12 research outputs found

    A Third Order based Additional Regularization in Intrinsic Space of the Manifold

    Get PDF
    Second order graph Laplacian regularization has the limitation that the solution remains biased towards a constant which restricts its extrapolationcapability. The lack of extrapolation results in poor generalization. An additional penalty factor is needed on the function to avoid its over-fitting on seen unlabeled training instances. The third order derivative based technique identifies the sharp variations in the function and accurately penalizes them to avoid overfitting. The resultant function leads to a more accurate and generic model that exploits the twist and curvature variations on the manifold. Extensive experiments on synthetic and real-world data set clearly shows thatthe additional regularization increases accuracy and generic nature of model

    LaplaceNet: A Hybrid Energy-Neural Model for Deep Semi-Supervised Classification

    Full text link
    Semi-supervised learning has received a lot of recent attention as it alleviates the need for large amounts of labelled data which can often be expensive, requires expert knowledge and be time consuming to collect. Recent developments in deep semi-supervised classification have reached unprecedented performance and the gap between supervised and semi-supervised learning is ever-decreasing. This improvement in performance has been based on the inclusion of numerous technical tricks, strong augmentation techniques and costly optimisation schemes with multi-term loss functions. We propose a new framework, LaplaceNet, for deep semi-supervised classification that has a greatly reduced model complexity. We utilise a hybrid energy-neural network where graph based pseudo-labels, generated by minimising the graphical Laplacian, are used to iteratively improve a neural-network backbone. Our model outperforms state-of-the-art methods for deep semi-supervised classification, over several benchmark datasets. Furthermore, we consider the application of strong-augmentations to neural networks theoretically and justify the use of a multi-sampling approach for semi-supervised learning. We demonstrate, through rigorous experimentation, that a multi-sampling augmentation approach improves generalisation and reduces the sensitivity of the network to augmentation

    Image Compression by Learning to Minimize the Total Error

    Full text link

    Visual Understanding via Multi-Feature Shared Learning with Global Consistency

    Full text link
    Image/video data is usually represented with multiple visual features. Fusion of multi-source information for establishing the attributes has been widely recognized. Multi-feature visual recognition has recently received much attention in multimedia applications. This paper studies visual understanding via a newly proposed l_2-norm based multi-feature shared learning framework, which can simultaneously learn a global label matrix and multiple sub-classifiers with the labeled multi-feature data. Additionally, a group graph manifold regularizer composed of the Laplacian and Hessian graph is proposed for better preserving the manifold structure of each feature, such that the label prediction power is much improved through the semi-supervised learning with global label consistency. For convenience, we call the proposed approach Global-Label-Consistent Classifier (GLCC). The merits of the proposed method include: 1) the manifold structure information of each feature is exploited in learning, resulting in a more faithful classification owing to the global label consistency; 2) a group graph manifold regularizer based on the Laplacian and Hessian regularization is constructed; 3) an efficient alternative optimization method is introduced as a fast solver owing to the convex sub-problems. Experiments on several benchmark visual datasets for multimedia understanding, such as the 17-category Oxford Flower dataset, the challenging 101-category Caltech dataset, the YouTube & Consumer Videos dataset and the large-scale NUS-WIDE dataset, demonstrate that the proposed approach compares favorably with the state-of-the-art algorithms. An extensive experiment on the deep convolutional activation features also show the effectiveness of the proposed approach. The code is available on http://www.escience.cn/people/lei/index.htmlComment: 13 pages,6 figures, this paper is accepted for publication in IEEE Transactions on Multimedi

    Semi-supervised Regression using Hessian energy with an application to semi-supervised dimensionality reduction

    No full text
    Semi-supervised regression based on the graph Laplacian suffers from the fact that the solution is biased towards a constant and the lack of extrapolating power. Outgoing from these observations we propose to use the second-order Hessian energy for semi-supervised regression which overcomes both of these problems, in particular, if the data lies on or close to a low-dimensional submanifold in the feature space, the Hessian energy prefers functions which vary linearly with respect to the natural parameters in the data. This property makes it also particularly suited for the task of semi-supervised dimensionality reduction where the goal is to find the natural parameters in the data based on a few labeled points. The experimental result suggest that our method is superior to semi-supervised regression using Laplacian regularization and standard supervised methods and is particularly suited for semi-supervised dimensionality reduction

    High-dimensional semi-supervised learning: in search for optimal inference of the mean

    Full text link
    We provide a high-dimensional semi-supervised inference framework focused on the mean and variance of the response. Our data are comprised of an extensive set of observations regarding the covariate vectors and a much smaller set of labeled observations where we observe both the response as well as the covariates. We allow the size of the covariates to be much larger than the sample size and impose weak conditions on a statistical form of the data. We provide new estimators of the mean and variance of the response that extend some of the recent results presented in low-dimensional models. In particular, at times we will not necessitate consistent estimation of the functional form of the data. Together with estimation of the population mean and variance, we provide their asymptotic distribution and confidence intervals where we showcase gains in efficiency compared to the sample mean and variance. Our procedure, with minor modifications, is then presented to make important contributions regarding inference about average treatment effects. We also investigate the robustness of estimation and coverage and showcase widespread applicability and generality of the proposed method
    corecore