272 research outputs found

    Decoherence, entanglement decay, and equilibration produced by chaotic environments

    Full text link
    We investigate decoherence in quantum systems coupled via dephasing-type interactions to an arbitrary environment with chaotic underlying classical dynamics. The coherences of the reduced state of the central system written in the preferential energy eigenbasis are quantum Loschmidt echoes, which in the strong coupling regime are characterized at long times scales by fluctuations around a constant mean value. We show that due to the chaotic dynamics of the environment, the mean value and the width of the Loschmidt echo fluctuations are inversely proportional to the quantity we define as the effective Hilbert space dimension of the environment, which in general is smaller than the dimension of the entire available Hilbert space. Nevertheless, in the semiclassical regime this effective Hilbert space dimension is in general large, in which case even a chaotic environment with few degrees of freedom produces decoherence without revivals. Moreover we show that in this regime the environment leads the central system to equilibrate to the time average of its reduced density matrix, which corresponds to a diagonal state in the preferential energy eigenbasis. For the case of two uncoupled, initially entangled central systems that interact with identical local quantum environments with chaotic underlying classical dynamics, we show that in the semiclassical limit the equilibration state is arbitrarily close to a separable state. We confirm our results with numerical simulations in which the environment is modeled by the quantum kicked rotor in the chaotic regime.Comment: 11 pages, 5 figure

    Entanglement in Many-Body Systems

    Get PDF
    The recent interest in aspects common to quantum information and condensed matter has prompted a prosperous activity at the border of these disciplines that were far distant until few years ago. Numerous interesting questions have been addressed so far. Here we review an important part of this field, the properties of the entanglement in many-body systems. We discuss the zero and finite temperature properties of entanglement in interacting spin, fermionic and bosonic model systems. Both bipartite and multipartite entanglement will be considered. At equilibrium we emphasize on how entanglement is connected to the phase diagram of the underlying model. The behavior of entanglement can be related, via certain witnesses, to thermodynamic quantities thus offering interesting possibilities for an experimental test. Out of equilibrium we discuss how to generate and manipulate entangled states by means of many-body Hamiltonians.Comment: 61 pages, 29 figure

    The Tensor Track, III

    Full text link
    We provide an informal up-to-date review of the tensor track approach to quantum gravity. In a long introduction we describe in simple terms the motivations for this approach. Then the many recent advances are summarized, with emphasis on some points (Gromov-Hausdorff limit, Loop vertex expansion, Osterwalder-Schrader positivity...) which, while important for the tensor track program, are not detailed in the usual quantum gravity literature. We list open questions in the conclusion and provide a rather extended bibliography.Comment: 53 pages, 6 figure

    Introduction by the Organisers

    Get PDF

    Indexing and Retrieval of 3D Articulated Geometry Models

    Get PDF
    In this PhD research study, we focus on building a content-based search engine for 3D articulated geometry models. 3D models are essential components in nowadays graphic applications, and are widely used in the game, animation and movies production industry. With the increasing number of these models, a search engine not only provides an entrance to explore such a huge dataset, it also facilitates sharing and reusing among different users. In general, it reduces production costs and time to develop these 3D models. Though a lot of retrieval systems have been proposed in recent years, search engines for 3D articulated geometry models are still in their infancies. Among all the works that we have surveyed, reliability and efficiency are the two main issues that hinder the popularity of such systems. In this research, we have focused our attention mainly to address these two issues. We have discovered that most existing works design features and matching algorithms in order to reflect the intrinsic properties of these 3D models. For instance, to handle 3D articulated geometry models, it is common to extract skeletons and use graph matching algorithms to compute the similarity. However, since this kind of feature representation is complex, it leads to high complexity of the matching algorithms. As an example, sub-graph isomorphism can be NP-hard for model graph matching. Our solution is based on the understanding that skeletal matching seeks correspondences between the two comparing models. If we can define descriptive features, the correspondence problem can be solved by bag-based matching where fast algorithms are available. In the first part of the research, we propose a feature extraction algorithm to extract such descriptive features. We then convert the skeletal matching problems into bag-based matching. We further define metric similarity measure so as to support fast search. We demonstrate the advantages of this idea in our experiments. The improvement on precision is 12\% better at high recall. The indexing search of 3D model is 24 times faster than the state of the art if only the first relevant result is returned. However, improving the quality of descriptive features pays the price of high dimensionality. Curse of dimensionality is a notorious problem on large multimedia databases. The computation time scales exponentially as the dimension increases, and indexing techniques may not be useful in such situation. In the second part of the research, we focus ourselves on developing an embedding retrieval framework to solve the high dimensionality problem. We first argue that our proposed matching method projects 3D models on manifolds. We then use manifold learning technique to reduce dimensionality and maximize intra-class distances. We further propose a numerical method to sub-sample and fast search databases. To preserve retrieval accuracy using fewer landmark objects, we propose an alignment method which is also beneficial to existing works for fast search. The advantages of the retrieval framework are demonstrated in our experiments that it alleviates the problem of curse of dimensionality. It also improves the efficiency (3.4 times faster) and accuracy (30\% more accurate) of our matching algorithm proposed above. In the third part of the research, we also study a closely related area, 3D motions. 3D motions are captured by sticking sensor on human beings. These captured data are real human motions that are used to animate 3D articulated geometry models. Creating realistic 3D motions is an expensive and tedious task. Although 3D motions are very different from 3D articulated geometry models, we observe that existing works also suffer from the problem of temporal structure matching. This also leads to low efficiency in the matching algorithms. We apply the same idea of bag-based matching into the work of 3D motions. From our experiments, the proposed method has a 13\% improvement on precision at high recall and is 12 times faster than existing works. As a summary, we have developed algorithms for 3D articulated geometry models and 3D motions, covering feature extraction, feature matching, indexing and fast search methods. Through various experiments, our idea of converting restricted matching to bag-based matching improves matching efficiency and reliability. These have been shown in both 3D articulated geometry models and 3D motions. We have also connected 3D matching to the area of manifold learning. The embedding retrieval framework not only improves efficiency and accuracy, but has also opened a new area of research

    Complex and Adaptive Dynamical Systems: A Primer

    Full text link
    An thorough introduction is given at an introductory level to the field of quantitative complex system science, with special emphasis on emergence in dynamical systems based on network topologies. Subjects treated include graph theory and small-world networks, a generic introduction to the concepts of dynamical system theory, random Boolean networks, cellular automata and self-organized criticality, the statistical modeling of Darwinian evolution, synchronization phenomena and an introduction to the theory of cognitive systems. It inludes chapter on Graph Theory and Small-World Networks, Chaos, Bifurcations and Diffusion, Complexity and Information Theory, Random Boolean Networks, Cellular Automata and Self-Organized Criticality, Darwinian evolution, Hypercycles and Game Theory, Synchronization Phenomena and Elements of Cognitive System Theory.Comment: unformatted version of the textbook; published in Springer, Complexity Series (2008, second edition 2010

    The Bernoulli numerators

    Get PDF
    corecore