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Abstract

In this paper, we present a survey of the use of graph theoretical tech-
niques in Biology. In particular, we discuss recent work on identifying and
modelling the structure of bio-molecular networks, as well as the application
of centrality measures to interaction networks and research on the hierarchi-
cal structure of such networks and network motifs. Work on the link between
structural network properties and dynamics is also described, with emphasis
on synchronization and disease propagation.

1 Introduction and Motivation

The theory of complex networks plays an important role in a wide variety of disci-
plines, ranging from communications and power systems engineering to molecular
and population biology [1–8]. While the focus of this article is on biological applica-
tions of the theory of graphs and networks, there are also several other domains in
which networks play a crucial role. For instance, the Internet and the World Wide
Web (WWW) have grown at a remarkable rate, both in size and importance, in
recent years, leading to a pressing need both for systematic methods of analysing
such networks as well as a thorough understanding of their properties. Moreover, in
sociology and ecology, increasing amounts of data on food-webs and the structure
of human social networks are becoming available. Given the critical role that these
networks play in many key questions relating to the environment and public health,
it is hardly surprising that researchers in ecology and epidemiology have focussed
attention on network analysis in recent years. In particular, the complex interplay
between the structure of social networks and the spread of disease is a topic of
critical importance. The threats to human health posed by new infectious diseases
such as the SARS virus and the Asian bird flu [9, 10], coupled with modern travel
patterns, underline the vital nature of this issue.

Within the fields of Biology and Medicine, potential applications of network
analysis include identifying drug targets, determining the role of proteins or genes
of unknown function [11, 12], designing effective containment strategies for infec-
tious diseases [13], and providing early diagnosis of neurological disorders through
detecting abnormal patterns of neural synchronization in specific brain regions [14].
The development of high-throughput techniques in molecular biology have led to an
unprecedented amount of data becoming available on cellular networks in a variety
of simple organisms [15, 16]. Broadly speaking, three classes of such bio-molecular
networks have attracted most attention to date: metabolic networks of biochem-
ical reactions; protein interaction networks consisting of the physical interactions
between an organism’s proteins; and the transcriptional regulatory networks which
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describe the regulatory interactions between different genes. At the time of writing,
the central metabolic networks of numerous bacterial organisms have been mapped
[17–19]. Also, large scale data sets are available on the structure of the protein
interaction networks of S. cerevisiae [15, 20], H. pylori [21], D. melanogaster [22]
and C. elegans [16, 23], and the transcriptional regulatory networks of E. coli and
S. cerevisiae have been extensively studied [24–26].

Thus, it is now possible to investigate the structural properties of networks in
living cells, to identify their key properties and to hopefully shed light on how such
properties may have evolved biologically. Given the special nature of biological
systems, there is a pressing need for tailored analysis methods which can extract
meaningful biological information from the data becoming available through the
efforts of experimentalists. This is all the more pertinent given that the network
structures emerging from the results of high-throughput techniques are too complex
to analyse in a non-systematic fashion. A knowledge of the topologies of biological
networks, and of their impact on biological processes, is needed if we are to fully
understand, and develop more sophisticated treatment strategies for, complex dis-
eases such as cancer [27]. Also, recent work suggesting connections between abnor-
mal neural synchronization and neurological disorders such as Parkinson’s disease
and Schizophrenia [14] provides strong motivation for studying how network struc-
ture influences the emergence of synchronization between interconnected dynamical
systems.

The mathematical discipline which underpins the study of complex networks
in Biology and elsewhere is graph theory [28]. The complexity of the networks
encountered in cellular biology and the mechanisms behind their emergence presents
the network researcher with numerous challenges and difficulties. The inherent
variability in biological data, the high likelihood of data inaccuracy [29] and the
need to incorporate dynamics and network topology in the analysis of biological
systems are just some of the obstacles to be overcome if we are to successfully
understand the fundamental networks involved in the operation of living cells.

A substantial literature dedicated to the analysis of biological networks has
emerged in the last few years, and some significant progress has been made on
identifying and interpreting the structure of such networks. Our primary goal in
the present article is to provide as broad a survey as possible of the major advances
made in this field in the recent past, highlighting what has been achieved as well as
some of the most significant open issues that need to be addressed. It is particularly
hoped that the article will serve as a useful introduction to the field for those
unfamiliar with the literature.

In the interests of clarity, we shall now give a brief outline of the main topics
covered throughout the rest of the paper. In Section 2, we shall fix the principal
notations used throughout the paper, and briefly review the main mathematical
and graph theoretical concepts that are required in the remainder of the article. In
Section 3, we shall discuss recent findings on the structure of bio-molecular networks
and discuss several models, including Scale-Free graphs and Duplication-Divergence
models, that have been proposed to account for the properties observed in real
biological networks. Section 4 is concerned with the application of measures of
centrality or importance to biological networks, and on the connection between the
centrality of a gene or protein and its likelihood to be essential for an organism’s sur-
vival. In Section 5, we shall discuss motifs and functional modules in bio-molecular
networks.

In Sections 6 and 7, we shall discuss two major topics at the interface between
dynamics and network theory. Section 6 is concerned with the phenomenon of
synchronization in networks of inter-connected dynamical systems and its relevance
in biological contexts. Particular attention will be given to suggested links between
patterns of synchrony and neurological disorders. In Section 7, we shall discuss some
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recent work on how the structure of a social network affects the behaviour of disease
propagation models, and discuss the epidemiological significance of these findings.
Finally, in Section 8 we shall present our concluding remarks and highlight some
possible directions for future research.

2 Definitions and Mathematical Preliminaries

Throughout, R, R
n and R

m×n denote the field of real numbers, the vector space
of n-tuples of real numbers and the space of m × n matrices with entries in R

respectively. AT denotes the transpose of a matrix A in R
m×n and A ∈ R

n×n is
said to be symmetric if A = AT .

For finite sets S, T , S×T denotes the usual Cartesian product of S and T , while
|S| denotes the cardinality of S.

2.1 Directed and Undirected Graphs

The concept of a graph is fundamental to the material to be discussed in this paper.
The graphs or networks which we shall encounter can be divided into two broad
classes: directed graphs and undirected graphs, as illustrated in Figure 1.

uu vv

Figure 1: An example of a directed graph (left) and an undirected graph (right),
comprising two nodes and one edge.

Formally, a finite directed graph, G, consists of a set of vertices or nodes, V(G),

V(G) = {v1, . . . , vn},
together with an edge set, E(G) ⊆ V(G)×V(G). Intuitively, each edge (u, v) ∈ E(G)
can be thought of as connecting the starting node u to the terminal node v. For
notational convenience, we shall often write uv for the edge (u, v). We shall say
that the edge uv starts at u and terminates at v. For the most part, we shall be
dealing with graphs with finitely many vertices and for this reason, we shall often
omit the adjective finite where this is clear from context.

In Biology, transcriptional regulatory networks and metabolic networks would
usually be modelled as directed graphs. For instance, in a transcriptional regula-
tory network, nodes represent genes with edges denoting the interactions between
them. As each such interaction has a natural associated direction, such networks
are modelled as directed graphs.

An undirected graph, G, also consists of a vertex set, V(G), and an edge set
E(G). However, there is no direction associated with the edges in this case. Hence,
the elements of E(G) are simply two-element subsets of V(G), rather than ordered
pairs as above. As with directed graphs, we shall use the notation uv (or vu as
direction is unimportant) to denote the edge {u, v} in an undirected graph. For
two vertices, u, v of an undirected graph, uv is an edge if and only if vu is also an
edge. We are not dealing with multi-graphs [28], so there can be at most one edge
between any pair of vertices in an undirected graph. The number of vertices n in a
directed or undirected graph is the size or order of the graph.

In recent years, much attention has been focussed on the protein-protein interac-
tion (PPI) networks of various simple organisms [15, 21]. These networks describe
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the physical interactions between an organism’s proteins and are typically modelled
as undirected graphs, in which nodes represent proteins and edges represent inter-
actions. We shall say more on PPI and other bio-molecular networks in the next
section.

An edge, uv in a directed or undirected graph G is said to be an edge at the
vertices u and v, and the two vertices are said to be adjacent to each other. In this
case, we also say that u and v are neighbours. For an undirected graph, G and a
vertex, u ∈ V(G), the set of all neighbours of u is denoted N (u) and given by

N (u) = {v ∈ V(G) : uv ∈ E(G)}.

2.2 Node-degree and the Adjacency Matrix

For an undirected graph G, we shall write deg(u) for the degree of a node u in V(G).
This is simply the total number of edges at u. For the graphs we shall consider,
this is equal to the number of neighbours of u,

deg(u) = |N (u)|.

In a directed graph G, the in-degree, degin(u) (out-degree , degout(u)) of a vertex u
is given by the number of edges that terminate (start) at u.

Suppose that the vertices of a graph (directed or undirected) G are ordered as
v1, . . . , vn. Then the adjacency matrix, A, of G is given by

aij =

{
1 if vivj ∈ E(G)
0 if vivj /∈ E(G)

(1)

Thus, the adjacency matrix of an undirected graph is symmetric while this need
not be the case for a directed graph. Figure 2 illustrates this.

uuA =

⎡
⎢⎢⎣

0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

⎤
⎥⎥⎦ A =

⎡
⎢⎢⎣

0 1 1 0
0 0 0 0
0 0 0 0
1 0 0 0

⎤
⎥⎥⎦

Figure 2: The adjacency matrix of an undirected graph is symmetric; that of a
directed graph generally is not. In this example, we have that deg(u) = 3 for the
undirected graph and degin(u) = 1, degout(u) = 2 for the directed graph.

2.3 Paths, Path Length and Diameter

Let u, v be two vertices in a graph G. Then a sequence of vertices

u = v1, v2, . . . , vk = v,

such that for i = 1, . . . , k − 1:

(i) vivi+1 ∈ E(G);

(ii) vi �= vj for i �= j
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u = v1

v2

v3

v4

v5 = v

Figure 3: A path of length 4.

is said to be a path of length k − 1 from u to v. Figure 3 contains an example of a
path of length 4.

If the requirement (ii) that the vertices are distinct is removed, then we obtain
the definition of a walk. A path or walk with in which the initial vertex v1 and final
vertex vk are identical is said to be closed.

The geodesic distance, or simply distance, δ(u, v), from u to v is the length of
the shortest path from u to v in G. If no such path exists, then we set δ(u, v) = ∞.
If for every pair of vertices, u, v ∈ V(G), there is some path from u to v, then
we say that G is connected. The average path length and diameter of a graph G
are defined to be the average and maximum value of δ(u, v) taken over all pairs of
distinct nodes, u, v in V(G) which are connected by at least one path.

2.4 Clustering Coefficient

Suppose u is a node of degree k in an undirected graph G and that there are e edges
between the k neighbours of u in G. Then the clustering coefficient of u in G is
given by [30]

Cu =
2e

k(k − 1)
. (2)

Thus, Cu measures the ratio of the number of edges between the neighbours of u to
the total possible number of such edges, which is k(k−1)/2. The average clustering
coefficient of a graph G is defined in the obvious manner.

2.5 Weighted Networks and Graphs

While most of the work described in this paper is concerned with graphs and net-
works for which an edge is either present or not, in many practical applications it is
also of interest to quantify the “strength” of an interaction when it is present. The
natural way to model such interactions is with a weighted graph. Here, a weight wij

is assigned to each pair of vertices vi, vj in the network. The unweighted graphs
that we have defined are a special case of this definition in which wij takes only the
values 0 and 1.

Weighted graphs can arise in a number of situations in Biology. For instance,
if the strengths of the interactions in a PPI or genetic regulator network are taken
into account or if we incorporate the speed of the reactions in a metabolic network,
then weighted networks are the most suitable modelling paradigm.

Recently, several authors have begun to study weighted complex networks and
various generalisations of the concepts discussed above have been introduced. For
instance, weighted versions of the clustering coefficient have been defined and stud-
ied in [31–33]. The concept of strength has also been defined [31] to generalise
notions of centrality (see Section 4) and the degree distribution (see Section 3) to
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weighted networks. Furthermore, models for the evolution of weighted networks
have been proposed in the spirit of those described for the unweighted case in Sec-
tion 3 [34] and a more general definition of network motifs (Section 5) has been
proposed in [32].

2.6 Statistical Notations

Throughout the paper, we shall often be interested in average values of various
quantities where the average is taken over all of the nodes in a given network of
graph. For some quantity, f , associated with a vertex, v, the notation 〈f〉 denotes
the average value of f over all nodes in the graph.

3 Identification and Modelling of Bio-molecular Net-
works

Broadly speaking, three classes of bio-molecular networks have been studied in
depth: protein interaction networks, metabolic networks and transcriptional regu-
latory networks.

Protein interaction networks are typically modelled as undirected graphs, in
which nodes correspond to proteins and an edge represents a physical interaction be-
tween two proteins. Large-scale maps of protein interaction networks [21–23, 29, 35]
have been constructed recently using high-throughput approaches such as yeast-2-
hybrid screens [15] or mass spectrometry techniques [36] to identify protein interac-
tions. Data on protein interactions are also stored in databases such as the database
of interacting proteins (DIP) [37]. While the accuracy of these techniques is known
to be questionable (and both techniques are prone to detect interactions which may
never take place in the cell), more reliable networks can be constructed by combin-
ing data from different sources and applying multiple criteria for the identification
of interactions [38]. For example, data from the results of different high-throughput
protein interaction experiments can be combined to obtain more reliable results
[29, 39]. Other types of data such as co-expression in microarray experiments can
be combined with protein interaction data-sets to add confidence to interactions
predicted by high-throughput methods [40, 41]. In the recent past, there has also
been considerable interest in the development of computational approaches for the
prediction of protein interactions [42].

Metabolic networks describe the intricate web of bio-chemical reactions within a
cell through which substrates are transformed into products through reactions catal-
ysed by enzymes. As with protein interaction networks, genome-scale metabolic
networks have been constructed for a variety of simple organisms including S. cere-
visiae and E. coli [17, 43–47], and are stored in databases such as the KEGG [17] or
BioCyc [18] databases. A common approach to the construction of such networks
is to first use the annotated genome of an organism to identify the enzymes in the
network and then to combine bio-chemical and genetic information to obtain their
associated reactions [46, 48, 49]. While efforts have been made to automate certain
aspects of this process, there is still a need to validate the networks generated auto-
matically manually against experimental biochemical results [50, 51]. For metabolic
networks, significant advances have also been made in modelling the reactions that
take place on such networks. One of the most widely used techniques in this area
is Flux Balance Analysis [48, 52] which combines mass balance and other regula-
tion constraints with optimality conditions to predict steady-state reaction fluxes
in metabolic networks. Such predictions can then be experimentally verified and
used to refine and improve the underlying network model. We shall have more to
say on FBA and metabolic networks later in the article.
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Transcriptional regulatory networks describe the regulatory interactions between
genes. Here, nodes correspond to individual genes and a directed edge is drawn from
gene A to gene B if A (or its product) regulates the activity of gene B. Network maps
have been constructed for the transcriptional regulatory networks of E. coli and S.
cerevisiae [24, 53–55] and are maintained in databases such as RegulonDB [24] and
EcoCyc [55]. Such maps are usually constructed through a combination of high-
throughput genome location experiments and literature searches [53]. While much
of our discussion shall focus on these three classes of networks, it should be noted
that many other variations are possible and have been studied, including epista-
tic networks [56] describing the interactions through which different genetic muta-
tions either aggravate or buffer each other’s effects on an organism, protein domain
networks [57] and various integrated networks of genetic, protein and metabolic
interactions [58].

3.1 Structural Properties of Biological Networks

The most widely studied topological features of bio-molecular networks are their
degree distributions, characteristic path lengths and clustering properties.

3.1.1 Degree Distributions

The degree distribution of a network, P (k), k = 0, 1, . . ., measures the proportion
of nodes in the network having degree k. Formally,

P (k) =
nk

n
,

where nk is the number of nodes in the network of degree k and n is the size of the
network. It was reported in [59, 60] that the degree distributions of the Internet
and the WWW are described by a broad-tailed power law of the form1,

P (k) ∼ k−γ , γ > 1 (3)

Networks with degree distributions of this form are now commonly referred to as
scale-free networks. This finding initially surprised the authors of these papers as
they had expected to find that the degree distributions were Poisson or Gaussian.
In particular, they has expected that the degrees of most nodes would be close to
the mean degree, 〈k〉, of the network, and that P (k) would decay exponentially
as |k − 〈k〉| increased. For such networks, the mean degree can be thought of as
typical for the overall network. On the other hand, the node-degrees in networks
with broad-tailed distributions vary substantially from their mean value, and 〈k〉
cannot be thought of as a typical value for the network in this case.

Following on from the above findings on the WWW and the Internet, several
authors have investigated the form of the degree distributions, P (k), for various
biological networks. Recently, several papers have been published that claim that
interaction networks in a variety of organisms are also scale-free. For instance,
in [43], the degree distributions of the central metabolic networks of 43 different
organisms were investigated using data from the WIT database [44]. The results of
this paper indicate that, for all 43 networks studied, the distributions of in-degree,
Pin(k), and out-degree, Pout(k), have tails of the form (3), with 2 < γ < 3.

Similar studies on the degree distributions of protein interaction networks in
various organisms have also been carried out. In [61], the protein interaction net-
work of S. cerevisiae was analysed using data from four different sources. As is

1In fact, the form P (k) ∼ (k +k0)−γe−k/kc with offset k0 and an exponential cutoff kc is more
usually fitted to real network data.

7



often the case with data of this nature, there was little overlap between the inter-
actions identified in the different sets of data. However, in all four cases, the degree
distribution appeared to be broad-tailed and to be best described by some form
of modified power law. Similar findings have also been reported for the protein
interaction networks of E. coli, D. melanogaster, C. elegans and H. pylori in the
recent paper [62]. Note however that for transcriptional regulatory networks, while
the outgoing degree distribution again appears to follow a power law, the incom-
ing degree distribution is better approximated by an exponential rule of the form
Pin(k) ∼ e−βk [2, 63, 64].

At this point, it is important to record some remarks on the observations of
scale-free topologies in biological interaction networks. First of all, the broad-tailed
degree distributions observed in these networks is not consistent with the traditional
random graph models which have been used to describe complex networks [1, 65].
In these models, node-degrees are closely clustered around the mean degree, 〈k〉,
and the probability of a node having degree k decreases exponentially with |k−〈k〉|.
However, in scale-free networks, while most nodes have relatively low degree, there
are significant numbers of nodes with unusually high degree - far higher than the
mean degree of the network. Such nodes are now usually referred to as hubs. It has
been noted [66] that the scale-free structure has implications for the robustness and
vulnerability of networks to failure and attack. Specifically, while removing most of
the nodes in a scale-free network will have little effect on the network’s connectivity,
the targeted removal of hub nodes can disconnect the network relatively easily.
This has led to the suggestion that genes or proteins which are involved in a large
number of interactions, corresponding to hub nodes, may be more important for
an organism’s survival than those of low degree. The connection between network
topology and the biological importance of genes and proteins has been extensively
studied recently and we shall describe this strand of research in detail in Section 4.

A second important point is that all of the analysis described above has been
carried out on sampled subnetworks rather than on a complete network. Thus, the
protein interaction networks which have been studied usually do not contain the
complete set of proteins of an organism2 and the interactions included in these net-
works are far from complete. Thus, the conclusions being drawn are based on a
subnetwork containing only a sample of the nodes and edges of the complete net-
work. While some studies have indicated that the statistical properties of interaction
networks may be robust with respect to variations from one data set to another,
the impact of sampling and inaccurate/incomplete information on the identified
degree distributions is an important issue which is not yet fully understood. For
instance, in [67] it was shown using a model of protein interaction networks that
an approximate power law distribution can be observed in a sampled sub-network
while the degree distribution of the overall network is quite different. Further evi-
dence of the need for caution in drawing conclusions about the overall structure of
biological networks based on samples has been provided in [68, 69], where results
on the sampling properties of various types of network models were presented. For
instance, in [68], a sampling regime based on the construction of spanning trees [28]
was studied. Here, starting from a source vertex v0, a tree T is constructed by first
adding the neighbours of v0 to T and then selecting one of these, and repeating the
process. In this paper, approximate arguments were presented to show that such
a sampling regime can lead to a subnetwork with degree distribution of the form
P (k) ∼ 1/k even when the complete network has a Poisson degree distribution.

2although the network for S. cerevisiae by now covers the organism’s proteome fairly compre-
hensievely
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3.1.2 Diameter and Characteristic Path Length

Several recent studies have revealed that the average path lengths and diameters of
bio-molecular networks are “small” in comparison to network size. Specifically, if
the size of a network is n, the average path length and diameter are of the same order
of magnitude as log(n) or even smaller. This property has been previously noted
for a variety of other technological and social networks [1], and is often referred
to as the small world property [30]. This phenomenon has now been observed in
metabolic, genetic and protein interaction networks. For instance, in [43, 70], the
average path lengths of metabolic networks were studied. The networks analysed
in these papers had average path lengths between 3 and 5 while the network sizes
varied from 200-500. Similar findings have been reported for genetic networks in
[71], where a network of approximately 1000 genes and 4000 interactions was found
to have a characteristic path length of 3.3, and for protein interaction networks in
[61, 72, 73].

In a sense, the average path length in a network is an indicator of how readily “in-
formation” can be transmitted through it. Thus, the small world property observed
in biological networks suggests that such networks are efficient in the transfer of
biological information: only a small number of intermediate reactions are necessary
for any one protein/gene/metabolite to influence the characteristics or behaviour of
another.

3.1.3 Clustering and Modularity

The final aspect of network structure which we shall discuss here is concerned with
how densely clustered the edges in a network are. In a highly clustered network,
the neighbours of a given node are very likely to be themselves linked by an edge.
Typically, the first step in studying the clustering and modular properties of a
network is to calculate its average clustering coefficient, C, and the related function,
C(k), which gives the average clustering coefficient of nodes of degree k in the
network. As we shall see below, the form of this function can give insights into the
global network structure.

In [19], the average clustering coefficient was calculated for the metabolic net-
works of 43 organisms and, in each case, compared to the clustering coefficient
of a random network with the same underlying degree distribution. In fact, the
comparison was with the Barabasi-Albert (BA) model of scale-free networks which
we shall discuss in the next subsection. In each case, the clustering coefficient of
the metabolic network was at least an order of magnitude higher than that of the
corresponding BA network. Moreover, the function C(k) appeared to take the form
C(k) ∼ k−1. Thus, as the degree of a node increases, its clustering coefficient
decreases. This suggests that the neighborhoods of low-degree nodes are densely
clustered while those of hub nodes are quite sparsely connected. In order to account
for this, the authors of [19] suggested a hierarchical modular structure for metabolic
networks in which individual modules are comprised of densely clustered nodes of
relatively low degree while different modules are linked by hub nodes of high degree.

Similar results for the clustering coefficient and the form of the function C(k)
have been reported in [62] for the protein interaction networks of S. cerevisiae, H.
pylori, E. coli and C. elegans, indicating that these undirected networks may also
have a modular structure, in which hub nodes act as links or bridges between dif-
ferent modules within the networks. Further evidence for the intermediary role of
hub nodes was provided in [74] wherein correlations between the degrees of neigh-
bouring nodes in the protein interaction network and the transcriptional regulatory
network of S. cerevisiae were investigated. The authors of this paper found clear
evidence of such correlation; in fact, for both networks, nodes of high degree are
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significantly more likely to connect to nodes of low degree than to other “hubs”.
This property of a network is referred to as disassortativity (for more discussion on
degree correlations in biological networks, see [75]). In [76], the relation C(k) ∼ k−1

was explained as the effect of degree correlations on the calculation of the standard
clustering coefficient. Moreover, the usual definition was shown to under-estimate
the degree of clustering in networks with such degree correlations, particularly for
disassortative networks. A novel measure of clustering was proposed which was not
effected by such correlations and did not display the same decay with increasing
degree in protein interaction networks.

Finally, note that a high level of local clustering was also observed in the network
of synthetic lethal genetic interactions in S. cerevisiae studied in [71]. In such a
network, an edge is drawn between two genes when a double knock-out experiment,
removing both genes, has fatal consequences for the organism. The same study
suggested a promising technique for using such a network to predict protein-protein
interactions between gene products.

3.2 Mathematical Models for Interaction Networks

Given the empirically observed properties of interaction networks discussed above,
it is natural to ask whether these can be explained by means of mathematical
models based on plausible biological assumptions. Reliable models for the evolution
of interaction networks may deepen our understanding of the biological processes
behind their evolution. Moreover, such models could be used to assess the reliability
of experimental results on network structure and to assist in experimental design.
For instance, the strategy for optimally identifying protein-protein interaction (PPI)
network structure described in [77] relies on the statistical abundance of nodes
of high degree in scale-free networks which we shall discuss in more detail below.
Furthermore, this strategy was suggested as a means of determining the PPI network
in humans. Note also the work described in [78] on assessing the reliability of
network data and predicting the existence of links in a PPI network which have not
yet been determined. The methods in this paper were based on properties of the
small-world network model of Watts and Strogatz introduced in [30] to described
social and neurological networks.

To date, several different mathematical models of complex networks have been
proposed in the literature. A number of these were not developed with specifically
biological networks in mind, but rather to account for some of the topological fea-
tures observed in real networks in Biology and elsewhere. On the other hand, in the
recent past several models for protein interaction and genetic networks have been
proposed based on biological assumptions.

3.2.1 Classical Models and Scale-free Graphs

In the 1950’s, Paul Erdös and Alfréd Rényi introduced their now classical notion
of a random graph to model non-regular complex networks. The basic idea of the
Erdös-Rényi (ER) random graph model is the following. Let a set of n nodes,
{v1, . . . , vn}, and a real number p with 0 ≤ p ≤ 1 be given. Then for each pair of
nodes, vi, vj , an edge is placed between vi and vj with probability p. Effectively,
this defines a probability space where the individual elements are particular graphs
on {v1, . . . , vn} and the probability of a given graph with m edges occurring is
pm(1 − p)n−m. For background on the mathematical theory of ER graphs, consult
[28, 65].

The theory of random graphs has been a highly active field of mathematics for
fifty years and many deep theorems about the properties of ER graphs have been es-
tablished [65]. In particular, the connectivity, degree distribution and average path
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length have been extensively studied for this class of networks. For mathematically
rigorous results on these topics, consult [65]. One of the most fundamental facts
concerning ER graphs is that the degree distribution of a large ER network can be
approximated by a Poisson distribution. This means that for ER graphs, the node
degrees tend to be tightly clustered around the mean degree 〈k〉 of the network.

This contrasts with the findings reported in the previous subsection that the
degree distributions of many biological networks appear to follow a broad-tailed
power law. The same observation has also been made for several man-made networks
including the WWW and the Internet. This led Barabasi, Albert and co-workers
to devise a new model for the dynamics of network evolution. This model is based
on the two fundamental mechanisms of growth and preferential attachment, and has
been the subject of intensive research in the last few years. It is usually referred to
as the Barabasi-Albert (BA) model.

The core idea of Barabasi and Albert was to consider a network as an evolving
entity and to model the dynamics of network growth. The simple BA model is
now well known and is usually described in the following manner [1]. Given a
positive integer, m, and an initial network, G0, the network evolves according to
the following rules (note that this is a discrete-time process):

(i) Growth: At each time j, a new node of degree m is added to the network;

(ii) Preferential Attachment: For each node u in the existing network, the prob-
ability that the new node connects to it is proportional to the degree of u.
Formally, writing Gj for the network at time j and P (u, j) for the probability
that the new node added at time k is linked to u in Gj−1:

P (u, j) =
deg(u)∑

v∈V(Gj−1)
deg(v)

. (4)

The above scheme generates a network whose degree distribution asymptotically
approaches the power law P (k) ∼ k−γ with γ = 3 [1]. A number of variations on the
basic BA model have also been proposed that have power law degree distributions
with values of the degree exponent other than three. See for instance, the models
for evolving networks described in [79, 80] which give rise to power law degree
distributions with exponents in the range 2 < γ < +∞.

3.2.2 Some Issues in the Use of Scale-free Models

While the degree distributions of BA and related scale-free models appear to fit the
experimental data on bio-molecular networks more accurately than classical ER
networks, there are several issues related to their use that should be noted. In [81],
it was pointed out that the commonly used definition of BA graphs is ambiguous.
For instance, the question of how to initiate the process of network evolution is not
explicitly dealt with in the original papers; how do we connect the new node to
the existing nodes with probability proportional to their degrees if all such nodes
have degree zero to begin with? This issue can be circumvented by beginning
with a network which has no isolated nodes. However, this immediately raises the
difficult question of how the choice of initial network influences the properties of the
growing network. These issues have been discussed in detail in [81, 82] where more
mathematically rigorous formulations of the preferential attachment mechanism for
network growth have been presented. A number of formal results concerning degree
distributions, network diameter, robustness to node removal and other network
properties have also been presented in [83, 84].

It is important to note that a number of other, more practical reservations
about the use of the BA and related models in Biology have been raised recently
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(See [85] for a general discussion concerning this issue). Firstly, the BA model
is not based on specific biological considerations. Rather, it is a mathematical
model for the dynamical growth of networks that replicates the degree distributions,
and some other properties, observed in studies of the WWW and other networks.
In particular, it should be kept in mind that the degree distribution is just one
property of a network and that networks with the same degree distribution can
differ substantially in other important structural aspects [86].

Many of the results on BA and related networks have only been empirically es-
tablished through simulation, and a fully rigorous understanding of their properties
is still lacking. A number of authors have started to address this issue in the recent
past but this work is still in an early stage. Also, as noted above, the definition of
BA graphs frequently given in the literature is ambiguous [81].

Another very important point is that the observations of scale-free and power
law behaviour in biological networks are based on partial and inaccurate data. The
techniques used to identify protein interactions and transcriptional regulation are
prone to high levels of false positive and false negative errors [29]. Moreover, the
networks being studied typically only contain a sample of the nodes and edges in
the complete network for an organism. Thus, we are in effect drawing conclusions
about the topology of an entire network based on a sample of its nodes, and a noisy
sample at that. In order to do this reliably, a thorough understanding of the effect of
sampling on network statistics, such as distributions of node degrees and clustering
coefficients, is required. Some authors have recently started to address this issue
and two highly relevant theoretical results have recently been presented in [68, 69].
It was shown in [69] that subnetworks sampled from a scale free network are not in
general scale free, while it is also possible for a sampled subnetwork of a network
with Poisson degree distribution (which is certainly not scale-free) to appear to be
scale-free [68]. Note that the sampling regimes considered in these two papers were
not identical.

Further results of this kind appeared in [87]. In this paper, the large-scale yeast-
2-hybrid (Y2H) experiments which have generated many of the existing protein-
interaction maps for yeast (and other organisms) were simulated on four network
models with degree distributions given by normal, exponential, scale-free and trun-
cated normal distributions respectively. In each case, a percentage of nodes in the
network was first selected as baits and then a percentage of the interacting partners
of these baits was randomly selected. This was done for percentages of bait and
edge coverage ranging from 1% to 100%. The degree distributions of the resulting
sampled networks were then tested for how closely they resembled a power law. It
was found that for low bait and edge coverage, the subnetworks obtained in this
way closely resemble scale-free networks irrespective of the original network topol-
ogy (from the point of view of degree distributions). Hence, the authors argue that
none of the four models considered could be definitively ruled out as a model of the
complete interaction network. However, it should be noted that, for ER networks
the resemblance to scale-free networks only held for levels of bait-edge coverage
which are certainly lower than the coverage in current data-sets on the yeast in-
teraction network. More importantly, the analysis in this paper was based on a
very small number of sampled networks and more extensive studies are required
to make definitive statements. Also, this and other studies of sampled networks
address the question of the probability of a sampled network being scale-free given
the topology of the entire network. Another important question that needs to be
addressed is given the sampled network’s topology what is the probability that the
entire network is scale-free or otherwise. Nonetheless, this and the other studies
illustrate the need for caution about the effects of sampling and data noise when we
attempt to draw conclusions about the structure of biological and other real world
networks.
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The numerical study presented in [87] suggested that subnetworks of scale-free
networks appear to be scale-free for a large range of bait-edge coverage levels. This
might appear to contradict the theoretical findings in [69] that subnetworks sampled
from scale-free networks are not in general scale-free. However, the result in [69] was
concerned with the precise functional form of the expected degree distribution for
the limiting case of an infinite network, whereas [87] considered empirical measures
of goodness-of-fit for specific finite-size networks. Also, the sampling schemes in
the two papers are fundamentally different. Similar remarks apply to the results of
[68]. While the theoretical results described in [69] are significant and interesting,
for practical applications, an understanding of the sampling properties of finite-size
networks is required. Moreover, even in the limiting case, a rigorous mathematical
theory of the sampling properties of scale-free and other network models, in the
spirit of [82] has yet to be developed.

Before moving on to discuss a number of more biologically motivated models
for interaction networks, we note the recent paper [88] in which geometric random
graphs [89] were suggested as an alternative model for protein interaction net-
works. This suggestion was based on comparing the frequency of small subgraphs
in real networks to their frequency in various network models, including geometric
graphs. However, as with BA models, there is no clear biological motivation for
choosing geometric graphs to model protein interaction networks and, furthermore,
the comparisons presented in [88] are based on a very small number of sample ran-
dom networks. On the other hand, the authors of this paper make the important
point that the accuracy of network models is crucial if we are to use these to assess
the reliability of experimental data or in the design of experiments for determining
network structure.

3.2.3 Duplication and Divergence Models

Many of the recent models for network evolution are founded on some variation of
the basic mechanisms of growth and preferential attachment. However, there are
other, more biologically motivated models which have been developed specifically for
protein interaction and genetic regulatory networks. As with the models discussed
above, these are usually based on two fundamental processes: duplication and diver-
gence. The hypothesis underpinning these so-called Duplication-Divergence (DD)
models is that gene and protein networks evolve through the occasional copying of
individual genes/proteins, followed by subsequent mutations. Over a long period of
time, these processes combine to produce networks consisting of genes and proteins,
some of which, while distinct, will have closely related properties due to common
ancestry.

To illustrate the main idea behind DD models, we shall give a brief description
of the model for protein interaction networks suggested in [90]. Given some initial
network G0, the network is updated at each time t according to the rules:

(i) Duplication: a node v is chosen from the network Gt−1 at random and a new
node v′, a duplicate of v, is added to the network and connected to all of the
neighbours of v;

(ii) Divergence: for each neighbour, w, of v′, the edge v′w is removed with prob-
ability q.

As pointed out in [90], the above scheme effectively introduces a preferential attach-
ment mechanism into the network and generates a power law degree distribution.
A number of basic properties of the model and its suitability to model the PPI
network of S. cerevisae are discussed in this paper also. The same basic model
has also been studied more analytically in [91]. In this paper, it was shown that
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if q < 1/2, then the degree distribution of the DD network is given by a power
law whose exponent γ satisfies γ < 2. The authors of this paper also considered
some closely related models for the growth of gene networks in the earlier paper
[92]. Here it was pointed out that duplication alone will not give rise to a power
law degree distribution.

The model described in [90] allowed for self-interacting proteins, where the copy
v′ can also form a link to the original v with some non-zero probability. However,
there are several assumptions associated with the basic scheme described above
whose biological validity is questionable.

(i) The new node, v′, can only form links to neighbours of the original node v —
this restricts the types of mutations allowed for duplicate genes;

(ii) A node can only undergo mutation or divergence at the instant when it is
added to the network — this ignores the possibility of genes continuing to
mutate long after the duplication event;

(iii) Nodes and edges can only be added to the network and not removed — this
clearly places a significant restriction on the types of mutation and evolution
possible.

Several extensions of the basic DD model have been proposed to relax some of the
assumptions outlined above. For instance, point (i) above has been addressed in
[93], while a model that allows for edge additions and removals at a much faster
rate than gene duplications has been described and analysed in [94]. Yet another
growth model (based on a preferential attachment mechanism) which allows edges
to be added and deleted between nodes in the existing network, and for new nodes
to be added to the network has been presented in [95]. Finally, the issue in point
(iii) has been addressed in the recent paper [96] by a growth-deletion model that
allows for the addition and removal of both edges and nodes. As with BA networks,
the theory of DD networks is still in a very early stage of development and relatively
few mathematically rigorous results have been derived.

3.3 Summarizing Comments

Maps of bio-molecular networks are now available for simple organisms, and pre-
liminary results on the structural properties of their protein-protein interaction,
transcriptional regulatory and metabolic networks have been reported. It has been
widely claimed that networks have scale-free degree distributions, short characteris-
tic path lengths and high clustering coefficients. Traditional random graph models
for complex networks are certainly inadequate for describing such networks. Several
new mathematical models for the growth of random networks have been proposed in
the recent past. These include scale-free models, and the more biologically inspired
Duplication-Divergence models for gene and protein networks. The mathematical
theory of these models is only beginning to be developed and offers many excit-
ing and challenging opportunities for future biologically motivated mathematical
research. However, the available data on bio-molecular networks is still far from
reliable and does not cover the entire collection of interactions or nodes in such
networks. Recent results on the sampling properties of networks with power law
and Poisson degree distributions highlight the need for caution when drawing con-
clusions on global network properties from an analysis of a sampled subnetwork.
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4 Measures of Centrality and Importance in Bio-
logical Networks

The problem of identifying the most important nodes in a large complex network is
of fundamental importance in a number of application areas, including Communica-
tions, Sociology and Management. To date, several measures have been devised for
ranking the nodes in a complex network and quantifying their relative importance.
Many of these originated in the Sociology and Operations Research literature, where
they are commonly known as centrality measures [97]. More recently, schemes such
as the PageRank algorithm on which GOOGLE is based, have been developed for
identifying the most relevant web-pages to a specific user query.

Recently, several researchers have applied centrality measures to identify struc-
turally important genes or proteins in interaction networks and investigated the
biological significance of the genes or proteins identified in this way. Particular
attention has been given to the relationship between centrality and essentiality,
where a gene or protein is said to be essential for an organism if the organism
cannot survive without it. The use of centrality measures to predict essentiality
based on network topology has potentially significant applications to drug target
identification [11, 27].

4.1 Classical Centrality Measures

First of all, we shall discuss four classical notions of network centrality and their
use in biological networks: Degree centrality; Closeness centrality; Betweenness cen-
trality; Eigenvector centrality.

4.1.1 Degree Centrality

The idea behind using degree centrality as a measure of importance in a network is
that:

An important node is involved in a large number of interactions.

Formally, for an undirected graph G, the degree centrality of a node u ∈ V(G) is
given by

Cd(u) = deg(u). (5)

For directed networks, there are two notions of degree centrality: one based on
in-degree and the other on out-degree. These are defined in the obvious manner.
Degree centrality and the other measures discussed here are often normalised to lie
in the interval [0, 1].

As discussed in the previous section, a number of recent studies have indicated
that bio-molecular networks have broad-tailed degree distributions, meaning that
while most nodes in such networks have a relatively low degree, there are significant
numbers of so-called hub nodes. The removal of these hub nodes has a far greater
impact on the topology and connectedness of the network than the removal of nodes
of low degree [66]. This naturally leads to the hypothesis that hub nodes in protein
interaction networks and genetic regulatory networks may represent essential genes
and proteins. In [98], the connection between degree centrality and essentiality
was investigated for the protein-protein interaction network in S. cerevisiae. The
analysis was carried out on a network consisting of 1870 nodes connected by 2240
edges, which was constructed by combining the results of earlier research presented
in [20, 37]. In this network, 21% of those proteins that are involved in fewer than 5
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interactions, Cd(u) ≤ 5, were essential while, in contrast, 62% of proteins involved
in more than 15 interactions, Cd(v) ≥ 15, were essential.

More recently, similar findings were reported in [73]. Again, the authors con-
sidered a network of protein interactions in yeast, this time consisting of 23294
interactions between 4743 proteins. The average degree of an essential protein in
this network was 18.7, while the average degree of a non-essential protein was only
7.4. Moreover, defining a hub to be a node in the first quartile of nodes ranked
according to degree, the authors of [73] found that over 40% of hubs were essential
while only 20% of all nodes in the network are essential.

The above observations have led some authors to propose that, in protein in-
teraction networks, node degree and essentiality may be related [73, 98]. However,
the precise nature of this relationship is far from straightforward. For instance,
using a network constructed from data published in [15, 20], the author of [99] has
claimed that there is little difference between the distributions of node degrees for
essential and non-essential proteins in the interaction network of yeast. However,
in this network, the degrees of essential proteins are still typically higher than those
of non-essential proteins.

In [100] the connection between the degree of a protein and the rate at which
it evolves was investigated. The authors reasoned that if highly connected proteins
are more important to an organism’s survival, they should be subject to more
stringent evolutionary constraints and should evolve at a slower rate than non-
essential proteins. However, the authors of [100] found no evidence of a significant
correlation between the number of interactions in which a protein is involved and
its evolutionary rate. Once again, this indicates that while node degree gives some
indication of a protein’s likelihood to be essential, the precise relationship between
essentiality and node degree is not a simple one.

4.1.2 Closeness Centrality Measures

The basic idea behind closeness centrality measures is that:

An important node is typically “close” to, and can communicate quickly
with, the other nodes in the network.

In [101], three closeness measures, which arise in the context of resource allo-
cation problems, were applied to metabolic and protein interaction networks. The
specific measures considered in this paper were excentricity, status, and centroid
value.

The excentricity, Ce(u), of a node u in a graph G is given by

Ce(u) = max
v∈V(G)

δ(u, v), (6)

and the centre of G is then the set

C(G) = {v ∈ V(G) : Ce(v) = min
w∈V(G)

Ce(w)}. (7)

Thus, the nodes in C(G) are those that minimise the maximum distance to any
other node of G.

The status, Cs(u), of a node v is given by

Cs(u) =
∑

v∈V(G)

δ(u, v), (8)

and the median of G is then the set

M(G) = {v ∈ V(G) : Cs(v) = min
w∈V(G)

Cs(w)}. (9)
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The nodes in M(G) minimise the average distance to other nodes in the network.
The final measure considered in [101] is the centroid value which is closely related

to the status defined above. In fact, these two measures give rise to identical
rankings of the nodes in a graph and, for this reason, we shall not formally define
centroid value here.

A number of points about the results presented in [101] are worth noting. First
of all, on both ER graphs and the BA model of scale-free graphs, all three measures
were found to be strongly correlated with node-degree. The measures were then
applied to the central metabolic network of E. coli and the centre, C(G), and the
median, M(G), of this network were calculated. The authors reasoned that central
nodes represent “cross-roads” or “bottlenecks” in a network and should correspond
to key elements of the organism’s metabolism. In support of this assertion, the
centre, C(G), contained several of the most important known substrates, including
ATP, ADP, AMP and NADP. On the other hand, in the protein interaction network
of S. cerevisiae, no discernible difference between the excentricity distribution of
essential and non-essential proteins was observed. In the same paper, centrality
measures were also applied to networks of protein domains where two domains are
connected by an edge if they co-occur in the same protein. The nodes with the
highest centrality scores in these networks corresponded to domains involved in
signal transduction and cell-cell contacts.

4.1.3 Betweenness Centrality Measures

In [102], the concept of betweenness centrality was introduced as a means of quan-
tifying an individual’s influence within a social network. The idea behind this
centrality measure is the following:

An important node will lie on a high proportion of paths between other
nodes in the network.

Formally, for distinct nodes, u, v, w ∈ V(G), let σuv be the total number of geodesic
paths between u and v and σuv(w) be the number of geodesic paths from u to v
that pass through w. Also, for w ∈ V(G), let V (u) denote the set of all ordered
pairs, (u, v) in V(G)×V(G) such that u, v, w are all distinct. Then, the betweenness
centrality (BC) of w, Cb(w), is given by

Cb(w) =
∑

(u,v)∈V (w)

σuv(w)
σuv

. (10)

The authors of [103] found that for scale-free networks with exponent γ ∈ (2, 3], be-
tweenness centrality appears to follow a power law P (Cb = k) = k−η. Furthermore,
their numerical simulations suggested that for all such networks, the exponent η
either takes a value close to 2 or to 2.2. Based on this observation they classified
synthetic and real networks including metabolic and protein interaction networks
into two classes. While their finding that protein interaction networks and the
metabolic networks of eukaryotes and bacteria fall into one class with the metabolic
networks of archaea belonging to the other is interesting, the fact that they did not
analyse the robustness of this classification scheme with respect to data uncertainty
casts doubt over their conclusions. The relationship between betweenness centrality
and node degree in scale-free networks was investigated in [104, 105] in which it was
shown that the relationship between betweenness centrality (BC) and node-degree
approximately follows the rule BC ∼ k(γ−1)/(η−1). Here γ (η) are the exponents
in the power laws for node-degree (betweenness centrality). Thus the betweenness
centrality of a node increases with incresing degree.
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Recently, in [106] the measure Cb was applied to the yeast protein interaction
network and the mean value of Cb for the essential proteins in the network was
approximately 80% higher than for non-essential proteins. However, given that
considerable variability in betweenness centrality has been observed in the network,
this does not necessarily imply that BC is a good indicator of essentiality. It was
also noted that the network contained significant numbers of proteins with high
betweenness centrality scores but low node degree and that the variability in BC
scores was considerably higher for low-degree nodes than for higher-degree nodes.
Nonetheless, there was still a positive correlation between node-degree and BC
scores. Also, while the graphs plotting the distribution of BC scores against node-
degree differed from those for BA and DD network models, it is not clear whether
this effect could be explained by high levels of false negatives for low-degree nodes
in the interaction network. In view of this, there appears to be insufficient evidence
to fully justify the authors’ claim that their findings are inconsistent with these
network models. The positive correlation of BC scores with node degree has also
been observed for transcriptional regulatory networks in the recent paper [107].

In the present context, it is worth noting the work in [108] where a definition of
betweennness centrality based on random paths between nodes, rather than on geo-
desic paths was considered. This centrality measure was motivated by the fact that,
in real networks, information does not always flow along the shortest available path
between two points. This novel centrality measure and its correlation with other
centrality measures on transcriptional regulatory and protein interaction networks
was investigated in [109]. No results on its biological significance are contained in
this paper however.

4.1.4 Eigenvector Centrality Measures

Eigenvector centrality measures appear to have first arisen in the analysis of social
networks, and several variations on the basic concept described here have been
proposed [97, 110–112]. This family of measures is a little more complicated than
those considered previously and eigenvector centrality measures are usually defined
as the limits of some iterative process. The core idea behind these measures is the
following.

An important node is connected to important neighbours.

In much of the original work presented in the sociology literature, the eigenvector
centrality scores of a network’s nodes were determined from the entries of the prin-
cipal eigenvector of the network’s adjacency matrix. Formally, if A is the adjacency
matrix of a network G with V(G) = {v1, . . . , vn}, and

ρ(A) = max
λ∈σ(A)

|λ|

is the spectral radius of A, then the eigenvector centrality score, Cev(vi) of the
node vi is given by the ith co-ordinate, xi, of a suitably normalised eigenvector x
satisfying

Ax = ρ(A)x.

In the recent paper [113], the connection between various centrality measures, in-
cluding eigenvector centrality, and essentiality within the protein interaction net-
work of yeast was investigated. In this paper, the performance of eigenvector cen-
trality was comparable to that of degree centrality and it appeared to perform better
than either betweenness centrality or closeness centrality measures. A number of
other centrality measures which we shall mention later in this section were also
studied.
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In order for the definition of eigenvector centrality given above to uniquely spec-
ify a ranking of the nodes in a network it is necessary that the eigenvalue ρ(A) has
geometric multiplicity one. For general networks, this need not be the case. How-
ever, if the network is strongly connected then it follows from the Perron-Frobenius
Theorem for irreducible non-negative matrices [114, 115] that this will be the case.
Similar ideas to those used in the definition of eigenvector centrality have recently
been applied to develop the Page-Rank algorithm on which the GOOGLE search
engine relies [116, 117]. The HITS algorithm for the ranking of web pages, proposed
by Kleinberg [118], also relies on similar reasoning.

4.1.5 Other Centrality Measures

Finally for this subsection, we briefly note several less standard centrality measures
which have been developed in the last decade or so, with potential applications in
the analysis of biological networks. For instance, in [113, 119] the notion of subgraph
centrality was introduced and the relationship between the subgraph centrality of
a protein in the yeast interaction network and its likelihood to be essential was
investigated. Loosely speaking, the subgraph centrality of a node measures the
number of subgraphs of the overall network in which the node participates, with
more weight being given to small subgraphs. Formally, if A is the adjacency matrix
of a network with vertex set, V(G) = {v1, . . . , vn}, and we write μk(i) for the (i, i)
entry of Ak, then the subgraph centrality of node vi, Csg(vi) is defined by

Csg(vi) =
∞∑

k=0

μk(i)
k!

. (11)

In [119, 120], it was found that Csg performed better than most other centrality
measures, including degree centrality, in predicting essentiality in the yeast protein
interaction network.

Other concepts of centrality that have been proposed include flow betweenness
centrality [121], information centrality [122]. For completeness, we also note the
recent measure introduced in [123] which ranks nodes according to the effect their
removal has on the efficiency of a network in propagating information and the
centrality measure based on game theoretic concepts defined in [124]. We shall not
discuss these in detail here however as little work on their biological relevance has
been done to date.

4.1.6 Comparison of different centrality measures

Given the number of available measures of centrality, the question of their relative
efficiency in predicting essentiality arises naturally. Recently, in [120] the perfor-
mance of the main centrality measures discussed above in predicting essentiality in
the PPI network of S. cerevisiae was studied. Specifically, eigenvector centrality,
degree centrality, betweenness centrality, information centrality, closeness centrality
and subgraph centrality were considered. For each measure, the fraction of essential
proteins in the top 1%, 5%, 10%, 15%, 20% and 25% according to the centrality
measures was calculated. In each case, eigenvector centrality and subgraph central-
ity performed best, and offered considerable improvements over the other measures
when only the top 1% and 5% of proteins are considered. Closeness centrality and
betweenness centrality were the weakest indicators of essentiality with degree cen-
trality and information centrality performing comparably in all cases. In all cases
however, all of the centrality measures performed significantly better than random
selection as indicators of essentiality. Note that further improvement on the perfor-
mance of subgraph centrality has been achieved by the notion of bi-partivity [125]
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which quantifies the extent to which a protein is involved in closed walks of even
length in the graph.

4.2 Alternative Approaches to Predicting Essentiality

In addition to centrality measures, a number of other methodologies for predicting
gene or protein essentiality have been proposed in the last few years.

4.2.1 Functional Classes and Essentiality

In the Yeast Protein Database (YPD) [16] various functional classes are defined to
which the proteins in yeast can be assigned. Using the functional classification of
proteins in the Yeast Protein Database (YPD) [16], the authors of [11] studied the
relationship between the functions of a protein in the interaction network of yeast
and its likelihood to be essential. They found that the probability of essential-
ity varied significantly between the 43 different functional classes considered. For
instance, in one class containing proteins that are required for DNA splicing, the
percentage of essential proteins was as high as 60% while only 4.9% of the proteins
in the class responsible for small molecule transport were essential. This suggests
that to predict essentiality, the functional classification of proteins should be taken
into account. However, the fact that many proteins are as yet unclassified is a
significant impediment to such an approach.

In the same paper, the nodes within each of the 43 functional classes were
ranked according to their degree and, within each class, the degree of a protein
was found to be a good indicator of its likelihood to be essential. Genes were also
ranked using the standard deviation of their expression levels across a large number
of different yeast derivatives: each derivative corresponding to one gene deletion.
Some connection between the variability in the mRNA expression of a gene and its
likelihood to be essential was observed. Specifically, genes whose expression levels
varied little were more likely to be essential. It is hypothesised in [11] that this may
be due to robustness mechanisms that maintain the expression levels of essential
genes close to a constant level, while those of less important genes are subject to
less stringent constraints, and hence can be more variable.

4.2.2 Damage in Metabolic and Protein Networks

The concept of damage was recently defined for metabolic networks in [126] and
then later for protein interaction networks in [127]. In the first of these papers,
metabolic networks were modelled as directed bi-partite graphs [28]. Such a graph
has two distinct sets of nodes: one contains the metabolites while the nodes of
the other set represent the reactions catalysed by the enzymes of the metabolism.
Each such enzyme, v, is assigned a score dg(v), its damage , which characterises the
topological effect of deleting v from the network. Essentially, dg(v) is the number of
metabolites that would no longer be produced if the enzyme v and all the reactions
catalysed by it were removed from the network. The following findings about the
relationship of this concept to essentiality were reported in [126].

(i) For each value of the damage, D > 0, let fD be the fraction of enzymes, v
with dg(v) = D which are essential. An F-test indicated that there was a
statistically significant correlation between D and fD.

(ii) The set of enzymes v for which dg(v) ≥ 5 contains 9% of all enzymes and 50%
of the essential enzymes.

Based on their findings, the authors of [126] suggested that enzymes with high
damage are potential drug targets. However, it should be noted that there exist
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several essential enzymes, v, for which dg(v) is quite low and that, conversely, there
are also non-essential enzymes with high damage scores.

More recently, in [127] an analogous concept for protein interaction networks
was defined and applied to the yeast protein interaction network. The results of
this paper indicate that any correlation between damage and essentiality is very
weak. On the other hand, the authors of this paper found that if the set of nodes
disconnected from the network by the removal of a protein v contains an essential
protein, then there is a high probability of v itself being essential.

Finally, we note another measure of importance in biological networks which was
recently described in [128]. This measure was based on the notion of bottle-necks
within networks and its relationship to essentiality was investigated in this paper.

4.2.3 Metabolic Networks, Flux Balance Analysis and Essentiality

A serious drawback of centrality measures and some of the approaches described
so far is that they rely on purely topological methods and fail to take any of the
underlying Biology into account. More detailed models of metabolic networks in-
corporating the reactions in the network provide a more biologically motivated
approach to predicting essentiality and assessing the impact of gene deletions. A
popular approach to the modelling of metabolic networks is Flux Balance Analysis
(FBA) [48, 52]. Given a vector x ∈ R

m of metabolite concentrations, and a vector
v ∈ R

n of reaction fluxes, the network dynamics are described by an equation of
the form

ẋ = Nv (12)

where N ∈ R
m×n is a rectangular matrix describing the participation of the m

metabolites in the n reactions. It follows from (12) that the steady-state fluxes
must satisfy Nv = 0. This and other constraints such as those imposed by maxi-
mal possible fluxes and the irreversibility of some reactions defines a cone of feasible
steady-state fluxes. A key assumption of FBA is that organisms like E. coli have
evolved so as to optimize some objective function such as growth rate in certain
media. This leads to a linear programme which can be solved to find the optimal
steady-state fluxes and associated growth rate. The validity of FBA as a modelling
paradigm for real systems has been tested against experimental data in [49]. Specif-
ically, the experimental data was consistent with the metabolism of E. coli being
optimized for growth rate. Further results of this nature have been reported in
[129].

FBA has been applied to the metabolism of E. coli in [46, 130] and to that of
S. cerevisiae in [131] to computationally predict the impact of gene deletions on
the organism. The deletion of a gene coding for an enzyme is simulated by setting
the corresponding reaction flux to zero. The linear programme is then solved again
under the new set of constraints (including this additional one) and the impact of the
deletion on the optimal growth rate is calculated. The results of the computational
study were consistent with experimental findings in 86% of cases for E. coli [46]
and in 83% of cases for S. cerevisiae [131]. Note that the effect of gene deletion can
depend on the environmental conditions, and an extended analysis was carried out
in [130] which used FBA to simulate gene deletion under varying conditions.

Techniques such as FBA have the advantage of being based on real biological
considerations and are more flexible than the purely graph-theoretical approaches
based on centrality measures. The ability to consider different environmental con-
ditions and assess the impact of deletions on other objective functions than growth
rate are also considerable advantages. A drawback of FBA in the analysis of gene
deletions is the assumption of optimality in the mutant. As pointed out in [51, 132],
while the wild-type E. coli may have evolved to optimize growth rate, it is not as
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likely that a mutant created in the laboratory will have managed to do likewise. In
these papers, an alternative approach to calculating the growth rate in such mutants
is presented which minimizes the adjustment in fluxes after the perturbation rather
than calculating a new optimal point. This technique was found to correctly predict
the essentiality of certain genes which the straightforward FBA analysis found to
be non-essential.

An alternative approach to using detailed metabolic models for the prediction
of gene deletion phenotypes relies on the notion of elementary flux modes [133].
These are minimal sub-networks of the overall network that can support steady-state
operation. In this paper, the effect of deleting gene i was measured by calculating
the number of flux modes with positive growth rate that do not involve gene i
(denoted N(μ, i)) and calculating the ratio of this number to the total number of
flux modes with positive growth rate. Genes for which N(μ, i) was zero are claimed
to be essential. The results of the computational analysis were consistent with
experiment in 90% of cases. It was also shown in this paper that some gene deletions
can have a serious impact of the number of growth supporting elementary flux modes
while having relatively little impact on topological features of the network such as
diameter. This suggests that using such topological parameters as a measure of
network robustness [66] to random deletions or mutations is not appropriate for
biological systems.

The relationship between node-degree in metabolic networks and essentiality
was recently investigated in [134]. Note that, in contrast to protein interaction
networks, for metabolic networks, gene deletion corresponds to the removal of an
edge rather than a node. While the degree of a metabolite does not appear to
correlate with the fraction of essential reactions in which it is involved, there is a
clear correlation between the degree and the likelihood of lethality when all reactions
in which the metabolite takes part are removed from the system. Finally, we should
note that FBA has also been used in [135] to study the distribution of fluxes across
the reactions in the metabolic network of E. coli and in [56] to construct an network
of epistatic interactions for S. cerevisiae which was then used to classify genes into
functional modules. We shall refer to this work again in the next section.

4.3 Final Thoughts on Essentiality

Finally, we shall discuss a number of issues with the various approaches to predicting
essentiality that have been described throughout this section.

4.3.1 Marginal Essentiality

While our discussion has focussed on essentiality, a gene or protein may be important
to an organism without necessarily being essential. For instance, some sets of non-
essential genes are synthetically lethal, meaning that the simultaneous removal of
the genes in the set kills the organism while individual deletions are non-fatal. In the
paper [73], the less restrictive concept of marginal essentiality and its relationship
to various topological measures was studied in the protein interaction network of S.
cerevisiae. Here, proteins were classified into five groups based on their marginal
essentiality: those with the lowest marginal essentiality scores being assigned to
group 1, and those with the highest assigned to group 5. The authors of [73]
found that the average degree and clustering coefficient of the nodes in a group
increases monotonically with the group number. For instance, the average degree
of those proteins assigned to Group 1 is about half of that of the proteins in Group
4. Moreover, defining a hub node to be one in the first quartile of nodes ranked
according to degree, they found that less than 10% of the proteins in Group 1 are
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hubs while more than 35% of those in Group 5 are hubs. The percentage again
increased monotonically with the group number.

4.3.2 Fitness Effect and Evolutionary Rate

In [136] it was reported that the degree of a protein in the interaction network
of yeast was positively correlated with the fitness effect of deleting the gene that
encodes the protein. Here, fitness effect measures the reduction in the growth rate
of the organism when the gene is deleted. This investigation was motivated by the
question of whether the importance of a gene or protein for an organism correlates
with the rate at which it evolves. For more information, and varying opinions on
this topic, consult [100, 137–141].

4.3.3 Sensitivity to Data Errors

The issue of sensitivity to data inaccuracy is of critical importance for all of the
techniques described here. It was noted in [127] that the measure damage discussed
above is quite sensitive to false negative errors, in which a real interaction between
two nodes in a network has not been identified due to experimental error. Clearly,
such sensitivity to data noise has serious implications for the practical use of any
of the methods described here. In particular, it is important to have a thorough
understanding of the effect of missing or inaccurate data on the performance of
centrality measures or other approaches to predicting essentiality. While there has
been some research into this fundamental issue recently [142–145], more intensive
quantitative and theoretical studies are needed before we can reliably apply the
techniques discussed here to the problem of essentiality prediction. This issue is all
the more important given that much of the data available on bio-molecular networks
contains large numbers of false positive and false negative results [29, 75].

4.3.4 Essentiality and Modules

Finally for this section, we note the work of [146] on determining the essential-
ity and cellular function of modules within the yeast PPI network. The results of
this paper indicate that the essentiality (or non-essentiality) and functionality of
an overall complex is largely determined by a core set of proteins within the com-
plex. Moreover, the essentiality of individual proteins appears to depend on the
importance of the modules in which they lie. This suggests that it may be more
appropriate to address the question of essentiality at the level of modules rather
than individual proteins or genes and motivates the problem of extending centrality
measures to deal with groups of nodes.

4.4 Summarizing Comments

Several measures of network centrality have been applied to bio-molecular net-
works, including degree centrality, betweenness centrality, closeness centrality and
eigenvector centrality. In particular, a number of recent studies on protein-protein
interaction and transcriptional regulatory networks have indicated a link between
the centrality score of a gene or protein and its likelihood to be essential for survival.
Some measures, such as Subgraph Centrality, appear more effective at predicting
essentiality. However, given the nature of biological data, the impact of inaccurate
and incomplete data on centrality measures needs to be more fully investigated be-
fore definitive statements on their relative effectiveness can be made. On the other
hand, techniques such as Flux Balance Analysis are preferable to purely topolog-
ical measures, as the results of such methods have readily interpretable biological
significance.
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5 Motifs and Functional Modules in Biological Net-
works

Many bio-molecular networks appear to be modular in nature, leading researchers
to investigate this aspect of the structure of real interaction networks and the pos-
sible biological mechanisms behind its emergence. Also, it has been suggested that
certain small subgraphs, known as motifs, which occur with very high frequency in
biological networks are the basic building blocks of these networks and can be used
to categorize them. A loose hierarchical structure for bio-molecular networks was
proposed in [2, 147]. Within this structure, individual nodes, are first grouped into
network motifs. These are in turn grouped into larger modules of functionally re-
lated nodes before finally, the modules are themselves connected to form the overall
network.

5.1 Identification of Network Motifs

The concept of a network motif and a basic scheme for motif detection were de-
scribed in the paper [148]. Specifically, given a directed network G, the motifs in G
of size k are identified as follows:

(i) For each possible subgraph, S of size k, of G count the number of occurrences,
NS , of S in G.

(ii) Next randomly generate a large number of networks such that in each random
network:

(a) Each node has the same in-degree and out-degree as in the real network
G;

(b) Every subgraph of size k − 1 occurs with the same frequency as in the
real network G. Two schemes for generating the random networks are
described in [148] and its supporting material.

(iii) A subgraph, S, is then said to be a motif of G if it satisfies the following three
conditions:

(a) The probability of S occurring in a random network more often than NS

times is less than some prescribed value P (in [148] P is taken to be .01);

(b) There are at least four distinct occurrences of S in the network G;

(c) The actual number of occurrences of S in G is significantly larger than the
average number of occurrences of S in the randomly generated networks,
denoted 〈Nrand

S 〉; formally, NS − 〈Nrand
S 〉 > 0.1〈Nrand

S 〉.
This approach to identifying motifs can be easily adapted to detect motifs in

undirected networks such as protein interaction networks [149]. However, the iden-
tification of motifs within large complex networks is computationally intensive and,
to the best of the authors’ knowledge, standard methods are only feasible for motifs
containing less than 7 or 8 nodes. In [150] a systematic method of defining network
measures or “scalars” which are related to subgraphs and can be used to detect
motifs was introduced. However, the precise relationship between “scalars” and
subgraphs is not straightforward.

Using the scheme described above, small motifs have been identified in a number
of real biological networks. In particular, the transcriptional regulatory networks
of E. coli and S. cerevisiae have been found to have one three-node motif and one
four-node motif. These are the so-called feed-forward motif and bi-fan motif, shown
in Figure 4. The feed-forward and bi-fan patterns are also motifs of the neuronal
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Figure 4: Feed-forward and Bi-Fan motifs of transcriptional networks.

network of the nematode C. elegans. This network has an additional four-node motif
known as the bi-parallel motif. Other common motifs which have been detected in
food webs, electronic circuits and the World-Wide-Web include the three-chain ,
three and four-node feedback loops and the fully-connected triad, see Figure 5.
Note that the network motifs of the transcriptional network of yeast have also been
investigated in the paper [53], where the motifs identified have also been related to
specific information processing tasks.
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Figure 5: Common motifs in real networks.

Before proceeding, a number of facts about the findings reported in [148] are
worth noting. The feed-forward loop and bi-fan motifs have been found in tran-
scriptional regulatory networks and neuronal networks, both of which involve some
form of information processing. Also, the motifs found in the food-webs studied are
distinct from those found in transcriptional regulatory networks and the WWW,
while electronic circuits with distinct functions tend to have different sets of mo-
tifs. These observations have led some authors to suggest that there is a connection
between a network’s motifs and its function, and hence, that complex networks
may be classified into distinct functional families based on their typical motifs. For
instance, given that information processing is fundamental to both neuronal and
transcriptional networks, it is reasonable to suggest that feed-forward loops and
bi-fans occur often in such networks because of their suitability for information
processing tasks. On the other hand, there is no overlap between the motifs ob-
served in transcriptional networks and those of the functionally unrelated food-web
networks.

The approach to motif detection described in this section relies on a null model
with a fixed degree distribution but otherwise randomly placed edges. Essentially,
a motif is a subgraph which is over-represented in a real network when compared
with an ensemble of networks with the same degree distribution. The abundance
of motifs with respect to this null model, and the observations in the previous
paragraph have led to the suggestion that the motifs in PPI and transcriptional
networks are biologically significant. Further evidence for such a view was recently
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presented in [151]. Here, the motif patterns of geometric networks, where links are
formed based on the spatial proximity of nodes, were studied analytically and it was
shown that simple geometric constraints alone are not sufficient to account for the
motifs observed in biological and social networks. However, the validity of the null
model described here needs to be considered carefully in the light of the findings
presented in [152]. In this study, a null network model was proposed which took both
the degree distribution and the hierarchical structure of the network into account
(through the form of the function C(k) giving the average clustering coefficient of
nodes of degree k). Motifs such as those found in real networks were observed
to occur naturally in complex networks with degree distributions and hierarchical
properties similar to those of biological networks. This highlights the difficulty of
drawing biological conclusions based on largely topological considerations. In order
to properly assess the biological significance of motifs, a combination of theoretical
and experimental work concentrating on the possible biological functions of motifs is
required. Some work along these lines will be described in the following subsection.

Note also that the basic approach to motif detection described here is unsuited
for weighted networks. In [32], an alternative approach to defining and identifying
motifs which can be applied to weighted networks was described. A major advantage
of such an approach is that it can take into account the level of confidence in network
data through weighting the edges in the network appropriately. Finally for this
subsection, we note that the transcriptional network of E. coli has been investigated
in more detail in [26] and several additional motifs have been identified: single input
modules (SIMs) ; dense overlapping regulons and negative autoregulatory units.

5.2 Dynamical Properties of Motifs

While the statistical abundance of motifs in bio-molecular networks suggests that
they have biological significance, the work described in the last subsection does not
explicitly connect motifs with any biological function. A number of recent studies
have considered this problem and focussed on dynamical properties of motifs that
are of biological relevance. Here, we shall concentrate on the role of the feed-
forward loop (Figure 4) in transcriptional regulatory networks, which has attracted
most attention in the literature to date.

Feedforward loops (FFLs) in transcriptional networks can broadly be divided
into two classes depending on the nature of the individual interactions in the loop.
FFLs such as that in Figure 4 consist of three basic interactions, each of which
can be negative (repression) or positive (activation). If the overall sign of the
indirect path from x to z is the same as the sign of the direct regulation of z by
x, the loop is coherent. Otherwise it is incoherent. Note that there are 8 different
sign configurations for the FFL motif, 4 coherent and 4 incoherent. In [26], the
specific coherent FFL in which all interactions are positive (activation) was studied
numerically. Further, in this paper the joint regulation of z by x and y was assumed
to follow AND-gate logic, meaning that the concentrations of the transcription
factors corresponding to x and y need to both be above threshold levels in order to
activate z. In this case it was found that this motif can effectively filter out transient
or fluctuating input signals. Moreover, it was also shown to respond to persistent
activation with a slight delay and to shut down rapidly once the activating signal
is removed. Circuits of this type are said to act as sign-sensitive delays.

Coherent FFL configurations seem to occur far more frequently than incoherent
configurations in real systems such as the transcriptional network of E. coli [153],
while the loop consisting of three activations is by far the most common in both yeast
and E. coli [154]. In [155], a more detailed model of the coherent FFL circuit was
described and analysed. Here, the robustness of the model’s behaviour with respect
to variations in parameter values and external perturbations was investigated. For
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instance, the sign-sensitive delay action was found to be quite sensitive to variations
in the model’s parameters and, while the circuit is quite robust with respect to the
size of external perturbations, the duration of the perturbation in comparison to
the internal time-scales of the circuit appears to be critical.

Extending the work in [26], a more complete mathematical analysis of the ki-
netic behaviour of the FFL motif was presented in the paper [154]. Here, all eight
configurations (coherent and incoherent) of the signs in the FFL were studied and
both AND-gate and OR-gate logic for the joint regulation of z were considered.
Using numerical simulations, the steady-state behaviour and response times (the
time it takes for z to reach half of its steady state level in response to a step input
stimulation of x or y) of all of the FFL configurations were analysed. The coherent
loops were again found to act as sign-sensitive delay circuits, while the analysis
suggested that the incoherent loops could speed up response times in comparison
to simple regulatory mechanisms. The work of these papers links motifs to possible
biological function and suggests experiments on motifs in real systems such as those
described in [153]. Here, the l-arabinose utilization circuit in E. coli was studied as
an experimental example of a coherent FFL system with all interactions positive
and AND-gate joint regulation. The dynamics of the system were analysed and the
coherent FFL circuit indeed functioned as a sign-sensitive delay element that filters
out transient activation signals from a fluctuating environment.

Before finishing our discussion of this topic, we should note a number of other
theoretical and experimental investigations of the dynamical properties of network
motifs. The negative autoregulatory circuit consisting of a transcription factor that
down-regulates its own transcription was studied in [156], where the response times
of a simple transcriptional unit (without autoregulation) and a negative autoregu-
latory circuit were compared.

Here, it was shown theoretically that the response-time (once again the time to
reach half of the steady-state output level) of the autoregulatory circuit is shorter
than that of the simple transcriptional circuit, with the same steady state. In fact,
for very strong auto-repression, the response-time of the auto-regulatory circuit
is only one fifth of that of simple transcription. It has also been demonstrated
experimentally in the same paper that while a transcriptional circuit without au-
toregulation has a response-time of approximately one cell-cycle, the response-time
for a circuit with negative auto-regulation is about one-fifth of a cell cycle. Finally,
we also note the recent work on the kinetics of the single-input module (SIM) motif
in E. coli [26] and the p53-Mdm2 feedback loop [157].

5.3 Evolutionary Conservation, Extensions and Final Thoughts
on Motifs

5.3.1 Motifs and Evolutionary Conservation

The biological significance of motifs has been considered from a slightly different
point of view in [149] where the extent to which motifs in the protein interaction
network of yeast are evolutionarily conserved was studied. Specifically, 678 proteins
in the yeast PPI network were identified which have orthologs 3 in each of five higher
organisms, and for each 2, 3, 4 and 5 node motif, the percentage of motifs which
were completely conserved across all of the 5 higher organisms was determined.
A sub-graph is completely conserved if all of the proteins in it have orthologs in
each of the higher organisms. For the yeast PPI network, motifs which have a
higher number of nodes and are more densely interconnected also have a higher
rate of conservation. For instance, the completely connected five-node motif has
the highest rate of conservation of all motifs with between 2 and 5 nodes.

3Orthologs are genes with a common ancestor.
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To validate these findings, the same number of orthologs was positioned ran-
domly on the network and the percentages of completely conserved motifs were
again calculated. In this case, the rates of conservation were considerably lower,
and moreover, the rate of conservation decreased with increasing motif size, in con-
trast to what was observed for the real orthologs. In particular, for the completely
connected five-node motif, the natural rate of conservation was found to be 47.24%
while the random conservation rate was as low as .02%. Furthermore, larger, more
tightly connected and conserved motifs were found to be more functionally homo-
geneous. In fact, for a significant number of these, all of the proteins in the complex
belonged to at least one common functional class.

Note also that in [158] a correlation between the natural rate of conservation
of motifs in the yeast PPI network and the suitability of the motif structure for
synchronization of interconnected Kuramoto oscillators was reported. We shall
have more to say about the question of synchronization later in the article.

5.3.2 Extensions of the Motif Concept

In [159], the significance profile (SP) was proposed as a means of classifying net-
works. Given a network, G, for each possible subgraph, S, the number of occur-
rences of S in a real network G is calculated and compared to the average number
of occurrences of S in an ensemble of random networks with the same degree profile
as G. The Z-score for each such subgraph is then calculated as

ZS =
NS − 〈Nrand

S 〉
std(Nrand

S )
(13)

where NS , 〈Nrand
S 〉 and std(Nrand

S ) denote the number of occurrences of S in G,
and the mean and standard deviation of the number of occurrences of S in the
ensemble of random networks respectively. The vector of Z-scores for subgraphs of
a fixed size is then normalized to give the significance profile vector.

SPS =
ZS

(
∑

S Z2
S)1/2

. (14)

Significance profiles for subgraphs of sizes three and four are calculated in [159]
for a number of real biological networks. While this method has been proposed
as a means of identifying different classes of complex networks, it should be noted
that some networks with similar SP vectors for three-node subgraphs have distinct
four-node SPs. As mentioned in [159], this means that higher order SPs are needed
if this technique is to be used effectively to classify networks. Also it is not clear
at the moment how to determine the maximal subgraph size required to correctly
distinguish network classes using this technique.

Another possible extension of the motif concept was recently suggested in [160].
Here, so-called topological generalizations of subgraphs and motifs were introduced
based on duplicating certain nodes within the subgraph. Several significant motif
generalizations within the transcriptional regulatory networks of E. coli and S. cere-
visiae were identified and possible functions for the observed generalizations were
also proposed and investigated on simple mathematical models of transcriptional
regulation and neuronal networks. While most of our discussion has focussed on
transcriptional networks or protein interaction networks in isolation, this distinc-
tion is somewhat artificial, and ultimately the methods described here will need to
be extended to more integrated cellular networks. In this context, the work of [58]
on identifying motifs within a more complete cellular network, which takes into ac-
count both transcriptional interactions and direct protein-protein interactions, and
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the study of motifs within an integrated network involving five different interaction
types in [161] should be noted.

The reservations about the choice of null-model used to identify motifs discussed
in Section 5.1 also apply to the work discussed here.

5.3.3 Some Final Thoughts on Motifs

Studying the motifs of a complex biological network can provide useful insights
into the both the structure and function of the network. For instance, once we have
identified a network’s motifs, analysis such as that described above on the dynamical
properties of the FFL motif can help us to determine the key functional roles of the
network. A knowledge of the motifs of a network is a necessary step in unravelling
its hierarchical structure and can be used to help develop more complete models for
the evolution of bio-molecular networks than those discussed in Section 3.

Motifs and extensions such as the significance profile could be used to identify
distinct categories of complex networks. However, as noted in [159], networks with
the same motif profile for three-node subgraphs can have different four-node or
higher order motifs and this casts some doubt on how effective these methods are
likely to prove as a means of classifying networks. Moreover, the identification of
higher order motifs is likely to be very costly from a computational point of view.

It is important to keep in mind that the precise biological significance of the
various network motifs which we have discussed is still not fully understood and,
while motifs are statistically significant subgraphs, there may be other subgraphs
within a network, occurring in smaller numbers, that are biologically important.
This issue has been debated in [162, 163], and in [164] two biological reasons for
the emergence of motifs have been considered: gene duplication and convergent
evolution. The findings described in [164] for the transcriptional regulatory networks
of S. cerevisiae and E. coli were not consistent with the hypothesis that motifs have
emerged due to widespread duplication of simple structures. This suggests that
some mechanism of natural selection may have played a role in choosing the specific
motif structures observed in these networks. While this provides some evidence for
biological factors playing a role in the emergence of motifs, it is far from conclusive
and further analysis of the dynamical properties of motifs such as that discussed in
Section 5.2 is needed to more fully understand the role and biological significance
of motifs in real networks.

5.4 Modular Structure and Function in Biological Networks

Alongside the study of motifs, there has also been significant interest recently in the
larger scale organisation of biological networks. In particular, considerable attention
has been given to hierarchical and modular aspects of the structure of biological
networks [61]. A major motivation for this work is the need to determine the
function of the large numbers of proteins or genes, even within simple organisms,
whose biological roles are currently unknown.

5.4.1 Network Hierarchy and Motif Clusters

The authors of [165] studied how the FFL and bi-fan motifs in the E. coli transcrip-
tional regulatory network are integrated into the overall network structure. Their
findings suggested that the network is organised hierarchically with motifs being
first aggregated into larger motif clusters, which are then further combined into so-
called super-clusters which form the core of the overall network. Each motif cluster
primarily consisted of the same motif type. For instance, all but one of the identi-
fied feed-forward loops (FFLs) in the network were contained in six FFL clusters,
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and similarly, all but one of the bi-fan motifs were contained in two bi-fan clusters.
Moreover, these motif clusters combined to form one large super-cluster containing
all but one feed-forward loop and one bi-fan motif.

Another approach to investigating the hierarchical and modular structure of the
transcriptional network of E. coli was described in [166]. Here, five different reg-
ulatory levels were identified, such that each node is either self-regulatory or else
can only regulate nodes at lower levels. Based on this hierarchical decomposition
of the network, a scheme for identifying modules of functionally related genes was
described which appears to work quite well in identifying sets of genes with sim-
ilar functionality. Many of the FFL and bi-fan motifs in this network contained
genes responsible for regulating modules with diverse functions. This fact suggests
that viewing motifs as the basic building blocks of functional modules cannot be
entirely accurate, as, for instance, the same feed-forward loop can be involved in
the regulation of numerous different modules.

5.4.2 Divisive and Agglomerative Algorithms for Module Identification

The detection of communities and modules in complex networks has been a subject
of interest for some time in disciplines such as sociology, communications, and power
systems, and a variety of techniques known collectively as hierarchical clustering
have been developed for this problem [97, 167]. Broadly, these approaches can be
divided into two classes: divisive and agglomerative. In agglomerative techniques,
a measure of similarity between pairs of vertices is defined and is then used to
hierarchically construct a partition of the network into modules. The core idea of
such approaches is that pairs of nodes within the same module should have high
similarity scores. These algorithms usually start by taking a graph consisting of
the network’s nodes with no edges and, at each step, add an edge between the pair
of unconnected nodes with the highest similarity score until the desired community
structure has been identified. Agglomerative methods have been found to work
poorly in some real networks whose community structure is well-known however,
and, moreover, they tend not to identify peripheral members of communities.

A recent variation on the theme of agglomerative clustering was presented in
[168, 169]. Here, a quantitative measure, M , of the “modularity” of a proposed
division of a network into modules was defined. Effectively, M measures the dif-
ference between the number of edges between the modules in the division, and the
expected number if edges were placed at random. For a network containing n nodes,
the technique in [168, 169] starts from an initial division into n communities, each
containing a single node, and, at each step, joins the two communities that give the
greatest increase in the value of M . These algorithms worked quite well when ap-
plied to real and computer generated networks with a known community structure.
However, the networks studied were technological and social networks and a food
web and, to the best of our knowledge, there has been no effort to apply them to
bio-molecular networks as yet. Also, in contrast to some techniques discussed below,
these algorithms are not based on any biological considerations, and the biological
significance of any modules which they may identify would need to be investigated.

A different, information-theoretic measure of modularity which applies directly
to a network rather than a specific partition of the network has recently been pro-
posed in [170]. Algorithms for splitting a network into modules were also described
in the same paper and their effectiveness was tested on real and synthetic network
data, with promising results. Note also the approaches based on analysis of the
spectrum of the Laplacian matrix of the network described in [171, 172].

In contrast to agglomerative techniques, divisive approaches work by succes-
sively removing edges from the original network until a desired partition is ob-
tained. While traditional methods removed edges between pairs of nodes with low
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similarity scores, in [173–176] algorithms based on extensions of betweenness and
information centrality to edges rather than nodes were introduced. These algo-
rithms proceed by successively removing the edges with the highest betweenness or
information centrality scores. The core idea is that edges connecting distinct com-
munities will typically have higher betweenness and information centrality scores
than edges within communities. A variant of the concept of edge-betweenness was
applied to a bi-partite model of metabolic networks in the paper [177]. While the
algorithm did detect some biologically relevant subnetworks, the data used in this
paper was somewhat obsolete and there is no explicit justification given for the au-
thors’ claim that “the big picture should be fairly insensitive to discrepancies in the
database”. More recently, algorithms based on edge-betweenness have been applied
to datasets on protein interaction networks in yeast and humans in [178] and their
robustness to false positives in the datasets was investigated. While the results
of this paper are promising, and the authors highlight the important question of
when to stop the algorithm (how many edges to remove), the results given are not
conclusive, it is far from clear which criterion to use to determine when to stop the
algorithm and a complete theoretical analysis of the robustness of the algorithm is
lacking.

An advantage of hierarchical algorithms is that they provide a picture of the
organisation of bio-molecular, and other, networks at different levels of granular-
ity, and can illustrate the integration of smaller modules into larger more complex
modules. Thus, they give a more complete picture of both the modular and hierar-
chical structure in networks. On the other hand, most of the techniques discussed
above are designed for generic networks and have no biological motivation. For
this reason, while they may detect densely connected modules within bio-molecular
networks, the connection between such modules and biological function is unclear.

Another serious drawback of these techniques is that they divide a network
into non-overlapping modules, while in biological networks, a single protein or gene
can be involved in multiple functions, and belong to more than one module or
protein cluster. This observation also applies in other contexts; for instance, in
social networks, there is often significant overlap between different communities or
modules. Using the observation that many communities are comprised of cliques
(completely connected subgraphs), which are themselves densely interconnected, an
approach to module identification that addresses this issue was presented in [179].
The method described in this paper allows for the identification of overlapping
modules so that, for instance, a protein may be assigned to more than one functional
class.

5.4.3 Graph Theoretical Approaches to Identifying Functional Modules

There are also a number of network clustering algorithms which have been specif-
ically designed for biological networks. For example, in [180] the problem of how
to cluster proteins in large databases into families based on sequence similarity was
considered. The first step in this algorithm was to assign sequence similarity scores
to each pair of proteins using an algorithm such as BLAST. A weighted graph was
then constructed, whose nodes are proteins and where the weight of an edge be-
tween two nodes is the similarity score calculated in the previous step. A weighted
adjacency matrix M for this graph was defined using the edge-weights and nor-
malised to be column-stochastic [115]. The TRIBE-MCL algorithm of this paper
is based on Markov chain clustering , and identifies communities through iterating
two different mathematical operations of inflation and expansion on the adjacency
matrix M. Inflation consists of taking powers of the individual entries in the ma-
trix and re-normalising to remain within the class of column-stochastic matrices.
Expansion consists of taking powers of the matrix with respect to the usual matrix
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product. The core concept behind this method is that families of related nodes
are densely interconnected and hence there should be more “long” paths 4 between
pairs of nodes belonging to the same family than between pairs of nodes belong-
ing to distinct families. Subsequently, in [181] this algorithm was used to identify
functionally related families in the protein interaction network of S. cerevisiae. In
fact, the algorithm was applied to the line-graph L(G), where the nodes of L(G)
are the edges of G and two nodes in L(G) are connected if the corresponding edges
in G are incident on a common node in G. Three separate schemes of protein
function classification were then used to validate the modules identified with this
algorithm, and the coherence of functional assignment within these modules was
significantly higher than that obtained for random networks obtained by shuffling
protein identifiers between modules. This together with further analysis indicated
that the identified modules did represent functional families within the network.

In the recent paper [56], the PRISM algorithm for identifying modules of func-
tionally related genes based on analysing epistatic networks of interactions was
presented. The core idea behind this algorithm is that genes belonging to one func-
tional module should interact with genes in another module in a similar fashion.
Using this algorithm, it was possible to group genes with similar functional annota-
tion into the same module even in the absence of a direct interaction between them.
Finally, we note that in [182], a technique for identifying quasi-cliques in protein in-
teraction networks based on the eigenvectors of the network’s adjacency matrix was
described and applied to the yeast interaction network. Most of the quasi-cliques
identified in this way were found to have homogeneous functional annotation in the
MIPS database suggesting that this technique could be useful in assigning function
to unannotated proteins.

Further approaches to the determination of functional modules within biological
networks have been described in [128, 183]. The technique in [128] relies on search-
ing for highly connected subgraphs (HCS) where a HCS of a graph G is a subgraph S
for which at least half of the nodes of S must be removed in order to disconnect it.
On the other hand, in [183, 184] a procedure is described which identifies modules
of related genes in the transcriptional regulatory network of yeast as well as the reg-
ulators of each such module. Other approaches to determining functional modules
within transcriptional networks have been described in [25, 185]. The techniques
described in these papers are not based on a graph theoretical analysis of network
topology however; in fact, they rely on analysing gene expression data across differ-
ent experimental conditions and determining sets of genes which are regulated by
common transcription factors.

5.5 Predicting Protein or Gene Function from Network Struc-
ture

Several direct approaches to assigning functions to unannotated proteins have also
been proposed recently. The simplest of these is the so-called majority rule which
works in the following way [186, 187]. Given a classification scheme with an associ-
ated set of functions,

F = {fs : 1 ≤ s ≤ M},
an interaction network, G, and an unannotated protein i in G, each function, fs ∈ F ,
is assigned a score which is simply the number of times fs occurs among the anno-
tated neighbours of i. The functions with the highest scores are then identified as
the most likely functions for the protein i. A simple extension of this concept which
takes into account nodes other than the immediate neighbours of the unannotated
protein was presented in [188]. It should be noted that this approach has the major

4Two distinct paths need not consist of disjoint sets of nodes and edges
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drawback of relying entirely on the functions of previously annotated proteins, while
it can often happen that none of the neighbours of a protein of unknown function
have been annotated.

Two more sophisticated approaches to protein function prediction that avoid the
above mentioned difficulty were described in [189, 190]. Essentially, these algorithms
assign functions to the proteins in an interaction network so as to minimize the
number of pairs of interacting proteins with different functional assignments. A key
aspect of these approaches is that the optimal global assignment of protein function
is not unique. In practice, a number of different optimal solutions are determined,
and the frequency with which a given function fs is assigned to a protein i is
interpreted as the probability of the protein having that function.

The work presented in two other recent papers is also worth noting in the present
context. Firstly, in [187], the functional flow algorithm was described. The core
idea of this method is to consider annotated proteins within the network as reser-
voirs or sources of flow for the functions assigned to them. Each such function then
“flows” through the network according to a specified set of rules and the amount
of each function at a node when the iterations finish is used to determine the most
likely functions for that node. On the other hand, the technique described in [12]
is based on the hypothesis that pairs of proteins with a high number of common
interaction partners are more likely to share common functions. Formally, for a pair
of proteins i, j, of degrees n1, n2 respectively, with m common interaction partners,
the probability p(i, j,m) of them having m common partners if links were distrib-
uted randomly is calculated. This method was applied to the protein interaction
network of S. cerevisiae and, of the 100 pairs of proteins with the lowest value of
p(i, j,m), over 95% of them consisted of proteins with similar function. The authors
also described how to use these basic ideas to identify modules within an interaction
network and validated the method on the yeast interaction data. A related proba-
bilistic approach to using interaction network topology to predict protein function
has also been presented in [191].

5.6 Summarizing Comments

In many real biological, and technological, networks, certain small subgraphs occur
far more frequently than would be expected for randomly wired networks with the
same degree distribution. Such subgraphs are known as motifs, and experimen-
tal observations have indicated that networks with similar function tend to have
similar sets of motifs. This has led researchers to consider a network’s motifs as
being characteristic of the network in some sense. However, the precise biological
significance of motifs is still not completely understood, and it has been suggested
that the abundance of certain motifs may be a consequence of the degree distribu-
tion and hierarchical structure of real networks. On the other hand, several recent
studies on the dynamical properties of simple motifs have provided some insights
into their biological significance. In particular, the dynamics of the FFL motif and
the auto-regulatory motif in transcriptional networks have been studied and linked
to biological function. The modular structure of biological networks has also at-
tracted a considerable deal of attention, and a number of automatic algorithms for
the identification of functionally homogeneous modules have been proposed. This
line of research and the work on direct methods for predicting gene and protein
function are motivated by the need to determine the function of large numbers of
unannotated genes and proteins.
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6 Synchronization

So far, our discussion of complex biological networks has largely focussed on their
structural properties. We shall next consider the relationship between dynamic be-
haviour and network topology. Synchronization is a population effect that emerges
in complex systems comprising a large number of identical or nearly identical com-
ponents. In the natural world, synchronization manifests itself across different levels
of organization, from groups of organisms (the synchronous flashing of fireflies [192])
down to groups of cells [193, 194]. It has also been implicated in discussions on the
binding problem, one of the central problems in the philosophy of mind. Specifi-
cally, in this context, synchronization has been put forward as a mechanism that
might explain how information, distributed across the brain is integrated to form
a coherent perception [195, 196]. Given the variety of applications, the importance
of understanding the principles of synchronization is clear. One way to gain such
understanding is to try to reproduce this phenomenon in silico, using a simple
mathematical model of coupled oscillators.

6.1 A Model of Synchronization

One of the first detailed mathematical treatments of synchronization was presented
by Arthur Winfree. His 1967 paper [197] laid the basis for the work of Kuramoto and
others, who helped develop it into a mature mathematical theory with applications
in different fields [198–200].

We consider a simplified model of synchronization, introduced by Kuramoto [199,
201, 202]:

θ̇i = ωi +
K

N

N∑
j=1

sin(θi − θj). (15)

Here θi and ωi respectively denote the phase and intrinsic frequency of oscillator
i; K is the coupling strength, and N is the number of oscillators. This setting
assumes undirected all-to-all coupling. Studies indicate that the emergence of syn-
chronization in the model is robust with respect to variations in the interconnection
structure, albeit that the transition dynamics generally depend upon the details of
the underlying topology.

A qualitative description of the behaviour of the system (15) is as follows (see
[203]). When the interactions are weak, i.e. K is small, the system is in an incoherent
state, in which the distribution of the phases {θi} is roughly uniform. In this state,
each oscillator tends to oscillate at its own intrinsic frequency, ωi. When the level
of interaction is gradually increased, clusters of oscillators emerge, oscillating at
a common frequency and (sometimes) phase. When the coupling is still further
increased, more and more oscillators join in, leading eventually to a state of full
synchronization in which all oscillators are oscillating as one. Note that, strictly
speaking, full synchronization is only possible when all the oscillators are identical,
i.e. when ωi = ωj for all i, j. The transition from a completely incoherent to a
completely coherent state is typically steep, and has an associated critical coupling
strength Kc, which marks the start of this transition.

The analysis of the Kuramoto model has led to a number of important results.
For a comprehensive review, see [199]. The majority of these results only strictly
hold in the thermodynamic limit when N → ∞, although some results are available
for large but finite populations [204] and in general finite-dimensional models are
beginning to receive more attention [196].
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6.2 Types and Measures of Synchrony

In a system of coupled oscillators such as (15), the emergence of synchronization
is easy to detect and quantify. In experiment, this is not quite as easy. The fun-
damental difficulty is how to extract information about phase and frequency from
complicated time series of varying natures. This is a non-trivial problem as the un-
derlying processes are typically non-stationary and, in a strict sense, non-periodic.

Before trying to detect synchronization proper, there are a few other things one
can do. For instance, to test for statistical dependence between two time series,
one could compute the spectral covariance or coherence [205]. In [206, 207] this
technique was used to quantify task-specific interactions in the brain. In recent
years, it has been suggested that this measure would lack the sensitivity required to
detect subtler forms of synchrony, such as phase synchrony, as it would not separate
out effects of amplitude and phase.

Other measures of synchrony include phase coherence [196, 208, 209], entropy,
and mutual information [210, 211]. These latter measures are particularly popu-
lar among experimentalists, who seek to establish, for instance, whether or not a
particular phase relationship exists between a given set of experimental variables.
The application of these measures is limited by the fact that, in a typical experi-
ment, phase information is not directly accessible, but needs to be extracted from
the recorded (noisy) time series using specialized algorithms. This is a nontrivial
problem as the time series (e.g. EEG recordings) are generally non-periodic, and
hence standard notions of phase do not apply. However, there exist alternative
notions of phase that do generalize to non-periodic signals. Based on these notions,
computational techniques have been developed that are capable of extracting phase
information from arbitrary time series [212]. These techniques have been success-
fully applied to the analysis of brain data [208–210], revealing interesting patterns
of synchrony.

Another factor that might complicate the application of these measures in prac-
tice, is the lack of statistics. If prior information about the data was available one
could use this to specify what degree of coherence should be considered statistically
significant. But in an experimental setting, such information is rarely available. A
typical way to overcome this problem is to use schemes which generate ensembles of
surrogate data that are in some sense statistically similar to the original time series
[210]. An early example of an application of this approach can be found in [209].

For the system of coupled oscillators (15), the standard measure of synchrony is
the order parameter [203, 213, 214]:

r(t) =

∣∣∣∣∣∣
1
N

N∑
j=1

eiθj(t)

∣∣∣∣∣∣ . (16)

Geometrically, the value of the order parameter indicates how well a given set of
unit vectors are aligned with respect to one another (with 1 indicating perfect
alignment). A slightly more general definition is adopted in [215], incorporating
the adjacency matrix to account for the network’s local structure. Much the same
measure is used again in [216].

6.3 Synchronizability and systems of coupled oscillators

The study of systems of coupled oscillators has recently been extended from dealing
exclusively with networks with all-to-all coupling to include networks with local
connectivity, such as lattices, scale-free and small-world networks.

In [215] the transition behaviour of an appropriately defined order parameter
was approximated to good accuracy in large networks of almost arbitrary structure.
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Notably, the following expression for the critical coupling strength was derived:

Kc =
k0

λN
. (17)

Here K0 is a constant, depending on the distribution of the oscillators’ intrinsic fre-
quencies, and λN is the spectral radius of the network’s adjacency matrix. Note that
this estimate requires (full) knowledge of the adjacency matrix. Subsequently, a less
restrictive estimate was obtained after introducing the additional assumption that
the eigenvector associated with the spectral radius equals, or is approximately equal
to, some scalar multiple of the vector of node degrees. Under these assumptions,
the expression for the critical coupling is given as:

Kc = k0
〈k〉
〈k2〉 , (18)

which coincides with the result reported in [216]. For a detailed account of the
validity of the various assumptions we refer to the paper [215]. In the above ex-
pression (18), 〈k〉 and 〈k2〉 denote the first and second moments of the node degree
distribution, respectively. As pointed out in [216], for scale-free networks with a
power law coefficient between 2 and 3, the second moment grows without bound as
the number of nodes tends to infinity. This would suggest that, in such networks,
there is no critical coupling in the thermodynamic limit; or indeed no threshold for
coherent oscillations. This is not true in finite networks [158, 216]. Indeed, in [216]
it is reported that there exists a clear dependence between the critical coupling
strength and the network size. Related observations have been reported in the lit-
erature on disease propagation. Particularly, the absence of an epidemic threshold
has been established as a characteristic feature of disease spread models on (infi-
nite) scale-free networks. Finite-size effects have also been discussed in this context
[217, 218]. The similarity between the physics of coupled oscillators and models of
disease spread has been discussed previously in [216] and elsewhere.

6.3.1 Factors that Promote Synchronization

Let us consider what structural properties of a network enhance its synchronizabil-
ity. We have already seen that in networks with heavy-tailed degree distributions
(that is, with large second moments), the critical coupling is generally low. In other
words, a network’s propensity to synchronize appears to be positively correlated
with the heterogeneity of its degree distribution.

Another factor that appears to have significant impact is the clustering coeffi-
cient, [213]. Indeed, simulation results indicate that networks (Poisson or scale-free)
that share the same number of nodes, the same number of edges and the same de-
gree distribution, but have a different average clustering coefficient, can have very
different synchronization properties. In particular, it was found that increasing the
clustering coefficient of a Poisson network leads to a more gradual transition from
incoherence to coherence. For scale-free networks, the effect was more ambiguous in
that increased clustering appeared to promote the onset of synchronization at low
coupling strengths, suppressing the same at high coupling strengths. For moderate
coupling strengths the network would seem to split into several dynamic clusters
oscillating at different frequencies. The authors proposed that scale-free networks
with high clustering undergo two separate transitions: a first transition to a par-
tially synchronized state, corresponding to the formation of clusters oscillating at
distinct frequencies; followed by a second transition to full synchronization when
the clusters are tuned to a common frequency.
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In [158], it was demonstrated numerically that (finite-size) scale-free networks
of Kuramoto oscillators exhibit a phase transition at a coupling strength that is in-
versely proportional to the average node degree. In the same study, the authors also
investigated the ‘fitness for synchronization’ of particular network motifs, defining
fitness as the (normalized) coupling strength at which the probability that a motif
synchronizes first exceeds one half. The results suggested that motifs with high
interconnectedness are more prone to synchronize. Interestingly, this ability to syn-
chronize was found to be correlated with the motif’s natural conservation rate in
the yeast protein interaction network (see Section 5.3).

In small-world networks, the onset of synchronization appears to depend strongly
on the rewiring probability, especially when this probability is small. In fact, no
synchronization whatsoever is observed when this probability tends to zero [219]
(in the simulation only relatively sparsely connected networks were considered).
Interestingly, the transition behaviour does not appear to change much after the
rewiring probability reaches a value of 0.5, suggesting that some form of saturation
sets in.

6.4 Master Stability Functions

A second important stand of work on synchronization centres around the theory
of Master Stability Functions (MSF). The main idea here is as follows. Let f ,h :
R

m �→ R
m be differentiable, and let G ∈ R

N×N be such that
∑

j Gij = 0 for all i.
Also, let K > 0. Consider the system of differential equations

ẋi = f(xi) + K
∑

j

Gijh(xi), i = 1, 2, . . . N. (19)

The theory of Master Stability Functions is concerned with the stability of the
synchronization manifold S := {x ∈ R

mN : xi = xj ∀(i, j)}. Observe that S is an
invariant of the system dynamics, that is, if x(t0) ∈ S for some t0 ∈ R then x(t) ∈ S
for all t ≥ t0. This is by virtue of the assumption that G has zero row sums.

In the framework outlined above, the map f represents the local dynamics, given
by ẋi = f(xi) (this corresponds to the situation when K = 0 in Eqn. (19)). The
map h is an output function that determines which of the local state variables (or
what combination thereof) can be accessed from outside (globally). The matrix
G encodes for the network topology and generally coincides with the (normalized)
Laplacian [220], or a weighted version thereof. Finally, the parameter K represents
the coupling strength.

A typical problem in the MSF framework is to find or modify a coupling scheme
G such that the synchronization manifold is stable for the largest range of coupling
strengths. The standard approach is to first linearize the nonlinear systems of ODEs
(19) around a point s on the synchronized manifold. The resulting system of linear
ODEs may then be decoupled using a transformation that involves diagonalizing G.
Provided that G is diagonalizable, this results in a system of variational equations

η̇i(t) =
(

∂f
∂x

(s) + Kγi
∂h
∂x

(s)
)

ηi(t) (20)

where γi denotes the i-th eigenvalue of G, ordered by magnitude. It follows that
the synchronization manifold is stable if the maximum Lyapunov exponent of the
generic variational equation

η̇(t) =
(

∂f
∂x

(s) + z
∂h
∂x

(s)
)

ηi(t) (21)

is negative over the set ΓG := {z ∈ C : z = Kγ, γ ∈ σ(G)}, where σ(·) denotes
the spectrum. Equation (21) is called the Master Stability Equation (MSE). The
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associated Master Stability Function is the function that maps the complex number
z onto its corresponding Maximum Lyapunov Exponent (MLE). If we denote the
set of all values of z which render the MLE of (21) negative by Λ, then a sufficient
condition for S to be stable is that ΓG ⊂ Λ.

It has been observed that, for a large class of oscillatory systems, the intersection
of the set Λ with the reals tends to define an interval [221]. That is, typically, there
exist real numbers αmin and αmax such that the Lyapunov exponent associated
with the MSE (21) is negative for all real-valued z satisfying αmin ≤ z ≤ αmax.
Hence, in case the eigenvalues of G are real-valued (which they are, for instance,
when the underlying graph is undirected), we have that the system (19) is robustly
synchronizable (RS), meaning that there exist K such that S is stable, if

γN

γ2
<

αmax

αmin
,

where γ2 and γN denote the first nonzero and the largest eigenvalue of G, respec-
tively. Obviously the smaller the ratio between the eigenvalues, the more likely it
will satisfy the above inequality. For this reason the said ratio has been proposed
as a measure of synchronizability. Note, it does not measure how well the sub-
systems are synchronized (if at all they synchronize, synchronization is perfect);
rather, it measures how robust the synchronized state is against perturbations in
the parameters, particularly the coupling strength.

6.4.1 Unweighted Networks

Several studies have investigated how synchronizability in regular lattices and Erdös-
Renyi networks, compares with synchronizability in small-world or scale-free net-
works. In [221] it was shown that by randomly adding links to a so called pristine
world, a cycle of N nodes wherein each node is coupled to its 2k nearest neighbors,
robust synchronizability can be significantly improved. This is to be expected in
that, as the network tends towards a situation in which it is fully connected, the
ratio between the eigenvalues of the associated Laplacian tends to one. More in-
terestingly, therefore, is the question how efficient this procedure is in terms of the
cost associated with adding in new links. It turns out that the procedure is very
efficient indeed. Small-worlds generated from pristine worlds with low values of k
(1, 2, 4) need only relatively few connections added, compared to ER networks and
hypercubes for large enough network sizes, to make them robustly synchronizable.

It is natural to ask what properties of small worlds enables them to sustain a ro-
bustly synchronized state in the face of perturbations? Intuitively, one could argue
that robust synchronizability is correlated with average network distance (this dis-
tance being relatively small for small-world networks), and so one would expect that
the smaller the average network distance, the easier it is to robustly synchronize the
network. In [222], this argument was shown to be false. In particular, it was shown
that the ratio γN

γ2
correlates negatively with average distance. Among the networks

included in this study were a class of semi-random scale-free networks, a class of
aging scale-free networks, and a modified version of the classical Strogatz-Watts
Small-World network. Rather than short average network distance, the authors
proposed the homogeneity of the degree distribution as an important indicator of
the network’s propensity to robustly synchronize. Once again, it is important to
keep in mind that the eigenvalue ratio as a measure of robust synchronizability
has little to do with the onset of synchronization, as it is studied, for instance, in
the framework of coupled oscillators. This would explain how a relatively hetero-
geneous degree distribution can promote the onset of synchronization (although a
state of full synchronization may be hard to attain in this case) while rendering
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the synchronized state more sensitive to parameter variations (and less robustly
synchronizable).

6.4.2 Weighted networks

The above discussed results primarily applies to settings with unweighted networks.
More recently, people have begun looking at synchronization in weighted complex
networks. The motivation is that biological, as well as technological networks are
typically weighted. A recurring example is that of neuronal networks [223–225].

In [225], the authors propose a coupling scheme in which the weight of an edge
incident on a node i is normalised by the degree di of that node, so that the sum
over all weights associated with the edges incident on that node equals unity. More
precisely, they propose a coupling scheme

G := D−1
β L,

where D := diag
(
dβ
1 dβ

2 · · · dβ
N

)
and L is the usual Laplacian. They go on

to show that, for a variety of different networks, including a class of Scale-Free
and Small-World networks, robust synchronizability is optimal when β = 1. As
indicated, this choice of β essentially neutralizes the heterogeneity in the degree
distribution. As a result, the weighted network has behavioral characteristics similar
to those of a random regular network with the same (mean) degree, including good
robust synchronizability.

A similar approach was adopted in [223]. However, instead of scaling the weight
of an edge by the degree of the node it is incident on, the authors propose to scale
an edge by the collective ‘load’ associated with all the edges connecting to the same
node as the given edge. Here, the load of a link is related to the number of shortest
paths that make use of this link. Let lij denote the load on the link from node i to
node j (with the convention that lij = 0 if no such link exists). Then the proposed
coupling scheme is as follows:

G := D−1
α L,

where in this case, Dα := diag
(∑

j(l1j)α
∑

j(l2j)α · · · ∑
j(lNj)α

)
. The results

in the paper indicate that, for a large class of networks, the propensity for robust
synchronization is optimal when α = 1. Note that the case α = 0 corresponds to
the situation outlined above when weights are scaled by the degree of the node they
are incident on (the case β = 1).

In both of the above discussed approaches, a key assumption is that G is diago-
nalizable. Interestingly, it was shown recently [226] that when weights are assigned
to optimize robust synchronizability, the resulting coupling scheme is almost always
nondiagonalizable. The authors proposed assigning weights so that the network be-
comes an oriented spanning tree, subject to constraints such as homogeneity of the
node intensities (see below). This endows the network with a hierarchical structure
at the top of which is a master oscillator, which entrains a set of slave oscillators,
which in turns entrain other oscillators and so on.

The results outlined here demonstrate that, as far as weighted networks go, het-
erogeneity in the degree distribution need not rule out good robust synchronizability
(RS). In fact, what constitutes poor RS is not so much heterogeneity in the degree
distribution as heterogeneity in the distribution of node intensities [224], where a
node’s intensity is defined as the sum of the weights of the links incident on that
node. Indeed, it appears that, as long as the distribution of intensities is reasonably
homogeneous and the mean degree sufficiently high, good RS is guaranteed.
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6.5 Synchronization in the brain

Synchronization has been put forward as a putative mechanism that would make
possible the integration of distributed neural activity in the brain [227]. Indeed,
recent studies suggest that during processing of visual and auditory stimuli, activi-
ties of functionally specific brain regions are temporally aligned so as to produce a
unified cognitive moment. This would imply that an inability to synchronize, due
to abnormalities in the neural circuit for instance, could have severe behavioral im-
plications [208, 228]. An understanding of the mechanics of this phenomenon may
thus hold the key to devising new treatments for neurological disorders.

It has been known for quite a while that groups of neurons within a single
sensory modality such as the visual cortex, selectively synchronize their activities,
supposedly to integrate the particular features for which they encode. However,
the notion that this same kind of integration would also take place across different
sensory modalities was discovered only recently. In a study reported by Roelfsema
et al. [206], five cats were conditioned to press and release a lever in response to
particular visual stimuli. Electrodes were implanted at different locations in the
motor and visual cortices to monitor the electrical activity during execution of the
task. Coupling between these brain areas was investigated using cross-correlation
analysis on pairs of LFP (Local Field Potential) traces. Tighter coupling was ob-
served when the animals were engaged in the specific visuomotor task than when
engaged in feeding or at rest. Based on these and other findings, Varela et al. have
suggested that “large-scale synchrony is the underlying basis for active attentive
behaviour”. [227, 229].

In a more recent study [207], it was investigated how the interactions between
selected areas in the hippocampus and amygdala in fear-conditioned mice compare
against those in controls. The response of the fear-conditioned group indicated a
selective synchronization in the theta frequency range (4-7 Hz) upon presentation of
the conditioned stimulus, which was not found in the control group. No significant
synchronization was observed in either group during presentation of the uncon-
ditioned stimulus. It was argued that these results are indicative of a functional
relationship between theta rhythm synchronization and the retrieval and expression
of fear.

6.5.1 Abnormal Neural Synchrony and Schizophrenia

Assuming synchronization is the mechanism that underlies neural integration, it
seems reasonable to suppose that disruptions in neural synchrony would impact
one’s behaviour. Interestingly, an impaired ability to integrate information has long
been identified as one of the symptoms of Schizophrenia. Other symptoms include
delusions, hallucinations, and incoherent thoughts, as well as social withdrawal,
poor motivation, and apathy [230, 231]. In recent years, it has been proposed that
these cognitive and affective impairments may be related to a defect in the mech-
anism believed to be responsible for the integration of distributed neural activity,
that is, to gamma band synchronization [208, 214, 228].

A recent report supports this [208]: when a set of Gestalt images were presented
to a group of patients diagnosed with Schizophrenia (SZ) and a group of Normal
Control (NC) subjects, a significant difference in neural orchestration between the
two was observed. A phase-locking response, persistent among individuals from
the NC group, but absent in the SZ group, was hypothesized to reflect a feature-
binding mechanism in the visual cortex which would explain the more efficient task
performance by healthy individuals.

Further evidence for abnormal neural synchrony in Schizophrenia was reported
in [211]. In this study, two groups, patients and controls, were presented with a
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set of images depicting six basic human emotions, which they were to recognize.
The response of each individual was measured using whole head MEG (Magnetoen-
cephalogram). Local activity was averaged over a region of interest (ROI) and a
coherence score was computed as the mutual information (MI) [232] between ROIs.
The MI analysis revealed a very organized pattern of linkages for normal subjects,
as opposed to the overall disturbed linkages for Schizophrenia patients. At some
level, these results agree with the outcome of another study [214], which involved
first-degree relatives of patients with Schizophrenia. Gamma-band synchronization
was found to be reduced in first-degree relatives with Schizophrenia Spectrum Per-
sonality Problems.

6.5.2 A Theory of Neural Synchronization?

It has been established that the processing of particular audiovisual stimuli coincides
with the temporal synchronization of neural activities in functionally specialized
brain regions. In addition there is some evidence that patients with Schizophrenia
or related neurological disorders are more likely to display abnormal patterns of
synchrony than controls. Meanwhile, the mechanics of this synchronization and its
supposed role in the integration of information remain poorly understood. Most
experimental studies resort to elementary statistical techniques to conclude with
confidence that some form of synchronization takes place. Beyond that, there ap-
pears to be a shortage of quantitative models; models that do not just extract
information from the data, but indeed attempt to explain the data. With no dis-
respect for the seminal importance of Kuramoto’s work, and that of others’ who
have contributed to the theory of coupled oscillators, it appears that we are still far
removed from effectively applying this theory in the context of the neural synchro-
nization problem. Fortunately, there is reason to believe that this gap is closing
fast, considering on the one hand the rate at which measurement techniques are
being refined, and, on the other hand, some of the pioneering work that is being
done on the theoretical front.

6.6 Summarizing Comments

Much of the research on the relation between network structure and synchroniz-
ability has focussed on networks of coupled Kuramoto oscillators. The onset of
synchronization in complex networks of coupled oscillators appears to be deter-
mined by a few key factors, the most important of which is the heterogeneity of
the degree distribution. In particular, when the variance of the degree distribution
tends to infinity, as is the case, for example, in scale-free networks with a power
law exponent between 2 and 3 and network size tending to infinity, the value for
the critical coupling tends to zero. For finite-size scale-free networks, the critical
coupling is generally nonzero. The theory of Master Stability Functions provides
a useful tool in studying the robustness of a network’s capacity to synchronize.
Results based on this theory indicate that generically, synchronizability can be im-
proved by introducing weights and directionality while maximal synchronizability
is attained by balancing node intensities.

One important future direction for research in this area that deserves mention
is the study of adaptive weighted networks [233]. Real life networks are hardly ever
static. From a modelling perspective it is essential that, when in the years ahead
new experimental data become available, which will eventually include detailed
dynamic information, one has in place the right models to accommodate the forms
of interaction these data may reveal.
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7 Network Structure and Disease Propagation

The mathematical theory of epidemics has been the subject of intensive research for
some time now and several different models for disease spread have been developed
[234, 235]. Recently, researchers have begun to investigate how the novel properties
observed in social networks and in networks of human sexual contacts [236] effect
the behaviour of various models of disease spread.

7.1 Scale-free Networks and Epidemic Thresholds

Here, we shall confine our discussion to results concerned with the two basic models
of disease spread on which the recent literature on network epidemiology has largely
focussed: the Susceptible-Infected-Susceptible or SIS model and the Susceptible-
Infected-Removed or SIR model. In the SIS model, a population is divided into
two groups: the first (S) consists of susceptible individuals, who are not infected
but can contract the disease from members of the second group (I) of infected
individuals. After a period of time, an infected person recovers and then becomes
susceptible again. Hence no immunity is conferred by contracting the disease and
the recovered infective can become infected again at a later time. In contrast, in
the SIR model, a recovered infective is regarded as being immune to the disease
and cannot subsequently become infected again. Hence, the population is divided
into three groups in such models: susceptibles (S), infectives (I) and removed or
recovered (R).

There are two fundamental parameters associated with any SIS or SIR model:
the probability λ of an infective passing on the disease to a susceptible with whom
they are in contact during the period in which they are infective, and the rate ν
at which an infective recovers. In basic models of population epidemiology, it is
assumed that the population is homogeneously mixed. This essentially amounts to
assuming that each individual, or node, in the population has the same number of
contacts. Under the assumptions of homogeneous mixing and a fixed population
size, the standard equations for the SIR model are given by [237, 238]

dS

dt
= −λSI (22)

dI

dt
= λSI − νI

dR

dt
= νI.

Here, the variables S(t), I(t), R(t) represent the total number of individuals in the
susceptible, infected and recovered classes respectively at time t. From a network
point of view, we can consider the population as a graph, G, in which each individual
is represented by a node and each edge represents a contact through which the
disease can spread. In a homogeneously mixed population, each node v in G has
the same degree, which would be equal to the mean degree, 〈k〉, of the network. This
assumption is only reasonable for networks whose degree distributions are narrow,
meaning that the coefficient of variation, CV =

√〈k2〉/〈k〉2 − 1, is very small.
Under the assumption of homogeneous mixing, the quantity ρ0 = 〈k〉λ/ν, rep-

resents the average number of secondary infections that would result from the in-
troduction of a single infected individual into an entirely susceptible population.
In this case, the introduction of an infective into the population will result in an
epidemic if the basic reproductive number R0 = ρ0 is greater than one, while if
R0 < 1, the disease will die out. Thus, defining λc = ν/〈k〉, an epidemic occurs
if the spreading rate, λ satisfies λ > λc while the disease dies out if λ < λc. The
constant λc is usually referred to as the epidemic threshold.
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While the assumption of homogeneous mixing might be reasonable for the classi-
cal ER random graph models, it is entirely inappropriate for BA and other scale-free
networks with broad-tailed degree distributions. The first results concerning epi-
demic spread on scale-free networks were presented in [239]. Specifically, it was
shown that for the SIS model on scale-free networks, surprisingly the epidemic
threshold is effectively zero. Similar findings were later presented in [218], where
the SIR model on networks with heterogeneous mixing was considered. For such
networks, the basic reproductive number R0 is given by the formula

R0 = ρ0(1 + C2
V ). (23)

Now, in the limit as network size tends to infinity, for a scale-free network with
degree distribution of the form P (k) ∼ k−γ with 2 < γ < 3, the coefficient of
variation CV of its node-degrees is infinite (more precisely, the second moment 〈k2〉
diverges as the network size, n, tends to infinity, while 〈k〉 remains finite). Thus, for
any non-zero spreading rate λ, the introduction of an infective into the population
can result in an epidemic. This also follows from the following formula for the
epidemic threshold for scale-free networks with degree distribution P (k) ∼ k−3,
which was presented in [240] (as well as a number of other sources).

λc =
〈k〉
〈k2〉 (24)

Note that this same formula has appeared above in the context of coherent syn-
chronization on random networks (18).

In [239] it was observed that, on a BA scale-free network, the steady state
prevalence Pss

5 depends on λ as Pss ∼ e−C/λ. The same result was subsequently
derived using different methods in [218]. Approximate expressions for the fraction
of nodes, I, in a scale-free network that are ever infected for an SIR model of disease
spread (the final epidemic size) have also been presented in [218]. The dependence
of I on λ for scale-free networks with 2 < γ < 3 followed a power law of the
form C(λ)1/(3−γ). Also, for networks with γ = 3, the number of infected nodes
of low-degree is typically small, while many (essentially all) nodes of high-degree
are infected. These findings are in agreement with those described in [241], which
indicate that disease spreads in a hierarchical cascade from hub nodes to nodes
with intermediate degree to nodes with low degree. These observations clearly have
significant implications for the development of containment strategies. Specifically,
they suggest that an effective containment strategy would first and foremost target
the hubs of a network. Similar recommendations have been made in [242].

Before we proceed, it should be noted that the results discussed in the previous
paragraph are based on a number of assumptions. They have been derived for
the limiting case of an infinite network or population, and rely on a continuous
approximation of the node-degree variable k. When finite size effects are taken into
account the epidemic threshold does not vanish but in fact takes a positive value
[218]. Also, the networks for which the above results were derived do not take any
correlation between the degrees of connected nodes into account. Both of these
assumptions are clearly invalid for real social networks. Later in this section, we
shall describe attempts which have been made to address these limitations.

7.2 Impact of Finite Size and Local Structure on Disease
Spread

Real networks of social and sexual contacts are finite and, for this reason, a num-
ber of authors have studied the dynamics of disease spread on scale-free networks

5The steady-state prevalence is the fraction of infected nodes in the steady state.
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with finitely many nodes. In [217], the epidemic threshold, λc, and the steady-state
prevalence, Pss, for the SIS model on finite scale-free networks were investigated.
It was found that λc is non-vanishing in this case, and formulae approximating the
dependence of λc and ρ on the network size, n, were also derived. While the epi-
demic threshold is non-zero for finite scale-free networks, it is considerably smaller
than for a corresponding homogeneous network with the same average degree [217].
In fact for scale-free networks of size larger than 1000, the threshold is at least
one order of magnitude smaller than in the homogeneous case. These findings are
largely in agreement with the remarks on finite-size effects for SIR models made
towards the end of the paper [218]. Note also the findings reported in [243] where
the behaviour of the SIS model on two different types of network with scale-free
degree distributions was studied numerically. For both network types, the epidemic
threshold λc is non-zero. However, the dependence of λc on network size and the
effect of the spreading rate λ on Pss varied significantly between the two classes of
network, even for networks with the same underlying degree distribution. These
results demonstrate that it is possible for two networks with the same degree dis-
tribution, but different local structures, to exhibit significantly different behaviours
with respect to disease propagation.

In order to take more aspects of network structure into account, a number of
authors have studied classes of scale-free networks in which the degrees of neighbour-
ing nodes are correlated. Such networks offer a more realistic picture of real social
networks in which such correlation is common. In [244] the SIS model was studied
on a class of highly-clustered scale-free networks. Numerical simulations indicated
that the highly clustered networks behave in a qualitatively different manner than
the usual scale-free models, both with respect to the dependence of steady-state
prevalence Pss on λ and to survival probability of the disease. Moreover, the au-
thors of this paper argue that for this highly structured class of scale-free networks,
there is a non-vanishing epidemic threshold even in the limit as the network size, n,
tends to infinity. They further conjectured that the value of the threshold depends
on the degree correlations within the network rather than on the degree distribution
itself.

In [245] the value of the epidemic threshold for a scale-free network was related
to the largest eigenvalue of the so-called connectivity matrix C, where Ckk′ =
kP (k′|k). Here P (k′|k) represents the probability that a given link emanating from
a node of degree k connects to a node of degree k′. For networks with no higher
order correlations, the epidemic threshold is equal to the reciprocal of the largest
eigenvalue of C. Based on these results, in [246] conditions for the absence of an
epidemic threshold in scale-free networks with arbitrary two-point degree correlation
functions P (k′|k) and degree exponents in the range 2 < γ ≤ 3 were investigated.
The principal result of this paper established that in this case, provided the network
possesses no additional, higher order, structure, the epidemic threshold is again zero
in the limit of infinite network size. We should also note here the work described
in [86, 247] which further investigated the effects of degree correlations and local
structure on the dynamics of disease spread in scale-free networks.

7.3 Containment Strategies on Heterogeneous Networks

One of the most fundamental issues in epidemiology is how to design effective strate-
gies for containing the outbreak of an infectious disease. One simple strategy is
mass vaccination, in which (almost) every individual in the population is vacci-
nated against a disease, and hence immune to it. While this can be an effective
strategy for containing infectious diseases, it is crude and operationally expensive.
As a result, there is great interest in alternative strategies which, although perhaps
slightly less effective, are much more economical in terms of resources and logistics.
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Recently, in [240, 242], the implications of power law degree distributions for the
design of immunization programmes was investigated using mean-field approxima-
tions and numerical simulations. The first strategy considered was that of uniform
random vaccination in which individuals are uniformly selected at random and vac-
cinated. However, while this strategy can work for homogeneous populations, it is
known to be ineffective in the heterogeneous case [234]. The findings in [240, 242]
suggest that for scale-free networks, and the SIS model of disease spread, consid-
erable improvements over uniform vaccination can be achieved through targeting
hub nodes within a network. In fact, two different approaches of this kind were
suggested. In the first of these, nodes are vaccinated with probability proportional
to their degree, so that a greater proportion of nodes of high degree are vaccinated
than is the case for nodes of low degree. The second strategy aims to specifically
target hub nodes by vaccinating all nodes in the network of degree higher than some
threshold kc. While this appears to be more cost effective, in terms of how many
individuals need to be immunized in order to eventually eradicate the disease, it re-
lies on a fairly complete knowledge of the network’s topology, which is not typically
available for real social networks.

The selective targeting of hubs requires a fairly good knowledge of a network’s
degree distribution, and such global information may not always be available. In
[248], an alternative strategy was proposed, based on the immunization of random
acquaintances. Like uniform immunization, this strategy requires no specific knowl-
edge about the network, and has the added advantage of becoming effective at a
much lower penetration rate.

A disease containment strategy for outbreaks of smallpox, based on bi-partite
graph [28] models of social networks was described in [13]. The graphs used in this
paper have two distinct types of vertices, which correspond to locations and indi-
viduals respectively. A containment strategy combining targeted vaccination with
early detection appeared to work effectively. Early detection can be accomplished
by placing sensors at locations with high degree, that is, locations visited by many
people, while efficient vaccination is effected by targeting long-distance travellers.
Various factors such as withdrawing infected individuals to their homes, and delays
in introducing containment measures can have an impact on the number of deaths
caused by a smallpox outbreak. Numerical simulation suggested that the most sig-
nificant such factor was the early removal of infected individuals to their homes
with the next most influential factor being the length of delay in implementing
vaccination schemes.

In [249], motivated by the recent emergence of the SARS virus, several interven-
tion strategies for epidemic containment were considered, and the impact of each
strategy on the effective reproduction number was determined. In general, the re-
sults of the paper suggest that combining different strategies is a good idea, while
the strategy of tracing and quarantining the contacts of diagnosed cases was found
to be particularly effective. The model studied in this paper incorporated several
realistic aspects of social structure. For instance, given that people tend to be more
frequently in contact with individuals within their own household than with people
from other households, a distinction was drawn between within-household transmis-
sion and between-household transmission. Furthermore, school-children and the rest
of the population were considered separately. While the manner of counting sec-
ondary infections, and the reproduction number, used in this paper were somewhat
non-standard, they have the advantage of being analytically tractable. Parameter
values pertaining to the distribution of household sizes were selected in accordance
with given census data. Various control strategies were considered, including expo-
sure avoidance, isolating cases at diagnosis, closing schools, quarantining affected
household, and contact tracing. If an emerging infection were to enter a juvenile
population, closing schools can reduce transmission significantly.
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7.4 Other Network Models and the General Theory of Dis-
ease Spread on Networks

Disease propagation on network topologies other than scale-free topologies has also
been considered. For instance, in [250] the impact of dynamically adding long-range
links to regular one-dimensional lattices on the spread of disease was studied. Using
the SIR model for disease spread, they have shown that the resulting small-world
network [30] structure exhibits a shortcut-dependent epidemic threshold. An ap-
proximate expression for this threshold in terms of the effective spreading rate and
the effective recovery rate was shown to be accurate over a large range of para-
meter values. The authors also acknowledged the fact, previously stated elsewhere
[10, 218], that the basic reproduction number has limited use outside the homoge-
neous mixing paradigm. They argue that this is particularly true for small-world
networks because “the effect of a secondary infection caused by nearest-neighbor
transmission is different from the one caused by a long-range jump” [250]. Assuming
a spreading probability of one, so that susceptibles in direct contact with infectives
will become infected during the next iteration step, it was shown that the epidemic
saturation time, i.e. the time it takes for 95% of the susceptible population to
become infected, scales with −log(n0), where n0 is the fraction of nodes initially
infected. The scenario of spreading with near certainty would correspond to the
onset of an epidemic, and is used by the authors to predict the final epidemic size
as well the development of an epidemic from its beginning stages. The dynamics of
the SIR model and the related susceptible-exposed-infected-removed (SEIR) model
on small-world networks were also investigated in the paper [251].

In [252] a computational SIR-type model of global epidemic spread is pre-
sented that is based on real air-transportation and census data. The worldwide
air-transportation network (WAN) comprises nearly four thousand nodes (airports)
and over eighteen thousand connections between them. It has a highly hetero-
geneous structure, which the authors show to have a major impact on both the
epidemic spread pattern and the predictability of the same. Specifically, for the
WAN,the epidemic phase, during which nearly all the agents are in the infected
state, tends to be relatively short. At the same time, the time it takes for the epi-
demic to die out is much longer. Also, the predictability of the spreading pattern
(the order and degree in which respective cities are affected) appears to be relatively
poor, especially during the first few weeks of an outbreak. The authors propose that
this is due to the heterogeneity of the connectivity pattern, which would provide a
choice of effective spreading channels.

Recently, in [253] analytical techniques were developed which can be used to
derive exact solutions for a large class of standard epidemiological models on a va-
riety of networks. These techniques are based on generating functions and allow
for great flexibility in terms of assumptions on network structure and degree cor-
relations. Further they can accommodate heterogeneity in transmission rate and
infectious period and allow for correlations between parameters such as transmis-
sion rate and node degree. The results derived in this paper include formulae for
the epidemic threshold and average outbreak size for the network classes consid-
ered. More recently, the problem of epidemic spread on random graph models has
been studied in a mathematically rigorous fashion within the framework of Markov
processes in [254]. Here, the dependence of the final epidemic size and the lifetime
of an outbreak on graph parameters such as the spectral radius of the network’s
adjacency matrix and the isoperimetric number of the network was investigated.
Some general theorems as well as results for a variety of graph models including
the ER and scale-free models were derived for the SIS and SIR models of disease
spread.

The techniques developed in [253] have been applied in [10] in an effort to explain
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some puzzling aspects of the recent SARS outbreaks. Specifically, the question of
why these outbreaks never led to an epidemic, given the relatively high estimates
for the basic reproduction number, was considered. Using purely analytical tools,
the authors derive expressions for the likelihood that a small outbreak results in
an epidemic in, respectively, an urban network, a power-law network and a Poisson
network. They found that “outbreaks are consistently less likely to reach epidemic
proportions in the power-law network than in the others”. It was also shown that
for all three network classes (all with heterogeneous mixing) there is a nonzero
probability that an outbreak does not become an epidemic, even when the spreading
rate of a disease exceeds the epidemic threshold. By contrast, in the paradigm
of homogeneous mixing, an epidemic will occur with certainty whenever the basic
reproduction number is greater than unity. It is also worth noting that the likelihood
of an outbreak is a monotonically increasing function of the degree of the first
infective, and if λ is far above the epidemic threshold, the risk of an epidemic is
very high even for small initial outbreaks in the case of urban networks.

Finally, we note that the evolution of diseases on local and global networks has
been studied in [255]. The basic premise of this work was that different disease
strains adapt to compete for resources (susceptible hosts). In the model proposed
here, adaptation corresponds to a random mutation of both the transmission rate
and the infectious period, which takes place whenever a new infection occurs. As
the authors point out, in mean-field models this type of evolution would result in
runaway behavior with selection for ever higher transmission rates and ever longer
infectious periods. By contrast, both spatial heterogeneity in local networks and
the presence of shortcuts in global networks appear to constrain the evolutionary
dynamics, to the effect that the rate of adaptation is generally slower (in the case
of a global network, the transmission rate even saturates at some finite value) and
the variability (in the dynamics) higher than in mean-field models. Simulation
results suggest that in networks with many long-distance connections and a low
clustering coefficient, disease strains with conservative transmission rates and long
infectious periods are most likely to survive. By comparison, for networks with
strong local connectivity the fittest strains are those that have high transmission
rates and relatively short infectious periods.

7.5 Summarizing Comments

The structure of a social network can have a significant impact on the dynamics of
disease propagation. In particular, for scale-free networks, in the limiting case of
infinitely many nodes, the epidemic threshold is zero. This means that any non-
zero spreading rate could lead to an epidemic. This fact has been established for
uncorrelated scale-free networks of infinite size. For scale-free networks of finite
size, the epidemic threshold is non-vanishing but considerably smaller than for a
homogeneously mixed population. Results have recently been derived giving condi-
tions under which the epidemic threshold will be zero for scale-free networks with
degree correlations, in the limiting case of networks of infinite size. The dynamical
behaviour of epidemics on networks with heterogeneous degree distributions has
implications for the design of strategies for containing outbreaks. In particular, the
targeting of nodes, or individuals, of high degree can offer significant improvements
over random immunization programmes.

8 Conclusions and Directions for Future Research

There has been much written in the last few years about the need to move away from
a purely reductionist approach to Biology, and to develop an integrative, systems-
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oriented analysis paradigm. While ultimately, we may wish to understand the
dynamical processes that take place in living organisms, we first need to under-
stand how the components in biological systems interact with each other, and the
biological significance of those interactions. Biological network analysis is thus a
necessary, and highly important aspect of the general systems-driven approach to
Biology.

Recent developments in Biology and Medicine have led to a clear need for biolog-
ical network analysis. Advances in high-throughput experimental technologies have
generated massive amounts of data on bio-molecular networks. Given the size and
complexity of these networks, systematic methods are clearly required in order to
derive meaningful information from their structure. Without the provision of such
methods, the time and money spent on the construction of complete network maps
will lead to little more than intricate and unintelligible graphical representations of
the interactions within living cells. Moreover, current techniques for the generation
of network data are error-prone. Network analysis techniques can be used to assess
the accuracy of such data and to help obtain more reliable network maps in the
future.

While the subject is still at an early stage of development and there is still much
to do, network analysis has already been used, with some promise, to address a
variety of biological problems. For instance, the efforts to determine the function or
importance of a protein from network structure demonstrate that, notwithstanding
the limitations of current data and methodologies, biological information can be
derived from the topology of interaction networks. Breaking complex networks into
modules and motifs helps to simplify their structure and gives valuable insights into
network organization and function. Mathematical models for network growth, such
as those described in Section 3, allow us to quantitatively test hypotheses concerning
the evolution of PPI and other biological networks and reliable models can be used
to test the performance of algorithms in silico. The design of effective containment
strategies for disease spread, and of novel therapies for complex neurological disor-
ders are two examples of the potential benefits of the research directions discussed
in Sections 6 and 7.

It is clear from our discussion of synchronization and disease spread that network
topology can have a major impact on dynamical processes. If we are to develop
truly integrated models of biological processes, we need a deeper understanding of
issues such as those considered in Sections 6 and 7. The analysis of the dynamics of
network motifs, and their connection to biological function, is another example of
how valuable insights can be gained from studying the interplay between topology
and dynamics. In this case, the theoretical work has suggested novel experiments
to deepen our understanding of the organization of living cells.

Despite the progress that has been made in the analysis of biological networks,
there are many major issues that still need to be addressed. The unreliable quality
and incompleteness of existing data sets is a serious impediment to network research,
and the development of improved experimental and statistical techniques to enhance
the accuracy of network maps is of vital importance for future research efforts.
Network-based methods for experiment-design and the prediction of interactions
should play a key role in this work.

Robustness with respect to data inaccuracy is a critical issue for the techniques
used to predict essentiality and determine protein function described in Sections
4 and 5. The effect of false positives and false negatives on the performance of
these methods needs to be analysed more thoroughly if they are to be used with
confidence. The same comment applies to the impact of network sampling on such
methods, and there is considerable scope, and need, for more research on these
questions. A second major limitation of many existing methods for predicting the
importance or function of a gene or protein is that they rely on static, topological
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considerations and fail to take into account biological or dynamic information about
the nature of a network’s interactions. The extension of existing approaches to
incorporate such details should form a major part of future research efforts. Flux
Balance Analysis and related methods are one example of the type of work that
can be done in this direction. Extending existing algorithms to weighted networks
would also be a great assistance as it would allow information such as the level of
confidence in an interaction or its strength to be included. With regard to network
motifs, more detailed analysis of the biological and dynamical properties of motifs is
required if their role is to be understood. To date, only the feed-forward loop (FFL)
motif has been analysed in any depth, and combined experimental and theoretical
work of the type discussed in Section 5.2 should be undertaken for other motifs also.

Practically all of the existing theoretical results on synchronisation and epidemic
spread have been derived for the limiting case of infinite-size networks. Obviously,
real biological networks are not infinite and both of these phenomena should be
studied in more detail on finite networks to help obtain more realistic and ap-
plicable results. While interesting theoretical results have been obtained for the
synchronisation of coupled oscillators and much has been learnt about the role of
synchronisation in neurological disorders, the gap between theory and experiment is
still daunting. If we are to make the hoped-for impact in the development of treat-
ments for diseases such as schizophrenia, there is a clear need for more accurate and
sophisticated models of neural oscillations.

In finishing, it can be fairly said of biological network analysis that the need for
it is clear, the challenges many and the possibilities exciting. It is hoped that this
article will be of assistance to a broad community of researchers, by highlighting
recent advances in the field, as well as significant issues and problems that still need
to be addressed.
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