494 research outputs found

    Experimental investigations of two-phase flow measurement using ultrasonic sensors

    Get PDF
    This thesis presents the investigations conducted in the use of ultrasonic technology to measure two-phase flow in both horizontal and vertical pipe flows which is important for the petroleum industry. However, there are still key challenges to measure parameters of the multiphase flow accurately. Four methods of ultrasonic technologies were explored. The Hilbert-Huang transform (HHT) was first applied to the ultrasound signals of air-water flow on horizontal flow for measurement of the parameters of the two- phase slug flow. The use of the HHT technique is sensitive enough to detect the hydrodynamics of the slug flow. The results of the experiments are compared with correlations in the literature and are in good agreement. Next, experimental data of air-water two-phase flow under slug, elongated bubble, stratified-wavy and stratified flow regimes were used to develop an objective flow regime classification of two-phase flow using the ultrasonic Doppler sensor and artificial neural network (ANN). The classifications using the power spectral density (PSD) and discrete wavelet transform (DWT) features have accuracies of 87% and 95.6% respectively. This is considerably more promising as it uses non-invasive and non-radioactive sensors. Moreover, ultrasonic pulse wave transducers with centre frequencies of 1MHz and 7.5MHz were used to measure two-phase flow both in horizontal and vertical flow pipes. The liquid level measurement was compared with the conductivity probes technique and agreed qualitatively. However, in the vertical with a gas volume fraction (GVF) higher than 20%, the ultrasound signals were attenuated. Furthermore, gas-liquid and oil-water two-phase flow rates in a vertical upward flow were measured using a combination of an ultrasound Doppler sensor and gamma densitometer. The results showed that the flow gas and liquid flow rates measured are within ±10% for low void fraction tests, water-cut measurements are within ±10%, densities within ±5%, and void fractions within ±10%. These findings are good results for a relatively fast flowing multiphase flow

    Experimental and theoretical investigation of flow measurement by doppler ultrasound

    Get PDF

    Ultrasonic Doppler measurement of renal artery blood flow

    Get PDF
    An extensive evaluation of the practical and theoretical limitations encountered in the use of totally implantable CW Doppler flowmeters is provided. Theoretical analyses, computer models, in-vitro and in-vivo calibration studies describe the sources and magnitudes of potential errors in the measurement of blood flow through the renal artery, as well as larger vessels in the circulatory system. The evaluation of new flowmeter/transducer systems and their use in physiological investigations is reported

    The use of ultrasound for detecting particles suspended in lubricant and hydraulic fluids

    Get PDF
    Imperial Users onl

    Material phase detection using capacitance tomography

    Get PDF
    Includes bibliographical references.The design of sensor electronics for a tomographic imaging system based on electrical capacitance sensors is of interest in many different engineering applications. This can be especially beneficial in industrial two-component flow systems where capacitance tomography may provide information on how the two components are distributed, and the overall mass flow rate. Conventional flowmeters are often unsuitable for accurate measurements in two phase flows. This is particularly prevalent in cases where the component distribution is varying in space and time. Computerised tomographic methods used in medical imaging, can provide a useful means for obtaining a1most instantaneous information on the distribution of components in a cross section of a pipe. This aspect is exploited in this work leading to the possibility of a more accurate and relevant measurement. Several different flow imaging techniques have been developed based on neutron, x-ray, capacitance and ultrasound techniques. This work firstly reviews the recent developments in tomographic systems with particular reference to measurements in industrial processes. The principle flow sensing methods are summarized including cross correlation techniques and their applications. Application methods of artificial intelligence for image reconstruction are also reviewed as these techniques will be required in future developments

    Ultrasonic blood flow detection: Doppler techniques for obstetrics

    Get PDF
    Ultrasonic Doppler techniques have been developed for the detection of uterine blood flow. The work was undertaken to provide a noninvasive method for the study of foetal haemodynamics.The operation of the continuous wave and the pulsed wave Doppler instruments and the factors which influence their performance are discussed. The different types of Doppler signal extraction techniques which can be used with the pulsed wave Doppler are described. A design for a 2.5 MHz pulsed wave Doppler instrument is presented. The results of in vivo and in vitro trials with this instrument are presented.A blood flow instrument specially designed for examining blood flow in the pregnant uterus is described. It consists of a real time ultrasonic scanner of rotating transducer design used in conjunction with the above types of Doppler instrument. In vivo evaluation of this equipment is presented.A novel type of continuous wave Doppler instrument, the intersecting zone Doppler is described. This device overcomes the problem of lack of localisation normally associated with the continuous wave device.A composite blood flow system incorporating all three Doppler techniques is described. Blood flow spectrograms from various sites within the pregnant uterus are presented

    Ultrasound Imaging Innovations for Visualization and Quantification of Vascular Biomarkers

    Get PDF
    The existence of plaque in the carotid arteries, which provide circulation to the brain, is a known risk for stroke and dementia. Alas, this risk factor is present in 25% of the adult population. Proper assessment of carotid plaque may play a significant role in preventing and managing stroke and dementia. However, current plaque assessment routines have known limitations in assessing individual risk for future cardiovascular events. There is a practical need to derive new vascular biomarkers that are indicative of cardiovascular risk based on hemodynamic information. Nonetheless, the derivation of these biomarkers is not a trivial technical task because none of the existing clinical imaging modalities have adequate time resolution to track the spatiotemporal dynamics of arterial blood flow that is pulsatile in nature. The goal of this dissertation is to devise a new ultrasound imaging framework to measure vascular biomarkers related to turbulent flow, intra-plaque microvasculature, and blood flow rate. Central to the proposed framework is the use of high frame rate ultrasound (HiFRUS) imaging principles to track hemodynamic events at fine temporal resolution (through using frame rates of greater than 1000 frames per second). The existence of turbulent flow and intra-plaque microvessels, as well as anomalous blood flow rate, are all closely related to the formation and progression of carotid plaque. Therefore, quantifying these biomarkers can improve the identification of individuals with carotid plaque who are at risk for future cardiovascular events. To facilitate the testing and the implementation of the proposed imaging algorithms, this dissertation has included the development of new experimental models (in the form of flow phantoms) and a new HiFRUS imaging platform with live scanning and on-demand playback functionalities. Pilot studies were also carried out on rats and human volunteers. Results generally demonstrated the real-time performance and the practical efficacy of the proposed algorithms. The proposed ultrasound imaging framework is expected to improve carotid plaque risk classification and, in turn, facilitate timely identification of at-risk individuals. It may also be used to derive new insights on carotid plaque formation and progression to aid disease management and the development of personalized treatment strategies

    Arterial fluid mechanics and enhanced permeability in the normal rabbit aorta

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 1994.Includes bibliographical references.by Abdul I. Barakat.Ph.D

    Index to 1986 NASA Tech Briefs, volume 11, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1986 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Implementation of optical feedback interferometry for sensing applications in fluidic systems

    Get PDF
    Optical feedback interferometry is a sensing technique with relative recent implementation for the interrogation of fluidic systems. The sensing principle is based on the perturbation of the laser emission parameters induced by the reinjection in the laser cavity of light back-scattered from a distant target. The technique allows for the development of compact and noninvasive sensors that measure various parameters related to the motion of moving targets. In particular, optical feedback interferometers take advantage of the Doppler effect to measure the velocity of tracers in flowing liquids. These important features of the optical feedback interferometry technique make it wellsuited for a variety of applications in chemical engineering and biomedical fields, where accurate monitoring of the flows is needed. This thesis presents the implementation of optical feedback interferometry based sensors in multiple fluidic systems where local velocity or flow rate are directly measured. We present an application-centered study of the optical feedback sensing technique used for flow measurement at the microscale with focus on the reliability of the signal processing methods for flows in the single and the multiple scattering regimes. Further, we present experimental results of ex vivo measurements where the optical feedback sensor is proposed as an alternative system for myography. In addition we present a real-time implementation for the assessment of non-steady flows in a millifluidic configuration. A semi-automatized system for single particle detection in a microchannel is proposed and demonstrated. Finally, an optical feedback based laser sensor is implemented for the characterization of the interactions between two immiscible liquid-liquid flowing at the microscale, and the measurement is compared to a theoretical model developed to describe the hydrodynamics of both fluids in a chemical microreactor. The present manuscript describes an important contribution to the implementation of optical feedback sensors for fluidic and microfluidic applications. It also presents remarkable experimental results that open new horizons to the optical feedback interferometry
    • …
    corecore