7,914 research outputs found

    Semi-supervised distance metric learning for collaborative image retrieval

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    Semi-supervised distance metric learning for collaborative image retrieval and clustering

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    A Survey on Metric Learning for Feature Vectors and Structured Data

    Full text link
    The need for appropriate ways to measure the distance or similarity between data is ubiquitous in machine learning, pattern recognition and data mining, but handcrafting such good metrics for specific problems is generally difficult. This has led to the emergence of metric learning, which aims at automatically learning a metric from data and has attracted a lot of interest in machine learning and related fields for the past ten years. This survey paper proposes a systematic review of the metric learning literature, highlighting the pros and cons of each approach. We pay particular attention to Mahalanobis distance metric learning, a well-studied and successful framework, but additionally present a wide range of methods that have recently emerged as powerful alternatives, including nonlinear metric learning, similarity learning and local metric learning. Recent trends and extensions, such as semi-supervised metric learning, metric learning for histogram data and the derivation of generalization guarantees, are also covered. Finally, this survey addresses metric learning for structured data, in particular edit distance learning, and attempts to give an overview of the remaining challenges in metric learning for the years to come.Comment: Technical report, 59 pages. Changes in v2: fixed typos and improved presentation. Changes in v3: fixed typos. Changes in v4: fixed typos and new method

    A semi-supervised learning algorithm for relevance feedback and collaborative image retrieval

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The interaction of users with search services has been recognized as an important mechanism for expressing and handling user information needs. One traditional approach for supporting such interactive search relies on exploiting relevance feedbacks (RF) in the searching process. For large-scale multimedia collections, however, the user efforts required in RF search sessions is considerable. In this paper, we address this issue by proposing a novel semi-supervised approach for implementing RF-based search services. In our approach, supervised learning is performed taking advantage of relevance labels provided by users. Later, an unsupervised learning step is performed with the objective of extracting useful information from the intrinsic dataset structure. Furthermore, our hybrid learning approach considers feedbacks of different users, in collaborative image retrieval (CIR) scenarios. In these scenarios, the relationships among the feedbacks provided by different users are exploited, further reducing the collective efforts. Conducted experiments involving shape, color, and texture datasets demonstrate the effectiveness of the proposed approach. Similar results are also observed in experiments considering multimodal image retrieval tasks.The interaction of users with search services has been recognized as an important mechanism for expressing and handling user information needs. One traditional approach for supporting such interactive search relies on exploiting relevance feedbacks (RF) i2015FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [2013/08645-0, 2013/50169-1]CNPq [306580/2012-8, 484254/2012-0]2013/08645-0; 2013/50169-1306580/2012-8;484254/2012-0SEM INFORMAÇÃ

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval

    Deep Lesion Graphs in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-scale Lesion Database

    Full text link
    Radiologists in their daily work routinely find and annotate significant abnormalities on a large number of radiology images. Such abnormalities, or lesions, have collected over years and stored in hospitals' picture archiving and communication systems. However, they are basically unsorted and lack semantic annotations like type and location. In this paper, we aim to organize and explore them by learning a deep feature representation for each lesion. A large-scale and comprehensive dataset, DeepLesion, is introduced for this task. DeepLesion contains bounding boxes and size measurements of over 32K lesions. To model their similarity relationship, we leverage multiple supervision information including types, self-supervised location coordinates and sizes. They require little manual annotation effort but describe useful attributes of the lesions. Then, a triplet network is utilized to learn lesion embeddings with a sequential sampling strategy to depict their hierarchical similarity structure. Experiments show promising qualitative and quantitative results on lesion retrieval, clustering, and classification. The learned embeddings can be further employed to build a lesion graph for various clinically useful applications. We propose algorithms for intra-patient lesion matching and missing annotation mining. Experimental results validate their effectiveness.Comment: Accepted by CVPR2018. DeepLesion url adde
    corecore