5 research outputs found

    Formal Proofs for Nonlinear Optimization

    Get PDF
    We present a formally verified global optimization framework. Given a semialgebraic or transcendental function ff and a compact semialgebraic domain KK, we use the nonlinear maxplus template approximation algorithm to provide a certified lower bound of ff over KK. This method allows to bound in a modular way some of the constituents of ff by suprema of quadratic forms with a well chosen curvature. Thus, we reduce the initial goal to a hierarchy of semialgebraic optimization problems, solved by sums of squares relaxations. Our implementation tool interleaves semialgebraic approximations with sums of squares witnesses to form certificates. It is interfaced with Coq and thus benefits from the trusted arithmetic available inside the proof assistant. This feature is used to produce, from the certificates, both valid underestimators and lower bounds for each approximated constituent. The application range for such a tool is widespread; for instance Hales' proof of Kepler's conjecture yields thousands of multivariate transcendental inequalities. We illustrate the performance of our formal framework on some of these inequalities as well as on examples from the global optimization literature.Comment: 24 pages, 2 figures, 3 table

    Certification of Bounds of Non-linear Functions: the Templates Method

    Get PDF
    The aim of this work is to certify lower bounds for real-valued multivariate functions, defined by semialgebraic or transcendental expressions. The certificate must be, eventually, formally provable in a proof system such as Coq. The application range for such a tool is widespread; for instance Hales' proof of Kepler's conjecture yields thousands of inequalities. We introduce an approximation algorithm, which combines ideas of the max-plus basis method (in optimal control) and of the linear templates method developed by Manna et al. (in static analysis). This algorithm consists in bounding some of the constituents of the function by suprema of quadratic forms with a well chosen curvature. This leads to semialgebraic optimization problems, solved by sum-of-squares relaxations. Templates limit the blow up of these relaxations at the price of coarsening the approximation. We illustrate the efficiency of our framework with various examples from the literature and discuss the interfacing with Coq.Comment: 16 pages, 3 figures, 2 table

    Certification of Real Inequalities -- Templates and Sums of Squares

    Full text link
    We consider the problem of certifying lower bounds for real-valued multivariate transcendental functions. The functions we are dealing with are nonlinear and involve semialgebraic operations as well as some transcendental functions like cos\cos, arctan\arctan, exp\exp, etc. Our general framework is to use different approximation methods to relax the original problem into polynomial optimization problems, which we solve by sparse sums of squares relaxations. In particular, we combine the ideas of the maxplus estimators (originally introduced in optimal control) and of the linear templates (originally introduced in static analysis by abstract interpretation). The nonlinear templates control the complexity of the semialgebraic relaxations at the price of coarsening the maxplus approximations. In that way, we arrive at a new - template based - certified global optimization method, which exploits both the precision of sums of squares relaxations and the scalability of abstraction methods. We analyze the performance of the method on problems from the global optimization literature, as well as medium-size inequalities issued from the Flyspeck project.Comment: 27 pages, 3 figures, 4 table

    Certification of inequalities involving transcendental functions: combining SDP and max-plus approximation

    Get PDF
    We consider the problem of certifying an inequality of the form f(x)0f(x)\geq 0, xK\forall x\in K, where ff is a multivariate transcendental function, and KK is a compact semialgebraic set. We introduce a certification method, combining semialgebraic optimization and max-plus approximation. We assume that ff is given by a syntaxic tree, the constituents of which involve semialgebraic operations as well as some transcendental functions like cos\cos, sin\sin, exp\exp, etc. We bound some of these constituents by suprema or infima of quadratic forms (max-plus approximation method, initially introduced in optimal control), leading to semialgebraic optimization problems which we solve by semidefinite relaxations. The max-plus approximation is iteratively refined and combined with branch and bound techniques to reduce the relaxation gap. Illustrative examples of application of this algorithm are provided, explaining how we solved tight inequalities issued from the Flyspeck project (one of the main purposes of which is to certify numerical inequalities used in the proof of the Kepler conjecture by Thomas Hales).Comment: 7 pages, 3 figures, 3 tables, Appears in the Proceedings of the European Control Conference ECC'13, July 17-19, 2013, Zurich, pp. 2244--2250, copyright EUCA 201

    Positivstellensatz certificates for containment of polyhedra and spectrahedra

    No full text
    Containment problems belong to the classical problems of (convex) geometry. In the proper sense, a containment problem is the task to decide the set-theoretic inclusion of two given sets, which is hard from both the theoretical and the practical perspective. In a broader sense, this includes, e.g., radii or packing problems, which are even harder. For some classes of convex sets there has been strong interest in containment problems. This includes containment problems of polyhedra and balls, and containment of polyhedra, which have been studied in the late 20th century because of their inherent relevance in linear programming and combinatorics. Since then, there has only been limited progress in understanding containment problems of that type. In recent years, containment problems for spectrahedra, which naturally generalize the class of polyhedra, have seen great interest. This interest is particularly driven by the intrinsic relevance of spectrahedra and their projections in polynomial optimization and convex algebraic geometry. Except for the treatment of special classes or situations, there has been no overall treatment of that kind of problems, though. In this thesis, we provide a comprehensive treatment of containment problems concerning polyhedra, spectrahedra, and their projections from the viewpoint of low-degree semialgebraic problems and study algebraic certificates for containment. This leads to a new and systematic access to studying containment problems of (projections of) polyhedra and spectrahedra, and provides several new and partially unexpected results. The main idea - which is meanwhile common in polynomial optimization, but whose understanding of the particular potential on low-degree geometric problems is still a major challenge - can be explained as follows. One point of view towards linear programming is as an application of Farkas' Lemma which characterizes the (non-)solvability of a system of linear inequalities. The affine form of Farkas' Lemma characterizes linear polynomials which are nonnegative on a given polyhedron. By omitting the linearity condition, one gets a polynomial nonnegativity question on a semialgebraic set, leading to so-called Positivstellensaetze (or, more precisely Nichtnegativstellensaetze). A Positivstellensatz provides a certificate for the positivity of a polynomial function in terms of a polynomial identity. As in the linear case, these Positivstellensaetze are the foundation of polynomial optimization and relaxation methods. The transition from positivity to nonnegativity is still a major challenge in real algebraic geometry and polynomial optimization. With this in mind, several principal questions arise in the context of containment problems: Can the particular containment problem be formulated as a polynomial nonnegativity (or, feasibility) problem in a sophisticated way? If so, how are positivity and nonnegativity related to the containment question in the sense of their geometric meaning? Is there a sophisticated Positivstellensatz for the particular situation, yielding certificates for containment? Concerning the degree of the semialgebraic certificates, which degree is necessary, which degree is sufficient to decide containment? Indeed, (almost) all containment problems studied in this thesis can be formulated as polynomial nonnegativity problems allowing the application of semialgebraic relaxations. Other than this general result, the answer to all the other questions (highly) depends on the specific containment problem, particularly with regard to its underlying geometry. An important point is whether the hierarchies coming from increasing the degree in the polynomial relaxations always decide containment in finitely many steps. We focus on the containment problem of an H-polytope in a V-polytope and of a spectrahedron in a spectrahedron. Moreover, we address containment problems concerning projections of H-polyhedra and spectrahedra. This selection is justified by the fact that the mentioned containment problems are computationally hard and their geometry is not well understood
    corecore