31 research outputs found

    Non-Redundant Spectral Dimensionality Reduction

    Full text link
    Spectral dimensionality reduction algorithms are widely used in numerous domains, including for recognition, segmentation, tracking and visualization. However, despite their popularity, these algorithms suffer from a major limitation known as the "repeated Eigen-directions" phenomenon. That is, many of the embedding coordinates they produce typically capture the same direction along the data manifold. This leads to redundant and inefficient representations that do not reveal the true intrinsic dimensionality of the data. In this paper, we propose a general method for avoiding redundancy in spectral algorithms. Our approach relies on replacing the orthogonality constraints underlying those methods by unpredictability constraints. Specifically, we require that each embedding coordinate be unpredictable (in the statistical sense) from all previous ones. We prove that these constraints necessarily prevent redundancy, and provide a simple technique to incorporate them into existing methods. As we illustrate on challenging high-dimensional scenarios, our approach produces significantly more informative and compact representations, which improve visualization and classification tasks

    Georeferencing sentiment scores to map and explore tourist points of interest

    Get PDF
    [EN] Tourists are increasingly involved in co-creating attractions’ symbolic images, sharing their experiences and opinions on websites like TripAdvisor and other similar rating and review platforms. In this paper, we propose a strategy for analyzing people’ opinions about tourist points of interest, using an Ambient Geographic Information approach to georeference the polarity scores of reviews. Visualizing these scores on a map can be used to obtain helpful information for implementing strategic actions and policies of institutional and business actors involved in the tourist industry, as well as to help users plan their future experiences. A case study concerning the reviews of the restaurants in Naples (Italy) shows the effectiveness of the proposal.Celardo, L.; Misuraca, M.; Spano, M. (2023). Georeferencing sentiment scores to map and explore tourist points of interest. Editorial Universitat Politècnica de València. 115-122. https://doi.org/10.4995/CARMA2023.2023.1642911512

    Bridging the gap between human knowledge and machine learning

    Get PDF
    Nowadays, great amount of data is being created by several sources from academic, scientific, business and industrial activities. Such data intrinsically contains meaningful information allowing for developing techniques, and have scientific validity to explore the information thereof. In this connection, the aim of artificial intelligence (AI) is getting new knowledge to make decisions properly. AI has taken an important place in scientific and technology development communities, and recently develops computer-based processing devices for modern machines. Under the premise, the premise that the feedback provided by human reasoning -which is holistic, flexible and parallel- may enhance the data analysis, the need for the integration of natural and artificial intelligence has emerged. Such an integration makes the process of knowledge discovery more effective, providing the ability to easily find hidden trends and patterns belonging to the database predictive model. As well, allowing for new observations and considerations from beforehand known data by using both data analysis methods and knowledge and skills from human reasoning. In this work, we review main basics and recent works on artificial and natural intelligence integration in order to introduce users and researchers on this emergent field. As well, key aspects to conceptually compare them are provided

    Penalized Orthogonal Iteration for Sparse Estimation of Generalized Eigenvalue Problem

    Full text link
    We propose a new algorithm for sparse estimation of eigenvectors in generalized eigenvalue problems (GEP). The GEP arises in a number of modern data-analytic situations and statistical methods, including principal component analysis (PCA), multiclass linear discriminant analysis (LDA), canonical correlation analysis (CCA), sufficient dimension reduction (SDR) and invariant co-ordinate selection. We propose to modify the standard generalized orthogonal iteration with a sparsity-inducing penalty for the eigenvectors. To achieve this goal, we generalize the equation-solving step of orthogonal iteration to a penalized convex optimization problem. The resulting algorithm, called penalized orthogonal iteration, provides accurate estimation of the true eigenspace, when it is sparse. Also proposed is a computationally more efficient alternative, which works well for PCA and LDA problems. Numerical studies reveal that the proposed algorithms are competitive, and that our tuning procedure works well. We demonstrate applications of the proposed algorithm to obtain sparse estimates for PCA, multiclass LDA, CCA and SDR. Supplementary materials are available online
    corecore