137 research outputs found

    First-Order Provenance Games

    Full text link
    We propose a new model of provenance, based on a game-theoretic approach to query evaluation. First, we study games G in their own right, and ask how to explain that a position x in G is won, lost, or drawn. The resulting notion of game provenance is closely related to winning strategies, and excludes from provenance all "bad moves", i.e., those which unnecessarily allow the opponent to improve the outcome of a play. In this way, the value of a position is determined by its game provenance. We then define provenance games by viewing the evaluation of a first-order query as a game between two players who argue whether a tuple is in the query answer. For RA+ queries, we show that game provenance is equivalent to the most general semiring of provenance polynomials N[X]. Variants of our game yield other known semirings. However, unlike semiring provenance, game provenance also provides a "built-in" way to handle negation and thus to answer why-not questions: In (provenance) games, the reason why x is not won, is the same as why x is lost or drawn (the latter is possible for games with draws). Since first-order provenance games are draw-free, they yield a new provenance model that combines how- and why-not provenance

    Semiring Provenance for Fixed-Point Logic

    Get PDF

    Semiring Provenance for B\"uchi Games: Strategy Analysis with Absorptive Polynomials

    Full text link
    This paper presents a case study for the application of semiring semantics for fixed-point formulae to the analysis of strategies in B\"uchi games. Semiring semantics generalizes the classical Boolean semantics by permitting multiple truth values from certain semirings. Evaluating the fixed-point formula that defines the winning region in a given game in an appropriate semiring of polynomials provides not only the Boolean information on who wins, but also tells us how they win and which strategies they might use. This is well-understood for reachability games, where the winning region is definable as a least fixed point. The case of B\"uchi games is of special interest, not only due to their practical importance, but also because it is the simplest case where the fixed-point definition involves a genuine alternation of a greatest and a least fixed point. We show that, in a precise sense, semiring semantics provide information about all absorption-dominant strategies -- strategies that win with minimal effort, and we discuss how these relate to positional and the more general persistent strategies. This information enables further applications such as game synthesis or determining minimal modifications to the game needed to change its outcome. Lastly, we discuss limitations of our approach and present questions that cannot be immediately answered by semiring semantics.Comment: Full version of a paper submitted to GandALF 202

    Provenance for Aggregate Queries

    Get PDF
    We study in this paper provenance information for queries with aggregation. Provenance information was studied in the context of various query languages that do not allow for aggregation, and recent work has suggested to capture provenance by annotating the different database tuples with elements of a commutative semiring and propagating the annotations through query evaluation. We show that aggregate queries pose novel challenges rendering this approach inapplicable. Consequently, we propose a new approach, where we annotate with provenance information not just tuples but also the individual values within tuples, using provenance to describe the values computation. We realize this approach in a concrete construction, first for "simple" queries where the aggregation operator is the last one applied, and then for arbitrary (positive) relational algebra queries with aggregation; the latter queries are shown to be more challenging in this context. Finally, we use aggregation to encode queries with difference, and study the semantics obtained for such queries on provenance annotated databases

    Provenance Circuits for Trees and Treelike Instances (Extended Version)

    Full text link
    Query evaluation in monadic second-order logic (MSO) is tractable on trees and treelike instances, even though it is hard for arbitrary instances. This tractability result has been extended to several tasks related to query evaluation, such as counting query results [3] or performing query evaluation on probabilistic trees [10]. These are two examples of the more general problem of computing augmented query output, that is referred to as provenance. This article presents a provenance framework for trees and treelike instances, by describing a linear-time construction of a circuit provenance representation for MSO queries. We show how this provenance can be connected to the usual definitions of semiring provenance on relational instances [20], even though we compute it in an unusual way, using tree automata; we do so via intrinsic definitions of provenance for general semirings, independent of the operational details of query evaluation. We show applications of this provenance to capture existing counting and probabilistic results on trees and treelike instances, and give novel consequences for probability evaluation.Comment: 48 pages. Presented at ICALP'1
    corecore