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Certification of inequalities involving transcendental functions:
combining SDP and max-plus approximation

Xavier ALLAMIGEON1, Stéphane GAUBERT2, Victor MAGRON3 and Benjamin WERNER4

Abstract— We consider the problem of certifying an inequal-
ity of the form f(x) > 0, ∀x ∈ K, where f is a multivariate
transcendental function, andK is a compact semialgebraic set.
We introduce a certification method, combining semialgebraic
optimization and max-plus approximation. We assume that
f is given by a syntaxic tree, the constituents of which
involve semialgebraic operations as well as some transcendental
functions like cos, sin, exp, etc. We bound some of these
constituents by suprema or infima of quadratic forms (max-plus
approximation method, initially introduced in optimal con trol),
leading to semialgebraic optimization problems which we solve
by semidefinite relaxations. The max-plus approximation is
iteratively refined and combined with branch and bound
techniques to reduce the relaxation gap. Illustrative examples of
application of this algorithm are provided, explaining how we
solved tight inequalities issued from the Flyspeck project(one of
the main purposes of which is to certify numerical inequalities
used in the proof of the Kepler conjecture by Thomas Hales).

Index Terms— Polynomial Optimization Problems, Certifi-
cation, Semidefinite Programming, Transcendental Functions,
Branch and Bound, Semialgebraic Relaxations, Sum of Squares,
Flyspeck Project, Non-linear Inequalities, Quadratic Cuts, Max-
plus approximation.

I. INTRODUCTION

Inequalities involving transcendental and semialgebraic
functions: Given a multivariate transcendental real function
f : Rn → R and a compact semialgebraic setK ∈ Rn, we
consider the following optimization problem:

f∗ := inf
x∈K

f(x) , (I.1)

The goal is to find the global minimumf∗ and a global
minimizerx∗. We shall also search for certificates to assess
that:

∀x ∈ K, f(x) > 0 . (I.2)

A special case of Problem (I.1) is semialgebraic opti-
mization. Then,f = fsa belongs to the algebraA of semi-
algebraic functions which extends multivariate polynomials
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1INRIA and CMAP, École Polytechnique, Palaiseau, France,
Xavier.Allamigeon at inria.fr
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by allowing arbitrary composition of(·)p, (·) 1

p (p ∈ N0), |·|,
+,−,×, /, sup(·, ·), inf(·, ·):

f∗
sa := inf

x∈K
fsa(x) . (I.3)

Furthermore, whenf = fpop is a multivariate polynomial
andK = Kpop is given by finitely many polynomial inequal-
ities, Problem (I.3) matches the Polynomial Optimization
problem (POP):

f∗
pop := inf

x∈Kpop

fpop(x) . (I.4)

Motivations: Our ultimate motivation is to automatically
verify inequalities occurring in the proof of Kepler conjecture
by Thomas Hales [14]. The formal verification of Kepler’s
conjecture is an ambitious goal addressed by the Flyspeck
project [13]. Flyspeck is a large-scale effort needing to
tackle various mathematical tools. One particular difficulty
is that Hales’ proof relies on hundreds of inequalities, and
checking them requires non-trivial computations. Because
of the limited computing power available inside the proof
assistants, it is essential to devise optimized algorithmsthat:
(1) verify these inequalities automatically, and (2) produce a
certificate for each inequality, whose checking is computa-
tionally reasonably simple.

There are numerous other applications to the formal as-
sessment of such real inequalities; we can point to several
other recent efforts to produce positivity certificates forsuch
problems which can be checked in proof assistants such as
Coq [26] [6], HOL-light [17] or MetiTarski [1].

The Flyspeck inequalities typically involve multivariate
polynomials with some additional transcendental functions;
the aim is thus to compute a lower bound for such ex-
pressions. These inequalities are in general tight, and thus
challenging for numerical solvers. Computing lower bounds
in constrained polynomial optimization problems (POP) is al-
ready a difficult problem, which has received much attention.
Semidefinite relaxation based methods have been developed
in [20] [28]; they can be applied to the more general class
of semialgebraic problems [29]. Alternative approaches are
based on Bernstein polynomials [36]. The task is obviously
more difficult in presence of transcendental functions. Other
methods of choice, not restricted to polynomials, include
global optimization by interval methods (see e.g. [15]),
branch and bound methods with Taylor models [9] [5].

In what follows, we will consider the following running
example taken from Hales’ proof:

Example 1.1 (Lemma9922699028 Flyspeck): Let K, ∆x, l,
andf be defined as follows:
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• K := [4; 6.3504]3 × [6.3504; 8]× [4; 6.3504]2

• ∆x := x1x4(−x1+x2+x3−x4+x5+x6)+x2x5(x1−
x2 + x3 + x4 − x5 + x6) + x3x6(x1 + x2 − x3 + x4 +
x5 − x6)− x2x3x4 − x1x3x5 − x1x2x6 − x4x5x6

• l(x) := −π
2 + 1.6294 − 0.2213(

√
x2 +

√
x3 +

√
x5 +√

x6 − 8.0) + 0.913(
√
x4 − 2.52) + 0.728(

√
x1 − 2.0)

• f(x) := l(x) + arctan ∂4∆x√
4x1∆x

Then,∀x ∈ K, f(x) > 0.

Contribution: In this paper, we present a certification
framework, combining Lasserre SDP relaxations of semial-
gebraic problems with max-plus approximation by quadratic
functions.

The idea of max-plus approximation comes from opti-
mal control: it was originally introduced by Fleming and
McEneaney [11], and developed by several authors [3], [12],
[23], [24], [31], to represent the value function by a “max-
plus linear combination”, which is a supremum of certain
basis functions, like quadratic forms. When applied to the
present context, this idea leads to approximate from above
and from below every transcendental function appearing in
the description of the problem by infima and suprema of
finitely many quadratic forms. In that way, we are reduced
to a converging sequence of semialgebraic problems. A geo-
metrical way to interpret the method is to think of it in terms
of “quadratic cuts”: quadratic inequalities are successively
added to approximate the graph of a transcendental function.

The proposed method (Figure 2) may be summarized as
follows. Let f be a function andK a box issued from a
Flyspeck inequality, sof belongs to the set of transcen-
dental functions obtained by composition of semialgebraic
functions witharctan, arccos, arcsin, exp, log, | · |, (·) 1

p (p ∈
N0), +,−,×, /, sup(·, ·), inf(·, ·). We alternate steps of ap-
proximation, in which an additional quadratic function is
added to the representation, and optimization steps, in which
an SDP relaxation from Lasserre hierarchy is solved. The
information on the location of the optimum inferred from this
relaxation is then used to refine dynamically the quadratic
approximation. In this way, at each step of the algorithm,
we refine the following inequalities

f∗
> f∗

sa > f∗
pop , (I.5)

wheref∗ is the optimal value of the original problemf∗
sa

the optimal value of its current semialgebraic approximation,
and f∗

pop the optimal value of the SDP relaxation which
we solve. The lower estimatef∗

pop does converge tof∗.
This follows from a theorem of Lasserre (convergence of
moment SDP relaxations) and from the consistency of max-
plus approximation, see Theorem 3.3.

Max-plus approximation has attracted interest because
it may attenuate the “curse of dimensionality” for some
structured problems [25]. Indeed, the estimate of [12] shows
that the number of quadratic terms needed to reach anǫ-
approximation of a function ofd variables is of orderǫ−d/2,
whered is the dimension. Hence, max-plus approximations
can be applied to fixed, small dimensional sub-expressions
of complex high dimensional expressions, in a curse of

dimensionality free way. In particular, in the Flyspeck in-
equalities involve generally 6 variables, but only univariate
transcendental functions, sod = 1.

An alternative, more standard approach, is to approximate
transcendental functions by polynomials of a sufficiently
high degree, and to apply SDP relaxations to the polynomial
problems obtained in this way. Further experiments presented
in [4] indicate that this method is not always scalable.
Another alternative approach, which is quite effective on
Flyspeck type inequalities, is to run branch and bound
type algorithms with interval arithmetics. However, in some
instances, this leads to certifying an exponential number of
interval arithmetics computations. Thus, it is of interestto
investigate hybrid methods such as the present one, in order
to obtain more concise certificates.

An important issue, for the practical efficiency of the
method, is the simultaneous tuning of the precision of the
max-plus approximation and of the orders of semidefinite
relaxation. How to perform optimally this tuning is still not
well understood. However, we present experimental results,
both for some elementary examples as well as non-linear
inequalities issued from the Flyspeck project, giving some
indication that certain hard subclasses of problems (sum of
arctan of correlated functions in many variables) can be
solved in a scalable way.

To solve the POP instances, several solvers are available as
Gloptipoly [18] or Kojima sparse refinement of the hierarchy
of SDP relaxations [33], implemented in the SparsePOP
solver [34]. These solvers are interfaced with several SDP
solvers (e.g. SeDuMi [32], CSDP [7], SDPA [35]).

The paper is organized as follows. In Section II, we recall
the definition and properties of Lasserre relaxations of poly-
nomial problems, together with reformulations by Lasserre
and Putinar of semialgebraic problems classes. The max-
plus approximation, and the main algorithm are presented in
Section III. In Section IV, we show how the algorithm can
be combined with standard domain subdivision methods, to
reduce the relaxation gap. Numerical results are presentedin
Section V.

II. NOTATION AND PRELIMINARY RESULTS

Let Rd[X ] be the vector space of real forms inn variables
of degreed andR[X ] the set of multivariate polynomials inn
variables. We also define the coneΣd[X ] of sums of squares
of degree at most2d.

A. Constrained Polynomial Optimization Problems and SOS

We consider the general constrained polynomial optimiza-
tion problem (POP):

f∗
pop := inf

x∈Kpop

fpop(x), (II.1)

wherefpop : R
n → R is a d-degree multivariate polynomial,

Kpop is a compact set defined by polynomials inequalities
g1(x) > 0, . . . , gm(x) > 0 with gi(x) : Rn → R being
a real-valued polynomial of degreewi, i = 1, . . . ,m. We
call Kpop the feasible set of Problem (II.1). Letg0 := 1.



We introduce thek-truncated quadratic moduleMk(Kpop) ⊂
R2k[X ] associated withg1, · · · , gm:

Mk(Kpop) =
{

m
∑

j=0

σj(x)gj(x) : σj ∈ Σk−⌈wj/2⌉[X ]
}

Let k > k0 := max(⌈d/2⌉,max06j6m{⌈wj/2⌉}) and
consider the following hierarchy of semidefinite relaxations:

Qk :

{

sup
µ,σ0,··· ,σm

µ

fpop(x) − µ ∈ Mk(Kpop),

and denote bysup(Qk) its optimal value.
Theorem 2.1 (Lasserre [20]):The sequence of optimal

values (sup(Qk))k>k0
is non-decreasing. If the quadratic

moduleMk(Kpop) is archimedean, then this sequence con-
verges tof∗

pop.
The non-linear inequalities to be proved in the Flyspeck
project typically involve a variablex lying in a boxK ⊂ Rn,
thus the archimedean condition holds in our case.

B. Semialgebraic Optimization

In this section, we recall how the previous approach
can be extended to semialgebraic optimization problems by
introducing lifting variables.

Given a semialgebraic functionfsa, we consider the prob-
lem f∗

sa = infx∈Ksafsa(x), where Ksa := {x ∈ Rn :
g1(x) > 0, . . . , gm(x) > 0} is a basic semialgebraic set.
We suppose thatfsa is well-defined and thus has a basic
semialgebraic lifting. Then, following the approach described
in [21], we can add auxiliary lifting variablesz1, . . . , zp, and
construct polynomialsh1, . . . , hs ∈ R[x, z1, . . . , zp] defining
the semialgebraic setKpop := {(x, z1, . . . , zp) ∈ Rn+p :
x ∈ Ksa, h1(x, z) > 0, . . . , hs(x, z) > 0}, ensuring that
f∗

pop := inf(x,z)∈Kpop zp is a lower bound off∗
sa.

To ensure that the archimedean condition is preserved,
we add bound constraints over the lifting variables. These
bounds are computed by solving semialgebraic optimization
sub-problems.

Example 2.2 (from Lemma9922699028 Flyspeck):
Continuing Example 1.1, we consider the function
fsa := ∂4∆x√

4x1∆x
and the setKsa := [4, 6.3504]3 ×

[6.3504, 8] × [4, 6.3504]2. The latter can be equivalently
rewritten as

Ksa := {x ∈ R6 : g1 > 0, . . . , g12 > 0}
whereg1 := x1 − 4, g2 := 6.3504 − x1, . . . , g11 := x6 −
4, g12 := 6.3504− x6.

We introduce two lifting variablesz1 andz2, respectively
representing the terms

√
4x1∆x and ∂4∆x√

4x1∆x
. We also use a

lower boundm1 of infx∈Ksa

√
4x1∆x and an upper bound

M1 of supx∈Ksa

√
4x1∆x which can be both computed by

solving auxiliary sub-problems.
Now the basic semialgebraic setKpop can be defined as

follows:

Kpop := {(x, z1, z2) ∈ R6+2 : x ∈ Ksa, hl(x, z1, z2) > 0,

l = 1, . . . , 7}

where the multivariate polynomialshl are defined by:

h1 := z1 −m1 h5 := z1

h2 := M1 − z1 h6 := z2z1 − ∂4∆x

h3 := z21 − 4x1∆x h7 := −z2z1 + ∂4∆x

h4 := −z21 + 4x1∆x

Let h0 := 1, ωl := deg hl, 0 6 l 6 7 and define the
quadratic moduleMk(Kpop) by:

Mk(Kpop) =
{

12
∑

j=1

σj(x)gj(x) +

7
∑

l=0

θl(x)hl(x) :

σj ∈ Σk−1[X ], 1 6 j 6 12, θl ∈ Σk−⌈ωl/2⌉[X ], 0 6 l 6 7
}

Consider the following semidefinite relaxations:

Qsa
k :

{

sup
µ,σ1,··· ,σ12,θ0,··· ,θ7

µ

z2 − µ ∈ Mk(Kpop)

If k > k0 := max06l67{⌈ωl/2⌉} = 2, then as a special
case of Theorem 2.1, the sequence(sup(Qsa

k ))k>2 is mono-
tonically non-decreasing and converges tof∗

sa. A tight lower
boundm3 = −0.445 is obtained at the third relaxation.

III. TRANSCENDENTAL FUNCTIONS
UNDERESTIMATORS

In this section, we introduce an algorithm allowing to
determine that a multivariate transcendental function is pos-
itive (Problem (I.2)). The algorithm relies on an adaptive
basic-semialgebraic relaxation, in which approximationsof
transcendental functions by suprema or infima of quadratic
forms are iteratively refined.

A. Max-plus Approximation of Semiconvex Functions

Let B be a set of functionsRn → R, whose elements
will be called max-plus basis functions. Given a function
f : Rn → R, we look for a representation off as a linear
combination of basis functions in the max-plus sense, i.e.,

f = sup
w∈B

(a(w) + w) (III.1)

where(a(w))w∈B is a family of elements ofR∪{−∞} (the
“coefficients”). The correspondence between the function
x 7→ f(x) and the coefficient functionw 7→ a(w) is a
well studied problem, which has appeared in various guises
(Moreau conjugacies, generalized Fenchel transforms, Galois
correspondences, see [2] for more background).

The idea of max-plus approximation [3], [11], [22] is to
choose a space of functionsf and a corresponding setB of
basis functionsw, and to approximate from below a given
f in this space by a finite max-plus linear combination,f ≃
supw∈F(a(w) + w) whereF ⊂ B is a finite subset. Note
that supw∈F(a(w) +w) is not only an approximation but a
valid lower bound off .

Following [3], [11], for each constantγ ∈ R, we shall
consider the family of quadratic functionsB = {wy | y ∈
Rn} where

wy(x) := −γ

2
‖x− y‖2 .



Recall that a function isγ-semiconvex if and only if the
function x 7→ φ(x) + γ

2 |x|2 is convex. Then, it follows
from Legendre-Fenchel duality that the space of functionsf
which can be written as (III.1) is precisely the set of lower
semicontinuousγ-semiconvex functions.

The transcendental functions which we consider here are
twice continuously differentiable. Hence, their restriction to
any bounded convex set isγ-semiconvex for a sufficiently
largeγ, so that they can be approximated by finite suprema
of the formsupw∈F(a(w)+w) with F ⊂ B. A result of [12]
shows that ifN = |F| basis functions are used, then the
best approximation error isO(1/N2/n) (the error is the sup-
norm, over any compact set), provided that the function to be
approximated is of classC2. Equivalently, the approximation
error is of orderO(h2) whereh is a space discretization step.
Note that the error of max-plus approximation is of the same
order as the one obtained by conventionalP1 finite elements
under the same regularity assumption. For the applications
considered in this paper,n = 1.

In this way, starting from a transcendental univariate
elementary functionf ∈ T , such asarctan, exp, etc, defined
on a real bounded intervalI, we arrive at a semialgebraic
lower bound off , which is nothing but a supremum of a
finite number of quadratic functions.

Example 3.1:Consider the functionf = arctan on an
interval I := [m,M ]. For every pointa ∈ I, we can find a
constantγ such that

arctan(x) > par−a (x) := −γ

2
(x−a)2+f ′(a)(x−a)+f(a) .

Choosingγ = supx∈I −f ′′(x) always work. However, it will
be convenient to allowγ to depend on the choice ofa to get
tighter lower bounds. Choosing a finite subsetA ⊂ I, we
arrive at an approximation

∀x ∈ I, arctan (a) > max
a∈A

par−a (x) . (III.2)

Semialgebraic overestimatorsx 7→ mina∈A par+a (x) can be
defined in a similar way.

B. An Adaptive Semialgebraic Approximation Algorithm

We now consider an instance of Problem (I.2). As in Fly-
speck inequalities, we assume thatK is a box. We assimilate
the objective functionf with its abstract syntax treet. We
assume that the leaves oft are semialgebraic functions in the
setA, and other nodes are univariate transcendental functions
(arctan, etc) or basic operations (+, ×, −, /). For the sake of
the simplicity, we suppose that each univariate transcendental
function is monotonic.

We first introduce the auxiliary algorithmsamp approx,
presented in Fig. 1. Given an abstract syntax treet and a
box K, this algorithm computes lower and upper bounds of
t over K, and max-plus approximations oft by means of
semialgebraic functions. It is also parametrized by a finite
sequence of control points used to approximate transcenden-
tal functions by means of parabola.

The algorithmsamp approx is defined by induction on
the abstract syntax treet. When t is reduced to a leaf,

Input: treet, boxK, SDP relaxation orderk, control points
sequences = x1, . . . , xr ∈ K

Output: lower boundm, upper boundM , lower treet−,
upper treet+

1: if t ∈ A then
2: return min sa (t, k), max sa (t, k), t, t
3: else if r := root(t) ∈ T parent of the single childc

then
4: mc, Mc, c−, c+ := samp approx(c,K, k, s)
5: par−, par+ := build par(r,mc,Mc, s)
6: t−, t+ := compose(par−, par+, c−, c+)
7: return min sa (t−, k), max sa (t+, k), t−, t+

8: else if bop := root (t) is a binary operation parent of
two childrenc1 andc2 then

9: mci ,Mci, c
−
i , c

+
i := samp approx(ci,K, k, s) for

i ∈ {1, 2}
10: t−, t+ := compose bop(c−1 , c

+
1 , c

−
2 , c

+
2 )

11: return min sa(t−, k), max sa(t+, k), t−, t+

12: end

Fig. 1. samp approx : recursive semialgebraic max-plus approximation
algorithm

i.e. it represents a semialgebraic function ofA, we call the
functions min sa and max sa which determine lower and
upper bounds using techniques presented in Section II-B. In
this case, the treet provides an exact semialgebraic estimator.
If the root of t corresponds to a transcendental function
node r ∈ T taking a single childc as argument, lower
and upper boundscm and cM are recursively obtained, as
well as estimatorsc− and c+. Then we apply the function
build par that builds the parabola at the given control
points, by using the convexity/semiconvexity properties of
r, as explained in Section III-A. An underestimatort− as
well as an overestimatort+ are determined by composition
(so-calledcompose function) of the parabola withc− and
c+. Notice that the behaviour ofcompose depends on the
monotonicity properties ofr. These approximationst− and
t+ are semialgebraic functions ofA, whence we can also
compute their lower and upper bounds usingmin sa and
max sa. The last case occurs when the root oft is a binary
operation whose arguments are two childrenc1 and c2. We
can apply recursivelysamp approx to each child and get
semialgebraic underestimatorsc−1 , c−2 and overestimatorsc+1 ,
c+2 . Note that when the binary operation is the multiplication
or the division, we assume that the estimators ofc1 or c2 have
a constant sign. We have observed that in practice, all the
inequalities that we consider in the Flyspeck project satisfy
this restriction.

Our main optimization algorithmsamp optim, presented
in Fig. 2, relies onsamp approx and chooses the sequence
of control pointss dynamically. At the beginning, the set
of control points consists of a single point of the box
K, chosen so as to minimize the value of the function
associated to the treet among a set of random points (Line1).
Then, at each iteration of the loop from Lines4 to 10,
the algorithmsamp approx is called to compute a lower



Input: tree t, boxK, itermax (optional argument)
Output: lower boundm, feasible solutionxopt

1: s := [ argmin (randeval t) ] ⊲ s ∈ K
2: n := 0
3: m := −∞
4: while n 6 itermax do
5: Choose an SDP relaxation orderk
6: m, M, t−, t+ := samp approx (t, K, k, s)
7: xopt := guess argmin (t−) ⊲ t− (xopt ) ≃ m
8: s := s ∪ {xopt}
9: n := n+ 1

10: done
11: return m, xopt

Fig. 2. samp optim : Semialgebraic max-plus optimization algorithm

boundm of the functiont (Line 4). At Line 7, a minimizer
candidatexopt of the underestimator treet− is computed.
It is obtained by projecting a solutionxsdp of the SDP
relaxation of Section II-B on the coordinates representingthe
first order moments, following [20, Theorem 4.2]. However,
the projection may not belong toK when the relaxation order
k is not large enough. This is why tools like SparsePOP use
local optimization solver in a post-processing step, providing
a point in K which may not be a global minimizer. In
any case,xopt is then added to the set of control points
(Line 8). Alternatively, if we are only interested in deter-
mining whether the infimum oft over K is non-negative
(Problem (I.2)), the loop can be stopped as soon asm > 0.

When we call several timessamp approx inside the loop
from Lines 4 to 10, we do not need to always compute
recursively the underestimators and overestimators as well
as bounds of all the nodes and the leaves of the abstract
syntax tree. Instead, we “decorate” the tree with interval and
semialgebraic values containing these information, basedon
previous iterations.

Example 3.2 (Lemma9922699028 Flyspeck): We continue
Example 2.2. Since we computed lower and upper bounds
(m and M ) for fsa := ∂4∆x√

4x1∆x
, we know that thefsa

argument ofarctan lies in I := [m,M ]. We describe three
iterations of the algorithm. Fig. 3 illustrates the related
semialgebraic underestimators hierarchy.

0) Multiple evaluations off return a set of values and we
obtain a first minimizer guessx1 := argmin (randeval
f ) corresponding to the minimal value of the set.x1 :=
(4.8684, 4.0987, 4.0987, 7.8859, 4.0987, 4.0987)

1) We computea1 := fsa(x1) = 0.3962, get the equation
of par−1 with buildpar and finally computem1 6

minx∈K{l(x) + par−a1
(fsa(x))}. For k = 2, we obtain

m1 = −0.2816 < 0 and a new minimizerx2 :=
(4, 6.3504, 6.3504, 6.3504, 6.3504, 6.3504).

2) a2 := fsa(x2) = −0.4449, par−a2
and m2 6

minx∈K{l(x) +maxi∈{1,2}{par −
ai
(fsa(x))}}. For k =

2, we getm2 = −0.0442 < 0 and a new minimizer
x3 := (4.0121, 4.0650, 4.0650, 6.7455, 4.0650, 4.0650).

3) a3 := fsa(x3) = 0.1020, par−a3
, and m3 6

minx∈K{l(x)+maxi∈{1,2,3}{par −
ai
(fsa(x))}}. Fork =

a

y

par−a1

par−a2

par−a3

arctan

m Ma1a2 a3

Fig. 3. A hierarchy of Semialgebraic Underestimators forarctan

2, we obtain m3 = −0.0337 < 0, obtain a new
minimizerx4.

We denote byt−i the underestimator computed at the
ith iteration of the algorithmsamp optim, and byxi

opt the
corresponding minimizer candidate.

Theorem 3.3 (Convergence ofsamp optim): Assume
that at each iterationi, the SDP relaxation order is chosen
to be large enough so thatxi

opt is a global minimizer oft−i .
Then every accumulation point of the sequence of(xi

opt )i
is a global minimizer oft overK.

Theorem 3.3 can be proved using the convergence of
Lasserre hierarchy of SDP relaxation [20], together with the
following lemma:

Lemma 3.4:There exists a positive constantC such that,

∀i > 1, ∀x ∈ K, t(x)− t−i (x) 6 Cd(x, Si)
2, (III.3)

whered denotes the euclidean distance andSi is the set of
pointsx1

opt , . . . , x
i
opt .

The time complexity of our algorithm strongly depends
on the relaxation orderk. Indeed, if p is the number of
the control points, then the number of moment variables
in the SDP problemQk is in O((n + p)2k), and the size
of linear matrix inequalities involved are inO((n + p)k).
The complexity of samp optim is therefore exponential
in k. Notice that there are several ways to decrease the
size of these matrices. First, symmetries in SDP relaxations
for polynomial optimization problems can be exploited to
replace one SDP problemQk by several smaller SDPs [30].
Notice it is possible only if the multivariate polynomials of
the initial problem are invariant under the action of a finite
subgroupG of the groupGLn+p(R). Furthermore, one can
exploit the structured sparsity of the problem to replace one
SDP problemQk by an SDP problem of sizeO(κ2k) whereκ
is the average size of the maximal cliques correlation pattern
of the polynomial variables (see [34]).

IV. REFINING BOUNDS BY DOMAIN
SUBDIVISION

A small relaxation order ensures fast computation of the
lower bounds but the relaxation gap may remain too high to
ensure the convergence of the algorithm. This is particularly
critical when we want to certify that a given transcendental
multivariate function is non-negative. In this section, we



explain how to reduce the relaxation gap using domain
subdivision in order to solve problems of the form (I.2).

Suppose that the algorithmsamp optim returns a negative
lower boundm and a global minimizer candidatex∗

c . Our
approach consists in cutting the initial boxK in several
boxes(Ki)16i6c. We explain the partitioning ofK with the
following heuristic.

Let Bx∗

c , r be the intersection of theL∞-ball of centerx∗
c

and radiusr with the setK. Then, letfx∗

c ,r be the quadratic
form defined by:

fx∗

c , r : Bx∗

c , r −→ R

x 7−→ f(x∗
c) +D(f)(x∗

c) (x − x∗
c)

+
1

2
(x− x∗

c)
TD2(f)(x∗

c) (x− x∗
c)

+
1

2
λ(x− x∗

c)
2

with λ given by:

λ := min
x∈Bx∗

c , r

{λmin(D2(f)(x) −D2(f)(x∗
c))} (IV.1)

Lemma 4.1:∀x ∈ Bx∗

c , r, f(x) > fx∗

c , r.
To underestimate the value ofλ, we determine an inter-

val matrix D̃2(f) := ([dij , dij ])16i,j6n containing coarse
bounds of the Hessian difference(D2(f)(x) − D2(f)(x∗

c))
on Bx∗

c , r using interval arithmetic orsamp approx with a
small number of control points and a low SDP relaxation

order. We then apply oñD2(f) a robust SDP method on
interval matrix described by Calafiore and Dabbene in [8],
and obtain a lower boundλ′ of λ.

By dichotomy and using Lemma 4.1, we can finally
compute theL∞-ball Bx∗

c , r of maximal radiusr such that
the underestimatorfx∗

c , r is non-negative onBx∗

c , r.

V. RESULTS

We next present the numerical results obtained with our
method for both small and medium-sized inequalities taken
from the Flyspeck project.

In Tables I and II, the inequalities are indexed by the first
four digits of the hash code. We also indicate in subscript the
number of variables involved in each inequality. The integer
nT represents the number of transcendental univariate nodes
in the corresponding abstract syntax trees. The parameter
kmax is the highest SDP relaxation order used to solve
the polynomial optimization problems with SparsePOP. We
denote bynpop the total number of POP that have to be
solved to prove the inequality, and byncuts the number
of domain cuts that are performed during the subdivision
algorithm. Finally,m is the lower bound of the functionf
onK that we obtain with our method, i.e. the minimum of all
the computed lower bounds off among thencut sub-boxes
of K.

The inequalities reported in Table I are similar to the one
presented in Example 1.1. They all consist in the addition
of the functionx 7→ arctan ∂4∆x√

4x1∆x
with an affine function

over
√
xi (1 6 i 6 6).

TABLE I

RESULTS FOR SMALL-SIZED FLYSPECK INEQUALITIES

Ineq. id nT kmax npop ncuts m time

99226 1 2 222 27 3.07× 10−5 20min

35266 1 2 156 17 4.89× 10−6 13min

68366 1 2 173 22 4.68× 10
−5

14min

66196 1 2 163 21 4.57× 10
−5

13min

38726 1 2 250 30 7.72× 10−5 20min

31396 1 2 162 17 1.03× 10−5 13min

48416 1 2 624 73 2.34× 10
−6

50min

30205 1 3 80 9 2.96× 10−5 31min

33186 1 3 26 2 3.12× 10−5 1.2h

Table II provides the numerical results obtained on
medium-sized Flyspeck inequalities. Inequalities7394i (3 6

i 6 5) are obtained from a same inequality73946 in-
volving six variables, by instantiating some of the vari-
ables by a constant value. Inequalities77266 and 73946
are both of the forml(x) +

∑3
i=1 arctan(qi(x)) where

l is an affine function over
√
xi, where q1(x) :=

∂4∆x√
4x1∆x

, q2(x) := q1(x2, x1, x3, x5, x4, x6), and q3(x) :=

q1(x3, x1, x2, x6, x4, x5).

TABLE II

RESULTS FOR MEDIUM-SIZEFLYSPECK INEQUALITIES

Ineq. id nT kmax npop ncuts m time

77266 3 2 450 70 1.22× 10−6 3.4h

73943 3 3 1 0 3.44× 10−5 11 s

73944 3 3 47 10 3.55× 10
−5

26min
73945 3 3 290 55 3.55× 10−5 12h

TABLE III

COMPARISON RESULTS FOR RANDOM EXAMPLES

n
samp approx with k = 3 intsolver

m time m time

3 0.4581 3.8 s 0.4581 15.5 s

4 0.4157 12.9 s 0.4157 172.1 s

5 0.4746 1min 0.4746 10.2min
6 0.4476 4.6min 0.4476 3.4h

In Table III, we compared our algorithm with the MAT-
LAB toolbox intsolver [27] (based on the Newton interval
method [16]) for random inequalities involving two transcen-
dental functions. We denote byn the number of variables,
and bym the lower bound that we obtain. The functions
that we consider are of the formx 7→ arctan(p(x)) +
arctan(q(x)), wherep is a four-degree polynomial andq
is a quadratic form. All variables lie in[0, 1]. Both p and
q have random coefficients (taken in[0, 1]) and are sparse.
The results indicate that for such examples, our method may
outperform interval arithmetic.

VI. CONCLUSION

We proposed a hybrid method to certify tight non-linear
inequalities, combining SDP and approximation of semicon-
vex functions by suprema of quadratic forms (max-plus basis
method, originating from optimal control). The proposed ap-
proach bears some similarity with the “cutting planes” proofs



in combinatorial optimization, the cutting planes being now
replaced by quadratic inequalities. This allowed us to solve
both small and intermediate size inequalities of the Flyspeck
project, with a moderate order of SDP relaxation.

Several improvements are possible. The approximation
technique used here could be also applied recursively to some
semialgebraic subexpressions, in order to reduce the degree
of the POP instances.

Finally, we plan to interface the present framework with
the Coq proof assistant [10], by exploiting formally certified
symbolic-numeric algorithms [19]. We believe that hybrid
certification techniques (combinations of formal methods)
could be a suitable option to formalize the remaining non-
linear inequalities within reasonable amount of CPU time
in order to complete the remaining part of the formal
verification of the proof of Kepler conjecture.
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Polytechnique, 2008.

http://arXiv.org/math.FA/0403441
http://coq.inria.fr/

	I INTRODUCTION
	II NOTATION AND PRELIMINARY RESULTS
	II-A Constrained Polynomial Optimization Problems and SOS
	II-B Semialgebraic Optimization

	III TRANSCENDENTAL FUNCTIONS UNDERESTIMATORS
	III-A Max-plus Approximation of Semiconvex Functions
	III-B An Adaptive Semialgebraic Approximation Algorithm

	IV REFINING BOUNDS BY DOMAIN SUBDIVISION
	V RESULTS
	VI CONCLUSION
	References

