3,870 research outputs found

    Semi-Supervised Hyperspectral Image Segmentation Using Regionalized Stochastic Watershed

    No full text
    International audienceStochastic watershed is a robust method to estimate the probability density function (pdf) of contours of a multi-variate image using MonteCarlo simulations of watersheds from random markers. The aim of this paper is to propose a stochastic watershed-based algorithm for segmenting hyperspectral images using a semi-supervised approach. Starting from a training dataset consisting in a selection of representative pixel vectors of each spectral class of the image, the algorithm calculate for each class a membership probability map (MPM). Then, the MPM of class k is considered as a regionalized density function which is used to simulate the random markers for the MonteCarlo estimation of the pdf of contours of the corresponding class k. This pdf favours the spatial regions of the image spectrally close to the class k. After applying the same technique to each class, a series of pdf are obtained for a single image. Finally, the pdf's can be segmented hierarchically either separately for each class or after combination, as a single pdf function. In the results, besides the generic spatial-spectral segmentation of hyperspectral images, the interest of the approach is also illustrated for target segmentation

    Map-guided hyperspectral image superpixel segmentation using semi-supervised partial membership latent Dirichlet allocation

    Get PDF
    Many superpixel segmentation algorithms which are suitable for the regular color images like images with three channels: red, green and blue (RGB images) have been developed in the literature. However, because of the high dimensionality of hyperspectral imagery, these regular superpixel segmentation algorithms often do not perform well in hyperspectral imagery. Although there are some authors who have modified some regular superpixel segmentation algorithms to fit the hyperspectral image, many still underperform on complex data. In this thesis, to solve this problem, we introduce a hyperspectral unmixing based superpixel segmentation that leverages map information. We call this approach map-guided semi-supervised PM-LDA superpixel segmentation. The approach uses auxilliary map information to guide segmentation. The approach also leverages spectral unmixing results to provide improved results compared with segmentation based on raw data. We test our proposed method on two real hyperspectral data, University of Pavia and MUUFL Gulfport Hyperspectral Data. In these experiments, our proposed method achieves better results compared to other state-of-the-art algorithms. We also develop new cluster validity metrics to evaluate the results

    Spectral Unmixing with Multiple Dictionaries

    Full text link
    Spectral unmixing aims at recovering the spectral signatures of materials, called endmembers, mixed in a hyperspectral or multispectral image, along with their abundances. A typical assumption is that the image contains one pure pixel per endmember, in which case spectral unmixing reduces to identifying these pixels. Many fully automated methods have been proposed in recent years, but little work has been done to allow users to select areas where pure pixels are present manually or using a segmentation algorithm. Additionally, in a non-blind approach, several spectral libraries may be available rather than a single one, with a fixed number (or an upper or lower bound) of endmembers to chose from each. In this paper, we propose a multiple-dictionary constrained low-rank matrix approximation model that address these two problems. We propose an algorithm to compute this model, dubbed M2PALS, and its performance is discussed on both synthetic and real hyperspectral images

    Advances in Hyperspectral Image Classification: Earth monitoring with statistical learning methods

    Full text link
    Hyperspectral images show similar statistical properties to natural grayscale or color photographic images. However, the classification of hyperspectral images is more challenging because of the very high dimensionality of the pixels and the small number of labeled examples typically available for learning. These peculiarities lead to particular signal processing problems, mainly characterized by indetermination and complex manifolds. The framework of statistical learning has gained popularity in the last decade. New methods have been presented to account for the spatial homogeneity of images, to include user's interaction via active learning, to take advantage of the manifold structure with semisupervised learning, to extract and encode invariances, or to adapt classifiers and image representations to unseen yet similar scenes. This tutuorial reviews the main advances for hyperspectral remote sensing image classification through illustrative examples.Comment: IEEE Signal Processing Magazine, 201

    Estimating the number of endmembers in hyperspectral images using the normal compositional model and a hierarchical Bayesian algorithm.

    Get PDF
    This paper studies a semi-supervised Bayesian unmixing algorithm for hyperspectral images. This algorithm is based on the normal compositional model recently introduced by Eismann and Stein. The normal compositional model assumes that each pixel of the image is modeled as a linear combination of an unknown number of pure materials, called endmembers. However, contrary to the classical linear mixing model, these endmembers are supposed to be random in order to model uncertainties regarding their knowledge. This paper proposes to estimate the mixture coefficients of the Normal Compositional Model (referred to as abundances) as well as their number using a reversible jump Bayesian algorithm. The performance of the proposed methodology is evaluated thanks to simulations conducted on synthetic and real AVIRIS images
    • 

    corecore