temporary buffer for intermediate results internal

to the respective services. Neither may it contain control data (such as statistics of successful

service invocations, for example).

In traditional Blackboard Systems the blackboard structure is optimized to achieve an

efficient problem-solving process. Contrary to this, in Onto⇔SOA we emphasize usability

of services achieved by unifying the structure of communicated documents and enforcing

domain alignment of contained concepts.

4.4 Solution to the Use Case

We apply the proposed Blackboard-style service composition to the unit consistency check-

ing case introduced in Section 4.1. We employ the UnitDim Ontology3 as an explicit knowl-

edge model of the domain of units of measurement.

In this use case we implement a demo application that uses the introduced application-

independent Controller to compose five Onto⇔SOA services. The services do not depend

on each other and are not specific to the task addressed in the use case, thus they can be

reused in various application contexts.

A minimum amount of application-specific logic is contained in the demo application

that acts as a consumer. This logic is available neither to the composed services nor to

the Controller. The demo application supplies the facts describing the initial situations in

terms of the mathematical statement and, optionally, units of measurement assigned to the

identifiers used by it.

3http://www.atoapps.nl/foodinformatics/NewsItem.asp?NID=7
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The Controller invokes (in a non-predefined order) the following services to work on

the initial situations:

• The Parser service (see Section 4.4.1) transforms a mathematical statement4 into a

parse tree representing its underlying structure. For example, the statement

F = m × a;

is decomposed into the assignment expression F = m× a that consists of variable F

and the multiplication expression m× a, which in turn includes two variables m and

a.

• The Unit Assigner service recognizes variables by their name and automatically as-

signs units of measurement commonly used for those variables. For example, this

service can automatically assign the unit of measurement Newton to variable F .

• The Unit Consistency Checker service (elaborated upon in Section 4.4.2) analyzes

the structure of a mathematical expression with units of measurement assigned to its

variables. The Unit Consistency Checker attaches one of the three possible values

(unit consistent, unit inconsistent, unit consistency unknown) to the statement and to

each of its sub-expressions.

• The Dimension Consistency Checker service determines dimensional consistency of

the statement and its sub-expressions in a manner similar to unit consistency check-

ing.

• The Overall Consistency Checker service combines the outcomes of the unit and

dimension checks to determine the overall consistency of the statement and each of

its sub-expressions.

In the coming subsections we elaborate on the design of the Parser and Unit Consistency

Checker services.

4.4.1 Parser Service

In Onto⇔SOA a service is defined primarily via its service ontology. This ontology con-

tains the vocabulary needed to express input and output documents sent to and created by

4We support a subset of the syntax of the Matlab language to express mathematical statements from science

and engineering. This subset also occurs in many other programming languages.
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the service. The sole task of the Parser service is to transform a given input statement into a

tree of expressions. Hence, we have to define a service ontology capable of supporting this

task.

The statement is the central concept in this service ontology. Each statement is linked to

its source – a representation of the statement in a Matlab-like language, and to a collection

of expressions constituting the statement. Each expression in turn also has a source and can

be linked to other expressions, thus forming a hierarchical structure. An expression is an

abstract type that does not directly appear in the communicated documents. Instead it serves

as a super-type for more specific kinds of expressions such as assignment, multiplication,

identifier, etc that do appear in those documents.

To illustrate the service let us consider an input document containing the fact:

statement

has source “F = m × a;”

This document is extended by the Parser service into the following output document:

statement

has source F = m × a;

contains expressions

assignment

has source F = m × a

contains expressions

identifier

has source F

multiplication

has source m × a

contains expressions

identifier

has source m

identifier

has source a

If an input document does not contain the source of a statement, the Parser service can-

not infer the corresponding hierarchical structure, thus returning an unmodified document.

If an input document already contains the decomposition tree, then the Parser service returns

it unmodified because it may not override existing facts.

4.4.2 Unit Consistency Checker Service

The service ontology of the Unit Consistency Checker service combines fragments from the

service ontologies of the Parser and Unit Assigner services and adds the unit consistency
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property to the concepts statement and expression.

During operation, the Unit Consistency Checker service takes an input document (like

the one produced by the Parser service) with units of measurements assigned by the Unit

Assigner service:

statement

has source F = m × a;

contains expressions

...

identifier

has source F

has unit Newton

...

identifier

has source m

has unit slug

...

identifier

has source a

has unit metre per second squared

and determines consistency of each expression and of the overall statement resulting in

the document shown on Figure 4.3 (please ignore the bold tags for the moment).

The Unit Consistency Checker service is able to infer unit consistency of a statement or

an expression only if the conditions below are met by the input document:

• the statement has been decomposed into sub-expressions;

• units of measurement are assigned to identifiers;

• the input document does not yet contain the consistency of the statement or an ex-

pression: a service may not overwrite existing facts (even if they differ from facts

inferred by the service).

By providing the service ontology it should be clear to the designers of the service

consumer which input is required for the service to infer new facts.

4.4.3 Sample Run

To illustrate the composition process we describe a sample run in detail. In this, run we

compose three services: the Unit Consistency Checker (UC), the Unit Assigner (UA) and
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0 Matlab statement
0 has source F = m × a;
3-UC unit consistency INCONSISTENT

1-MP contains expressions
1-MP assignment
1-MP has source F = m × a
3-UC unit consistency INCONSISTENT

1-MP contains expressions
1-MP identifier
1-MP has source F
3-UC unit consistency CONSISTENT

2-AU has unit Newton

1-MP multiplication
1-MP has source m × a
3-UC unit consistency CONSISTENT

1-MP contains expressions
1-MP identifier
1-MP has source m
3-UC unit consistency CONSISTENT

2-UA has unit kilogram

1-MP identifier
1-MP has source a
3-UC unit consistency CONSISTENT

2-UA has unit metre per second squared

Figure 4.3: A trace of the blackboard during a sample run. Tags on the

left-hand side identify in which iteration and by which

service (UC - Unit Consistency Checker, UA - Unit

Assigner, MP - Parser) a certain fact has been introduced

into the blackboard.

the Parser (MP). Figure 4.3 shows a trace of the blackboard during this run. Tags on the left-

hand side identify in which iteration and by which service a certain fact has been introduced

into the blackboard.

A description of the initial situation in the application domain (a mathematical state-

ment) is supplied by the user. The demo application expresses it as a document and submits

it to the blackboard. On the trace the lines marked with the 0 tag correspond to this state.

Iteration 1: The controller starts invoking services. Neither UC nor UA can contribute

to the blackboard because it contains no expressions. MP contributes to the blackboard by
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decomposing the statement into a tree of expressions.

The controller determines that the blackboard has been modified during the first iteration

and proceeds with iteration 2. UC still cannot contribute to the blackboard because the

expressions do not have units of measurement assigned. UA contributes to the blackboard

by assigning units of measurement to the identifier expressions (variables). MP adds nothing

to the blackboard because the statement has already been decomposed into expressions.

Again the controller determines that the blackboard has been modified and proceeds

to iteration 3. UC contributes to the blackboard by inferring unit consistency of all ex-

pressions and the overall statement. Neither UA nor MP can contribute new facts to the

blackboard.

The controller determines that the blackboard has been modified and proceeds to iter-
ation 4 during which neither of the services can contribute to the blackboard because it

already contains all the facts derived by the services. After this iteration the blackboard is

not modified, thus the controller stops iterating and sends the final content of the blackboard

to the consumer (our demo application).

4.5 Discussion

In the described sample run 12 service invocations (4 iterations × 3 services) took place

out of which only 3 were productive. This represents 300% invocation overhead and cor-

responds to the worst-case composition scenario. In this case there is only one productive

invocation in each iteration. The final iteration has no productive invocations at all.

This overhead can be eliminated by enabling the Controller to remember the order of

productive invocations and re-apply it in future compositions. When the Controller employs

such a strategy and terminates composition after the final productive invocation our sample

composition will take 3 service invocations only, thus completely eliminating the invocation

overhead.

By enabling the Controller to dynamically adjust invocation order and to use the service

ontology to communicate to a service only a relevant sub-set of the Blackboard content

we can significantly reduce the composition overhead. This, we believe, demonstrates that

even with the restricted service model that exposes only a document-oriented interface to a

service, we can achieve effective and efficient service collaboration using the Blackboard-

based mechanism.

The proposed collaboration approach, and service composition in general, should be
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applied with extra care if invocation costs are significant. For example, data-intensive ser-

vices that expect a large amount of data to be passed through their interfaces bear significant

invocation costs, and thus are likely to be inefficient for composition. In Onto⇔SOA the

preferred approach in such a case is to reduce the size of the communicated messages by

re-modeling a data-centric service on a higher conceptual level, ’compressing’ operations

on raw data into semantically richer notions. For example, instead of actually converting

arrays of numerical data measured in pounds into kilograms, a service can describe how a

conversion between these two units of measurement can be performed: by multiplying val-

ues by 0.454. This design demonstrates a knowledge-oriented direction in service design

promoted in Onto⇔SOA via ontology-based service interfaces, and further enforced by the

Blackboard-based composition mechanism.

In Onto⇔SOA we encourage limiting an architecture to as few services as possible

(ideally to one) for a given application domain. This can imply decomposition of the initial

application domain into sub-domains (sub-tasks) that each can be effectively supported by

a single service. If we assume that the proposed Blackboard-based collaboration is used

to realize the initial complex task then the decomposition process can be directed by the

constraints defined in Onto⇔SOA and in the proposed collaboration mechanism.

The Blackboard-based composition is also applicable to services that do not fit into the

Onto⇔SOA service model, e.g. to Web Services in general. However, additional measures

are required to resolve potential conflicts resulting from relaxed or missing Onto⇔SOA

constraints (data-model, semantic, protocol and dependency related conflicts, concurrency

issues, etc).

One of the distinguishing features of our approach is that, unlike in, e.g. Semantic Web

Services, we do not aim to cover as many composition scenarios as possible requiring a

complex composition framework. Instead, we limit ourselves to a unified, simple collabora-

tion scenario, and identify requirements (provide design guidelines) which must be met for

that scenario to work. Consequently, this limits the applicability of our framework primarily

to the design of new services. Many existing services, especially RPC-based ones, are not

designed to meet the Onto⇔SOA constraints (document-orientation and session stateless-

ness, to name a few), thus cannot be readily composed with the proposed Blackboard-style

mechanism.

Considerable effort is required to design a service according to the Onto⇔SOA require-

ments. However, the resulting services can be composed using the Blackboard-style with

almost no additional effort. It is sufficient to bring the services together and make them
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work on a shared repository. In the described use case, and we believe in many other cases,

the application-specific workflow logic is minimal. A service consumer constructs an initial

description of an application domain that is placed into the blackboard, starting up collabo-

ration between services.

The Onto⇔SOA constraints are enabling factors behind this nearly effortless composi-

tion:

• a simple and application-independent connector (synchronous request-response via a

stateless session) implies that a service can be placed into a workflow imposing very

little restrictions on other participating components.

• service independence (omnipotence) guarantees that when placed into a workflow a

service doest not require other services to be present there. This eliminates transitive

dependencies and possibly implied conflicts.

• the unified interaction protocol between a service and a consumer simplifies compo-

sition of Onto⇔SOA services, because they all share the same intent (inference of

new facts), and hence are compatible in that respect.

• a unified data-model is employed in messages allowing us to avoid data-level incom-

patibility. The semantic-level compatibility is explicitly addressed in Onto⇔SOA

with service ontologies.

In the proposed composition scenario we assume that it is the responsibility of a con-

sumer to determine what services are required to realize certain functionality. So far we

have not directly addressed the task of service discovery. However, one of the design guide-

lines defined in Onto⇔SOA is to have the one-to-one relationship between a service and

its service ontology (and corresponding concepts). If followed, this makes it trivial for a

controller to find a service that corresponds to a concept on a blackboard. We will discuss

the discovery problem later in this thesis.

4.6 Conclusions

We have proposed an approach to service collaboration inspired by the ideas from Black-

board Systems extensively studied in the AI community. It is believed that Blackboard

Systems provide a very flexible and modular architecture for integration of independent

coarsely-grained components. We have integrated Blackboard-style composition into
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Onto⇔SOA thus answering the research question: “How can ontology-enabled services

work together?”.

We have devised a Blackboard-style composition mechanism that uses an application-

independent controller component and a homogeneously structured repository (i.e., a black-

board) through which services interact. The proposed approach requires neither an extensive

service model nor an explicit workflow specification. It enables composite functionality to

emerge by bringing a number of services together and making them interact via a shared

data repository.

We have confirmed the feasibility of the proposed mechanism by having used it to com-

pose five Onto⇔SOA services in the described units consistency checking use case. We

have observed that the proposed Blackboard-style composition fits particularly well to the

document-oriented and ontology-based service model. This implies that in many non-trivial

application scenarios, such as the described use case, a service ontology (a description of a

document-oriented service interface) is sufficient to enable service composition. We have

also outlined possible solutions to a number of potential efficiency problems.



Chapter 5

MoRe: RDF/S-enabled REST
Services

Onto⇔SOA is an abstract design framework that can be implemented in different ways. In this chapter we

introduce MoRe – an implementation of Onto⇔SOA that employs RDFS and RDF as languages for describ-

ing service ontologies and messages communicated between REST-like services and their consumers. MoRe

provides a middleware layer for implementing solutions to the targeted e-Science tasks allowing us to validate

the ideas behind Onto⇔SOA. In this chapter we demonstrate MoRe using the unit conversion use case and

illustrate how an OWL-ontology of units of measure can be integrated into an application by means of MoRe

services. With MoRe we aim to answer the research question: “How can we integrate RDFS ontologies with

REST services?”. With MoRe we also demonstrate how we can further bridge the gap between ontology and

software developers.

�

Maksym Korotkiy and Jan L. Top: MoRe Semantic Web Applications. In proceedings of the End-

User Aspects of the Semantic Web Workshop. European Semantic Web Conference. Crete, 2005.

�

Ultimately, with Semantic Web technologies we aim to significantly improve the experi-

ence of Web users. To achieve this we have to provide an environment that enables software

developers to advance Web applications beyond state of the art. It is believed that the status

of the current Semantic Web technologies does not yet allow to develop applications that

realize the full potential of ontologies and the Web [53, 54]. A number of frameworks have

been proposed to facilitate the design of Semantic Web applications. These frameworks

85
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range from authoring [61], browsing and annotation frameworks [62, 63] to infrastructures

for Semantic Web Services [64].

These approaches introduce ontologies into specific areas of Semantic Web enabled ap-

plication development. In Onto⇔SOA, like in the Semantic Web, we rely on ontologies

to be the keystone element. However, we take a different approach to facilitating software

development: we propose to integrate ontologies and Service-Oriented Architectures. In

Chapter 2 we have introduced Onto⇔SOA as an abstract design approach for enhancing

domain alignment of services by means of ontologies. In this chapter we extend the frame-

work into MoRe1 that provides middleware directly applicable in software development. In

MoRe we employ the RDF and RDFS languages to define service ontologies that describe

document-oriented interfaces of REST-like [31] services2.

Presently, application developers do not benefit much from the increasing availabil-

ity of domain ontologies. In most cases these ontologies are designed in an application-

independent way (i.e., without clearly defined application scenarios), and therefore cannot

readily provide functional utility sought for by the developers. Moreover, the utility sup-

plied by generic reasoners and query languages associated with ontology languages such

as RDFS or OWL are often not efficient and transparent enough to be used in applications.

Thus, we can also interpret MoRe as a readily exploitable framework that increases utility

and usability of RDF/S ontologies by integrating them with REST-services. We believe

that the availability of a readily accessible inference service will allow a software developer

to faster evaluate an ontology and to incorporate it more rapidly into software. We have

elaborated on this ontology-oriented perspective in Onto⇔SOA in Chapter 3.

In this chapter our objective is to answer the above-mentioned research question by

operationalizing Onto⇔SOA and to demonstrate:

• how we can improve usability of REST-services by using RDFS ontologies to en-

hance their domain alignment and loose coupling characteristics;

• how we can improve usability of RDFS ontologies by increasing their functional

utility by attaching inference services based on the REST framework.

We illustrate MoRe by applying it to a use case from e-Science, our field of applica-

tion. In this chapter we use the unit conversion tasks to continue the theme of units of

measurement started with the Unit Consistency use case in Chapter 4.

1MoRe used to be an abbreviation but its original interpretation is not relevant any more.
2REST Services is a “lightweight” approach to Web services. More details are in Section 5.2
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Traditionally, a software developer would construct a specific algorithm for unit conver-

sion, using an internal database of units and their values in terms of reference units. Such

an ad hoc approach is error prone (validation of the conversion is not facilitated in any way)

and the result is not very (re-)usable to third parties. With the availability of an ontology of

units of measurement the software developer could employ the knowledge captured in this

ontology either to validate the implemented conversion logic or even to directly employ the

ontology through a corresponding reasoning engine. However, the reasoning capabilities of

ontology languages such as RDFS and OWL do not seem suitable for the purpose of unit

conversion. The software developer, therefore, is unable to directly benefit from ontologies

and still has to employ conventional techniques to integrate the unit conversion knowledge

into software.

With Service-enabled Ontologies we can extend the ontology of units and measures

with a domain-specific inference service. To describe a document-oriented interface to

this service we can employ concepts such as ConversionExpression, sourceUnit,

destinationUnit. To exploit the unit conversion capability of this service a consumer

(e.g., a software application) employs these concepts to express a request document with,

for example, the following content:

ConversionExpression

sourceUnit: inch

destinationUnit: yard

The unit conversion service applies the encapsulated procedural knowledge to this re-

quest document and sends the following document back to the application:

ConversionExpression

sourceUnit: inch

destinationUnit: yard

factor: 0.02777778

The resulting document contains a new fact (value of the factor property) allowing

the application to convert inches to yards.
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In the rest of this chapter we introduce the Unit Conversion case in Section 5.1 where

we outline the main steps a software developer takes to employ an ontology in the applica-

tion at hand. Then, in Section 5.2 we describe MoRe as a realization of Onto⇔SOA that

combines RDFS ontologies and REST-like services. In Section 5.3 we elaborate on design

and implementation steps for MoRe services and their consumers. After that, in Section 5.4

we apply MoRe to the Unit Conversion case. Finally, we conclude with Section 5.6.

5.1 Use Case: Conversion of Units of Measurement

To demonstrate the effect of MoRe on application and ontology developers we employ the

Unit Conversion use case. In this scenario we consider the task of developing an ontology-

based unit conversion application – Unit Converter.

To develop Unit Converter, an application developer begins by analyzing the application

domain. The developer searches for existing ontologies covering the target domain. Let

us assume that the developer discovers an ontology that describes the domain of units of

measure. This ontology can be utilized to organize the unit space in a way familiar to

the end-user, to select subsets of units that can be converted to each other and finally to

determine a conversion expression between two given units of measure. In this chapter we

employ the latter task as a use case.

Let us further assume that the ontology describes a number of units of measure (yard,

inch, etc) and a conversion factor between each unit and a corresponding reference unit. For

example, the ontology states that the yard has the SI unit factor property with value

0.9144 and for the inch this value is 0.0254. In this example, the conversion value refers to

meter (meter is the standard SI-unit for length), implying that 1 yard = 0.9144 meter and 1

inch = 0.0254 meter. We can use these two values to compute a conversion factor between

yard and inch: 1 yard = 0.9144 / 0.0254 inch.

At present we can distinguish two main approaches to employ ontologies in software

applications. The first approach is to extract relevant information from the ontology into an

application-specific form (most often a relational database or programming language code)

and then employ traditional techniques to access the data and to apply application logic to

them. The pseudo-code in Figure 5.1 demonstrates distinctive features of such an approach.

It includes the use of a data query language and computation of the conversion factor in the

application.

The main advantage of this approach is that as soon as relevant data is extracted from

the ontology, a software developer is able to apply well-known techniques to access the
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computeConversionFactor (srcUnit, dstUnit, factor)

srcFactor = db.query(‘‘
SELECT SI_unit_factor
FROM UnitsTable
WHERE unit = $srcUnit’’

).get(‘‘SI_unit_factor’’)

dstFactor = db.query(‘‘
SELECT SI_unit_factor
FROM UnitsTable
WHERE unit = $dstUnit’’

).get(...)

factor = srcFactor / dstFactor

Figure 5.1: Pseudo-code of a traditional DB-based approach. Using

general purpose ontology middleware leads to a similar

solution.

data. The major drawback is that such an approach downgrades an ontology to the level of

data, and therefore, does not fully employ domain knowledge captured in the ontology.

The second way to exploit an ontology in an application is to employ general purpose

ontology middleware, such as Jena [57] or Sesame [65], that provides storage, inference

and query facilities for ontologies. However, in our use case the inference capabilities of the

supported ontology languages (RDFS and OWL) do not allow to determine the conversion

factors directly (we elaborate on this in Section 5.4). Consequently, in our application

scenario the middleware approach would be very similar to the first one, only the queries

would be expressed in a different language (e.g., SPARQL [58] instead of SQL) and applied

not to a database but to an ontology (repository).

In both cases, the application developer still has to incorporate an essential part of

the domain knowledge (factor = srcFactor / dstFactor) into the application.

Nevertheless, it is natural to expect that the way a conversion factor is computed is part

of the units of measure domain. This part should be made available to users of the units

ontology.

MoRe, as a particular realization of Service-enabled Ontologies, will allow an ontology
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computeConversionFactor (srcUnit, dstUnit, factor)

reqDoc=
‘‘ConversionExpression

sourceUnit $srcUnit
destUnit $dstUnit’’

resDoc = UnitsOfMeasureOntology.infer(reqDoc)

factor = resDoc.getProperty(‘‘factor’’)

Figure 5.2: Pseu-docode of a MoRe-based approach. The user applies

an inference service attached to the ontology of units of

measure to infer the value of the factor property. This

property contains a value of a conversion factor for the units

of measure specified in the request document (reqDoc).

developer to incorporate such domain knowledge as a domain-specific inference procedure

connected to concepts from the units of measure domain. If an application developer would

have such a MoRe-ontology at his disposal, the pseudo-code depicted in Figure 5.2 could

be used to utilize it.

The major difference with the previous cases (Figure 5.1) is that the application devel-

oper now employs domain knowledge via the inference service provided by the ontology of

units of measure. Another difference is that the application developer does not have to use

a complex query language to utilize the domain knowledge captured in the ontology. The

developer only has to construct a request document using the concepts from the ontology

and then to access the inferred value of the factor property. We will elaborate on this in

Section 5.4. In the coming section we introduce the main ideas behind MoRe.

5.2 MoRe as RDF/S⇔REST

Onto⇔SOA is a technology and ontology language independent framework. In this section

we extend it into MoRe – a framework that integrates RDFS ontologies [14] and REST

services. With MoRe we aim at providing a simple, pragmatic yet efficient framework
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for RDF/S-enabled development of REST services. MoRe can also be considered from

the Service-enabled Ontologies perspective as a mechanism that allows to attach a REST

service to an RDFS ontology. We will elaborate on this perspective in Section 3.2.

REST services are inspired by the REST (REpresentational State Transfer) architectural

style [31]. They heavily rely on the HTTP protocol not only to provide the transport layer

between a service and a consumer but also to supply services with the basic set of CRUD

(create, read, update, delete) operations. These operations are mapped to the corresponding

HTTP request methods: PUT, GET, UPDATE and DELETE. The services that implement

all these operations are often referred to as REST-full Services. In MoRe, and Onto⇔SOA

in general, we limit a service to the single operation of inference that will be implemented

using the POST method. The main motivation behind using the POST method is implemen-

tation convenience. However, with this we also acknowledge that the inference operation

cannot be directly mapped to any of the CRUD actions.

REST Services define neither a standard service description framework (e.g., WSDL)

nor a standard message format (e.g., SOAP). REST services often employ XML to express

messages and XML Schema as a schema definition language. Since there are no constraints

on schema and message languages, it is straightforward to design a REST service that uses

an ontology-based schema definition and messaging.

Another important feature of REST is that this framework has been designed to fulfill

requirements of the Web [66]. REST services, therefore, gain many architectural properties

of the Web that have already proven to be successful. Additionally, due to the strong con-

nections to the Web, REST and RDF/S languages exhibit a significant degree of conceptual

compatibility. More specifically, the notion of a resource plays the central role in the Web,

the REST framework and the RDF/S languages.

REST services require little infrastructure in addition to what is already provided by the

Web. Despite the fact that REST services are not the standard and less widely publicized

(than for example the standard WSDL/SOAP Web Services) they are known in some cases

to be preferred over Web Services. For example, Amazon provides interfaces for both

WSDL/SOAP Web Services and REST services, and 85% of the usage is on the REST

interface3.

In MoRe we use an RDF/S document as an ontology-based message exchanged between

a service and its consumer. All documents share the same structure (a collection of subject-

property-object triples) and syntax (XML-RDF). Following the Onto⇔SOA guidelines, a

3http://www.oreillynet.com/pub/wlg/3005
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Figure 5.3: MoRe from the Ontology-enabled Services and

Service-enabled Ontologies perspectives. The main

difference between the two perspectives is whether the focus

is on a service or on an ontology.

document describes a particular situation in a service domain and is created using the ter-

minology specified by a service ontology. The service is invoked in a REST-manner via a

HTTP POST request with one XML-RDF document attached.

In MoRe every service ontology (service schema) contains a service URL that can be

used to invoke the service. A service ontology can be published on the Web and discovered

along with the referenced service via conventional Web-search techniques.

In a typical interaction scenario, a consumer inspects the service ontology and composes

an RDF document that contains triples describing a domain situation at hand. Next, this

RDF document is communicated to the service referred to from the discovered ontology.
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The service applies its domain expertise to the document inferring new facts. The result, an

another RDF document, is delivered back to the consumer.

In MoRe we encourage creating an RDFS service ontology exclusive to a target applica-

tion domain. Concepts from such a service ontology can be related to concepts from exter-

nal ontologies (either application-independent or service ontologies) by means of ontology

mapping methods. As we suggested in Chapter 3 this should be done with care because of

possible conflicts resulting from interaction between the pragmatic service-oriented appli-

cation semantics of service ontologies and formal semantics of an external ontology.

The formal semantics of a non-restrictive ontology language such as RDFS does not

provide means to detect conflicts. This implies that in MoRe service ontologies we can

safely import concepts defined in external RDFS ontologies. However, if we were to import

concepts from an ontology with restrictive semantics (e.g., from an OWL ontology) then

we would have to take extra care not to violate the formal semantics.

5.3 Designing MoRe Services and Consumers

Figure 5.4 outlines the main processing steps taking place inside a MoRe service and a con-

sumer. Figure 5.5 illustrates the processing steps typical for a Web service implementation.

This enables us to compare the two approaches.

A MoRe, or more generally Onto⇔SOA, service processes an incoming document using

the following steps (we use the Unit Conversion case to illustrate the steps).

1. The service receives an RDF document containing a description of an initial situation

in the Unit Conversion application domain. The document is expressed using terms from the

Unit Conversion service ontology and serialized using the RDF-XML syntax. We refer to

such RDF-XML serialization as an external conceptual model (of an application domain).

2. The received RDF-XML document must be parsed and converted by the service into

an internal conceptual model to enable programmatic access to its content. In the Unit Con-

version service we employ the in-memory RDF model provided by the Jena API [57]. A

database-backed model can also be employed as long as the RDF API of choice supports

it. The internal and external conceptual models are equivalent and, therefore, we can auto-

matically transform them into each other by means of available RDF/S middleware such as

Jena. In Onto⇔SOA we assume that both conceptual models are domain aligned.

3. The in-memory RDF model of an instance of the Unit Conversion case is then

mapped to an internal domain model implemented in the service. The internal domain
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Figure 5.4: The MoRe process cycle. In the parentheses we refer to a

specific technology employed in the Unit Conversion service

and its consumer – the Unit Converter demo application.

model must be computationally feasible and, consequently, is effected by such non-domain-

aligned factors as an implementation language (e.g., Java), available APIs, non-functional

requirements (performance, security, scalability, etc) and the algorithms employed. The

conceptual and internal domain models in most cases are not equivalent because they are

affected by different (and often incompatible) factors. Mapping between the two models

cannot be done automatically and requires implementation-specific means that will sacri-

fice domain-alignment of conceptual models for increased efficiency of the internal domain

model.

4. The Unit Conversion service logic is then applied to the internal domain model of

the domain. New facts inferred by the service (the value of the unit conversion coefficient)

extend the internal domain model. The extended internal model is then transformed by ad

hoc means into the internal conceptual model. Finally, the internal conceptual model is

automatically transformed into the external conceptual model that communicates the newly

inferred facts to a consumer. A consumer then follows steps 1-3 to interpret the response,

and reverses the order of steps to invoke the service again, if necessary.

Generally speaking, the internal domain models of a consumer and a service will be

different. In the Unit Converter demo application, that acts as a MoRe consumer, the inter-

nal domain model is relatively simple. The user’s actions are translated almost directly into
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the conceptual model, not incurring any additional overhead. On the other hand, the Unit

Converter service cannot ignore the overhead of a conceptual model and requires an opti-

mized internal domain model (the Document Retrieval service described in Chapter 2 is an

even better example). A service is likely to require a model optimized for high throughput

to perform well on requests from multiple consumers.

An internal domain model can be reduced by implementing application logic to operate

as directly as possible over a conceptual model. Ontology tools and middleware (query lan-

guages, inference engines, rule languages, etc) simplify the use of conceptual models from

within application logic. For example, by means of a query language (e.g., SPARQL [58])

RDF/S models can be processed in a rather efficient way directly from application logic. In

the Unit Conversion case this would allow us to combine results of several RDF/S queries

executed over the ontology of units of measure to infer conversion factors. However, an

implementation-specific internal model still, potentially, offers better performance. Fur-

thermore, the more specialized (and, therefore, more capable) ontology middleware gets,

the more similar it becomes to implementation level tools such as (high level) programming

languages. In such a case an internal domain model will not be reduced but rather trans-

ferred from a programming language to ontology middleware, an ontology query language

for example.

To decrease the possibility of misalignment between conceptual and internal models

a direct operation over a conceptual model should be preferred. If this is impossible be-

cause of performance considerations, then a direct operation can be approximated with

intermediate coarse updates to the conceptual model. The discrete updates allow to re-align

intermediate computational states to the conceptual model.

Now let us consider the processing steps taking place between a Web service and its

consumer. In Web Services (Figure 5.5) the communication between a consumer and a

service takes place at the data level. At the service side an external data model (XML

data-type definitions) is automatically generated from an internal model by means of pro-

gramming language-specific Web Service middleware (e.g., Apache Axis4, Java EE Web

Service tools5).

At the consumer side the XML data-type definitions contained in a WSDL description

of a service are used to automatically generate an internal stub model. This model is either

mapped to the consumer’s internal model or is employed directly as is. Since conceptual

4http://ws.apache.org/axis/
5http://java.sun.com/webservices/
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Figure 5.5: Outline of the processing cycle in Web Services.

models are not explicitly present in Web Services and domain alignment of a service is not

enforced, a conceptual gap and misalignment can easily arise between the internal models

of the service and the consumer.

In a service created for a simple application domain, sufficient domain alignment can

be achieved without a conceptual model. In such a case a data model for that domain

would play the role of a conceptual model. However, we believe that the more complex

application domain gets – the greater becomes discrepancy between conceptual and data

models because the latter is primarily concerned with computationally efficient algorithms

employed rather than with domain concepts.

In Semantic Web Services (SWS) an ontology provides conceptualization for a model of

a Web service. Ontologies in SWS can reduce the conceptual gap between a consumer and

a service. However, since domain alignment is not enforced in Web Services, the ontology

is likely to address implementation details of the service rather than the conceptual domain

model. This reduces the effectiveness of ontologies with respect to aligning a service and its

consumer. Onto⇔SOA addresses the potential conceptual misalignment between a service

and its consumer by explicitly introducing conceptual models into their processing cycle

and facilitating domain alignment of a service during its design.
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5.4 Solution to the Use Case

In this section we elaborate on the unit conversion scenario presented earlier and describe

how a MoRe service ontology can be designed for use in the corresponding ontology-

enabled MoRe service. We will also demonstrate how an end-user application should be

designed to exploit RDF/S-enabled REST services.

5.4.1 Unit Conversion Service Ontology

In the Unit Conversion service ontology we will reuse concepts defined in UnitDim6 –

an external OWL ontology of units of measurement. One of the usability problems we

faced during the initial attempts to exploit UnitDim was the difficulty to access domain

knowledge expressed in terms of OWL restrictions. Another reason to extend UnitDim with

an application-specific inference service is the inability of general purpose OWL reasoners

to infer conversion expressions between units.

We have addressed these two usability bottlenecks by creating a MoRe-based Unit Con-

version service. An application-specific (service) ontology is less general and, therefore less

reusable than a conventional application independent ontology such as UnitDim. However,

by sacrificing some reusability we expect to gain additional utility and make the service

ontology more usable. This demonstrates the general approach taken in Onto⇔SOA: re-

balance reusability and usability towards the latter making services and ontologies more

attractive to end-users. Additionally, by expanding an existing ontology with a service, we

demonstrate how the knowledge captured in the ontology can be made more readily avail-

able to end-users (e.g., software developers) while preserving the generality of the original

ontology.

Unit Conversion Service Ontology

In UnitDim the SI unit factor property describes a quantitative relation between every

unit and its counterpart from the SI System of Units. Two such relations can be combined

to determine a conversion factor between any two units. Unfortunately, there is no feasible

way to achieve that using general OWL-reasoners, given a subset of N units, such that

any two units can be converted to each other. In OWL we would have to use the complete

enumeration of conversion factors. This would result in N ∗(N−1) property values instead

6Rijgersberg, H., Top, J.: UnitDim: an ontology of physical units and quantities.

http://www.atoapps.nl/foodinformatics. Sec. News (2004)
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of the more feasible N SI unit factor values combined with a capability to infer the

rest.

From the ontological point of view, the Unit Conversion service ontology can be seen

to extend UnitDim to infer a conversion expression between two units. To achieve this we

introduce the ConversionExpression concept to represent a ternary relation between

two units and the corresponding conversion factor. The ConversionExpression class

has three properties:

• hasSource – points to a source unit, the unit to which we apply the conversion

factor;

• hasDestination – points to the destination unit to which the hasSource-unit

is to be converted to;

• hasFactor – contains the numerical value of the conversion factor.

We design the Unit Conversion service in such a way that for every instance of Con-

versionExpression contained in an input document, the service determines SI -

unit factors for both the source and destination unit and combines them to compute

the corresponding hasFactor value. More precisely:

FactorsrcUnit,dstUnit = factorSIUnit,srcUnit/factorSIUnit,dstUnit.

The computed factor allows us to use the following conversion expression in application

software

srcUnit = FactorsrcUnit,dstUnit · dstUnit.

Note that the Unit Conversion service ontology could have contained an OWL reasoner

instead of the application-specific inference service if the OWL reasoner were able to pro-

vide the required functionality. In that case we could see the conversion service as a wrapper

around UnitDim and the standard OWL reasoning mechanism.

A consumer of the Unit Conversion service will use the terminology defined in the ser-

vice ontology to create a document describing an instance of the ConversionExpres-

sion class (Figure 5.8). This input document can then be communicated to the Unit Con-

version service. The service infers the value of the hasFactor property and adds it as

a new fact to the document, which is then communicated back to the application. The

application updates its state according to the newly obtained facts.
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Figure 5.6: The architecture of the Unit Converter application consists

of three layers: the layer of application-independent

ontologies (UnitDim), the layer MoRe-based services

(auxiliary Unit Retrieval and Unit Conversion services

represented with their service ontologies: URS and UCS)

and the application layer (see Figure 5.7).

The above scenario demonstrates how the MoRe-framework allows the application de-

veloper to abstract away remote procedure calls. The essential point is that since we main-

tain proper alignment between the service and the Unit Conversion service, the application

developer can stay at the conceptual level when utilizing the service.
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Figure 5.7: The user interface of the Unit Converter application.

Numbers on the UI screenshots correspond to the UI

components in the application layer on Figure 5.6.

5.4.2 Building the Unit Converter Application

We have employed the Unit Conversion service (together with an auxiliary Unit Retrieval

service) to support the Unit Converter application. Figure 5.6 depicts the architecture of

Unit Converter. In the figure we can see three distinct layers:

• The layer of traditional, application-independent ontologies is at the top. The Unit-

Dim ontology is the only application-independent ontology employed in our applica-

tion.

• The application layer is at the bottom. Inside we can distinguish two sub-layers that

represent the application logic and the user interface (UI). The UI sub-layer accepts

user’s commands and displays the application state. In our case the user is able to

perform three actions: select source and destination units (steps 1 and 2 in Figure 5.7),
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rdf:Description rdf:about = ‘‘ceInst0’’

* hasFactor 0.0277776
hasSource rdf:resource = ‘‘inch’’
rdf:type rdf:resource = ‘‘ConversionExpression’’
hasDestination rdf:resource = ‘‘yard’’
rdf:Description

Figure 5.8: An example of a document communicated between a

consumer (the application) and MoRe services. Initially the

document does not contain a fact marked with “*” that is

added by the inference service.

and ask for a conversion expression (step 3 on Figure 5.7). Two of these actions are

connected to the application logic layer that contains two components responsible for

determining 1) a set of convertible units and 2) a conversion expression between two

units.

• The application and ontology layers are connected through the MoRe-layer. The Unit

Retrieval service assists in accessing the domain knowledge captured in UnitDim.

The Unit Conversion service extends UnitDim with new concepts (Conversion-

Expression,

hasFactor, etc) and provides an inference service capturing domain knowledge

about these concepts.

The application layer interacts with the MoRe layer in two ways. First, it employs

ontological terminology defined in service ontologies for interfacing purposes (docu-

ments). Second, it communicates with MoRe-middleware. The middleware is respon-

sible for delivering the input document to the corresponding ontology (its reasoning

service) and communicating the output document back to the application layer.

Figure 5.8 contains fragments of input and output documents communicated between

the “Find Conversion Factor” component (acting as a consumer) and the Unit Conversion

service from the MoRe layer. The input document does not contain a fact marked with “*”.

The value of the hasFactor property is computed by the Unit Conversion service and

added to the input document. The initial situation described in an input document reflects

the state of the application after the user has selected the source and destination units. The
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output document contains a new fact (hasFactor property value in our case) which is

used to update the application state (step 3 in Figure 5.6).

5.5 Discussion

As we have mentioned in Section 5.5 XML Schema Datatypes (XSD) employed in WSDL

descriptions allow for a relatively straightforward translation between a Web service in-

terface and an interface expressed in programming languages such Java and C#. Indeed,

many state of the art Web Services middleware and development tools such as JAX-WS7

and XFire8 provide extensive support for automatic generation of a WSDL schema from

an (annotated) interface of a Web service implementation. These tools can also generate

client-side proxies for a particular programming language from a WSDL schema (this pro-

cess is also known as WSDL import). Such facilities are very much appreciated by software

developers because they eliminate rather complex steps of creating a WSDL schema for a

service as well as creating a client-side implementation of domain objects employed in a

service schema.

Both WSDL generation and import reflect the Web Services view on a service as a soft-

ware component invocable via the Web. Actually, the approach taken in WSDL can be seen

as one of the numerous IDLs (interface definition languages) employed in remote procedure

(or objects) invocation software. In Section 2.2 we have elaborated on the different between

this view and the service model underlying Onto⇔SOA. According to this model a ser-

vice is a software component that is designed with domain alignment and loose coupling in

mind. We believe that with domain alignment we can significantly reduce complexity of a

service interface, and therefore, reduce the need for advanced tool support for creating and

importing a service schema in the following way.

Presently the middleware capabilities of MoRe cover the transport layer. MoRe facili-

tates the translation between an in memory RDF model and its external representation (i.e.

the translation between the internal and external conceptual models) and communicating the

external model via HTTP between a service and a consumer. Unlike the above-mentioned

Web Services middleware, MoRe does not assist service and consumer developers in map-

ping the internal conceptual model to the implementation-specific domain model. Although

we do not explicitly address the problem of translation between RDFS models and models

7https://jax-ws.dev.java.net
8http://xfire.codehaus.org/Web+Service+Design
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expressed in a programming language, there exist a number of tools capable of providing

this functionality at least partially.

For example, in order to generate object-oriented Java proxies for an RDF data model

a framework such as RDFReactor9 can be used. RDFReactor can generate proxy objects

through which a software developer can interact with the domain model using familiar pro-

gramming language expressions. For example, instead of explicitly modifying the underly-

ing conceptual models with a statement like

addTriple(unitConversionExpressionURI, hasFactorPropertyURI, ‘‘1.25’’)

the developer can manipulate domain concepts in a more familiar way as if they were pro-

gramming language objects

unitConversionExpression.setFactor(1.25) .

At the moment of writing we are not aware about approaches capable of generating an

RDF/S model given a set of, for example, Java classes. We believe that the ideas underlying

the FDR2 approach described in Chapter 6 can be used to map a domain model expressed in,

for example, Java classes to an RDFS ontology. We can map Java classes to RDFS classes

and introduce RDF properties corresponding to either public fields or accessor methods

(also known as setters and getters) of the Java class. The generated RDF/S classes and

properties could then be employed directly as a service ontology or mapped (through a

procedure described in FDR2) to an existing one.

Overall, we believe that the middleware capabilities of MoRe can be extended to fa-

cilitate import and generation of service ontologies. For this either approaches such as

RDFReactor can be directly employed or an approach such as FDR2 can be used after some

adaptation.

5.6 Conclusions

We have proposed MoRe – a framework for development of RDF/S-based REST-service as

an answer to the research question: “How can we integrate RDFS ontologies with REST

9http://semanticweb.org/wiki/RDFReactor
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services?”. MoRe is an implementation of Onto⇔SOA that uses a restricted document-

oriented REST-based service model and employs RDFS ontologies as conceptual service

interfaces. MoRe aims to provide a simple and pragmatic foundation for development of

ontology-based Web applications.

We believe that MoRe helps us to bridge the gap between ontological domain knowledge

and software development in practice. On the one hand, it provides a pragmatic application-

driven view on domain ontologies. On the other hand, it facilitates software development

by integrating domain-specific inference services into software applications.



Chapter 6

FDR2: Linking Relational Data and
RDF Models

A vast amount of information and data sources is stored in a tabular, relational-like form and is not directly

accessible to ontology-enabled software. For example, in many research organizations results from experiments

are stored in spreadsheets. Both managing and utilizing of such spreadsheets in ontology-enabled environments

requires them to be represented in a proper form. In this chapter we propose an approach to integrate such

tabular information sources with RDFS-aware systems. With this approach we aim to answer the research

question: “How can we integrate tabular data with an ontology-ready data-model such as RDF/S?”. The

proposed solution is purely RDF/S-based. We use RDF/S as a mechanism to specify and perform, by means

of RDFS reasoning, linking of relational data to a predefined domain (or service) ontology. The approach

does not require any additional run-time transformation components except an RDFS reasoner. The approach

completely preserves the original structure of the relational data. This ensures complete and consistent RDF/S-

enabled access to relational-like data.

�
Maksym Korotkiy and Jan L. Top: From Relational Data to RDFS models. In proceedings of the

International Conference on Web Engineering. Munich, 2004.

�

The RDF and RDFS languages have been proposed as relatively simple yet flexible lan-

guages for expressing ontologies. These languages provide a number of widely supported

syntaxes, a unified data model and enable separation of data (RDF) from meta-data (RDFS).

RDF/S have formed the foundation for the family of Web ontology languages aimed to im-

prove sharing and reuse of knowledge and information sources.

The formal acceptance of RDF/S by W3C [67] stimulates their utilization in many areas

and by many organizations. However, in spite of the increasing acceptance of RDF/S, this is

105
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still a new technology. Most information resources are not (yet) available in the RDF/S for-

mat. The relational data model, on the other hand, is well established and widely accepted.

It has been successfully employed for decades and is currently supported by thousands of

applications ranging from simple spreadsheets to complex relational databases.

In particular in many research organizations a considerable amount of data (and knowl-

edge) is contained in experimental results that are in many cases expressed in a relation-like

form in, for example, databases or spreadsheets. Information resources expressed within the

relational model have neither a unified syntax nor a standard way to attach meta-data. These

are crucial bottlenecks for (re-)usability of such resources. One of the tasks of e-Science is

to facilitate management, sharing and utilization of these sources of knowledge at each step

of the scientific process.

In this chapter we use the term relational data model to refer to data organized as a

collection of records (tuples or rows) that is normally represented as a table. We would like

to note that unlike in the relational database model we require a collection of records neither

to adhere to the Entity-Relationship (ER) model nor to be normalized. More specifically, we

do not assume that a record consists of attributes and represents an entity. In our approach

we consider a record to be an instance of a complex relation defined over a set of concepts.

We employ such a broad view on tabular data because our experience indicates that

in many cases users neither follow the ER model nor normalize their data. Scientists, for

example, tend to organize data in an “intuitive” tabular way supported by spreadsheet ap-

plications.

The problem of mapping relational database models to other models is not new. Much

work has been done in the database community to reverse engineer relational databases

to extract Entity-Relationship [68], Extended Entity-Relationship [69] and Object-Oriented

models. In our work we target the problem of integrating the more general (less constrained)

relational data model and the RDFS model. Also, a substantial amount of research has been

done to convert RDF/S data and models into relational [70] or Object-Oriented models. In

our work we focus on the reverse case.

This chapter is organized as follows. Section 6.1 provides more details about the link-

ing problem and its context. The proposed approach is outlined in Section 6.2 and then

elaborated upon using a detailed example in Section 6.3. Section 6.4 demonstrates how

the proposed technique can be extended to handle database-specific features such as cross-

table references via primary and foreign keys. In Section 6.5 we discuss some features

and limitations of the presented method, followed by an overview of possible extensions
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and directions for future research. Related research is discussed in Section 6.6 and, finally,

Section 6.7 summarizes this chapter.

6.1 Problem Context

We aim to solve the problem of allowing ontology-enabled systems to access results from

scientific experiments captured in a tabular-like form (e.g., in spreadsheets). An ontology-

enabled system, for example an Onto⇔SOA-based one, can then be employed to improve

reusability and manageability of these scientific data. Such a system can assist in making

the transition from the traditional experimental science environment to e-Science, facilitat-

ing collaboration between scientists and automated reasoning. More specifically, with the

FDR2 approach proposed in this chapter we link a tabular data representation to the RDF

data-model and RDFS ontologies.

The main objective of linking the relational and RDF/S models is to allow RDFS-based

querying of the relational data. The original relational data must be made available to an

RDFS reasoner and become query-able with a vocabulary specified by a domain ontology.

This can be employed, for example, in Onto⇔SOA to facilitate the generation of ontology-

based messages from existing relational data. More specifically, in a MoRe-based archi-

tecture the users can employ the FDR2 framework to create RDF messages using existing

tabular data.

Additionally, an approach to linking the relational and RDF/S models should fulfill the

following requirements:

• reversibility: it should be possible to recreate the underlying data from its RDF/S

representation. This is required to completely preserve information and to enable

the user to reach back to the relational data model to modify or reuse the data in its

original form. For example, researchers prefer to use a spreadsheet to analyse the

data, whereas the data can be stored in an RDF/S repository;

• to be practically feasible, a solution for the linking problem should be easily applica-

ble within an RDF/S-based system without significant design or development efforts;

• to be generic and easily extensible to support additional, for example, database-

specific features such as foreign keys (see Section 6.4).

The next two subsections contain a detailed description of the approach. The main ideas
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behind the proposed linking technique are set out in Section 6.2, and a detailed example-

based explanation is given in Section 6.3.

6.2 FDR2 Approach

Let us assume that we have a set of data, expressed in a relational way – a collection of

records (e.g., a spreadsheet table), and a target ontology (a domain or service one) expressed

in RDFS. We also assume that this collection of records contains a header record (a table

header) that provides labels for the ordered elements of a record.

We break down the integration of the relational and RDF/S model into three steps:

1. At the schema level we explicitly define the underlying relation represented within

a record. We refer to this definition of the relation as the relational schema and

use RDFS to express it. The relational schema is required to express and preserve

structural (relational) semantics of the original data. The relational schema makes it

possible to link the relational data to the RDFS ontology.

2. At the data level we use RDF to express the actual content of the records according

to the relational schema created in the previous step.

3. Link the relational schema to the target RDFS ontology. Since the linking cannot be

done automatically due to the undefined meaning of the relational data, the user has

to define the relationships between the relational schema and the ontology. Preser-

vation of the original data structure makes it possible to track changes done on the

ontological level back to the original relational level.

Below we elaborate upon these three steps and describe additional actions required to

enable run-time interoperability between a relational schema and an RDFS ontology. For

readability reasons we have left out syntactical details of the constructed RDF/S documents.

Step 1: Build an RDFS representation of the relational schema. As we have mentioned

in the introduction, we do not assume that the elements of a record represent attributes and

the record itself – an entity. We build a relational schema upon the notion of RDFS Class.

At this stage we analyze only the header record. We assume that every header element

determines the name of a class that is defined as the collection of elements that have the

same position as the corresponding header element. The members of the set of all classes

C define the relationship R = C0, C1, ..., Cn underlying the collection of records.
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All other possible relationships between the members of C are made explicit by means

of what we will refer to as virtual relations. The RDF data-model explicitly supports binary

relations only. Since any binary relation defined over set A is a subset of A × A, where ×
denotes the Cartesian product, we can use C × C as the set of all binary virtual relations

(virtual properties) defined over the classes presented in the relational schema. We believe

that in most cases it is sufficient to explicate only virtual properties (as it will be shown in

the example). Construction of more complex (e.g., ternary) relationships and their repre-

sentation with RDF/S is also possible but would require a mapping mechanism that cannot

be implemented with standard RDFS reasoning.

After this step we have obtained a relational schema that is an RDFS representation of

(i) a definition of all classes involved, (ii) a definition of the relationship underlying the

collection of records, and (iii) a definition of the class properties. The resulting relational

schema serves as a compact representation of the data and will be directly connected to the

target ontology in step 3.

Step 2: Construct an RDF representation of the relational data. At this step we are

dealing with the actual data – record elements (cell values). We consider every record to

be an instance of R. Every record element is in turn represented as an instance of a class

that corresponds to the element’s position in R (i.e. in a row). In addition, we instantiate all

virtual relations defined in the previous step.

This step provides us with instances that represent (i) record elements and (ii) once

hidden but now explicit relationships between elements of a record. At this point we are

already able to use general-purpose RDF/S repositories and querying engines to access

relational data. However, we still cannot employ the vocabulary defined in the ontology to

do that.

Step 3: The user links the relational schema with the domain ontology. The user links

RDFS concepts from the relational schema (classes and virtual properties) to concepts in the

ontology by means of the rdfs:subClassOf and rdfs:subPropertyOf properties.

A set of all such links from ontological definitions to the relational schema constitutes what

we will refer to as Relational-RDFS Map (RDMap).

From the RDF/S serializations of the relational data and the RDMap, an RDFS rea-

soner can deduct entailments that will link the relational schema to concepts defined in the

ontology. We will illustrate this with an example in the coming section.

The complete workflow of linking relational data and ontology, and then querying it is
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Figure 6.1: An example of a FDR2 workflow. The original spreadsheet

is represented as a relational schema in RDFS and a

collection of RDF data. Then, these RDF/S artifacts are

transformed by an RDFS reasoner into a single model that

can be queried with ontological terminology.

shown on Figure 6.1. First, the original spreadsheet is represented as a relational schema

expressed in RDFS and a collection of data expressed in RDF. Then, these RDF/S artifacts

are transformed by an RDFS reasoner into a single model that, finally, can be queried with

terminology defined in an ontology.

6.3 Applying FDR2

In the previous subsection we have introduced the main ideas behind our approach. The

present subsection provides more details illustrated with an example.

Let us assume that we have a simple table with data from some experiment on dairy

products:

Product Judge Supervisor
milk Pete Heinz

cream Charles Pete

and a domain ontology expressed in RDFS. This domain ontology defines classes DO#-

Product, DO#Judge, DO#Supervisor and DO#Person with DO#Judge and DO#-

Supervisor being subclasses of it. Also there are two properties DO#isJudgedBy and
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DO#isSupervisedBy. Both properties have the same domain – DO#Product. Their

ranges are respectively DO#Judge and DO#Supervisor.

The goal is to enable data querying from the given table employing concepts defined

in the domain ontology. For example, if we ask for all instances of DO#Person and want

to see Pete, Charles and Heinz being returned. In order to achieve that we follow the steps

described in the previous subsection.

For clarity reasons we prefix concept names with one of the labels: fdr2, DO, rdf and

rdfs. The fdr2 prefix identifies resources automatically created in the relational schema

and relational data representations. The DO prefix indicates that a concept belongs to a

domain ontology1.

Step 1 creates a relational schema and expresses it in RDFS as shown in Figure 6.2. The

schema consists of three major parts:

• Classes definition – three classes are declared: fdr2#Product, fdr2#Judge

and

fdr2#Supervisor. These classes are extensionally defined with corresponding

record elements. For example, class fdr2#Product has an extension that consists

of two instances fdr2#milk and fdr2#cream.

• Definition of virtual properties contains a declaration of six virtual relations:

– fdr2#vpPRODUCT-SUPERVISOR,

– fdr2#vpPRODUCT-JUDGE,

– fdr2#vpSUPERVISOR-JUDGE,

– fdr2#vpSUPERVISOR-PRODUCT,

– fdr2#vpJUDGE-SUPERVISOR,

– fdr2#vpJUDGE-PRODUCT.

These virtual properties are a result of a Cartesian product of the fdr2#Product,

fdr2#Judge, fdr2#Supervisor set on itself. For pragmatic reasons, we ignore

reflexive virtual properties such as fdr2#vpPRODUCT-PRODUCT.

1To construct a valid URI from a prefixed identifier one should replace a prefix with a (base)

URI. For example, a URI for fdr2#RelationDefinition is constructed by replacing the fdr2
prefix with http://www.cs.vu.nl/˜maksym/fdr2. Prefixes rdf and rdfs should be replaced with

http://www.w3.org/1999/02/22-rdf-syntax-ns and http://www.w3.org/2000/01/rdf-schema respectively.
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Class definitions

fdr2#Judge
type: Class

fdr2#product
type: Class

Virtual property definitions

fdr2#vpJUDGE-PRODUCT
type: rdf#Property
domain: fdr2#Judge
range: fdr2#Product

fdr2#vpJUDGE-SUPERVISOR
type: rdf#Property
domain: fdr2#Judge
range: fdr2#Supervisor

fdr2#vpPRODUCT-JUDGE
type: rdf#Property
domain: fdr2#Product
range: fdr2#JUDGE

fdr2#vpPRODUCT-SUPERVISOR
type: rdf#Property
domain: fdr2#Product
range: fdr2#Supervisor

Figure 6.2: An example of a relational schema automatically generated

by FDR2.

• Relation definition declares the relation represented by the original tabular data.

fdr2#RelationDefinition employs fdr2:isDefinedOver property to

refer to sequences of classes over which the relation is defined.

Step 2 expresses the actual data (values of record elements) in RDF according to the

schema defined in the previous step. Figure 6.5 shows an RDF source that consists of two

major sections:
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Class links

fdr2#Judge
subClassOf: DO#Judge

fdr2#Supervisor
subClassOf: DO#Supervisor

fdr2#Product
subClassOf: DO#Product

Property links

fdr2#vpPRODUCT-SUPERVISOR
subPropertyOf: DO#has_supervisor

fdr2#vpPRODUCT-JUDGE
subPropertyOf: DO#has_judge

Figure 6.3: An example of a manually created RDMap.

• fdr2#RelationInstantiation is an ordered collection of all records. The

fdr2#definedWith property points to the corresponding relational schema and

fdr2:definedOver refers to the actual sequence of records.

• The sequence of records consists of fdr2#RowSeq0 and fdr2#RowSeq1 which

themselves are sequences of record elements (cells).

• A record element is represented as an instance of one of the classes fdr2#Pro-

duct,

fdr2#Judge and fdr2#Supervisor. These instances have their virtual prop-

erties filled in with values from the corresponding record elements.

Step 3 The user defines an RDMap – an RDF schema that links the concepts from the

relation schema to the concepts in the DO. As shown on Figure 6.3, the linking is done by

means of rdfs:subClassOf and rdfs:subPropertyOf relationships.

Having obtained three models (the relational schema, the relational data and the RDMap),

we can run queries using a RDFS query engine capable of RDFS inference. Figure 6.4
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Properties generated by FDR2

fdr2#pete
type: fdr2#Judge
type: fdr2#Supervisor
fdr2#vpJUDGE-PRODUCT: fdr2#milk
fdr2#vpJUDGE-SUPERVISOR: fdr2#heinz
fdr2#vpSUPERVISOR-PRODUCT: fdr2#cream
fdr2#vpSUPERVISOR-JUDGE: fdr2#charles

Inferred by RDFS reasoner

type: DO#Judge
type: DO#Supervisor
type: DO#Serson

Properties generated by FDR2

fdr2#milk
fdr2#vpPRODUCT-JUDGE: fdr2#pete
fdr2#vpPRODUCT-SUPERVISOR: fdr2#heinz

Inferred by RDFS reasoner

type: DO#Product
DO#has_judge: DO#pete
DO#has_supervisor: DO#heinz

Figure 6.4: An example of a run-time RDF/S model with entailments

automatically inferred by an RDFS reasoner.

shows a fragment of a run-time model that contains entailments deducted from the above-

mentioned models by the general RDFS reasoner. This run-time model can now be queried

with terms defined in the ontology to access the content of the original relational data.

FDR2#Kit To test the proposed technique and to provide a basic tool support to the user

we have developed FDR2#Kit - a Web-based toolkit consisting of three utilities:

• FDR2#Generator takes a tab-delimited text file with tabular data as its input and

automatically generates RDF/S documents for the relational schema and relational
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data.

• FDR2#Mapper assists the user in linking the relational schema to the DO.

• FDR2#Tester allows to run simple queries over the resulting combination of schema,

data, RDMap and the DO.

In the FDR2#Mapper tool we have implemented a number of heuristics to automatically

propose RDMap links between classes and properties from a domain ontology and relational

schema. These heuristics propose the user to link classes or properties:

1. when parts of concept names that follow a namespace (after the ’#’ character in our

examples) are lexically equivalent (e.g., fdr2#Supervisor and DO#Judge);

2. if the RDMap already contains linked properties, then we propose to link classes from

domains and ranges of these properties. For example, if the RDMap links properties

fdr2#vpPRODUCT-SUPERVISOR and DO#supervisedBy, then we suggest the

user to link classes in domains (e.g., fdr2#Product and DO#Product) and ranges

of these properties.

3. if the RDMap contains linked classes and these classes appear in domains and ranges

of two properties, then we propose to link these properties. For example, if classes

fdr2#Product and DO#Product are linked, and fdr2#Supervisor and

DO#Supervisor, then we propose to link the properties fdr2#vpPRODUCT-

-SUPERVISOR and DO#supervisedBy because their domains and ranges are

already linked.

These three heuristics are rather simple. Nevertheless, for the example employed in this

section these heuristics are sufficient to fully automatically create an appropriate RDMap.

6.4 Cross-table References

Primary and foreign keys are essential parts of relational databases. They uniquely identify

entities and enable referencing across tables. Although our core approach does not assign

any special meaning to record elements containing keys, in this subsection we will show

how the approach can be aware of foreign and primary keys.

Let us assume that there are two tables one of which refers to the other as depicted

below:
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Products

Product Judge ID

(foreign key)

Supervisor ID

(foreign key)

milk person1 person2

Persons

Person ID (pri-

mary key)

Name Address

person1 Heinz xyz1

person2 Pete xyz2

The proposed approach does not support direct links between relational schemas but

indirect links can be created in a number of ways. One way is to guarantee that the same

identifier is created for lexically equal values. Having executed steps 1 and 2 of the FDR2

approach for the two tables shown above, the following classes and instances will be created

(in addition to ones already described):

• table ”Products”: Classes fdr2#JudgeID, fdr2#SupervisorID with corre-

sponding instances fdr2#person1 and fdr2#person2;

• table ”Persons”: Class fdr2#PersonID with instances fdr2#person1 and

fdr2#person2.

We can see that although every table is processed independently, the way we created

resources’ URIs ensures that lexically equal record elements will always refer to the same

resource.

Alternatively, we can link different tables via a domain ontology by assigning the same

parent DO#Person to fdr2#JudgeID, fdr2#SupervisorID and fdr2#Person-

ID and preserving the original lexical value of their instances in a separate property fdr2-

#cellValue. This makes it possible to determine that some instances of DO#Person

has equal fdr2#cellValues properties and therefore represent the same primary key.

However, such an approach would require inference capabilities not available in standard

RDFS reasoners.

This demonstrates that the proposed FDR2-approach supports referencing across tables

if we can assume that lexically equal record elements represent the same resources. If such

an assumption does not hold then indirect referencing can be implemented by introducing

the fdr2:cellValue property and linking classes representing primary and foreign keys

to the same parent class defined in the DO. However, the latter approach will require an ad

hoc reasoning support.
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6.5 Discussion

FDR2 relies solely on the RDFS semantics of the rdfs:subClassOf and rdfs:sub-

PropertyOf relationships. We do not introduce any additional relationships that require

special handling. This enables us to easily combine FDR2 with existing RDFS inference

engines. FDR2 completely preserves the structure of the relational data. We only change

representation of the data and add means to facilitate linking between a relational schema

and an ontology.

The equivalence relationship in FDR2 In FDR2, we employ the rdfs:sub[Class|

Property]Of properties to simulate the equivalence relationship not supported by RDFS.

The W3C specification [14] defines the rdfs:sub[Class|Property]Of properties

as transitive. Keeping in mind that the equivalence relationship is transitive, symmetric and

reflexive we can see that rdfs:sub[Class|Property]Of lacks symmetry and reflex-

ivity to act as the equivalence relationship. Symmetry can be achieved by stating for every

A rdfs:sub[Class|Property]Of B that B rdfs:sub[Class|Property]Of

A.

However, in practice a link between a domain concept and an element from a relation

schema does not have to be symmetric. The main reason for this is that the FDR2 relational

schema and the ontology play two distinct roles. The ontology defines a widely accepted

view to which an ontology-enabled application commits. Whereas, the relational schema is

only a medium that makes relational data available to the ontology-enabled framework (or

software) that is aware of neither how the relational data is represented originally nor how

it is made accessible to the framework.

This division of roles means that the ontology-enabled application is not supposed to

directly exploit classes and properties defined in the relational schema. This implies that for

our task transitivity of rdfs:sub[Class|Property]Of is sufficient. Therefore, we

do not ensure symmetry by stating B rdfs:sub[Class|Property]Of A for every

A rdfs:sub[Class|Property]Of B. This reduces the amount of reasoning needed

to link the relational schema and ontology. Even more, if RDFS would provide a way

to assign aliases (multiple identifiers) to the same resource then the same effect could be

achieved with no reasoning at all.

Over-generation of virtual properties By means of virtual properties the relational schema

explicitly defines sub-relationships between elements of a complex relation expressed in a



118 CHAPTER 6. FDR2: LINKING RELATIONAL DATA AND RDF MODELS

record. Generally speaking, it is possible to explicate not only binary sub-relationships

but also more complicated ones. This could, however, introduce redundant relationships

unlikely to be linked to domain properties.

Over-generated virtual properties may pose a performance problem. For example, a

10-element record will result in a relational schema with 90 virtual properties and a large

number of them may be redundant. Such a relational schema itself does not require signif-

icant computational and space resource. However, the corresponding RDF-serialization of

the actual data will be polluted with irrelevant data.

This problem can be addressed by introducing a separate step between automatic gen-

eration of the relational schema and RDF data serialization. At this stage we can remove

redundant virtual relations from the relational schema. The user, for example, can interfere

between steps 1 and 2 to remove irrelevant virtual relations. Another possible solution is

to swap steps 2 and 3 and to exploit the created RDMap to (semi)-automatically remove

virtual relations not linked to an ontology. The modified relational schema will determine

the final structure of the RDF data serialization preventing from polluting it with irrelevant

data.

Potential applications for the FDR2 relational schema The relational schema can fa-

cilitate analysis of the relational data on an abstract, intensional level. A possible practical

application of this is that an RDFS-based information system can keep track of known

relational schemas and corresponding RDMaps. This enables automation of handling com-

plex input data. Since the relational schema is constructed automatically, once created the

RDMap can be reused by many users who even do not know anything about the details of

the linking procedure and they are still able to take advantage of RDFS inference.

Improvements and future work If a substantial amount of information about some do-

main is captured in relational-like data sources (e.g., spreadsheets), then a domain ontology

can be constructed (or extended) incrementally by linking automatically generated rela-

tional schemata to the domain ontology. For example, starting with the ontology with only

initial root concept(s) we begin every iteration by creating an RDMap and merging this map

with the ontology. Such an approach can be generalized beyond relational data sources if

there is a way to explicate relevant concepts (classes and properties) from an information

resource.

The proposed approach is fully reversible: it allows to completely recreate relational

representation of the original data. However, changes made within the RDF/S model cannot
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be traced back to the relational representation. For example, if new instances of DO#product

are created by the system then they will be lost when we try to revert to the original rela-

tional data model. At present it is not clear if full reversibility is important in supporting the

relational data model but if we consider relational databases then it becomes obvious that

full reversibility is a highly desirable feature necessary to provide a seamless link between

relational databases and RDF/S-based systems.

6.6 Related Work

As we have already mentioned, a substantial amount of research effort has already been ded-

icated to the problem of mapping the relational data model to other conceptual models such

as Object-Oriented, Entity-Relationship, etc. In the field of relational databases [71] and

[68] provide overviews of theoretical approaches and practical systems (ARCUS [72], Pen-

guine [73]) that assist reverse engineering of existing databases and enable interoperability

with other models. Most of the existing solutions have a number of common features that

we will discuss now.

Due to the limited expressiveness of the relational model (and any model in general),

loss of semantics is inevitable during modeling of a target domain. Therefore, user inter-

vention is required to establish proper semantic relationships between an existing relational

model and other modeling frameworks. In FDR2 we require the user to do the actual link-

ing of the relational schema to an ontology. Nevertheless, the relational schema itself is

constructed automatically, and thus can be used independently for such tasks as schema

discovery or retrieval.

In general, the above-mentioned existing techniques involve two main steps:

1. off-line user-guided schema mapping (often assisted with heuristics-based assistant-

tools);

2. run-time data mapping performed by a dedicated software component.

The need for the run-time data-mapping component can be explained by the transfor-

mational nature of the approaches. The original structure of the relational schema and data

has to be changed into the target representation. The mapping itself is defined as a set

of rules for such a transformation. The transformation can cause arbitrary changes to the

original schema/data, therefore the result has to be validated to ensure its completeness and

consistency with the original data.
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FDR2 is transformation-free in the sense that it preserves the original structure of the

relational data. We do change its representation by encoding it in RDF, but we do not alter

the structure itself. This, we believe, is a significant benefit of the FDR2 approach because

it eliminates the need for a run-time transformation component and, more importantly, it

automatically ensures that all relational data is accessible (completeness) and can be used

in a way consistent with the original data model.

The mapping of a relational and a target schema is based on two major components: the

definition of mapping rules and a run-time data-mapping component. In many cases, the

mapping rules are stored in a relational database in an ad hoc format, thus they are difficult

to share between users or software applications.

The run-time mapping component is required to perform a dynamic transformation of

data according to the specified mapping rules. We can see that the specification of the

mapping and the transformation engine are not independent from each other and, therefore

they form quite a specific and inflexible solution. In our approach we rely solely on the well-

defined semantics of RDFS. This allows us to produce a number of declarative definitions

usable within any RDFS-enabled system.

The problem of mapping different vocabularies, schemas, ontologies have also received

attention in the Semantic Web community. In that case, mapping has to deal with models

that are semantically richer than the relational one. The proposed techniques also rely on

the user to specify the actual mappings and provide the user with a minimal assistance.

In [74] the authors describe a naive approach for mapping RDBMS schema onto RDF

(although we would rather call it RDBMS data mapping onto RDF). FDR2 takes it to the

next level where it links the relational data and RDFS ontologies. An RDF serialization

of the actual data is rather straightforward to realize and can be done in different ways

according to application-specific restrictions.

FDR2 and existing approaches also differ in how they define mapping rules and how

they perform the actual mapping at run-time. In [75] the author proposes a transformation-

based mapping technique as an extension to the RDFS language. The authors of the D2R

MAP XML-based language apply a similar technique to describe mappings between re-

lational database schemata and OWL ontologies [70]. In practice, it means that the user

is required to use a dedicated software component (e.g., a transformation engine or D2R

processor) that supports the mapping languages introduced. The maturity of such software

solutions is often unsatisfactory. In our approach we rely solely on the well-defined and
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widely accepted semantics of RDFS languages. There exist a growing number of RDFS-

enabled middleware components (Sesame [65], RDFSuite [76]) and APIs (Jena [57]) that

can be directly utilized within the proposed framework.

We have to note that in the present work we do not address many issues relevant to map-

ping complex relational databases to RDFS domain ontologies. Our approach is designed

to link tabular data (typically tables holding scientific observations) to RDF/S enabled soft-

ware systems or frameworks such as Onto⇔SOA.

6.7 Conclusions

In this chapter we have described the FDR2 approach for linking relational and RDF data

models. With this technique we answer the research question: “How can we integrate

tabular data with an ontology-ready data-model such as RDF/S?”. FDR2 relies on three

RDF/S components: an automatically generated RDFS schema of tabular data, an RDF

serialization of the data itself, and a manually created map.

A relational schema is created automatically to explicate the structure and internal re-

lationships (virtual properties) between elements of a relational collection of data. Virtual

properties and generated RDFS classes allow the user to identify the

rdfs:subClassOf rdfs:subPropertyOf relationships between concepts from the

relational schema and a domain ontology. The actual relational data are automatically

expressed in RDF according to the generated relational schema. Run-time integration is

achieved by applying an RDFS reasoner to merge the above-mentioned components into a

single RDFS model and to deduct necessary entailments. A resulting run-time model allows

to access relational data with queries expressed according to the domain ontology.

The proposed approach is purely RDF/S-based and does not require any additional soft-

ware components except an RDFS reasoner. FDR2 can be extended to fit particular needs as

it was demonstrated by describing how primary keys can be exploited to support references

across tables and how potentially redundant virtual relations can be eliminated. Moreover,

the described technique is general enough to be applicable to data sources different from re-

lational ones. By explicating the schema of the original data, serializing the data according

to that schema and linking the schema to a target ontology we can semantically enrich the

data and improve its accessibility to ontology-enabled software.
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Instances corresponding to cell values

fdr2#cream
type: fdr2#Product
fdr2#vpPRODUCT-JUDGE: fdr2#charles
fdr2#vpPRODUCT-SUPERVISOR: fdr2#pete

fdr2#pete
type: fdr2#Judge, Supervisor
fdr2#vpJUDGE-PRODUCT: fdr2#milk
fdr2#vpJUDGE-SUPERVISOR: fdr2#heinz
fdr2#vpSUPERVISOR-PRODUCT: fdr2#cream
fdr2#vpSUPERVISOR-JUDGE: fdr2#charles

fdr2#heinz
type: fdr2#Supervisor
fdr2#vpSUPERVISOR-PRODUCT: fdr2#milk
fdr2#vpSUPERVISOR-JUDGE: fdr2#pete

Instantiation of the relation

fdr2#RelationInstantiation
definedOver: fdr2#RelationInstantiationSeq

fdr2#RelationInstantiationSeq
type: rdf#Seq
_1,2: fdr2#RowSeq1, RowSeq2

fdr2#RowSeq1
type: rdf#Seq
type: fdr2#Row
_1,2,3: fdr2#milk, pete, heinz

fdr2#RowSeq2
type: rdf#Seq
type: fdr2#Row
_1,2,3: fdr2#cream, charles, pete

Figure 6.5: An example of an RDF serialization of relational data

(automatically generated by FDR2 according to the schema

on Figure 6.2).



Chapter 7

Effect of Ontologies on Software
Quality and Development Effort

The Semantic Web is envisioned to significantly improve Web applications. Ontologies play a central role in

realizing this vision and, therefore, are expected to have a profound effect on the quality of Web applications.

The potential of ontologies, however, is not limited to the Semantic Web. In this chapter we estimate the effect

of ontologies on a number of quality characteristics of software. Since, the expected qualitative gains can be

attributed to increased development effort rather than to ontologies, we also estimate the effect of ontologies

on software development effort. In this chapter we aim to answer the research question: “How do ontologies

affect characteristics of software applications such as software quality and development effort?”. More specif-

ically, we employ the Quint2 and WEBMO models to estimate how ontologies affect software quality and the

corresponding development effort. The analysis and results reported in this chapter are largely derived from our

experience in developing ontology-enabled software. We believe that this chapter provides an indication of the

overall positive effect of ontologies on Software Engineering practice.

�

Maksym Korotkiy: On the Effect of Ontologies on Web Application Development Effort. In proceed-

ings of the Knowledge Engineering and Software Engineering workshop. Germany, 2005.

Maksym Korotkiy: On the Effect of Ontologies on Quality of Web Applications. In proceedings of

the Workshop on Building and Applying Ontologies for the Semantic Web. Portugal, 2005.

�

The vision of the Semantic Web [16] is to significantly improve the experience of users

of Web applications. To achieve this, the Semantic Web (SW) has to provide an environment

that will advance the qualitative characteristics of Web applications beyond the state of the

art. Although ontologies play a key role in realizing the SW vision, their potential by no

123
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means is limited to that area only. We have already demonstrated that with Onto⇔SOA

by employing ontologies to improve usability of services. Usability is only one of the

many quality characteristics of software and in this chapter we will investigate how exactly

ontologies can affect a number of other quality characteristics of Web applications.

Estimating qualitative changes alone is not sufficient to judge the overall effect of on-

tologies on Software Engineering practice. The expected qualitative gains can be attributed

to an increased development effort rather than to ontologies themselves. In that case it will

remain uncertain whether ontologies contribute to more efficient transformation of effort

into quality. Therefore, we also have to investigate how ontologies can affect Web applica-

tion development effort. By estimating these two effects of ontologies we aim to obtain an

indication of the overall benefits of applying ontologies in Software Engineering.

Ontologies are yet to be widely adopted by software developers. This significantly

complicates empirical validation of the analysis performed in this chapter. Nevertheless,

we believe that this analysis gives valuable insights into practical implications of using

ontologies in software development. Our methodology consists of analyzing the effect of

ontologies using well-known models for estimating quality (Quint2) and development effort

(WEBMO) of Web applications.

Quint2 [77] defines a model that covers the user and developer perspectives on the

quality of a Web application. The user perspective addresses external qualities of a software

product. The developer perspective deals with internal qualities of the product during its

development and maintenance. We employ Quint2 to perform a structured analysis of the

impact of ontologies on the functionality, maintainability and usability quality dimensions.

WEBMO [1] is a method for estimating Web development costs. In our analysis we will

consider an average sized (as defined in [1]) Web application (an information portal) to be

developed by an average team of developers. We use a conventional software development

process and the resulting product as a reference case and compare it against an ontology-

aware counterpart. The ontology-aware case will be examined from two perspectives:

1. the transition phase that reflects short-term effects and the present state of the ontol-

ogy engineering field;

2. the maturity phase that represents long-term effects and an optimistic outlook at the

development of ontology engineering.

This chapter is organized as follows. Section 7.1 describes a variety of forms ontologies

take, roles they play and expected general benefits. Section 7.2 explains the Quint2 quality
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model and how we employ it to analyze the ontology impact on three quality dimensions:

functionality, maintainability and usability. After that we look into development effort by

describing the WEBMO estimation model in Section 7.3 and applying it to predict the

effect of ontologies on the size of software and on development effort. In Section 7.4 we

summarize our findings and reflect on the performed analysis.

7.1 Ontologies

We have already introduced the notion of ontologies in previous chapters. In this section

we highlight a few general characteristics of ontologies that we believe are most relevant

for the analysis of their effects on Software Engineering practice.

To be effective in practice an ontology must be expressed in a language that provides a

unified representation (syntax, structure and semantics) mechanism. In this chapter we as-

sume that an ontology is expressed in an ontology language that enables large-scale sharing

and (re-)use of ontologies by both humans and machines.

Ontologies can possess a variety of forms starting from a simple list of terms (a con-

trolled vocabulary), to a structured representation of domain concepts and relations between

them or even to a knowledge-rich axiomatized representation of complex domains (see [12]

for a detailed overview of different interpretations of the term “ontology”). In our analysis

we employ the term “ontology” to refer to all these forms and will distinguish between them

when appropriate.

One of the key roles an ontology can play is to be a source of commitment [11] – an

ontology provides a unified conceptual basis that helps parties to unambiguously understand

the communicated content (information or knowledge). There are, therefore, a number of

practical benefits ontologies can offer to Software Engineering:

• Ontologies facilitate communication between agents of a different nature, their inter-

operability and reusability of ontology-enabled resources [78]. The structured and

unified nature of an ontology language assists in reuse of the ontology itself. An

ontology supplies concepts that can be used to describe or annotate design artifacts

(Web pages, technical documentation, source code, etc) making these artifacts more

accessible (reusable, interoperable).

• Ontologies are able to provide suitable abstractions (well defined problem-solving

methods and domain theories) for software developers [79].
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• As demonstrated with Onto⇔SOA, a domain conceptualization captured in ontolo-

gies contributes to the alignment between a domain and artifacts (e.g., services) de-

signed for that domain.

In the rest of this chapter we will analyze how these general benefits of ontologies can

affect software quality and development effort – the key elements of software engineering

practice.

7.2 Effect on Quality of Web Applications

Quality of software products has been (and still is) studied extensively. The ISO 9126 stan-

dard provides a set of characteristics that describe various quality dimensions of a software

product and of software development processes. The standard seeks to cover an exhaustive

set of quality characteristics applicable to the whole range of software products.

The original ISO standard has been extended into the Quint2 model [77] that provides

additional quality characteristics and, more importantly for our task, associates computable

indicators with every sub-characteristic (Figure 7.1). These indicators intend to estimate the

quality of software products with a certain accuracy and degree of confidence.

The indicators are attached to quality sub-characteristics. Quint2 does not specify how

the indicators should be combined to obtain an integrated estimate of an overall quality

characteristic. Integration of different indicators may be problematic or even unreasonable

due to the variety of their scales and the different nature of the measured attributes. More-

over, the importance of a quality aspect1 varies not only across application domains but also

across different stages of the application life-cycle.

In our analysis we do not focus on quantitative effects of ontologies on Web applica-

tions. Instead, we investigate the sensitivity of a quality dimension to an ontology. Under

the sensitivity we understand a likelihood of a significant contribution of an ontology to a

quality aspect. This enables us to determine which dimensions are the best candidates to be

improved by ontologies.

We derive the sensitivity of a quality characteristic from the sensitivity of its indicators

or sub-characteristics. The sensitivity of an indicator is binary: it is either likely or unlikely

to be significantly improved by ontologies. To determine the sensitivity of on an indicator

we analyze its definition to find out if an ontology can contribute to underlying components.

1We employ “quality aspect” as a collective term for quality indicators and (sub)characteristics
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F u n c t i o n a l i t y .. .
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Figure 7.1: A fragment of the Quint2 quality model. The notion of

quality is decomposed into a number of coarsely-grained

characteristics that, in turn, consist of quality

sub-characteristics. To each of these sub-characteristics

Quint2 attaches computable indicators to provide a

quantitative estimation of a sub-characteristic.

An integrated sensitivity of a number of given quality aspects is scored on an ordinal

scale from 0 (worst) to 10 (best) according to percentage of positively effected aspects

among the given ones. The numerical values of integrated sensitivity have no absolute

value, however, we can employ them for ranking purpose.

To explore the benefits associated with application of ontologies, we do not consider

them as a replacement for conventional software development methods but rather as a com-

plementary technique. In our analysis we assume that an ontology can be employed as a

container of application domain knowledge.

In this study we also assume that there already exist proper ontologies and associated

methodologies allowing to apply these ontologies to a problem at hand. We assume that all

required ontologies are available, of proper quality and ready to be applied.

In the coming subsections we will analyze the effect of ontologies on the functionality,

usability and maintainability quality dimensions.
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7.2.1 Functionality

The functionality quality characteristic addresses the actual presence of the desired func-

tionality in the software product, the accuracy of the implementation, interoperability with

specified systems, etc. In other words, this quality characteristic reflects the completeness

and correctness of the implementation of the predefined functional requirements. Table 7.1

shows most of the functionality sub-characteristics such as suitability, accuracy and inter-

operability.

The suitability sub-characteristic considers the desired functionality actually present in

a software product. We believe that this quality aspect is determined to a significant degree

by the effectiveness of the requirements engineering phase. In this phase, a software engi-

neer elicits the target functionality from domain users and experts. Ontologies are able to

significantly improve the precision of the communication between these two parties and to

facilitate unambiguous understanding of the application domain and problems to be solved.

This will have a positive effect on the coverage ratio2 indicator by reducing the num-

ber of missed or misunderstood requirements.

Definition Indicator Sens.

Suitability
The percentage of desired functionality that is actually

present in the software product.

coverage ratio +

The ratio of functions that has been changed (change includes

addition, modification, and deletion).

functional specifi-

cation change ra-

tio

+

The number of improvement requests for software functions

from users per month after delivery.

improvement re-

quest ratio

+

Accuracy
The ratio of incorrect processed transactions to the total of

presented transactions.

failure ratio +

The ratio of functions with the required rounding treatment to

the total number of implemented functions.

rounding treat-

ment ratio

-

Interoperability

2Here and further on the actual definition of a quality indicator can be found in a table containing the

corresponding quality sub-characteristic.
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The effort needed to realize interoperability per unity of size

of interoperability.

effort per interac-

tion

+

The ratio of data formats matched to those of the other system

in the interoperation.

matched data for-

mat ratio

+

Compliance
The ratio of standardised data formats to the data formats to

be standardised.

standardised data

format ratio

+

The ratio of standardised interfaces to the interfaces to be

standardised.

standardised

interface ratio

+

Traceability
The amount of time that is lost while processing due to oper-

ation control activities, manually or automatically.

operation control

effort

+

The amount of effort needed to perform the operation control. ease of operation

control

+

Table 7.1: A fragment of the functionality dimension of the Quint2

quality model. Here and thereafter all definitions are given accord-

ing to the Quint2 quality model.

Ontologies facilitate communication between all parties involved in requirements acqui-

sition contributing to better understanding of the problems to be solved, and more efficient

specification the desired functionality. Requirements engineering benefits from knowledge

acquisition techniques [79, 6] that can be combined with ontologies to further improve

their efficiency. All this prevents frequent modifications of requirements improving the

function specification change ratio and improvement request ratio

indicators.

The accuracy sub-characteristic estimates the correctness of the functionality, docu-

mentation, user manuals, etc provided with a software product. We can apply ontologies

to structure functional requirements and facilitate acceptance tests. For example, we may

employ ontologies to set restrictions on input/output data, and thus, assist in verification of

the implemented functionality. The effectiveness of such assistance significantly depends

on the ability of an ontology to capture the relevant relationships between domain concepts
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(Onto⇔SOA enhances this ability by enabling domain-specific reasoning services). Hence,

we expect such use of ontologies to improve the failure ratio indicator.

The manual conformance ratio indicator can be improved by increasing the

number of functions described in a user manual. An ontology-assisted specification of

requirements can improve the precision and understandability of the description of imple-

mented functions. This simplifies the construction of a manual, makes it more efficient, thus

allowing to cover a greater number of functions.

Rounding treatment ratio is not affected by ontologies. The indicator is rather

influenced by technical aspects (target platform, performance and precision requirements,

etc).

The interoperability sub-characteristic covers the ability of a software product to inter-

act with specified systems. Matched data format and interface ratios are

prime candidates to be improved by providing ontology-based descriptions of data formats

and interfaces of systems in interoperation. Such descriptions can be shared and unam-

biguously interpreted with the help of inference services connected to an ontology (for

example, as we propose in Onto⇔SOA). Ontologies help to promote standards by pro-

viding accessible reference specifications. All this can significantly improve the effort

per interaction indicator implying that all indicators of the interoperability sub-

characteristic are likely to be improved by ontologies.

The compliance sub-characteristic indicates how well a software product adheres to

application-specific standards and regulations. If these regulations are accompanied with

ontological specifications then the required compliance can be assisted using readily avail-

able inference capabilities provided by the ontology. We expect all compliance-related in-

dicators to benefit from the availability of ontologies. However, this assumes that ontology

engineers have at their disposal means to create ontologies for a wide range of application

domains. We believe that a hybrid approach to ontology engineering such as Onto⇔SOA

will be essential to achieve the expected impact.

Traceability indicates the amount of effort needed to verify the correctness of data pro-

cessing. A readily available and structured ontological conceptualization of an application

domain can facilitate the users in accurately expressing functional requirements in a way

that allows their automatic verification. Moreover, an application domain ontology assists

in the interpretation of the results of an operation, enabling domain-aligned and knowledge-

driven verification of operations. We expect this to improve the overall efficiency of opera-

tion control process and, therefore to improve both traceability indicators.
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7.2.2 Usability

Quint2 defines usability (Table 7.2) through a set of sub-characteristics that describe the

effort needed to use a (Web) application as well as the associated user experience. Usability

plays a central role in Onto⇔SOA. One of the main assumptions underlying our work is that

an ontology contains concepts familiar to the domain users (experts, software developers,

etc). In Onto⇔SOA we rely on ontologies to improve the usability of services. However,

we believe that ontologies can be as well applied to other software engineering artifacts

such as GUI, frameworks, components, etc. Ontological concepts can improve communi-

cation between the user and application developers, as well as between the user and a Web

application. Quint2 decomposes usability into sub-characteristics such as understandability

and learnability (Table 7.2).

Understandability concerns with recognisability of concepts and their intended applica-

bility. Concept and usage clearness significantly benefit from the availability of the

domain conceptualization captured in an ontology. The ontology can transfer these concepts

through all stages of software development. This ensures that terminology elicited from the

users during requirements engineering is preserved through all design and implementation

steps and is used to interface with the users.

Learnability reflects the users’ effort for learning a software product. The improved

understandability and clearness of a software product facilitate users in learning how to

operate the system and what kind of input and output it produces or requires. This improves

the effort required to learn one operation indicator.

On the other hand, we estimate that the availability of manual indicator is

not directly affected by an ontology but rather by other factors such as available human

resources, complexity of a software product, etc. An ontology may affect those factors (for

example, by increasing overall efficiency of development process and freeing up human

resource), thus indirectly affecting the indicator. However, we do not consider such indirect

influence significant enough.

Operability characterizes the users’ effort for operation and operation control. An ap-

plication domain theory expressed as an ontology facilitates understanding problems to be

solved. The way problem solving methods are applied to the target domain go beyond what

can be expressed in either a domain theory or an ontology of the problem solving method.

Neither we estimate that it is feasible to expect that domain ontologies can improve

effectiveness of human-computer interaction (HCI) patterns. The main reason for this is

that these patterns depend on many external (to the application domain) factors such as
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types of users, applied problem-solving method, hardware and software limitations, etc.

Since a domain ontology is unlikely to considerably affect these factors, we do not expect

that an ontology can have a significant impact on the way interaction is organized between

the user and software system. The multifaceted nature of HCI is also reflected in the fact that

many of the operability indicators can be determined only experimentally via a subjective

judgment by the user or an expert.

Definition Indicator Sens.

Understandability
The proportion of functions that can be explained by using

clear, familiar models to illustrate concepts.

concept clearness +

The ratio of functions explained or by using clear models or

presented to the user through demonstration software or any-

way described.

usage clearness +

The proportion of functions presented to the users through

demonstration software.

availability of

demonstration

software

-

Learnability
The ratio of time required to learn one operation for a specific

task and operation time.

effort required to

learn one opera-

tion

+

The degree of availability of reference manuals, on-line user’s

manuals and self-tuition documents such as operation man-

uals, grammar reference materials, installation manual, etc.,

for software functions.

availability of

manual

-

Operability
The proportion of system message terms that are standard-

ised.

consistency of

terms in messages

+

The proportion of system messages from software or system

in which causes and corresponding action are clearly identi-

fied by the user who received those messages.

message clearness +

The ratio of operating commands having default values to the

total number of operating commands.

default value

availability ratio

+

The proportion of functions for which operating methods can

be selected to correspond to the user’s level of skill.

skill level adapt-

ability

+
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Helpfulness
The ratio of the amount of expounding text (including er-

ror messages) available in the software product to the total

amount of text which can be presented on screen.

ratio of expound-

ing text

-

The ratio of the amount of expounding text (including error

messages) available in the software product to the size of the

software product.

normalised ratio

of expounding

text

-

User-friendliness
User-friendliness, as judged by a team of experts on topics

as: screen composition, vocabulary, application of colour and

sound.

expert judg-

ment on user-

friendliness

-

The experts decide to what extent user-friendliness of the soft-

ware product matches the sample product.

user-friendliness

compared to

sample

-

Table 7.2: A fragment of the usability dimension of the Quint2

quality model.

On the other hand we believe that operability can be improved by employing effective

HCI patterns [80]. An ontology can be used to describe basic HCI patterns and to assist

in mapping them to domain concepts. For example, consistent terminology and message

structure can be enforced by such an ontology improving the consistency of terms

in messages and message clearness indicators.

A rich enough application ontology can supply default values to operating commands

improving the default value availability ratio indicator. Skill level adapt-

ability requires a rather detailed user model to be specified by a domain ontology. If such

an ontology is available then we can use it to describe operations depending on the user

skill level. For example, if a normal user interacts with an application then some opera-

tion parameters can be hidden with default values assigned. But, in the expert mode these

parameters will be exposed to power users.

The attractivity quality characteristic reflects the ability of a software product to satisfy

latent user desires through means beyond actual demand. Due to a highly informal nature of

this quality sub-characteristic and the fact that it is the only indicator based on user judgment
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we do not expect an ontology to have a considerable effect on it.

Clarity characterizes the ability of software to make the user aware of the functions it

can perform. An application domain ontology is able to provide clear and recognizable

descriptions for supported functionality. Moreover, the ontology can assist in organizing

related functions, so the user can be advised on available relevant functions, how they can

be combined, etc. We expect this to improve the function recognition ratio

and function use ratio indicators.

The helpfulness sub-characteristic is determined by the availability of instructions to the

user on how to interact with the software. Both of the defined indicators depend not only

on the availability of explanatory instructions and messages but rather on the way these

instructions are presented. An ontology can improve availability of explanatory texts by

providing natural language descriptions for domain concepts, but this could as well clutter

the UI with information that is likely to be already known to the user and, therefore not

helpful. Hence, we foresee that a domain ontology is unable to provide much improvement

for any of the defined indicators.

User-friendliness is determined by the level of users’ satisfaction. This notion is ex-

tremely subjective. All the defined indicators depend on subjective judgment of either users

or experts. The definitions of the indicators do not allow us to estimate the effect of ontolo-

gies no this sub-characteristic.

7.2.3 Maintainability

The maintainability quality dimension is characterized by the effort needed to introduce

specified modifications into software. The sub-characteristics of this dimension are shown

on table 7.3.

The analysability characteristic expresses by the effort needed to diagnose causes of

failures3 or to identify parts to be modified. An ontology of an application is able to support

an explicit specification of restrictions on domains and ranges of implemented functions

as well as state transitions. This can assist in automatic detection of failures and of their

context.

Moreover, since an ontology facilitates consistent use of terminology in all development

stages, we are able to trace failures manifested at the UI level back to the implementation

and design levels. We expect this to reduce the amount of unrecognized failures and to

3A failure is externally recognizable erroneous behavior caused by the execution of a potential error in the

software.
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facilitate correct identification of corresponding faults, thus improving both analysability

indicators.

Changeability is defined by the effort needed to modify the product. Changeability

extends analysability beyond failure analysis, though most of the arguments applicable to

analysability are also valid for changeability. Domain ontologies can facilitate software

analysis, determine dependencies and assist in validation of a modified module. Therefore,

we expect that all this can significantly reduce the modification effort indicator.

Due to the improved analysability and reduced modification effort, defect correction

effort and mean correction time are also likely to be reduced.

The Mean failure treatment time indicator characterizes how rapidly an ap-

plication restores its normal state. This indicator depends on a variety of factors not affected

by an ontology. Severity and nature of a failure together with the implemented failure han-

dling mechanism determine these factors. Therefore, we do not expect any improvement on

this indicator.

The stability quality sub-characteristic addresses the risk of unexpected effects of mod-

ifications. The single indicator defined in Quint2 measures the ratio of new faults made

while modifying a (Web) application. An ontology is able to facilitate specification of de-

pendencies (e.g., by supplying a shared and well-understood vocabulary to express them)

between application components and between the application and external systems. We

expect that such a specification will reduce the number of unexpected side effects.

Definition Indicator Sens.

Analysability
The ratio of number of failures where users correctly recog-

nised the fault positions to the number of detected failures

caused by the faults of the software as a consequence of the

maintainer analysing the failures.

fault position

recognition ratio

+

Mean time needed to analyze a failure, and to discover any

faults arising from this failure, and separate the positions to

be repaired by the maintainer who received the failure report.

mean failure anal-

ysis time

+

Changeability
Average amount of effort needed to modify the software prod-

uct, per unit volume of the modification.

modification

effort per unit

volume

+
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Mean effort needed to repair a defect in the software product. correction effort

per defect

+

Mean time from the failure occurrence to the restoration for

end users.

mean failure treat-

ment time

-

Testability
Effort needed to test one unit volume of the software product

with a certain testing coverage degree.

test effort per unit

volume

+

Number of test cases that have to be made to test a unit vol-

ume of the software product with a certain testing coverage

degree.

number of test

cases per unit

volume

+

Mean user’s work time to verify the fault correction. mean user’s work

time to verify the

fault correction

+

Reusability
Ratio of reusable parts of the software product to the total

number of parts of the software product.

ratio reusable

parts

+

Ratio of reused parts of the software product to the total num-

ber of parts of the software product.

ratio reused parts +

Table 7.3: A fragment of the maintainability dimension of the

Quint2 quality model.

The testability characteristic is defined by the effort needed to validate the modified

software. A domain ontology can assist in creating restrictions on input parameters. Also

such an ontology can provide a framework for organizing application functions making both

functional and conceptual interdependencies more explicit. This we believe can reduce the

overall test effort.

Additionally, domain ontologies can facilitate the specification of dependencies and data

flow between sub-modules of a tested unit. This assists in development of an efficient test

strategy. We also expect that verification and testing of fault corrections can significantly

benefit from an ontology-based organization of functional requirements (verification) and

operational restrictions (testing). For example, an ontology can help to identify software

components related to the key conceptual elements (e.g., concepts that are connected to a
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large number of domain concepts) of an application domain. By focusing effort on these

critical software elements we can improve effectiveness of the verification and test process.

The benefits of an ontology-based approach to software verification are not limited to

the formal techniques. With Onto⇔SOA we complement the formal techniques through

service-enabled ontologies. Such ontologies can provide a reference implementation of

coarsely-grained domain behavior. The reference implementation facilitates integration

testing and verification.

Managability is defined by the ability of software to (re-)establish its running status.

Control effort ratio is defined as “the ratio of effort put in controlling the soft-

ware product (including maintenance) in man-hours to the number of hours the product is

available to the users”. This definition does not allow to make a conclusion about the effect

of ontologies on this sub-characteristic.

The reusability characteristic evaluates a potential for complete or partial reuse in an-

other software. Ontologies encourage and facilitate reuse of software modules by improving

their analysability, customizability and interoperability. We expect both of the reusability

indicators to significantly benefit from ontologies.

7.2.4 Summary

In the previous sections we argued that ontologies can (or cannot) have a significant positive

impact on various quality indicators. In this section we summarize this argumentation.

We expect a positive impact of an ontology on a quality indicator if:

• The indicator depends on precision and unambiguity of communication between do-

main users and software developers. In this case we expect a positive effect because

an ontology specifies a domain conceptualization that can be employed by agents

with different background knowledge.

• The indicator benefits from consistent use of concepts across stages of development

process. We see this case as an extension to the previous one. The communication

now takes place among multiple parties (domain users, requirement engineers, soft-

ware developers, testers, etc), has an asynchronous nature and can be prolonged in

time. For example, a domain ontology provides concepts that are used to determine

and describe application requirements. The same concepts can be used as a basis for

software design, then employed in the implementation and will reappear in UI and

final documentation.
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• The indicator benefits from an increased agreement and standardization. In this case

the scale and complexity of communication are further increased extending to soft-

ware agents (interoperating application and services).

• The indicator depends on other indicators that are likely to be improved by an ontol-

ogy. A wide applicability of ontologies amplifies the effect of ontologies.

On the other hand, we expect that an indicator is likely to be unaffected by an ontology

if:

• It is unreasonable to expect availability of an ontology that covers a domain of the

indicator. In this case, the indicator can be determined only via subjective judgments

of users or experts making it difficult to confidently predict the effect of an ontology

on it.

• An ontology improves the overall efficiency of development process freeing up re-

source that can now be devoted to improve the quality indicator. We do not consider

such an indirect effect of an ontology on the quality indicator to be significant.

7.2.5 Sensitivity of Quality Sub-characteristics

Having analysed the effect of ontologies on indicators, we integrate the estimations for

each quality sub-characteristic. Table 7.4 depicts the integrated sesnsitivity of the sub-

characteristics ranked in the descending order.

From this table we can see that we expect ontologies to have a significant positive impact

on the majority of analyzed quality sub-characteristics. The maintainability and function-

ality dimensions show more potential for improvement than the usability dimension. We

believe that the main reason for this is that the former two dimensions benefit not only from

the availability of domain-aligned conceptualization but also from the structured represen-

tation of this conceptualization.

Although we estimate that ontologies are able to significantly contribute to quality of

software products, in order to evaluate the overall effectiveness of ontologies in Software

Engineering we have to determine how ontologies effect development effort. In the next

section we introduce ontologies into the WEBMO model to estimate their impact on Web

application development effort.

Quality Sub-characteristic Quality Dimension Sensitivity score
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Analysability Maintainability 10

Compliance Functionality 10

Customizability Usability 10

Interoperability Functionality 10

Suitability Functionality 10

Testability Maintainability 10

Traceability Functionality 10

Reusability Maintainability 10

Changeability Maintainability 9

Accuracy Functionality 5

Learnability Usability 4

Understandability Usability 4

Operability Usability 3

Helpfulness Usability 0

User-friendliness Usability 0

Table 7.4: Integrated sesnsitivity score of the analysed quality sub-

characteristics.

7.3 Effect on Development Effort

We may expect that the quality improvements described in the previous section will come

at the expense of increased development effort. In this section we investigate how the in-

troduction of ontologies can affect Web application development effort. By combining this

investigation with the results of the previous section we expect to obtain an indication of the

overall viability of ontologies for software development.

Although we aim to perform a general analysis, to quantify the arguments we will con-

sider an average sized Web application (an information portal) to be developed by an aver-

age team of developers. We use a conventional ontology-free development process and the

resulting product as a reference case to be compared against its ontology-aware counterpart.

The ontology-aware case will be examined from two perspectives: 1) the transition phase

that reflects short-term effects and the present state of the ontology engineering field and 2)



140 CHAPTER 7. EFFECT OF ONTOLOGIES ON SOFTWARE ENGINEERING

the maturity phase that represents optimistic long-term effects and expected development

of the ontology engineering field.

To estimate the impact of ontologies on the development effort we employ the WEBMO

methodology [1]. According to WEBMO, development effort of a Web application depends

on three main factors:

• application domain – WEBMO distinguishes five application domains: e-Commerce,

financial/trading applications, business-to-business applications, Web-based portals

and Web-based utilities.

• size of the application measured in Web Objects (WO). WO is an extension to classi-

cal Function Points that takes into account Web-specific components of the applica-

tion such as multimedia files, scripts, etc.

• cost drivers (Table 7.5) are concerned with the context of software development pro-

cess (the development team, its experience, schedule constraints, etc) and with its

efficiency.

For our analysis only the last two factors are relevant: we assume that the introduc-

tion of an ontology does not change the domain of the application. WEBMO estimates

development effort (in person-months) as follows:

E = ASP C,

where A and P are power law constants that depend on the application domain; S is the

estimated size (in thousands of source lines of code) of the considered Web application and

C is the product of all cost drivers.

We use subscripts to distinguish between the reference case (0-case) and the case when

we apply ontologies (onto-case). The introduction of an ontology does not change the

application domain (i.e. A0 = Aonto) allowing us to discard A. Furthermore, since in

WEBMO P takes values from {1, 1.03, 1.05} depending on the application domain, we

do not expect it to have significant impact on the ratio Sonto
S0

to be around 1, therefore we

can discard P as well. Finally, by assigning the nominal value of 1 to all cost drivers in

the 0-case (Conto) we can compute a relative effect of ontologies on development effort as

follows:

Eonto

E0
=

Sonto

S0
Conto.
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This equation allows us to compute the relative effort as a product of the relative change

of application size (estimated in Section 7.3.1) on the product of the cost drivers that take

place in the onto-case (analyzed in Section 7.3.2).

7.3.1 Application Size

In this subsection we estimate the impact of an ontology on the size of a Web application.

Given a set of functional requirements we will consider the two above-mentioned cases: the

onto-case and the reference case. In the onto-case the Web application is developed with

ontologies applied whenever possible and justifiable by the requirements.

WEBMO uses Web Objects (WO) to estimate the size of a Web application and employs

the following WO predictors [81]: Internal Logical Files, Multimedia Files, Web Building

Blocks, Scripts, Links, External Interface Files, External Inputs, External Outputs and Ex-

ternal Queries. The predictors employ ranks (low, average and high) to take into account

the varying complexity of Web objects.

We assume that all the external predictors (External Interface Files, External Inputs,

External Outputs and External Queries) are beyond the control of an application developer.

Therefore, these predictors will stay the same in the onto-case and the 0-case.

We assume that the Multimedia Files and Links predictors are not affected by the ontol-

ogy because they represent the content of the application and the way it is presented to the

user. Therefore, we conclude that these factors do not change across the cases.

The Web Building Blocks predictor represents reusable software components employed

in the application. The building blocks are used to directly provide the requested functional-

ity or are required by the application design. By applying an ontology in a Web application

an additional building block is required to account for ontology-related middleware. In the

onto-case this block can be seen as a replacement for the corresponding middleware used

in the reference case, thus causing no relative impact on application size. If the ontology-

related middleware has no counterpart in the reference case then the impact on the Web

application size will be marginal: in WEBMO one building block can be accounted for at

most 6 WO (with an average Web application consisting of around 300 WO [82]).

An ontology can be applied as an internal logical file if an application directly employs

the ontological representation to express its data structures and/or applicable functions.

Such a solution usually imposes significant performance costs related to the generality of

the representation mechanism employed by ontologies. However, it provides developers
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with a structurally and semantically unified representation. The main consequence of the

generality is that ontology-based Internal Logical Files (ILF) are likely to have a higher

rank than those in the reference case. Since the difference between the neighboring ranks is

5 WO, we can expect the 5×number of affected ILF increase of Web application size

in the onto-case.

Ontologies are able to decrease the Scripts predictor that estimates the effort needed to

connect the Internal Logical Files to the Web Building Blocks. Ontologies supply internal

files with a unified representation mechanism. This broadens the applicability of a script

to a greater number of internal files. In WEBMO the average rank for a script is 3 WO

potentially resulting in a 3 × number of removed scripts decrease in size.

Now we can apply the above estimations to a typical Web application described in [1].

The described application contains 356 WO with: 3 internal logical files (2 with the average

rank and 1 with the high rank); 4 scripts (3 with the low rank and 1 with the average rank).

Assuming that 2 internal logical files and 1 (averagely ranked) script are affected in the onto-

case we will get 6 (ontology middleware) +2 × 5 (increased complexity of ILF) −1 × 3

(eliminated script) = 13 WO or 100%×13/356 = 3.65% increase in application size. Such

an insignificant change of the size of the considered Web application provides an indication

that ontologies do not considerably affect the size of an average Web application.

7.3.2 Cost Drivers

In the reference case we assign the nominal value of 1 to the cost drivers. In the onto-case

we will consider each cost driver and will either change the nominal rank of the driver to

the next lower/higher or leave it unchanged (Table 7.5).

The product complexity cost driver (CPLX) represents requirements to the reliability of

a product and reflects the complexity of its architecture. We believe that the presence of

an ontology does not change reliability requirements. Although an ontology (and related

middleware) can cause an insignificant increase of the complexity of the architecture, this

does not justify assignment of the high rank to this cost driver.

Platform difficulty (PDIF) estimates the difficulty of the target application platform.

Ontology-oriented API’s and middleware are available but still far from maturity. Beside

that, the application of ontologies requires additional (often significant) computational and

memory resources. Taking all this into account we have assigned the high rank to the PDIF

driver. Similar arguments are applicable to the facilities (FCIL) driver which rank is likely
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Ratings
Cost

Driver

Low Nominal High Very High

Product

Reliability

and Com-

plexity

(CPLX)

Client/server, some

math, file manage-

ment, limited distri-

bution.

Client/server,

full distribution,

databases, integra-

tion.

Client/server, wide

distribution, math

intensive.

Client/server,

full distribution,

collaborative.

Values 0.85 1.0 1.30 1.67

Platform

Difficulty

(PDIF)

Few platform

changes, few

resource problems.

Stable platform,

must watch re-

source usage.

Platform often

changes, lack

of resources a

problem.

Platform unstable,

resources limited.

Values 0.87 1.0 1.21 1.41

Personnel

Capa-

bilities

(PERS)

35th percentile, mi-

nor delays due to

turnover.

55th percentile,

few delays due to

turnover.

75th percentile,

rare delays due to

turnover.

90th percentile,

no delays due to

turnover.

Values 1.35 1.0 0.75 0.58

Personnel

Expe-

rience

(PREX)

≤ 6 months, some

experience.

≤ 1 year, average

experience.

≤ 3 years, above

average experience.

≤ 6 years, lots of

experience.

Values 1.19 1.0 0.87 0.71

Facilities

(FCIL)

Multisite, some

collaboration, basic

CASE.

One complex,

teams, good tools.

Same building,

teamwork, inte-

grated tools.

Co-located, inte-

grated collaborative

tools, etc.

Values 1.13 1.0 0.85 0.68

Schedule

Con-

straints

(SCED)

Must shorten, 85%

of nominal value.

Keep as is, nominal

value.

Can relax some,

120% of nominal

value.

Can extend, 140%

of nominal value.

Values 1.15 1.0 1.05 1.10

Planned

Reuse

(RUSE)

Not used. Unplanned reuse. Planned reuse

of component

libraries.

Systematic reuse

based on architec-

ture.

Values – 1.0 1.25 1.48

Teamwork

(TEAM)

Little shared vision,

marginally effective

teamwork.

Some shared vision,

functional teams.

Considerable

shared vision,

strong team cohe-

sion.

Extensive shared

vision, exceptional

team cohesion.

Values 1.31 1.0 0.75 0.62

Process

Efficiency

(PEFF)

Project-based pro-

cess, rely on leader-

ship.

Streamlined pro-

cess, rely on

process.

Efficient process,

best way to do job.

Effective process,

people want to use

it.

Values 1.20 1.0 0.85 0.65

Table 7.5: Cost drivers in WEBMO (adapted from [1]).
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to be reduced due to the lack of advanced tool support for ontology-related tasks and the

lack of well-established methodologies.

Personnel capabilities (PERS) are unaffected by ontologies allowing us to keep the nom-

inal rank for this driver. Unlike general personnel capabilities, we estimate that average

experience of the personnel (PREX) will be affected. The reason for this is that due to the

lack of ontology-related experience an average development team of 3-5 members [1] will

be unable to sustain the nominal level of experience (≤1 year) if exposed to the ontology

engineering field. On the other hand, an ontology can facilitate transition of domain knowl-

edge into the development team, and in this way compensate the lack of ontology-related

expertise. Therefore, we have decided to leave the PREX cost driver unchanged for the

early phase of ontology acceptance. We estimate that when the maturity phase is achieved

the PREX cost driver is even likely to be improved by ontologies facilitating transfer of

domain knowledge into the development team.

Ontologies do not affect schedule constraints (SCED) preserving the nominal value for

this driver. Since we believe that ontologies will encourage reuse of software, we estimate

that the overall amount of the planned reuse (RUSE) can be assigned the high rank. More-

over, an ontology facilitates sharing of knowledge, thus positively affecting teamwork and

improving team cohesion (the TEAM driver).

We believe that the process efficiency (PEFF) cost driver is also affected by an ontology.

Process efficiency is inversely proportional to the efforts associated with the development

process. Our estimation of a variety of effort-related quality indicators (Table 7.1) has

shown that many of them could be improved by applying ontologies to the development

process.

Table 7.6 provides the estimated values for the cost drivers in the considered cases: the

reference case, and two onto-cases that correspond to different stages of maturity of the

Ontology Engineering field. We estimate that in the onto-case transition phase the product

of the WEBMO cost drivers will slightly increase (by around 10%), and in the maturity

phase – significantly decrease (by around 50%). We explain the initial increase of the cost

drivers with an exposure of the development team to a novel technique. We believe that,

although our estimation is based on many assumptions favorable to ontologies, it provides

quite an assuring indication of the potential of ontologies in improving the efficiency of

development process on long term.
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7.4 Discussion

We have applied well-established software engineering models to estimate possible impact

ontologies may have on software. Our analysis indicates that ontologies have the potential

to both improve quality and decrease development effort. We believe that ultimately this

implies that a given level of quality can be achieved with less effort if ontologies are applied

during software development.

Cost-effectiveness of reuse of knowledge captured in ontologies was experimentally

investigated in [83]. The authors concluded that in spite of significant translation and adap-

tation effort ontology reuse proved to be cost-effective. This agrees with our conclusions.

7.4.1 The Effect on Quality

There is a number of ways ontologies can contribute to quality of software. Ontologies can

facilitate communication between domain users and software developers, and to provide

a starting point for application design. We can employ ontological terminology across all

stages of the development process establishing relationships between domain concepts and

software design and implementation artifacts.

PDIF PREX FCIL RUSE TEAM PEFF C

reference case 1 1 1 1 1 1 100%
onto-case, transition 1.21 1 1.13 1.25 0.75 0.85 109%
onto-case, maturity 1 0.87 1 1.48 0.62 0.65 52%

Table 7.6: The estimated effect of an ontology on the WEBMO cost

drivers for an average Web application. Three cases are

considered: 1) reference – no ontology is applied; 2)

onto-case, transition phase – ontologies are applied for the

first time to development process; 3) onto-case, maturity

phase – ontologies have been applied for some time. The cost

drivers that do not change across the cases are skipped.

Ontologies encourage use of structured (systematic) methods in software development.

If such a method is already applied, an ontology can increase its effectiveness by promoting

consistent use of application-specific concepts. If no such method is used then an ontology
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still can be applied to semi-structured and informal techniques to improve their precision

and consistency.

While analyzing the effect of ontologies on software quality we noted that many effort-

and time-related indicators can be improved by ontologies. This observation has been con-

firmed by the dedicated study of the impact of an ontology on development effort model.

By integrating the impact on quality indicators we can conclude that the functionality

and maintainability dimensions are most likely to be improved by ontologies. We expect

that software characterized by an extensive functionality, long life span is most likely to

benefit from ontologies. For example, applications for the e-Science domain belongs to this

category.

Usability is considered to be one of the most important quality characteristic of a Web

application [84] primarily due to rather limited representation capabilities of modern Web

browsers. We expect that an ontology is less likely to have a positive effect on this quality

dimension.

On the other hand, Web applications usually require extensive maintenance/updating

raising the importance of the maintainability dimension. In the nearest future Web browsers

will support rich UI presentation mechanisms (XUL [85], XForms [86], etc) reducing the

importance of the usability issues and increasing the importance of the functionality and

maintainability dimensions. One of the ways to manage complexity of future Web applica-

tions is through their modularization with further integration and this is where ontologies

have the biggest potential.

7.4.2 The Effect on Development Effort

The maturity phase of the onto-case reflects a number of effects of the transition to the

ontology-enabled Web application development. Although, at present we observe a lack of

the technological support (tools, middleware, etc) for ontology-related tasks, we believe that

in coming years these aspects will reach the level of the state of the art Web technologies.

Ontologies can enhance personnel experience by transferring domain knowledge into

a development team. They also contribute to team work by providing a team with a uni-

fied conceptual view on an application domain. This improves communication within the

team as well as between the team and the external stakeholders. And finally, ontologies

can increase the overall efficiency of the development process through improvements in

knowledge transfer, communication and reusability.
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7.5 Conclusions

In this chapter we have addressed the research question How do ontologies affect character-

istics of software development such as software quality and development effort? To find an

answer we have investigated the effect of ontologies on software quality and development

effort correspondently estimated by the Quint2 and WEBMO models.

We have applied the Quint2 model to analyze effect of an ontology on indicators as-

sociated with the functionality, maintainability and usability quality dimensions of a Web

application. The analysis has indicated that the functionality and maintainability quality

dimensions are likely to be improved by an ontology, but the usability dimension is less

likely to be improved. We explain the expected positive effect with increased efficiency

of traditional software engineering methods. The improvements are primarily attributed to

application domain ontologies that supply conceptualization usable across all development

stages amplifying the cumulative effect.

WEBMO indicated that a marginal increase in overall development effort is expected

during the ontology adoption phase. This increase can be explained by novelty and devel-

oping nature of ontology-related methodologies and techniques. In the long run, WEBMO

predicts an ontology to cause a significant decrease of development effort. This becomes

possible due to the ability of ontologies to facilitate transfer of application domain knowl-

edge into a development team, to provide a unified conceptual view improving communi-

cation within the development team as well as to external world, to improve reusability of

design artifacts, and, ultimately, to improve efficiency of development techniques.

We acknowledge that the obtained results, both quantitative and qualitative, are based

on assumptions favorable to ontologies and largely derived from our experience, and there-

fore, are not readily generalizeable. Nevertheless, we believe that they provide a sensible

indication of a significant potential of ontologies in the field of Software Engineering.
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Conclusions

In this work we have proposed to improve usability and reusability of knowledge by com-

bining ontologies and Service-Oriented Architectures. We have applied the proposed frame-

work, called Onto⇔SOA, to a number of use cases from the e-Science domain: retrieving

documents (publications, experimental data, reports, etc) matching a given query, conver-

sion and consistency checking of units of measurement. We have addressed these use cases

in a novel way by using the guidelines proposed in Onto⇔SOA to design and implement

ontology-based and document-oriented services.

Onto⇔SOA establishes an integrated framework that describes how ontologies and

services can be designed in a way that enables their natural integration. We maintain a

consistent, simple and pragmatic approach that can be deployed without significant invest-

ment of effort. The proposed guidelines (or design constraints) are a combination of well-

established design practices from the fields of Software Engineering and Service-Oriented

Architectures.

The proposed approach complements the state of the art research in the fields of Ontol-

ogy Engineering, Semantic Web, Semantic Web Services, Service-Oriented Architectures

and Software Engineering.

On the left-hand side of Figure 8.1 the well-known vision of Semantic Web Services

is depicted as an ontology-based extension of Web Services that leads to Intelligent Web

Services. In this vision only the route from Web Services to Intelligent Web Services is

explored. The path from the Semantic Web to Intelligent Web Services is not considered

in the state of the art research. On the right-hand side of the same figure we depict the

“Onto⇔SOA Vision”. In this vision we exploit both paths:

148



149

S t a t i c

D y n a m i c

S y n t a c t i c S e m a n t i c

S t a t i c

D y n a m i c

S y n t a c t i c S e m a n t i c

S e m a n t i c  W e b  S e r v i c e s  V i s i o n O n t o - S O A  V I s i o n

 M a r k  U p
L a n g u a g e

S e r v i c e O n t o - S O A

O n t o l o g y

   W e b  
S e r v i c e

W W W
S e m a n t i c
    W e b

  In te l l i gen t  
W e b  S e r v i c e

Figure 8.1: The “Full Potential Vision” of SWS and Onto⇔SOA.

• The Ontology-enabled Services path illustrates the extension of a service with an on-

tology and roughly corresponds to the route taken in Semantic Web Services. On this

path we use ontologies to transfer domain conceptualization into services improving

their domain (business) alignment characteristic.

• The Service-enabled Ontologies path represents the ability to attach a service to an

ontology. On this path ontologies benefit from the services’ ability to carry domain-

specific procedural knowledge

In Onto⇔SOA these two paths converge enabling both services and ontologies to ben-

efit from each other.

The main contributions reported in this dissertation are the answers to the research ques-

tions (RQ) raised in the introduction. In the rest of this chapter we summarize the answers

to each of the questions and highlight the most notable discussion points.

RQ 1: How can typical e-Science tasks be facilitated with ontology-enabled software
solutions? We have answered this question by applying Onto⇔SOA to design and imple-

ment solutions to a number of use cases from the e-Science domain:

• 1.1 The Document Retrieval use case is about finding documents that match a given

query. We have covered this use case in Chapters 2 and 3.

• 1.2 The Unit Conversion use case is about finding a conversion factor between two

units of measure. We have addressed this use case in Chapter 5.
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• 1.3 The use case of Checking Consistency of Units (and dimensions) has been cov-

ered in Chapter 4.

We have employed the above-mentioned e-Science tasks primarily to evaluate the ef-

fectiveness and feasibility of the proposed Onto⇔SOA approach. The evaluation of the

effectiveness of the provided solutions with respect to the e-Science field itself is outside

the scope of this work.

In addition to the typical e-Science use cases, we have also addressed the more general

problem of linking relational and ontology-friendly data models. We have formulated the

corresponding research question:

RQ 1.4: How can we integrate tabular data with an ontology-ready data-model such
as RDF? We have answered this question in Chapter 6 with the FDR2 approach that

relies on three components: an automatically generated RDFS schema of tabular data, an

RDF serialization of the data itself, and a manually created mapping of relational schema

to a target ontology. The proposed approach is purely RDF/S-based and does not require

any additional software components except an RDFS reasoner. Moreover, the technique

underlying FDR2 is general enough to be applicable to data sources different from relational

ones. By explicating the schema of the original data, serializing the data according to that

schema and linking the schema to a target ontology we can semantically enrich the data and

improve its accessibility by ontology-enabled software.

The main concern with the FDR2 approach is its significant space costs of serialization

of virtual properties and corresponding data. Our pragmatic suggestion is to restrict the set

of virtual properties only to those that are likely to be relevant to a case at hand.

Onto⇔SOA provided a uniform ontology- and service-oriented framework for the so-

lutions to the target cases. As such, Onto⇔SOA itself is our answer to the central research

question of this work:

RQ 2: How can ontologies and services (Service-Oriented Architectures) be integrated
into a framework facilitating application of knowledge in e-Science (and beyond)? In

Chapter 2 we have introduced Onto⇔SOA as an architectural framework for ontology-

enabled services (Service-Oriented Architectures). This framework is based on a restricted

service model that constrains internal properties of a service to induce domain alignment

and loose coupling characteristics. These constraints allow, among others, to simplify the

model of a service and to provide guidelines on the design of ontology-enabled services.
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Onto⇔SOA addresses direct exchange of ontology-based messages between a docu-

ment-oriented service and its consumer. It employs an ontology as a service schema (re-

ferred to as a service ontology). The main purpose of ontologies is to transfer domain con-

ceptualization to services (Service-Oriented Architectures), thus enhancing their domain

(business) alignment.

One of the distinguishing features of the proposed framework is that it relies on a re-

stricted service model. One of the perceived drawbacks of such an approach is that this

limits the range of application domains to which Onto⇔SOA can be applied. We con-

sider this not “a drawback” (each approach has limitations to its applicability) but rather an

explicit acknowledgement of the application domain boundaries of service-enabled ontolo-

gies. We can use these boundaries to either estimate how well the domain alignment and

loose coupling characteristics can be met in a target application domain; or how this domain

can be reshaped to achieve the target characteristics at the required level.

To facilitate the evaluation and application of Onto⇔SOA to the targeted use cases,

we have further specialized it into MoRe – an operational framework and corresponding

middleware based on RDF/S languages and REST Services. With MoRe we answer the

following research (sub-)question:

RQ 2.1: How can we integrate RDFS ontologies with REST services? MoRe, intro-

duced in Chapter 5, aims to provide a simple and pragmatic foundation for the development

of ontology-based Web applications. We believe that it also bridges the gap between on-

tological domain knowledge and software development. On the one hand, it provides a

pragmatic, application-driven view on domain ontologies. On the other hand, it facilitates

software development by integrating domain-specific inference services into software solu-

tions.

MoRe raises a number of discussion points at the operational level. One of these points

is whether the directed labeled graph model underlying RDF and the ontological primitives

defined in RDFS are capable of transferring domain conceptualization into services. Our

experience from applying MoRe indicates that the underlying graph model is very flexible

in representing domain concepts and relations. The interpretation of this graph model in

terms of subjects, predicates and objects also provides a basis that is sufficiently neutral

semantically and, hence, that aligns well with various application domains.

Another interesting discussion point is how well REST services actually integrate with

Onto⇔SOA requirements. REST-full services offer four CRUD actions (PUT, GET, UP-

DATE and DELETE actions of HTTP) to manipulate Web resources. However, a service
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in Onto⇔SOA is required to support one operation only (inference of new facts). In MoRe

a consumer must use the HTTP POST action to submit an input document. This outlines

the conceptual difference between the prescriptive REST-full actions and the descriptive,

document-oriented interface to Onto⇔SOA services. Despite this difference, we still argue

that REST services suit Onto⇔SOA better than standard (WSDL) services because REST

services are able to provide sufficient support for document-oriented messaging in a simpler

and less cumbersome way.

Collaboration between services enables construction of complex functionality from sim-

ple components, and therefore is an important component of any service-oriented approach.

In Chapter 4 we have addressed this task in the context of Onto⇔SOA and answered the

following research question:

RQ 2.2: How can ontology-enabled services work together? We have answered this

question with an approach inspired by the ideas from Blackboard Systems. We have inte-

grated Blackboard-style composition into the Onto⇔SOA approach. The devised composi-

tion mechanism utilizes an application-independent controller and a homogeneously struc-

tured ontology-based repository (a blackboard). The proposed approach requires neither

an extensive service model nor an explicit workflow specification and enables composite

functionality to emerge by bringing a number of ontology-enabled services together.

During the evaluation of the proposed service composition approach using the unit con-

sistency checking task a number of potential performance bottlenecks have been spotted.

The main reason for these bottlenecks is that composed Onto⇔SOA services may expose

only very limited information, thus making it difficult for a composition controller to avoid

unproductive invocations. A possible solution for this bottleneck is to allow the controller

to learn from unproductive invocations and to dynamically adjust the invocation sequence

accordingly. The same lack of information about a service (e.g., no preconditions or trigger

procedures are exposed) also requires that the complete content of a blackboard has to be

communicated to all composed services. A potential mitigation measure is to enable the

controller to communicate only those concepts that are defined in a service ontology of a

composed service.

Another key aspect of the proposed Blackboard-based composition mechanism is in

deciding when composition process is complete. Since the proposed mechanism is data

driven (rather than goal driven), the controller terminates composition when no new facts

are inferred after a complete invocation sequence. Although we have introduced a number

of requirements (facts can be only added but not removed or modified, services provide all
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inferred facts at once, etc) that should prevent infinite composition, these requirements do

not prevent it completely. So far, we have refrained from including a mechanism for ab-

normal termination into the proposed composition approach because we are not convinced

in its viability in a general case. If required, such mechanism can be introduced on an

implementation-specific basis.

By applying ontologies and services to the e-Science domain we have gained insights on

how ontologies and services could benefit from each other. In addition to the main research

questions we have addressed a number of more general research questions. The first of

these questions is:

RQ 3: How can we attach a service to an ontology and what does this imply for ontolo-
gies? We have addressed this question in Chapter 3 where we have introduced Service-

enabled Ontologies – an ontology-oriented perspective on Onto⇔SOA that shifts the focus

to service ontologies. Service-enabled Ontologies re-interpret Onto⇔SOA as a mechanism

that allows to attach an arbitrary service to an ontology, thus capturing application seman-

tics of domain concepts.

These service attachments aim to facilitate practical application of ontologies, poten-

tially at the costs of their overall reusability. The trade-off between declarative (general,

reusable but difficult to utilize in practice), and procedural (application-specific but easy to

exploit) knowledge still holds in Service-enabled Ontologies. Finding a suitable balance

between these two ways of representing knowledge ultimately depends on the requirements

of the specific application scenario. With Service-enabled Ontologies we provide a novel

framework that contributes to flexibility in specifying a domain conceptualization.

The second of the two more general research questions is concerned with the overall

impact of ontologies on software engineering practice. Or, more specifically:

4 How do ontologies affect characteristics of software development such as software
quality and development effort? We have addressed this research question in Chapter 7

by investigating the effect of ontologies on existing models for estimating software quality

(Quint2) and development effort (WEBMO). We estimated that ontologies can improve

many quality dimensions by supplying domain conceptualization that can be employed

across all development stages, thus amplifying the cumulative effect. We also estimated

that in the long run, ontologies can cause a significant decrease of development effort. This

becomes possible due to the ability of ontologies to facilitate transfer of application do-

main knowledge into a development team, to provide a unified conceptual view improving
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communication within the development team as well as to the external world, to improve

reusability of design artifacts, and, ultimately, to improve efficiency and effectiveness of

development techniques.

The reported estimation is based on theoretical analysis and on our experience in em-

ploying ontologies in software and service engineering. Empirical validation is problematic

to carry out due to lack of data on ontology-enabled software development projects. Nev-

ertheless, we believe that not only our estimation can be used as an, admittedly optimistic,

indication of overall viability of ontologies for software engineering practices; but also that

the performed analysis revealed valuable insights on the interaction between ontologies and

widely accepted quality characteristics of software products as well as of properties of the

development process.

The results reported in this dissertation are based on the following publications (listed

in chronological order):

1. Maksym Korotkiy and Jan L. Top: Blackboard-style Service Composition with

Onto⇔SOA. In proceeding of the WWW/Internet 2007 conference. Vila Real, Por-

tugal, 2007.

2. Maksym Korotkiy and Jan L. Top: Onto⇔SOA: From Ontology-enabled SOA to

Service-enabled Ontologies. In proceedings of International Conference on Internet

and Web Application and Services (ICIW’06). Guadeloupe, 2006.

3. Maksym Korotkiy and Jan L. Top: Designing a Document Retrieval Service with

Onto⇔SOA. In proceedings of the Semantic Web Enabled Software Engineering

workshop at ISWC 2006. Athens, GA, U.S.A., 2006.

4. Maksym Korotkiy: Towards an Ontology-enabled Service Oriented Architecture. In

proceedings of the PhD Symposium in International Conference on Service Oriented

Computing (ICSOC’05). Amsterdam, the Netherlands, 2005.

5. Maksym Korotkiy and Jan L. Top: MoRe Semantic Web Applications. In proceedings

of the End-User Aspects of the Semantic Web Workshop. European Semantic Web

Conference. Crete, 2005.

6. Maksym Korotkiy: On the Effect of Ontologies on Web Application Development Ef-

fort. In proceedings of the Knowledge Engineering and Software Engineering work-

shop. Koblenz, Germany, 2005.
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7. Maksym Korotkiy: On the Effect of Ontologies on Quality of Web Applications. In

proceedings of the Workshop on Building and Applying Ontologies for the Semantic

Web. Portugal, 2005.

8. Maksym Korotkiy and Jan L. Top: From Relational Data to RDFS models. In pro-

ceedings of the International Conference on Web Engineering. Munich, 2004.



Summary

In this thesis we aim at improving usability and reusability of knowledge by combining on-

tologies and Service-Oriented Architectures. To achieve this we propose the Onto⇔SOA

framework that describes how ontologies and services can be designed in a way that en-

ables their natural integration. We maintain a consistent, simple and pragmatic approach

that can be deployed without significant investment of effort. The design guidelines un-

derlying Onto⇔SOA are a combination of well-established practices from the Software

Engineering and Service-Oriented Architectures fields. Our approach complements state

of the art research in the fields of Ontology Engineering, Semantic Web, Semantic Web

Services, Service-Oriented Architectures and Software Engineering.

We apply Onto⇔SOA to a number of use cases from the e-Science domain – our tar-

get application domain. These use cases are: retrieving documents matching a given query

(Chapters 2 and 3), conversion (Chapter 5) and consistency checking of units of measure-

ment (Chapter 4). In these use cases we employ the guidelines proposed in Onto⇔SOA

to design and implement ontology-based and document-oriented services that facilitate the

above-mentioned e-Science tasks.

Onto⇔SOA provides a uniform ontology- and service-oriented framework for the solu-

tions to the target cases. In Chapter 2 we introduce Onto⇔SOA as an architectural frame-

work for Ontology-Enabled services. This framework is based on a restricted service model

that constrains internal properties of a service to induce domain alignment and loose cou-

pling characteristics. These constraints allow, among others, to simplify the model of a

service and to provide guidelines on the design of ontology-enabled services.

Onto⇔SOA relies on direct exchange of ontology-based messages between a docu-

ment-oriented service and its consumer; and employs an ontology as a service schema (re-

ferred to as a service ontology). The main purpose of ontologies is to transfer domain con-

ceptualization to services (Service-Oriented Architectures), thus enhancing their domain

(business) alignment.
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In addition to the addressed e-Science use cases, in Chapter 6 we investigate the more

general problem of linking relational and ontology-friendly data models. We propose the

FDR2 approach that relies on three components: an automatically generated RDFS schema

of tabular data, an RDF serialization of the data itself, and a manually created map. The

proposed approach is purely RDF/S-based and does not require any additional software

components except an RDFS reasoner. Moreover, the technique underlying FDR2 is general

enough to be applicable to data sources different from relational ones. By explicating the

schema of the original data, serializing the data according to that schema and linking the

schema to a target ontology we can semantically enrich the data and improve its accessibility

by ontology-enabled software.

To facilitate the evaluation and application of Onto⇔SOA to the targeted use cases, we

further specialize it into MoRe (Chapter 5) – an operational framework and corresponding

middleware based on RDF/S languages and REST Services. MoRe aims to provide a simple

and pragmatic foundation for the development of ontology-based Web applications. We

believe that it also facilitates bridging the gap between ontological domain knowledge and

software development. On the one hand, it provides a pragmatic application-driven view

on domain ontologies. On the other hand, it facilitates software development by integrating

domain-specific inference services into software solutions.

Collaboration between services enables effective construction of complex functional-

ity from simpler services and, thus is an important component of any service-oriented ap-

proach. In Chapter 4 we integrate a Blackboard-style composition into the Onto⇔SOA ap-

proach. The devised composition mechanism utilizes an application-independent controller

and a homogeneously structured ontology-based repository (a blackboard). The proposed

approach requires neither an extensive service model nor an explicit workflow specification

and enables composite functionality to emerge by bringing a number of ontology-enabled

services together.

By applying ontologies and services to the e-Science domain we have gained insights

on how ontologies and services could benefit from each other. In Chapter 3 we introduce

Service-enabled Ontologies – an ontology-oriented perspective on Onto⇔SOA that shifts

the focus to service ontologies. Service-enabled Ontologies re-interpret Onto⇔SOA as a

mechanism that allows to attach an arbitrary service to an ontology, thus capturing applica-

tion semantics of domain concepts.

These service attachments can facilitate practical application of ontologies, potentially

at the costs of their overall reusability. The trade-off between declarative (general, reusable
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but difficult to utilize in practice), and procedural (application-specific but easy to exploit)

knowledge still holds in Service-enabled Ontologies. Finding a suitable balance between

these two ways of representing knowledge ultimately depends on the requirements of a cer-

tain application scenario. With Service-enabled Ontologies we provide a novel framework

that contributes to flexibility in specifying a domain conceptualization.

In this dissertation we also investigate the overall impact of ontologies on software en-

gineering practice. In Chapter 7 we analyze the effect of ontologies on existing models

for estimating software quality (Quint2) and development effort (WEBMO). We estimate

that ontology can improve many quality dimensions by supplying domain conceptualiza-

tion. This conceptualization can be employed across all development stages amplifying the

cumulative effect of ontologies. We also optimistically estimate that in the long run, on-

tologies can cause a significant decrease of development effort. This becomes possible due

to the ability of ontologies to facilitate transfer of application domain knowledge into a de-

velopment team, to provide a unified conceptual view improving communication within the

development team as well as to external world, to improve reusability of design artifacts,

and, ultimately, to improve efficiency and effectiveness of development techniques.

The reported estimation is based on theoretical analysis and our experience in employ-

ing ontologies in software and service engineering. Empirical validation is problematic to

carry out due to lack of data on ontology-enabled software development projects. Never-

theless, we believe that not only our estimation can be used as an, admittedly optimistic,

indication of overall viability of ontologies for software engineering practices; but also that

the performed analysis reveals valuable insights on the interaction between ontologies and

widely accepted quality characteristics of software products as well as of properties of the

development process.



Samenvatting

In dit proefschrift streven wij ernaar de bruikbaarheid en herbruikbaarheid van kennis te

verbeteren door ontologieën te combineren met service-oriented architectures. Om dit doel

te bereiken hebben wij het raamwerk Onto⇔SOA ontwikkeld. Dit raamwerk beschrijft hoe

ontologieën en services op natuurlijke wijze kunnen worden gecombineerd. Het doel is om

tot een eenvoudige en pragmatische oplossing te komen die geen significante investeringen

vraagt. De ontwerpregels die aan Onto⇔SOA ten grondslag liggen combineren reeds lang

gevestigde praktijken uit de software engineering met de SOA-aanpak. Onze werkwijze

is aanvullend op die van bestaande methoden uit ontology engineering, Semantisch Web

onderzoek en software engineering per se.

In dit werk passen wij Onto⇔SOA toe op een aantal use cases uit het e-science domein.

Deze use cases zijn het zoeken naar informatie in documenten (Hoofdstukken 2 en 3)

en de conversie (Hoofdstuk 5) en controle op consistentie van eenheden (Hoofdstuk 4).

In deze use cases passen wij de Onto⇔SOA ontwerpregels toe om ontologie-gebaseerde

en document-georiënteerde services te ontwerpen en implementeren voor de genoemde e-

science taken. We zien dat de gekozen aanpak de oplossingen voor deze use cases vereen-

voudigt.

Onto⇔SOA definieert een uniform raamwerk voor het behandelen van de use cases,

gebaseerd op het combineren van ontologieën en SOA. In Hoofdstuk 2 introduceren wij

Onto⇔SOA als een architectuurmodel voor ontologie-ondersteunde services. Dit raamwerk

is gebaseerd op bepaalde randvoorwaarden die worden opgelegd aan de interne eigenschap-

pen van het servicemodel. Deze randvoorwaarden maken losse koppeling en domeinaansluit-

ing mogelijk. In het bijzonder maken deze randvoorwaarden het mogelijk om het service-

model te vereenvoudigen en om ontwerpregels van ontologie-ondersteunde services op te

stellen.

Onto⇔SOA baseert zich op de directe uitwisseling van op ontologie-gebaseerde berichten

tussen document-georiënteerde services en de gebruiker van die services. Het raamwerk
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gebruikt de ontologie als de serviceschema (dat als serviceontologie wordt bedoeld). De

belangrijkste functie van de ontologie is om domeinconceptualisering naar de services (en

SOA) over te brengen. Hierdoor sluiten de services beter aan op het beoogde domein (de

business).

Wij ontwikkelen Onto⇔SOA verder in MoRe (Hoofdstuk 5) – een operationeel raamw-

erk en middleware gebaseerd op RDF/S en REST-Services. Het doel van MoRe is om

een eenvoudige en pragmatische basis voor de ontwikkeling van op ontologie-gebaseerde

toepassingen te verschaffen. Wij geloven dat het daarnaast ook het gat overbrugt tussen

het modelleren van ontologisch domeinkennis en softwareontwikkeling. Enerzijds geeft

het een pragmatische interpretatie van de toegepaste domeinontologieën. Anderzijds verge-

makkelijkt het softwareontwikkeling door aan het vakgebied verbonden redeneersystemen

in software te integreren.

Samenwerking tussen services is een belangrijk element van SOA. In Hoofdstuk 4 on-

twikkelen wij een methode voor het combineren van Onto⇔SOA services gebaseerd op

Blackboard. De voorgestelde aanpak gebruikt een applicatie-onafhankelijk besturingsmech-

anisme en een op ontologieën gebaseerde tussenopslag (het ”schoolbord”). De voorgestelde

benadering vereist geen uitgebreid servicemodel, noch een expliciete specificatie van de

werkstroom. Het maakt samengestelde functionaliteit mogelijk door simpelweg een aantal

ontologie-ondersteunde services bij elkaar te brengen.

Door ontologieën en services in het e-science domein toe te passen hebben we inzicht

gekregen over hoe ontologieën en services van elkaar kunnen profiteren. In Hoofdstuk 3

introduceren we service-ondersteunende ontologieën – een ontologie-georiënteerd perspec-

tief op Onto⇔SOA dat de nadruk legt op serviceontologieën. Service-ondersteunde ontolo-

gieën herinterpreteren Onto⇔SOA als een mechanisme om een ’willekeurige’ service aan

een ontologie te verbinden. Deze verbinding legt de toepassingssemantiek van de gebruikte

domeinconcepten vast.

Dergelijke ontologie-gebonden services kunnen de praktische toepassing van ontolo-

gieën vergemakkelijken, hoewel dat mogelijk ten koste gaat van hun herbruikbaarheid.

De afweging tussen het gebruik van declaratieve kennis (algemeen, hergebruikbaar maar

moeilijk in de praktijk te gebruiken), en procedurele kennis (applicatie-afhankelijk maar

gemakkelijk te in te zetten) moet nog steeds gemaakt worden. Het bepalen van de trade-off

tussen deze twee manieren om kennis te representeren hangt uiteindelijk af van het spec-

ifieke toepassingsscenario. Met service-ondersteunde ontologieën vergroten wij de flexi-

biliteit bij het specificeren van domeinkennis.
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In dit proefschrift onderzoeken wij ook het algemene effect van ontologieën op de prak-

tijk van software engineering. In Hoofdstuk 7 analyseren we het effect van het gebruik

van ontologieën op bestaande modellen voor het schatten van softwarekwaliteit (Quint2) en

ontwikkelingskosten (WEBMO). Wij verwachten dat ontologieën langs veel dimensies de

kwaliteit kunnen verbeteren door het leveren van domeinmodellen. Deze modellen kunnen

in alle ontwikkelingsstadia worden gebruikt en zo het cumulatieve effect vergroten. Wij

zijn ook optimistisch over het feit dat ontologieën uiteindelijk een significante daling van

de ontwikkelingskosten kunnen veroorzaken.

De gegeven schatting is gebaseerd op een theoretische analyse en op onze eigen ervar-

ing in het toepassen van ontologieën in software en service engineering. De empirische

bevestiging ervan is problematisch door een gebrek aan praktijkgegevens over ontologie-

ondersteunde softwareontwikkeling. Niettemin geloven wij dat onze schatting kan worden

gezien als een aanwijzing dat het gebruik van ontologieën in software engineering zin heeft.

Bovendien geeft de uitgevoerde analyse zicht op mogelijke specifieke effecten van ontolo-

gieën op de kwaliteitskenmerken van softwareproducten en op het ontwikkelingsproces.
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