Query evaluation in monadic second-order logic (MSO) is tractable on trees
and treelike instances, even though it is hard for arbitrary instances. This
tractability result has been extended to several tasks related to query
evaluation, such as counting query results [3] or performing query evaluation
on probabilistic trees [10]. These are two examples of the more general problem
of computing augmented query output, that is referred to as provenance. This
article presents a provenance framework for trees and treelike instances, by
describing a linear-time construction of a circuit provenance representation
for MSO queries. We show how this provenance can be connected to the usual
definitions of semiring provenance on relational instances [20], even though we
compute it in an unusual way, using tree automata; we do so via intrinsic
definitions of provenance for general semirings, independent of the operational
details of query evaluation. We show applications of this provenance to capture
existing counting and probabilistic results on trees and treelike instances,
and give novel consequences for probability evaluation.Comment: 48 pages. Presented at ICALP'1