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Abstract

Typical content-based image retrieval (CBIR) solutions
with regular Euclidean metric usually cannot achieve sat-
isfactory performance due to the semantic gap challenge.
Hence, relevance feedback has been adopted as a promising
approach to improve the search performance. In this paper,
we propose a novel idea of learning with historical rele-
vance feedback log data, and adopt a new paradigm called
“Collaborative Image Retrieval” (CIR). To effectively ex-
plore the log data, we propose a novel semi-supervised dis-
tance metric learning technique, called “Laplacian Regu-
larized Metric Learning” (LRML), for learning robust dis-
tance metrics for CIR. Different from previous methods, the
proposed LRML method integrates both log data and unla-
beled data information through an effective graph regular-
ization framework. We show that reliable metrics can be
learned from real log data even they may be noisy and lim-
ited at the beginning stage of a CIR system. We conducted
extensive evaluation to compare the proposed method with
a large number of competing methods, including 2 standard
metrics, 3 unsupervised metrics, and 4 supervised metrics
with side information.

1. Introduction

Determination of appropriate distance metrics plays a
key role in building an effective content-based image re-
trieval (CBIR) system. Regular CBIR systems usually
adopt Euclidean metrics for computing distances between
images that are represented in some vector space. Unfor-
tunately, Euclidean distance is often inadequate primarily
because of the well-known semantic gap between low-level
features and high-level semantic concepts [18].

In response to the semantic gap challenge, relevance
feedback techniques have been extensively studied in
CBIR [9, 10] and are shown effective in some applications.
However, they also suffer from some drawbacks. The most
obvious one is the addition of communication overhead im-
posed on the systems and users. CBIR systems with rel-

evance feedback often require a non-trivial number of it-
erations before improved search results are obtained. This
makes the process inefficient and unattractive for online ap-
plications.

Beyond relevance feedback, several promising directions
emerge in addressing the semantic gap issue. For example,
image annotation attempts to infer semantic concepts from
low-level image contents. Recent works [4] have shown
interesting progress, though major challenges still remain.
In this work, we consider an alternative paradigm, called
”Collaborative Image Retrieval” (CIR), for attacking the se-
mantic gap challenge. CIR has attracted growing interest
recently [13, 17]. It avoids the aforementioned major over-
head on users in image retrieval tasks, by leveraging the his-
torical log data of user relevance feedback collected from
real CBIR systems over a long period of time. The rele-
vance feedback information is not limited to only the data
collected from the current session of image search. Instead,
all of the historical data from prior interaction by a large
group of users is utilized to discover useful information.

The key for CIR is to find an effective way of utilizing
the log data of user relevance feedback so that the semantic
gap can be effectively bridged. In this paper, we explore
the log data for learning distance metrics required in image
retrieval tasks. Recently, learning distance metrics from log
data (or called ”side information” [23]) has been actively
studied in machine learning. In this paper, we propose novel
formulation and develop effective algorithms for distance
metrics learning (DML) in the context of CIR.

Regular DML techniques are sensitive to noise and un-
able to learn a reliable metric when only a small amount
of log data is available. In this paper, we propose a new
semi-supervised distance metric learning scheme for in-
corporating unlabeled data in the distance metric learning
task. Specifically, we develop a novel Laplacian Regular-
ized Metric Learning (LRML) algorithm, to integrate the
unlabeled data information through a graph regularization
learning framework. The LRML algorithm is formulated
as a Semidefinite Program (SDP), which can be solved to
find global optimum efficiently by existing convex opti-
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mization techniques. Here we highlight the major contribu-
tions in this paper: (1) a novel regularization framework for
distance metric learning and a new semi-supervised metric
learning algorithm; (2) a comprehensive study of a new CIR
paradigmwith the exploration of real log data; (3) an exten-
sive evaluation of a number of competing metric learning
methods for CIR applications.

The rest of this paper is organized as follows. Section 2
includes review of related work. Section 3 defines the dis-
tance metric learning problem and formulates the proposed
semi-supervised distance metric learning technique for CIR
applications. Section 4 presents our experimental evalua-
tions on some testbed with real user log data collected from
a CBIR system. Section 5 concludes this paper.

2. Related Work

Our work is mainly related to two groups of research.
One is the work for exploring the log data of user relevance
feedback in CBIR. The other is the distance metric learn-
ing research in machine learning. We briefly review some
representative work in both sides.

In recent years, there are some emerging research inter-
ests for exploring the historical log data of user relevance
feedback in CBIR. Hoi et al. [13] proposed the log-based
relevance feedback with support vector machines (SVM)
techniques by engaging the user feedback log data in tra-
ditional online relevance feedback tasks. Similarly, there
were some other efforts in exploring the log data with other
machine learning techniques, such as the manifold learning
solution [8] and the coupled SVMs [12]. Different from pre-
vious work, we study distance metric learning for exploring
user log data that avoids the needs of using online relevance
feedback explicitly.

The other major group of related work is the distance
metric learning research in machine learning, which can
be classified into three major categories. One is unsuper-
vised learning approaches, most of which attempt to find
low-dimensional embeddings from high-dimensional input
data. Some well-known techniques include classical Princi-
pal Component Analysis (PCA) [5] and Multidimensional
Scaling (MDS) [3]. Some manifold based approaches study
nonlinear techniques, such as Locally Linear Embedding
(LLE) [16] and Isomap [20], etc. Another category is super-
vised metric learning techniques for classification. These
methods usually learn metrics from training data associated
with explicit class labels. The representative techniques in-
clude Fisher Linear Discriminant Analysis (LDA) [5] and
some recently proposed methods, such as Neighbourhood
Components Analysis (NCA) [14], Maximally Collaps-
ing Metric Learning [7], metric learning for Large Margin
Nearest Neighbor classification (LMNN) [22], and Local
Distance Metric Learning [24], etc.

Our DML work is closer to the third category of DML,

which learns distance metrics from the log data of pair-
wise constraints, or known as “side information” [23], in
which each constraint indicates if two data points are rele-
vant (similar) or irrelevant (dissimilar) in a particular learn-
ing task. A well-known DML approach was proposed
by Xing et al. [23], who formulated the task as a con-
vex optimization problem, and applied the solution to clus-
tering tasks. Following their work, there are a group of
emerging DML techniques proposed in this direction. For
example, Relevance Component Analysis (RCA) learns a
global linear transformation by exploiting only the equiv-
alent constraints [1]. Discriminant Component Analysis
(DCA) improves the RCA by incorporating the negative
constraints [11]. Recently, Si et al. proposed a regularized
metric learning method for CIR applications [17]. In this
paper, we propose a new semi-supervised distance metric
learning framework for learning effective and reliable met-
rics by incorporating the unlabeled data in DML.

3. Semi-Supervised Distance Metric Learning

3.1. Problem Definition

Assume that we are given a set of n data points C =
{xi}n

i=1 ⊆ R
m, and two sets of pairwise constraints among

the data points:

S = {(xi,xj) | xi and xj are judged to be relevant}
D = {(xi,xj) | xi and xj are judged to be irrelevant}

where S is the set of similar pairwise constraints, and D
is the set of dissimilar pairwise constraints. Each pairwise
constraint (xi,xj) indicates if two data points xi and xj are
relevant or irrelevant judged by users under some applica-
tion context.

For any two given data points xi and xj , let d(xi,xj)
denote the distance between them. To compute the distance,
let A ∈ R

m×m be the distance metric, we can then express
the formula of distance measure as follows:

dA(xi,xj) = ‖xi − xj‖A =
√

(xi − xj)�A(xi − xj)

=
√

tr(A(xi − xj)(xi − xj)�) , (1)

whereA is a symmetric matrix of size m×m, and tr stands
for the trace operator. In general, A is a valid metric if
and only if it satisfies the non-negativity and the triangle
inequality properties. In other words, the matrix A must be
positive semi-definite, i.e., A � 0. Generally, the matrix
A parameterizes a family of Mahalanobis distances on the
vector space R

m. Specifically, when setting A to be an
identity matrix Im×m, the distance in Eqn. (1) becomes the
common Euclidean distance.



Definition 1 The distance metric learning (DML) problem
is to learn an optimal distance metric A ∈ R

m×m from a
collection of data points C on a vector space R

m together
with a set of similar pairwise constraints S and a set of
dissimilar pairwise constraints D, which can be formally
formulated into the following optimization framework:

min
A�0

f(A,S,D, C) (2)

where the metric A is a positive semidefinite matrix and f
is some objective function defined over the given data.

Given the above definition, the key to solve the DML
problem is to formulate a proper objective function f and
then find an efficient algorithm to solve the optimization
problem. In the following subsections, we will discuss
some principles for formulating appropriate optimizations
toward DML. We will then emphasize it is important to
avoid overfitting when solving a real-world DML problem.

3.2. A Regularization Learning Framework

One common principle for metric learning is to mini-
mize the distances between the data points with similar con-
straints and meanwhile to maximize the distances between
the data points with dissimilar constraints. We refer it to a
min-max principle. Some existing DML work can be in-
terpreted within the min-max learning framework. For ex-
ample, [23] formulated the DML problem as a convex opti-
mization problem:

min
A�0

∑
(xi,xj)∈S

‖xi − xj‖2
A (3)

s.t.
∑

(xi,xj)∈D
‖xi − xj‖A ≥ 1

This formulation attempts to find the metric A by minimiz-
ing the sum of squared distances between the similar data
points and meanwhile enforcing the sum of distances be-
tween the dissimilar data points larger than 1. Although the
above method has been shown effective for some cluster-
ing tasks, it might not be suitable to solving real-world CIR
applications, where the log data could be quite noisy and
might be limited at the beginning stage of system develop-
ment. In practice, the above DMLmethod is likely to overfit
the log data in real-world applications.

To enable DML techniques effective for practical appli-
cations, the second principle we would like to highlight is
the regularization principle, which is a key to enhance the
generalization and robustness performances of the distance
metric in practical applications. Regularization has played
a key role in many machine learning methods for prevent-
ing overfitting [6]. For example, in SVMs, regularization
is critical to ensuring the excellent generalization perfor-
mance [21].

Similar to the idea of regularization used in kernel ma-
chine learning [21], we formulate a general regularization
framework for distance metric learning as follows:

min
A

g(A) + γsVs(S) + γdVd(D) (4)

s.t. A � 0

where g(A) is a regularizer defined on the target metric A,
Vs(·) and Vd(·) are some loss functions defined on the sets
of similar and dissimilar constraints, respectively. γs and γd

are two regularization parameters for balancing the tradeoff
between similar and dissimilar constraints as well as the first
regularization term. By following the min-max principle,
the similar loss function Vs(·) (Vd(·)) should be defined in
the way such that the minimization of the loss function will
result in minimizing (maximizing) the distances between
the data points with the similar (dissimilar) constraints. In
this paper, we adopt the sum of squared distances expres-
sion for defining the two loss functions in terms of its effec-
tiveness and efficiency in practice:

Vs(·) =
∑

(xi,xj)∈S
‖xi − xj‖2

A (5)

Vd(·) = −
∑

(xi,xj)∈D
‖xi − xj‖2

A (6)

In the next subsection, we will discuss how to select an
appropriate regularizer and how to incorporate the unla-
beled data information via the above regularization learning
framework.

3.3. Laplacian Regularized Metric Learning

There are a lot of possible ways to choose a regularizer in
the above regularization framework. One simple approach
used in [17] is based on the Frobenius norm defined as fol-
lows:

g(A) = ‖A‖F =

√√√√
m∑

i,j=1

a2
i,j (7)

This regularizer simply prevents any elements within the
matrix A from being overlarge. However, the regularizer
does not take advantage of any unlabeled data information.
In practice, the unlabeled data is beneficial to the DML task.
By this consideration, we will show how to formulate a reg-
ularizer for exploiting the unlabeled data information in the
regularization framework.

Consider the collection of n data points C, we can com-
pute a weight matrix W between the data points:

Wij =
{ 1 xi ∈ N (xj) or xj ∈ N (xi)

0 otherwise.



where N (xj) denotes the nearest neighbor list of the data
point xj . To learn a distance metric, one can assume there is
some corresponding linear mapping U : R

m → R
r, where

U = [u1, . . . ,ur] ∈ R
m×r, for a possible metric A. As

a result, the distance between two input examples can be
computed as:

d(xi,xj) = ‖U�(xi − xj)‖2

= (xi − xj)�UU�(xi − xj)
= (xi − xj)�A(xi − xj) (8)

where A = UU� is the desirable metric to be learned. By
taking unlabeled data information with the weight matrix
W, we can formulate the regularizer as follows:

g(A) =
1
2

n∑
i,j=1

∥∥U�xi − U�xj

∥∥2
Wij (9)

=
r∑

k=1

u�
k X(D − W)X�uk (10)

=
r∑

k=1

u�
k XLX�uk = tr(U�XLX�U) (11)

= tr(XLX�UU�) = tr(XLX�A) (12)

where D is a diagonal matrix whose diagonal elements are
equal to the sums of the row entries of W, i.e., Dii =∑

j Wij , andL = D−W is known as the Laplacian matrix,
and tr stands for the trace function.

After designing the above Laplacian regularizer, we
formulate a new distance metric learning method, called
“Laplacian Regularized Metric Learning” (LRML), within
the regularization framework as follows:

min
A�0

tr(XLX�A) + γs

∑
(xi,xj)∈S

‖xi − xj‖2
A

−γd

∑
(xi,xj)∈D

‖xi − xj‖2
A (13)

3.4. LRML Algorithm with Application to CIR

We now show how to apply the proposed LRML tech-
nique to collaborative image retrieval and investigate its re-
lated optimization in detail. Following the previous work
in [13, 17], we assume the log data collected were in the
forms of log sessions, in which every log session corre-
sponds to a particular user query. In each log session, a user
first submits an image example to the CBIR system and then
judges the relevance on the top ranked images returned by
the CBIR system. The user relevance judgements will then
be saved as the log data.

To apply the DML techniques for CIR, for each log ses-
sion of user relevance feedback, we can convert it into sim-
ilar and dissimilar pairwise constraints. Specifically, given

a specific query q, for any two images xi and xj , if they are
marked as relevant in the log session, we will put them into
the set of similar pairwise constraints Sq; if one of them is
marked as relevant, and the other is marked as irrelevant, we
will put them into the set of dissimilar pairwise constraints.
As a result, we denote the collection of user relevance feed-
back log data as L = {(Sq,Dq), q = 1, . . . , Q}, where Q is
the number of log sessions in the log dataset.

In the CIR context, we can reformulate the two loss func-
tions of the above LRML formulation:

min
A�0

tr(XLX�A) + γs

Q∑
q=1

∑
(xi,xj)∈Sq

‖xi − xj‖2
A

−γd

Q∑
q=1

∑
(xi,xj)∈Dq

‖xi − xj‖2
A (14)

To solve the above optimization, we rewrite the two loss
functions as follows:

Q∑
q=1

∑
(xi,xj)∈Sq

‖xi − xj‖2
A

=
Q∑

q=1

∑
(xi,xj)∈Sq

tr
(
A · (xi − xj)(xi − xj)�

)

= tr

⎛
⎝A ·

Q∑
q=1

∑
(xi,xj)∈Sq

(xi − xj)(xi − xj)�

⎞
⎠(15)

and

Q∑
q=1

∑
(xi,xj)∈Dq

‖xi − xj‖2
A

= tr

⎛
⎝A ·

Q∑
q=1

∑
(xi,xj)∈Dq

(xi − xj)(xi − xj)�

⎞
⎠ (16)

To simplify the above expressions, we introduce two matri-
ces S and D:

S =
Q∑

q=1

∑
(xi,xj)∈Sq

(xi − xj)(xi − xj)� (17)

D =
Q∑

q=1

∑
(xi,xj)∈Dq

(xi − xj)(xi − xj)� (18)

Further, by introducing a slack variable t, we can rewrite the
formulation equivalently into the following compact form:

min
A

t + γstr(A · S) − γdtr(A ·D) (19)

s.t. tr(XLX�A) ≤ t

A � 0



The above optimization is clearly a standard formulation of
Semidefinite Programs (SDP) [2], which can be solved ef-
ficiently with global optimum using existing convex opti-
mization packages, such as SeDuMi [19].

4. Experimental Results

In our experiments, we evaluate the effectiveness of
LRML for CIR. We design the experiments for performance
evaluation in several aspects. First of all, we extensively
compare it with a number of state-of-the-art DML tech-
niques. Secondly, we carefully examine if the proposed al-
gorithm is effective to learn reliable metrics by exploiting
the unlabeled data for limited log data. Finally, we study if
the proposed algorithm is robust to large noisy log data.

4.1. Experimental Testbed

We employ a standard CBIR testbed [13], which consists
of 2,000 images in 20 semantic categories fromCOREL im-
age CDs. Each category consists of exactly 100 images that
are randomly selected from relevant examples in COREL
CDs. Every category represents a different semantic topic,
such as antelope, butterfly, cat, dog, and horse, etc.

Figure 1. Image examples in the COREL dataset.

4.2. Image Representation

Image representation is a key step for CBIR. Three kinds
of features are used to represent the images: color, edge and
texture. For color, three types of color moments are ex-
tracted: mean, variance and skewness in each color channel
(H, S, and V) respectively. A 9-dimensional color moment
is used as the color feature. For edge, the edge direction
histogram is engaged [13]. An 18-dimensional edge di-
rection histogram is engaged to represent the edge feature.
For texture, the Discrete Wavelet Transformation (DWT) is
performed on the image with a Daubechies-4 wavelet fil-
ter [15]. A 9-dimensional wavelet texture feature is used to
describe the texture information. In total, a 36-dimensional
feature is used to represent an image.

4.3. Real Log Data of User Relevance Feedback

We obtained the real log data related to the COREL
testbed collected by a real CBIR system from the authors
in [13]. In their collection, there are two sets of log data.

One is a set of normal log data, which contains small noise.
The other is a set of noisy log data of relatively large noise.
For log data, a log session is defined as the basic unit.
Each log session corresponds to a regular relevance feed-
back session, in which 20 images were judged by a user.
Thus, each log session contains 20 labeled images that are
marked as either “relevant (positive)” or “irrelevant (nega-
tive).” Table 1 shows the information of the log data on the
two testbeds. More details can be found in [13].

Table 1. The log data collected from users on two datasets

Datasets
Normal Log Noisy Log

#Log Sessions Noise # Log Sessions Noise

20-Cat 100 7.8% 100 16.2%

4.4. Compared Methods and Experimental Setup

We compare the proposed LRML method extensively
with two groups of major metric learning techniques: un-
supervised approaches and metric learning with side infor-
mation. We do not compare the DML techniques for su-
pervised classification as they often require explicit class
labels, which is unsuitable for CIR. Although it may be
unfair to directly compare the unsupervised methods with
supervised/semi-supervised metric learning using side in-
formation, we still include the unsupervised results. The
results could help us examine how effective is the proposed
method compared with traditional approaches since there
was still limited comprehensive study for applying DML in
CIR before. Specifically, the compared schemes include:

• Euclidean: the baseline denoted as “EU” in short.

• Mahalanobis: a standard Mahalanobis metric, denoted
as “Mah” in short. Specifically, A = P−1, where P is
the covariance matrix.

• PCA: classical PCA method [5]. For all unsupervised
methods, the number of reduced dimensions r is set to
15 in all experiments.

• MDS: classical Multidimensional Scaling method [3].

• Isomap: an unsupervised method for finding low-
dimensional manifold structures with the geometrical
information [20].

• LLE: an unsupervised method that computes low-
dimensional and neighborhood-preserving embed-
dings [16].

• Xing: a popular DML method, which solves the
DML task with an iterative convex optimization tech-
nique [23].

• RCA: Relevance Component Analysis, which learns a
linear projection using only equivalent constraints [1].

• DCA: Discriminative Component Analysis, which
improves over RCA by engaging dissimilar con-
straints [11].



Table 2. Average precision of top ranked images on the 20-Category testbed over 2,000 queries with the normal log data. For each compared
scheme, the first row shows the AP (%) and the second row shows the relative improvement over the baseline (Euclidean) method.

TOP 10 20 30 40 50 60 70 80 90 100 MAP

EU 47.88 39.91 35.62 32.73 30.55 28.84 27.53 26.40 25.39 24.44 31.93

Mah
49.40 40.24 35.22 31.52 28.85 26.71 24.94 23.42 22.19 21.09 30.36
+ 3.2 % + 0.8 % -1.1 % -3.7 % -5.6 % -7.4 % -9.4 % -11.3 % -12.6 % -13.7 % -4.9 %

PCA
47.44 39.50 35.33 32.57 30.45 28.76 27.44 26.32 25.35 24.42 31.76
-0.9 % -1.0 % -0.8 % -0.5 % -0.3 % -0.3 % -0.3 % -0.3 % -0.2 % -0.1 % -0.5 %

MDS
47.95 39.80 35.69 32.85 30.63 28.90 27.61 26.47 25.47 24.50 31.99
+ 0.1 % -0.3 % + 0.2 % + 0.4 % + 0.3 % + 0.2 % + 0.3 % + 0.3 % + 0.3 % + 0.2 % + 0.2 %

LLE
38.58 31.52 28.43 26.26 24.67 23.40 22.34 21.46 20.68 19.87 25.72
-19.4 % -21.0 % -20.2 % -19.8 % -19.2 % -18.9 % -18.9 % -18.7 % -18.6 % -18.7 % -19.4 %

Isomap
34.53 27.34 23.74 21.52 20.04 18.92 18.04 17.23 16.56 15.88 21.38
-27.9 % -31.5 % -33.4 % -34.2 % -34.4 % -34.4 % -34.5 % -34.7 % -34.8 % -35.0 % -33.0 %

Xing
49.54 42.66 38.88 36.19 34.17 32.51 31.07 29.76 28.61 27.50 35.09
+ 3.5 % + 6.9 % + 9.2 % + 10.6 % + 11.8 % + 12.7 % + 12.9 % + 12.7 % + 12.7 % + 12.5 % + 9.9 %

RCA
51.51 43.16 38.41 35.19 32.70 30.64 29.01 27.56 26.21 24.96 33.94
+ 7.6 % + 8.1 % + 7.8 % + 7.5 % + 7.0 % + 6.2 % + 5.4 % + 4.4 % + 3.2 % + 2.1 % + 6.3 %

DCA
52.63 44.11 39.24 35.95 33.36 31.27 29.58 28.13 26.81 25.51 34.66
+ 9.9 % + 10.5 % + 10.2 % + 9.8 % + 9.2 % + 8.4 % + 7.4 % + 6.6 % + 5.6 % + 4.4 % + 8.6 %

RML
52.09 43.80 39.46 36.37 34.06 32.33 30.74 29.45 28.26 27.20 35.38
+ 8.8 % + 9.7 % + 10.8 % + 11.1 % + 11.5 % + 12.1 % + 11.7 % + 11.6 % + 11.3 % + 11.3 % + 10.8 %

LRML
54.88 46.51 42.03 38.71 36.18 34.05 32.44 30.95 29.66 28.36 37.38

+ 14.6 % + 16.5 % + 18.0 % + 18.3 % + 18.4 % + 18.1 % + 17.8 % + 17.2 % + 16.8 % + 16.0 % + 17.1%

• RML: the regularized metric learning algorithm with
the Frobenius norm as the regularizer [17].

• LRML: the proposed Laplacian Regularized Metric
Learning algorithm.

In sum, the compared schemes include 2 standard metrics,
3 unsupervised metrics, 4 supervised DML with side infor-
mation, and the proposed semi-supervised DML method.

For the setup of experiments, we follow a standard pro-
cedure for CBIR experiments. Specifically, a query image
is picked from the database and then queried with the evalu-
ated distance metric. The retrieval performance is then eval-
uated based on the top ranked images ranging from top 10
to top 100 images. The average precision (AP) and Mean
Average Precision (MAP) are engaged as the performance
metrics, which are widely used in CBIR experiments. For
the implementation of the proposed LRML algorithm, we
use a standard method for computing a normalized Lapla-
cian matrix with 6 nearest neighbors. We fix the two regu-
larization parameters such that γd is about one-third of γs.

4.5. Experiment I: Normal Log Data

For of all, we evaluate the compared schemes on the nor-
mal log data. This is to examine if the proposed algorithm is
comparable or better than the previous DML techniques in
a normal situation. Table 2 shows the experimental results
on the 20-category testbed averaging over 2,000 queries
with the normal log data. From the results, we can draw
several observations. Firstly, we found that a simple Ma-
halanobis distance does not always outperform Euclidean
distance. In fact, it only improved slightly on top 10 and
top 20 ranked images, but failed to obtain improvements
on other cases. Secondly, comparing with several unsuper-
vised methods, it is interesting to find that only the MDS

method achieved a marginal improvement over the baseline.
Two manifold based unsupervised methods performed very
poor in this retrieval task. Further, comparing several pre-
vious DML methods with the normal log data, the RML
method achieved the best overall performance, which ob-
tained 10.8% improvement on MAP over the baseline. The
RCA performed the worst among the four compared meth-
ods. Finally, comparing with all the metrics, the proposed
LRML method achieved the best performance, which sig-
nificantly improves the baseline with about 17% improve-
ment onMAP. This shows that the proposedmethod is more
effective than the previous methods with normal log data.

4.6. Experiment II: Noisy Log Data

To evaluate the robustness performance, this experiment
is to evaluate the performance of the compared schemes
with the noisy log data of relatively large noise. Table 3
shows the experimental results on the testbed with the log
data of large noise respectively. From the experimental re-
sults, we found that the Xing’s DML method failed to im-
prove over the baseline method due to the noise problem.
The results validated our previous conjecture that the Xing’s
DMLmethod may be too sensitive to noise. Compared with
the Xing’s method, the other three DML methods including
RCA, DCA and RML are less sensitive to noise, but they
still suffered a lot from the noise. Comparing with other
approaches, the proposed LRML method is more reliable
for achieving a significant improvement. For example, the
LRML method achieved 17.1% improvement on MAP with
normal log data, and is still able to achieve 14.9% improve-
ment on MAP with the larger noisy log data without drop-
ping too much. These experimental results again validate
that the proposed LRML method is effective to learn reli-



Table 3. Average precision (%) of top-ranked images on the 20-Category testbed over 2,000 queries with the noisy log data. For each
scheme, the first row shows the AP (%) and the second row shows the relative improvement over the baseline (Euclidean) method.

TOP 10 20 30 40 50 60 70 80 90 100 MAP

EU 47.88 39.91 35.62 32.73 30.55 28.84 27.53 26.40 25.39 24.44 31.93

Xing
47.90 39.87 35.56 32.69 30.52 28.82 27.49 26.37 25.36 24.41 31.90
+ 0.0 % -0.1 % -0.2 % -0.1 % -0.1 % -0.1 % -0.1 % -0.1 % -0.1 % -0.1 % -0.1 %

RCA
51.14 42.59 37.75 34.45 32.00 30.00 28.31 26.97 25.69 24.45 33.34
+ 6.8 % + 6.7 % + 6.0 % + 5.3 % + 4.7 % + 4.0 % + 2.8 % + 2.2 % + 1.2 % + 0.0 % + 4.4 %

DCA
52.34 43.60 38.66 35.33 32.86 30.84 29.17 27.84 26.58 25.37 34.26
+ 9.3 % + 9.2 % + 8.5 % + 7.9 % + 7.6 % + 6.9 % + 6.0 % + 5.5 % + 4.7 % + 3.8 % + 7.3 %

RML
50.55 42.21 37.92 35.01 32.76 30.99 29.54 28.34 27.30 26.30 34.09
+ 5.6 % + 5.8 % + 6.5 % + 7.0 % + 7.2 % + 7.5 % + 7.3 % + 7.3 % + 7.5 % + 7.6 % + 6.8 %

LRML
53.93 45.95 41.07 37.85 35.37 33.43 31.83 30.40 29.15 27.89 36.69

+ 12.6 % + 15.1 % + 15.3 % + 15.6 % + 15.8 % + 15.9 % + 15.6 % + 15.2 % + 14.8 % + 14.1 % + 14.9%

able distance metrics on real noisy log data by exploiting
the unlabeled data information.

5. Conclusion

We proposed a novel semi-supervised distance metric
learning scheme for collaborative image retrieval, in which
real log data of user relevance feedback were analyzed to
discover useful information and infer optimal metrics for
image retrieval. To exploit the unlabeled data for the met-
ric learning task, we suggested a new Laplacian Regular-
ized Metric Learning (LRML) algorithm, which leverages
the unlabeled data information and ensures metric learn-
ing smoothness through a regularization learning frame-
work. We compare the proposed method with a large num-
ber of standard options and several new methods proposed
recently. The results show that the proposed LRML method
is more effective than the state-of-the-art methods for learn-
ing reliable metrics from realistic log data that are noisy.
In future work, we will conduct more extensive evaluations
and investigate more effective techniques to improve the
performance.
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