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Abstract—Second order graph Laplacian regulariza-
tion has the limitation that the solution remains biased
towards a constant which restricts its extrapolation
capability. The lack of extrapolation results in poor
generalization. An additional penalty factor is needed
on the function to avoid its over-fitting on seen un-
labeled training instances. The third order derivative
based technique identifies the sharp variations in the
function and accurately penalizes them to avoid over-
fitting. The resultant function leads to a more accurate
and generic model that exploits the twist and curvature
variations on the manifold. Extensive experiments on
synthetic and real-world data set clearly shows that
the additional regularization increases accuracy and
generic nature of model.

Index Terms—Graph Laplacian, Third order deriva-
tive, Regularization, Curvature, Manifold

I. INTRODUCTION

Machine learning techniques [1] aim to extract the
underlying common distribution properties from the
training data set [2] that can be extended to unseen
data instances for the best label prediction. This
prediction often suffers from the model over-fitting
that deviates the model from obtaining a general
characteristic. In many of the real world applications,
labeled data is available in sparse while unlabeled
data is present in abundance. Semi-supervised learn-
ing based classification (SSL) [3]–[5] exploits these
combined bundle of labeled as well as unlabeled data
[6] that greatly extends the model proficiency. SSL
creates a model based on either one of the following
predefined assumptions-smoothness, clustering, and
manifold. The clustering assumption states that the
instances belonging to same cluster must share the
similar class label. The classification boundary thus,
passes through the regions between clusters where
data is sparsely scattered. The manifold assumption
inherently assumes that the given high dimensional
data actually resides on the much lower dimensional
space. Noise, highly correlated attributes and the
unknown transformations contribute to the artificially
increased dimensions.

Manifold regularization [2], [7]–[10] under SSL
framework performs computation on the graph which
describes the manifold structure. The nodes of the
graph represent the data instances and similarity or
affinity between nodes is represented using edges.
Consider an undirected graph G = (V,W ) where
V represents n labeled and unlabeled instances. The
edge between data instances xi and xj is represented
by wij ∈W . The similarity metric between nodes is
used to extract the intrinsic geometry of the manifold
[11], [12]. Graph Laplacian is calculated using L =
D−W , where Dii =

∑n
j=1 wij is a diagonal matrix

and L estimates the divergence of the function gra-
dient. Manifold regularization utilizes the abundant
unlabeled data to increase the model accuracy and
avoid function over-fitting when labeled data alone
proves to be insufficient. The manifold regularization
accurately penalizes the function so that its transition
within similar and non-similar labeled data remains
smooth.

Graph Laplacian in past has been proved to be
an accurate manifold regularization method but due
to its own limitation of extrapolation power, it
has been used along with Hessian regularization
[13] to achieve better regularization than the graph
Laplacian alone. Hessian regularization [14], [15]
approximates energy in the neighborhood through
the second derivative of the function. It helps in
identifying those geodesic deviating functions which
is left unpenalized by the graph Laplacian regulariza-
tion. This higher order co-regularization [16] method
successfully discards the effects of noise and high
oscillation.

Given d dimensional n data points X =
(x1, x2, ....., xl, xl+1, ....., xn) where, for the sake of
simplicity, first l instances are considered labeled and
rest n − l are unlabeled data instances. The labels
of respective input space data is represented using
Y = (y1, y2, ....., yl). As described above, the graph
Laplacian on both labeled and unlabeled data is ob-
tained through L = D−W over G = (V,W ) where,
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{wij}ni=1,j=1 represents the similarity between the
nodes xi and xj . The connectivity between the nodes
can be defined on the basis of k-nearest neighbor
technique, where xi and xj are connected if xi is
in the neighborhood of xj or vice-versa. The other
method for creating a graph is by employing ε-radius
neighborhood where, xi and xj are connected only
if ||xi − xj ||2d < ε.

A supervised model can be defined as

f∗ = argmin
f∈Hk

l∑
i=0

V(xi, yi, f) + λ||f ||2A (1)

where V(xi, yi, f) represents the loss function for
e.g. hinge loss (support vector machine) or square
loss (regression least squares) and λ||f ||2A is the
ambient space regularization. In order to extract the
intrinsic geometrical information of manifold, one
more regularization term needs to be included in the
function

f∗ = argmin
f∈Hk

l∑
i=0

V(xi, yi, f) + λ||f ||2A

+
n∑

i,j=1

wij(f(xi)− f(xj))2
(2)

The last term in the equation (2) penalizes the
function in the intrinsic space to exploit the hidden
geometrical information in the data.

n∑
i,j=1

wij(f(xi)− f(xj))2 = fTLf

where, L denotes the graph Laplacian of the
manifold. Based on the Representer theorem, the
optimal function f can be obtained from f =∑n
i=1 aiK(xi, x). Here, K denotes the n×n positive

definite kernel gram matrix and a is the function
coefficient vector. In this work, we proposed a third
order derivative based co-regularization technique
to overcome the limitation of second order based
manifold regularization method. The rest of this
paper is organized in the following sections, section
II explains our proposed model, section III represents
the extensive experimental results and the last section
IV draws the conclusion.

II. THIRD ORDER DERIVATIVE AND GRAPH
LAPLACIAN ASSOCIATED REGULARIZATION

MODEL

A. Proposed Model

The shortcomings of second order based regular-
ization method leads to the need for higher order co-
regularization that can neutralize the biasness of the
solution of the function. The third order derivative
based technique handles the oscillations and twists in
the curvature as well as discards the effect of noise
in the data. The second order derivative estimates
the change in curvature and gives accurate value

on a dense manifold. However, as the neighborhood
becomes sparse, it dips the model’s performance
due to its inability to learn the smooth function.
Hence, the model prediction remains accurate as long
as the learned candidate function is able to take
into account all the neighborhood points at each
data instance. The Graph Laplacian regularization
tends to fail on sparse and rapidly varying manifold.
In order to handle such limitation, we propose a
third order based co-regularization technique fused in
the existing objective function to further accurately
penalize the function.

On a smooth Riemannian manifold M, the third
order derivative can be defined as

f =

∫
M
||5a5b5cf ||2TxM⊗TxM⊗TxMdV (x) (3)

where, 5a 5b 5cf is the third order derivative of
f and dV is the volume element which integrates
the whole patches of M. Since, due to the presence
of large unlabeled data, M tends to form the single
large densely connected structure. In order to extract
the underlying hidden information, we need to calcu-
late the tangent space TxM at each data instance of
X . The third derivative of the underlying curvature at
each xi relies on the manifoldM’s properties which
is independent of the given coordinate representation.
Thus, we need to evaluate an independent coordinate
system for each xi. We assume that given M holds
the basic assumption of local linearity i.e.M follows
euclidean properties around a smaller neighborhood
and geodesic being the shortest distance between any
two points on that manifold. The norm of the third
derivative of z converges to Frobenius norm of f
obtained in the independent coordinates

|| 5a 5b 5c f ||2TxM⊗TxM⊗TxM =
u∑

p,q,r=1

(
∂3f

∂xp∂xq∂xr

∣∣∣∣
z

)2 (4)

After the tangent space TxM calculation, the higher
order value for curvature can be obtained at each
point as(

∂3f

∂xp∂xq∂xr

∣∣∣∣
z

)2

=
u∑

i,j=1

T (j)
pqrf(xi) (5)

The equation 5 has been used for the calculation
of the rate of change of the curvature of the given
manifold where T relates objective function with the
third order derivative that can be computed by fitting
a third order Taylor expansion of f at each point
xi. The Taylor polynomial expansion for third order
derivative of f is approximated by

t3(xi) =
3∑

K=0

fK(0)

K!
xKi = f(0) + f ′(0)xi+

f ′′(0)

2!
x2i +

f ′′′(0)

3!
x3i

(6)
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where, t3(xi) is the Taylor’s third order derivative,
f(0) is a constant value, f ′, f ′′, and f ′′′ are first, sec-
ond and third order derivative of f respectively. The
individual derivative terms for first, second and third
order derivatives have different degrees of manifold
geometrical information extraction scope. The sec-
ond order manifold regularization lags as the varying
and twist in manifold that carries a large chunk of
information fails. Thus, the third derivative based
regularization in the objective function is needed to
handle this concealed information which otherwise
remains unexploited by the existing techniques.

The standard least square method is used to fit the
high degree polynomial

argmin
w∈RM

k∑
i,j=1

(
(f(xj)− f(xi))− (φw)j

)2
(7)

The f(x) contains the function value for data
samples in neighborhood of xi and φ ∈ Rk×c,
a design matrix with c = 5(d2−3d+4)

2 . The
monomials φ for xj in neighborhood of xi is
[x1, . . . , xm, x1x1, x1x2, . . . , xmxm]. The Frobenius
norm of the higher order function can be obtained
from

|| 5a 5b 5c f ||2 ≈
l∑

p,q,r=1

( k∑
α

R(i)
p,q,r,αfα

)2

=

k∑
α,β,γ=1

fαfβfγJ
(i)
αβγ

(8)

where, J
(i)
αβγ =

∑l
p,q,r=1 J

(i)
p,q,r,αJ

(i)
p,q,r,βJ

(i)
p,q,r,γ .

Thus, the higher order derivative at any point xi is
the monomial of three degree polynomial fit within
that neighborhood.

R(f) =
l∑
i=1

u∑
p,q,r=1

(
∂3f

∂xp∂xq∂xr

∣∣∣∣
z

)2

=

u∑
i=1

∑
α∈Nk(xi)

∑
β∈Nk(xi)

∑
γ∈Nk(xi)

fαfβfγJ
(i)
αβγ = (fTJf)

(9)

The higher order regularization term incorporated in
the existing objective function can be modified as

f∗ = argmin
f∈Hk

l∑
i=0

V(xi, yi, f) + λ||f ||2A

+γ||f ||2I + µ(fTJf)

(10)

f∗ = argmin
f∈Hk

l∑
i=0

V(xi, yi, f) + λ||f ||2A

+γ||f ||2I + µ||f ||2I

(11)

B. Model with SVM and RLSC classifier

The support vector machine [17] considers the
linear hinge loss for the classification but it can-
not appropriately penalize the labeled data points

for classification. SVM has been defined that can
accommodate the higher order regularization term in
the objective function

f∗ = argmin
l∑
i=1

max(1− yif(xi), 0)

+λaTKa+ γaTKTKa+ µaTKTKa

(12)

where, Kn×n is the kernel gram matrix, and a is
the coefficient vector containing values based on
second order and third order co-regularization. The
higher order regularization method based on RLSC
classifier uses the L2 norm function. The updated
objective function is

f∗ = argmin
f∈Hk

l∑
i=1

||yi − f(xi)||2d + λaTKa

+γaTKTKa+ µaTKTKa

(13)

III. EXPERIMENT AND RESULTS

The limitations of existing second order based
manifold regularization techniques cannot handle the
manifolds with high sparsity and rapidly varying
nature with high volume of twist in curvature. The
proposed higher order regularization technique over-
comes the existing limitations by accounting the rate
of change of curvature on the underlying manifold.
In this section, we have performed extensive exper-
iments on both synthetic as well as on real world
data to validate our newly proposed technique that
associates the Graph Laplacian with third order reg-
ularization. The performance of our method has been
compared with the baseline methods on accuracy
metric. The results show that it is able to outperform
earlier methods by extracting the additional informa-
tion concealed in the manifold due to limitations of
second order methods.

A. Toy Data set

The proposed technique has been demonstrated on
the toy data set that can comprehensible illustrate
the better approximate the underlying structure of
the 2 d data set. This data set consists of 955 points
shaped in a sinusoidal manner. The fig. 2 shows that
how well our proposed third order based technique
generalize the data points. This generalization of the
function is with third order is only possible because
it into consideration the rate of change of curvature
of the underlying manifold. Comparisons with the
existing techniques Graph Laplacian and Hessian
regularization has been shown in fig. 1

B. HaLT Data set

This is a large EEG [18] motor data set which
contains five BCI paradigms experimental records
including HaLT. It is an extension of the 3 state
data classic paradigm. It includes left leg, right leg,
tongue, left hand, right hand and passive imagery
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(a) Sinusoidal Dataset (b) Laplacian (c) Hessian

Fig. 1: Laplacian and Hessian Regularization Technique

Fig. 2: Proposed Third order based co-regularization

(a) RLSC unlabeled (b) RLSC test

(c) SVM unlabeled (d) SVM test

Fig. 3: HaLT data set classification

mental states. Among all the participants, in this
experiment, the three HaLT recordings for subject
a has been used. In the data collection stage, each
movement was shown as image on computer screen
for 1 second and simultaneously the respective ECG
readings were saved. Each such action consisted of
approximately 170 frames of micro-volt data. Based
on the certain predefined data markers , each such
170 × 21 frames extracted and reshaped to a single
vector 1 × 3570. By combining all the frames, the
final data set comprises of 2408× 3570 matrix. Di-
mensionality reduction performed with PCA on this

high volume data set and reduced to 100 dimensions,
retaining the data variance ≈ 90%.

The training and testing data set were generated
by randomly dividing action data into two halves.
The experiments is performed 10 times such that
every time 2 labeled instances is used that generates
a highly generic SSL model. Our proposed higher
order regularization is compared with other state of
art methods Graph Laplacian, Hessian regularization
[15] and iterative Laplacian Lm [16], [19] where
(m = 2). As show in the figures 3 that proposed
higher order regularization technique that outper-
formed its counterpart with huge margin both for
SVM as well as RLSC classification. The minimum
and maximum mean squared error (ς) value for
Graph Laplacian, Hessian regularization, iterative
Laplacian Lm and Higher order regularization are
(36.94, 41.32)
, (20.48, 38.42), (35.79, 40.99), and(8.60, 23.71) re-
spectively. RBF kernel is used to all the method with
value of kNN is 6. The value of tuning parameter of
λ, γ, and µ is 0.05, 0.005, and .004 respectively is
obtained by cross validation. The proposed higher
order regularization better extracts the underlying
geometry of data manifold that remains unexploited
by the second order based techniques which in turn
provides a highly generic function.

C. USPS Data set

USPS digit data set [20] is a collection of dig-
its (0 − 9), digitized images of handwritten postal
code on postcard in Buffalo NY post office. It is
highly enrich data set such that different people have
contributed for same digit in their own way(writing
style). The main attributes of this data is differ-
ence in size , thickness, rotation writing style and
instruments. In the experiment each digit has been
classified pairwise i.e it is 45 binary classification.
Data has total 7291 instances which is reduced to
100 dimensions. Data set is divided into two parts
training and testing. 400 instances of each digit is
fixed for training and rest instances of each digit is
kept for testing. Experiment has been repeated 20
times, on each turn 2 labeled instances are randomly
picked for model training. The results (fig 4) shows

Proc. EECSI 2019 - Bandung, Indonesia, 18-20 Sept 2019

401



(a) RLSC unlabeled (b) RLSC test

(c) SVM unlabeled (d) SVM test

Fig. 4: USPS data set classification

that our higher order proposed regularization per-
forms much better than Hessian regularization and
iterative Laplacian but fails to overpass the Graph
Laplacian. The minimum and maximum value of
mean square error (ς) for Graph Laplacian, Hessian,
iterative Laplacian and higher order regularization
are (0.00, 13.91), (00.02, 16.20), (00.17, 22.33),
and(0.00, 15.60) respectively. RBF kernel is used to
all the method with value of kNN is 6. The value
of tuning parameter of λ, γ, and µ is 0.05, 0.005,
and .04 respectively is obtained by cross validation.
The higher order based technique here not able to
perform much significant and average error value is
very much close to the graph Laplacian

D. Isolet Data set

This data generated with the help of 150 indi-
viduals who speaks out the names of each English
alphabet letter twice. Thus 52 training examples from
each speaker. The speakers are clustered together
into a set of 30 speakers each, such that five cluster
set is formed and termed as Isolet1,.....Isolet5. We
used Isolet1 for training and Isolet5 for testing.
Training data has 1560 instances with dimensions
617 whereas testing set has 1559 instances only.
Experiment is performed 20 times such that it be-
comes a 30 binary classification problem. Classi-
fication is performed with both SVM and RLSC
and our proposed higher based regularization per-
formed better in both cases. It overpasses its coun-
terpart regularization technique by a significant mar-
gin. The figure 5 clearly shows the validity of
our work such that it classify better for every in-
stance. The minimum and maximum value of mean
square error (ς) for Graph Laplacian, Hessian, iter-
ative Laplacian and higher order regularization are

(a) RLSC unlabeled (b) RLSC test

(c) SVM unlabeled (d) SVM test

Fig. 5: Isolet data set classification

(13.39, 23.20), (22.28, 32.22), (15.51, 25.99), and
(10.74, 22.84) respectively. RBF kernel is used to
all the method with value of kNN is 6. The value
of tuning parameter of λ, γ, and µ is 0.05, 0.005,
and .07 respectively is obtained by cross validation.
Thus, the higher order regularization better extracts
the underlying geometry of manifold that remains
unobserved with the second order based regulariza-
tion techniques that not take into consideration the
twists and sparsity of the underlying manifold.

IV. CONCLUSION

The proposed higher order manifold co-
regularization fused in the objective function
along with graph Laplacian over comes the
shortcoming of the existing manifold regularization
with a significant margin in both SVM and RLSC
classification categories. The experimental results
on several real world data set illustrate that the
higher order co-regularization learns a better
generic function by exploiting the rate of change
of curvature along with the amount of curvature
obtained using graph Laplacian. The higher order
derivative based technique identifies the sharp
variations in the function and accurately penalizes
them to avoid over-fitting. As compared with
existing state-of-the-art manifold regularization
techniques based on Hessian, graph Laplacian
and higher order Laplacian, the proposed method
outperforms them by a significant margin.
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