1,194 research outputs found
Certification of inequalities involving transcendental functions: combining SDP and max-plus approximation
We consider the problem of certifying an inequality of the form ,
, where is a multivariate transcendental function, and
is a compact semialgebraic set. We introduce a certification method, combining
semialgebraic optimization and max-plus approximation. We assume that is
given by a syntaxic tree, the constituents of which involve semialgebraic
operations as well as some transcendental functions like , ,
, etc. We bound some of these constituents by suprema or infima of
quadratic forms (max-plus approximation method, initially introduced in optimal
control), leading to semialgebraic optimization problems which we solve by
semidefinite relaxations. The max-plus approximation is iteratively refined and
combined with branch and bound techniques to reduce the relaxation gap.
Illustrative examples of application of this algorithm are provided, explaining
how we solved tight inequalities issued from the Flyspeck project (one of the
main purposes of which is to certify numerical inequalities used in the proof
of the Kepler conjecture by Thomas Hales).Comment: 7 pages, 3 figures, 3 tables, Appears in the Proceedings of the
European Control Conference ECC'13, July 17-19, 2013, Zurich, pp. 2244--2250,
copyright EUCA 201
Certification of Bounds of Non-linear Functions: the Templates Method
The aim of this work is to certify lower bounds for real-valued multivariate
functions, defined by semialgebraic or transcendental expressions. The
certificate must be, eventually, formally provable in a proof system such as
Coq. The application range for such a tool is widespread; for instance Hales'
proof of Kepler's conjecture yields thousands of inequalities. We introduce an
approximation algorithm, which combines ideas of the max-plus basis method (in
optimal control) and of the linear templates method developed by Manna et al.
(in static analysis). This algorithm consists in bounding some of the
constituents of the function by suprema of quadratic forms with a well chosen
curvature. This leads to semialgebraic optimization problems, solved by
sum-of-squares relaxations. Templates limit the blow up of these relaxations at
the price of coarsening the approximation. We illustrate the efficiency of our
framework with various examples from the literature and discuss the interfacing
with Coq.Comment: 16 pages, 3 figures, 2 table
Certification of Real Inequalities -- Templates and Sums of Squares
We consider the problem of certifying lower bounds for real-valued
multivariate transcendental functions. The functions we are dealing with are
nonlinear and involve semialgebraic operations as well as some transcendental
functions like , , , etc. Our general framework is to use
different approximation methods to relax the original problem into polynomial
optimization problems, which we solve by sparse sums of squares relaxations. In
particular, we combine the ideas of the maxplus estimators (originally
introduced in optimal control) and of the linear templates (originally
introduced in static analysis by abstract interpretation). The nonlinear
templates control the complexity of the semialgebraic relaxations at the price
of coarsening the maxplus approximations. In that way, we arrive at a new -
template based - certified global optimization method, which exploits both the
precision of sums of squares relaxations and the scalability of abstraction
methods. We analyze the performance of the method on problems from the global
optimization literature, as well as medium-size inequalities issued from the
Flyspeck project.Comment: 27 pages, 3 figures, 4 table
Formal Proofs for Nonlinear Optimization
We present a formally verified global optimization framework. Given a
semialgebraic or transcendental function and a compact semialgebraic domain
, we use the nonlinear maxplus template approximation algorithm to provide a
certified lower bound of over . This method allows to bound in a modular
way some of the constituents of by suprema of quadratic forms with a well
chosen curvature. Thus, we reduce the initial goal to a hierarchy of
semialgebraic optimization problems, solved by sums of squares relaxations. Our
implementation tool interleaves semialgebraic approximations with sums of
squares witnesses to form certificates. It is interfaced with Coq and thus
benefits from the trusted arithmetic available inside the proof assistant. This
feature is used to produce, from the certificates, both valid underestimators
and lower bounds for each approximated constituent. The application range for
such a tool is widespread; for instance Hales' proof of Kepler's conjecture
yields thousands of multivariate transcendental inequalities. We illustrate the
performance of our formal framework on some of these inequalities as well as on
examples from the global optimization literature.Comment: 24 pages, 2 figures, 3 table
Reconstruction of Support of a Measure From Its Moments
In this paper, we address the problem of reconstruction of support of a
measure from its moments. More precisely, given a finite subset of the moments
of a measure, we develop a semidefinite program for approximating the support
of measure using level sets of polynomials. To solve this problem, a sequence
of convex relaxations is provided, whose optimal solution is shown to converge
to the support of measure of interest. Moreover, the provided approach is
modified to improve the results for uniform measures. Numerical examples are
presented to illustrate the performance of the proposed approach.Comment: This has been submitted to the 53rd IEEE Conference on Decision and
Contro
Certified Roundoff Error Bounds Using Semidefinite Programming.
Roundoff errors cannot be avoided when implementing numerical programs with finite precision. The ability to reason about rounding is especially important if one wants to explore a range of potential representations, for instance for FPGAs or custom hardware implementation. This problem becomes challenging when the program does not employ solely linear operations as non-linearities are inherent to many interesting computational problems in real-world applications. Existing solutions to reasoning are limited in the presence of nonlinear correlations between variables, leading to either imprecise bounds or high analysis time. Furthermore, while it is easy to implement a straightforward method such as interval arithmetic, sophisticated techniques are less straightforward to implement in a formal setting. Thus there is a need for methods which output certificates that can be formally validated inside a proof assistant. We present a framework to provide upper bounds on absolute roundoff errors. This framework is based on optimization techniques employing semidefinite programming and sums of squares certificates, which can be formally checked inside the Coq theorem prover. Our tool covers a wide range of nonlinear programs, including polynomials and transcendental operations as well as conditional statements. We illustrate the efficiency and precision of this tool on non-trivial programs coming from biology, optimization and space control. Our tool produces more precise error bounds for 37 percent of all programs and yields better performance in 73 percent of all programs
- …