48,492 research outputs found

    Volatile codes: Correlation of olfactory signals and reception in Drosophila-yeast chemical communication.

    Get PDF
    Drosophila have evolved strong mutualistic associations with yeast communities that best support their growth and survival, resulting in the development of novel niches. It has been suggested that flies recognize their cognate yeasts primarily based on the rich repertoire of volatile organic compounds (VOCs) derived from the yeasts. Thus, it remained an exciting avenue to study whether fly spp. detect and discriminate yeast strains based on odor alone, and if so, how such resolution is achieved by the olfactory system in flies. We used two fly species known to exploit different niches and harboring different yeasts, D. suzukii (a pest of fresh fruit) and D. melanogaster (a saprophytic fly and a neurogenetic model organism). We initially established the behavioral preference of both fly species to six Drosophila-associated yeasts; then chemically analyzed the VOC profile of each yeast which revealed quantitative and qualitative differences; and finally isolated and identified the physiologically active constituents from yeast VOCs for each drosophilid that potentially define attraction. By employing chemical, behavioral, and electrophysiological analyses, we provide a comprehensive portrait of the olfactory neuroethological correlates underlying fly-yeast coadaptation in two drosophilids with distinct habitats

    Genetic interactions contribute less than additive effects to quantitative trait variation in yeast.

    Get PDF
    Genetic mapping studies of quantitative traits typically focus on detecting loci that contribute additively to trait variation. Genetic interactions are often proposed as a contributing factor to trait variation, but the relative contribution of interactions to trait variation is a subject of debate. Here we use a very large cross between two yeast strains to accurately estimate the fraction of phenotypic variance due to pairwise QTL-QTL interactions for 20 quantitative traits. We find that this fraction is 9% on average, substantially less than the contribution of additive QTL (43%). Statistically significant QTL-QTL pairs typically have small individual effect sizes, but collectively explain 40% of the pairwise interaction variance. We show that pairwise interaction variance is largely explained by pairs of loci at least one of which has a significant additive effect. These results refine our understanding of the genetic architecture of quantitative traits and help guide future mapping studies

    Inactivation of pathogens on food and contact surfaces using ozone as a biocidal agent

    Get PDF
    This study focuses on the inactivation of a range of food borne pathogens using ozone as a biocidal agent. Experiments were carried out using Campylobacter jejuni, E. coli and Salmonella enteritidis in which population size effects and different treatment temperatures were investigate

    Graph Theory and Networks in Biology

    Get PDF
    In this paper, we present a survey of the use of graph theoretical techniques in Biology. In particular, we discuss recent work on identifying and modelling the structure of bio-molecular networks, as well as the application of centrality measures to interaction networks and research on the hierarchical structure of such networks and network motifs. Work on the link between structural network properties and dynamics is also described, with emphasis on synchronization and disease propagation.Comment: 52 pages, 5 figures, Survey Pape

    Aerospace medicine and biology: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 148 reports, articles and other documents introduced into the NASA scientific and technical information system in December 1984
    • …
    corecore