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Those that know it’s history know

that combinatorics notoriously grow,

for every proof, as many conjectures;

For every known fact, far more are unknown
And each new idea requires a tome

And a series of lectures.

Publish or perish refers not to us:

The ideas that we cherish would turn to dust

If we never cared, nor dared, to share them:

If we never ignored the snide — ‘who need them?’

Nor stopped ourselves thinking — ‘Who’ll ever read them?’

But history shows, that those who know, do try
To remember who did what, when, and why.
So, so long as it’s printed and others can see it
What does it matter if nobody noticed

At the time? ,
That’s life,
so be it.

Dedicated

To Basil



ABSTRACT

The four-colour conjecture of 1852, and the total colouring conjecture of 1965, have
sparked off many new concepts and conjectures. In this thesis we investigate many of
the outstanding conjectures, establishing various related results, and present many

conjectures of our own.

We give a brief historical introduction (Chapter 1) and establish some notation,
terminology and techniques (Chapter 2). Next, in Chapter 3, we examine the use of
latin squares to represent edge and total colourings. In Chapters 4 — 6 we deal with

vertex, edge and total colourings respectively.

Various ways of measuring different aspects of graphs are presented, in particular, the
‘colouring difference’ between two edge-colourings of a graph (Chapter 5) and the
‘beta parameter’ (defined in Chapter 2 and used in Chapters 3 and 6); this is a
measure of how far from a type 1 graph a type 2 graph can be. In Chapter 6 we derive
an upper bound for the beta value of any near type 1 graph and give the exact results

for all X,,. The number of ways of colouring K,, and K, , are also quantified.

Chépter 6 also examines Hilton’s concept of conformability. It is shown that every
graph with at least A spines is conformable, and an extension to the concept, which
we call G*-conformability, is introduced. We then give new necessary conditions for

a cubic graph to be type 1 in relation to G*-conformability.

Various methods of manipulating graphs are considered and we present: a method to

compatibly triangulate a graph G — e; a method of introducing a fourth colour thus
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allowing a sequence of Kempe interchanges from any edge 3- colouring of a cubic
graph to any other; and a method to re-colour a near type 1 graph within a certain

bound on beta.

We end this thesis with a brief discussion on possible practical uses for colouring

graphs.

A list of the main results and conjectures is given at the end of each chapter, but a

short list of the principle theorems proven is given below.

Summary of principal results

0, (n odd)

Main result (3.1 23
%, (neven). in result 3.1) page

Theorem 3.14 AB(X,)= {

Theorem 3.4.7 To isochromatism, the number of ways to colour K, is equal to
3w+20 +p
where
@ is the number of main classes of nXnlatin squares in the set Cg;
0 is the number of main classes of nxnlatin squares in the set Cs;
p is the number of main classes of nxnlatin squares in the set C;U Ca.

Main result (3.3) Page 41
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Corollary 3.4.8 To isochromatism, there are only as many ways to colour K, as

there are main classes with symmetric representations. Main result (3.4) page 41

Lemma 3.5.5 A necessary condition for tis = (K., — E) to be a colouring of a
critical set for W(K, ) is that the subgraph U(E) has no potential (x, y : a) swaps.

Main result (3.5) page 44

Theorem 4.1.5 Let F be a face of a simple plane graph G, and suppose |
w: V(G) = {c1, ¢2, €3, ¢4} is a vertex colouring of G such that exactly three colours

occur on the vertices of F. Then F can be compatibly triangulated.

Main result (4.1) page 50

Theorem 4.2.2 Let y be a 4-colouring of G — {vo} where G is a critical triangulated
graph and d(vo) = 5. Let the colours of the_ neighbouring vertices vy, ..., vs be as in

the standard colouring, let ¢n= ¢(2[2, 4], 5[2, 31). Then if G has a Heawood

colouring, ¢n < 2. Main result (4.2) page 56

Theorem 5.2.1 [Holroyd, Williams] Every edge 3-colouring of a Class I (not
necessarily planar) cubic graph can be obtained from every other edge 3- colouring
of the same graph by a series of (edge) Kempe interchanges using at most four

colours. Main result (5.1) page 69
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Theorem 5.3.13 Two edge 3-colourings of a graph G with tri-star equi-covering
have colour difference cd[A(o0)] where A = |V(G)|/2 and o= 0.

Main result (5.5) page 83

Theorem 5.3.14 The maximal colour difference mcd(G)[A(0)] for any graph is such
that A < |V(G))2, equality being achieved only when G has a tri-star equi-covering.

Main result (5.6) page 83

Lemma 6.1.8 Every graph with at least A spines is conformable.
Main result (6.3) Page 94

Theorem 6.1.12 Any non-conformable irregular graph G is an induced subgraph of
a type 2 conformable graph H of the same maximum degree, where n(H) = n(G) + 1.

Main result (6.5) Page 97

Theoi'em 6.2.10 Let G be regular cubic graph. Then a necessary condition for G to
be type 1 is that G should have a G*-conformable vertex colouring ((V*) such that,
Jor every pair of colour sets S; and Sj, the subgraph G — S; - S; has:

(i) at least (n; + n))/2 components;

(ii) at most (n; + n;)/2 components with less than four vertices.

(iii) an even number 2q of odd components, where 2q < min{n;, n;}.

Main result (6.9) Page 106

Theorem 6.2.13 Let G be a semi-regular cubic graph. Then a necessary condition

Jor G to be type 1 is that G should have a G*-conformable spine and vertex colouring



U(V*) (as above) such that, for every pair of colour sets S; and S;, the subgraph

G - Si— Sj has:

(i) at least (n; + n))/2 — {({i, j}) components;

(ii) at most (n; + np)2 — {({i, j}) components with less than four vertices;

(iii) an odd number of odd components, bounded above by min{n;, n;}, except where

{i,j} = {1, 2}, in which case an even number of odd components, bounded above by

min{ny, n,} — 1.

Main result (6.12) Page 109

Theorem 6.3.3 Let A(G) = 3 and suppose there is a tbtal (A + 1)-colouring u of
G — e such that u(vy), 1(s1), U(v>) and p(s2) are not all distinct. Then < A.

Main result (6.15) Page 115

Theorem 6.3.4 Let G be a near Type 1 graph with A =3; then f < 2 unless all

Type 1 total colourings u of G — e have p(vi) = @(va), {(s1) # H(s2), when B <3.

Main result (6.16) Page 117

Theorem 6.3.10 Let g = 1 and let G be a near Type 1 graph with
LG)>20-1)+(g-DA-3)+(A-27+1)= 2(A+1) + g(A —-3) - 27 ; then

A(G) = 29** 1. Main result (6.21) Page 137

Corollary 6.3.11 Let G be a near Type 1 graph with A2 4; then

3A
BG) < T+ (A-3)logx(A+1)+5. Main result (6.22) Page 138
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CHAPTER 1

HISTORICAL INTRODUCTION

There is an old Welsh story about Hu Cadarn, the first ruler of Britain. In this story
the boy Hu asked: ‘Why do we only get barley grass when we throw barley seeds on
the ground?” Nobody knew and, in trying to find out for himself, he invented the
plough. But, even with the plough, all he can prove is that we only get barley grass
when We throw barley seeds on the ground. He still doesn’t have the answer to the
question “‘Why?’ This answer is, however, known to Taliesyn in a different old Welsh
story, but he never tells us what it is. We in the twenty-first century know that the
answer is all to do with DNA, but even (or especially) genetic engineers are well

aware that there is still a lot more to be found out about how and why.

There is similarly a not quite so old mathematical story about a young Francis Guthrie
who, in 1852, asked his brother Frederick: ‘Why can all maps be coloured with four
colours? ! Nobody knew the answer and, in trying to find out, vertex colouring, edge
colouring, total colouring, hyper graphs and other mathematics were all invented; but

we are still a long way from discovering why ‘four colours suffice’.

In 1879 Kempe provided a simple (apparent) proof that any critical map (that is, any
map that ‘only just’ fails to be colourable with four colours) has no triangular, square
or pentagonal regions. Since Euler’s work led easily to the conclusion that all cubic

maps have at least one region with fewer than six borders, no map was critical, hence

! Augustus De Morgan in a letter to Sir William Rowan Hamilton 23/10/1852: ‘A student of mine
asked me today to give him a reason for a fact which I did not know was a fact and do not yet. He says
that if a figure be any how divided, and the compartments differently coloured, so that figures with any
portion of common boundary [line] are differently coloured — four colours may be wanted but no
more.’



all maps are four-colourable. Soon after, Tait gave an alternative proof using edge
colouring. However, eleven years later (in 1890) Heawood realised that Kempe had
made a mistake in the case when there is a pentagonal region, and the ‘proof” was
invalid. This made less of a stir than-one would expect. Most mathematicians who
were interested were prepared to aécept the truth of the Four Colour assertion and
thought that the answer to ‘why?’ would ‘turn up’. The answer did not turn up and
after a while interest revived, but it was not until 1976 that, after a lot of work and
computer time, Appel and Haken [1.1] proved that we can indeed colour all maps
with just four colours. But even now, at the start of the Third Millennium, we still

haven’t met our Taliesyn, for not even Appel and Haken have really explained ‘why?’

We could, like most parents who have been asked a difficult question such as ‘If it’s
time to go to sleep, then why isn’t it dark?’ pre-empt any further discussion by saying
‘It doesn’t matter; just do it!” Alternatively, being mathematicians rather than
pragmatists, we can get out the globe and explain it to them, or at least promise to do

so in the morning.

In the same way, when it comes to planar graphs and the Four Colour Theorem, we
could simply ignore the fact that we don’t know much more than Kempe and
Heawood did over a hundred years ago. We could give Kempe’s proof, up to where
he went wrong, and ignore the rest. We couldn’t in all honesty answer the question
‘Why?’ by quoting Appel and Haken, since to do so in detail would take more than a
lifetime. Even Robertson, Sanders, Seymour and Thomas [1.2], in their not quite so
long proof of the four colour theorem, state: ‘We began by trying to read the A&H
proof, but very soon gave this up’. Similarly there are many unanswered questions in

graph theory and apparent results which have not yet been proven. One of these is



known as the ‘Total Colouring Conjecture’. This proposes that for any graph G,
27(G) £ A(G) + 2, where A(G) is the maximum vertex degree and z"(G) is the total

chromatic number (see Chapter 2). This conjecture was proposed independently in

1965 by Mehdi Behzad [1.3], [1.4] and V.G. Vizing [1.5].

Other questions resulting from Guthrie’s original question have been completely

solved.

For vertex colouring we have a true upper bound due to Brooks [1.6], who proved that
for any connected graph G the chromatic number }{(G) (see Chapter 2) is bounded by:

2(G) £A(G) + 1, the bound being attained if and only if G is a complete graph or an

odd cycle, K, or Co,41. However, determining #(G) is in general an NP problem [1.7];

even determining whether (G) < 3 is NP-complete [1.8].
For the chromatic index %’(G) of a multigraph, Shannon [1.9] proved that

' 3A(G)
X< —

Later, Vizing proved that for a simple graph G, A(G) < 7'(G) < A(G) + 1 see [1.5).
It is a corollary of the Four Colour Theorem that we need only A = 3 colours to edge-
colour a planar bridgeless cubic graph. Although it is known that most graphs, planar
and non-planar, need only A colours, the only general way to find out whether just A
are indeed necessary is to find such a colouring or show that it is one of a set of
known graphs that cannot be so coloured. Again, the problem of determining the

chromatic index of a graph or multigraph is NP-complete, even for regular graphs (see

[1.71, [1.10], [1.11]).



This may be unsatisfactory, but it is more specific than in the problem of total
colouring, where not only is the problem of determining the total colouring number
NP-hard, [1.12], but we have no proof of a sensible or indeed probable upper bound.

There are proofs for bounds suchas A +3[1.13],A+c¢ (c £ 1026) [1.14], but as no

known graph requires even A + 3 colours, the latter figure is clearly unrealistic.

It has been shown that the number.of graphs requiring more than A + 1 colours is very
small. Also, should they exist at all, the number of graphs requiring A + 3 colours is
very much smaller [1.15]; never the less, except for a few categories of easily defined
graphs, there is still no way of deciding beforehand how many colours will be needed.
Thus there is no known formula for the classification of, nor reasonable upper bound
for, the total chromatic number of graphs. However, this thesis attempts to shed light
on why certain graphs have certain properties and introduces a few methods of

constructing unusual graphs.

Basic definitions and results will be given in Chapter 2 to form a knowledge base for
the remainder of the thesis. The structure of graphs and how these relate to other

branches of mathematics such as Latin squares will be dealt with in Chapter 3.

Each of the main colourings for simple graphs (vertex, edge and total) will be
examined in detail in Chapters 4 to 6, and other kinds of graphs such as hypergraphs
will be mentioned where relevant. In these chapters we shall consider counter-
examples to Kempe’s original proof. Since the method of this erroneous ‘proof” is
effective for most graphs that have just one uncoloured pentagonal face, each counter-
example must be quite exceptional and we can call such (almost) coloured graphs,
Heawood graph-colourings. It seems then that an interesting area of study is to ask:-

What makes a counter-example? Is it possible to create a graph-colouring that



generates new Heawood graph-colourings for a given set of Kempe interchanges? Is
it possible to create a set of graph-colourings that are closed under a given set of

Kempe interchanges? And so on.

Particular notice will be taken of Kempe chains, and although Kempe considered
exchanging colours of only those Kempe chains which reached the pentagon
boundary of an otherwise four-coloured graph, we take the same starting point but

extend it to other Kempe chains and cycles.

In Chapter 6, we use the beta parameter introduced in Chapter 2. This is a new
measure of classifying graphs with total colourings which measures how far from a
type 1 graph a type 2 graph can be, though where this may lead is left to the next

chapter.

Chapter 7 is concerned with models and applications. We find colourings for given
graphs and create graph-growing mathematical models. Some suggestions will be
offered as to how these models may be related to the real world and in the realms of
recreational mathematics and artistic endeavours. Also the relevance of vertex and
edge graph colouring to the real world is discussed, and some conjectures are
proposed as to how the field of total colouring may also be related to applicable fields

of study.

There are appendices at the end of the thesis which give further details of certain
aspects of the thesis which, though relevant, tend to obscure the argument and need to
be referred to only as confirmation that the argument is correct. These include a

catalogue of 70 small type 2 graphs which are given ‘best’ (A + 1)-colourings.



This thesis discusses the problem surrounding the major outstanding colouring
conjectures. For example, Chapter S reconsiders the Four Colour Theorem , while the
beta values of Chapter 6 shed light on the problem of classification. It is hoped that
the various aspects of graph colouring that are here presented will contribute further
knowledge in this field and help prepare the way for when these major issues can be

dealt with.



CHAPTER 2

BASIC DEFINITIONS

2.1 Graphs and Colourings

2.1.1 Graphs

We will take basic definitions of graphs as in most standard text books (for example,
Total Colourings of Graphs by H.P. Yap [2.1]), with the following additions and

modifications.
¢ Unless otherwise stated, a graph is always assumed to be simple and connected.

e A plane triangulated graph (that is, a connected plane graph all of whose faces are
triangles) is said to be a plane triangulation,; if just one face is non-triangular, it

is said to be a near triangulation.

Given any graph G, we denote:

the number of vertices of G by n(G);

¢ the number of edges of G by m(G);

o the degree of any vertex v of G by d(v);
e the maximum vertex degree by A(G);

¢ the difference A(G) — d(v) by def(v), the deficiency of v;

e the sum of vertex deficiencies, Zdef (v), by def(G), the deficiency of G.

veV(G)



Let ¢ be any non-negative integer; then the f-deficiency, def(v), of a vertex v of a

graph G is defined by
def(v) = def(v) +¢.

Note that, if G has a total colouring using A(G) + 1 + ¢ colours, then this quantity
represents the number of colours from the colour set that are not present on v or any

incident edge.

The ¢-deficiency of G is then given by

def(G) = Y def,(v) = def(G) + tn(G).

vV (G)
From now on the argument (G) will be omitted where there is no risk of confusion.

The vertices of degree A of a graph are said to be its major vertices; the others are

minor vertices.

Two graphs G and H are said to be isomorphic if there is a bijection
¢:V(G)— V(H) such that ¢(v) is adjacent to ¢(w) in H if and only if v is adjacent to

win G.
2.1.2 Colourings

We assume the usual definitions of vertex, edge and total colourings of a graph (see
[2.1]). Given any vertex [resp edge, total] colouring of a graph G, a colour class is a

subset of V(G) {resp E(G), E(G) UV(G)] that is the inverse image of a single colour.

We define a semi-total colouring of a graph G to be a function x from E(G) UV(G)

to a colour set, such that any two adjacent edges have distinct colours and every



vertex has a colour distinct from those of its incident edges. This concept is similar to

total colouring except that we do not require adjacent vertices to have distinct colours.

A (vertex, edge, total or semi-total) colouring of a graph using x colours is said to be

an x-colouring.

We refer to [2.1] for the standard definitions of the chromatic number, chromatic

index and total chromatic number of a graph G, denoted by ¥(G), ¥'(G) and

%"(G) respectively.

Let G and H be isomorphic graphs, with colourings 4, A respectively (of the same
type: vertex, edge, etc). Then (G, 1) and (H, A) are said to be isochromatic if there is

an isomorphism ¢ : G— H and a bijection 6 from the colour set of « to that of A such

that Aogp=60o u.

Let G be any graph. By Vizing [1.5] we have A< ¥ <A +1, and G is said to be

class 1if '=A andclass2if 3 =A+1.
For semi-total colourings, the situation is straightforward.

Lemma 2.1.1 Exactly (A + 1) colours are required for a semi-total colouring of a

graph G.

Proof. Atleast A + 1 colours are required since A colours are required on the edges
incident to a major vertex and one more is needed for the vertex itself. By Vizing’s
theorem [1.5], the edges of G can be coloured with A + 1 or less colours. Each vertex

v has at most A edges, hence at least one colour is available for the vertex. |
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The situation for the total chromatic number is not so simple. It is necessary to have a
different colour on each edge and vertex hence, A+1< x”, and it is conjectured (but
not proven) that A+1< " < A+ 2 (see Behzad and Vizing, [1.4] and [1.5]). Thus, a

graph G is said to be type 1if " =A+1 and type 2 otherwise.

In studying the total chromatic number of a graph G, it can be useful to consider a
semi-total colouring ¢ of G with A + 1 colours and to ask: ‘how close is # to being a

total colouring?” More precisely, we define the parameters S, and £ as follows:

Given any semi-total colouring 4 of G using (A + 1) colours, £, is defined to be the
number of edges e = vw of G such that u(v) = u(w). Over all semi-total colourings of

G using A + 1 colours, Sis the minimum value of £,

Consider the problem of constructing a (A + 1)-semi-total colouring of G. Given any
edge colouring of G (using either A or all A + 1 colours), then if G is regular, there
will be exactly one choice of colour for each vertex; otherwise, there will be vertices
where there are several colour choices. It is useful, in the context of total and semi-
total colourings, to ‘regularise’ G by adding def(v) spines at each vertex v of degree
less than A. When we consider colourings of graphs using (A + 1 + #) colours, then
we add (def(v) + 7) spines to each v € V(G) to regularise the graph. A spine can be
visualised as half of a potential edge (they are sometimes called semi-edges or
dangling edges in the literature). In the case of a total or semi-total colouring of G
using A + 1 colours, the spines at any vertex v will be assumed to be coloured with the
‘spare’ colours (those not used on v or its incident edges). The concept of a graph will
be extended throughout this thesis, to assume the addition of spines to the ‘deficient’

vertices as above.
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A plane graph (or map) is a drawing of a graph in the plane without crossings. A
face of a connected plane graph is a connected component of the complement of the
drawing. The number of faces of a plane graph G (including the infinite face) is
denoted by {iG). A face colouring of a map is proper if and only if no two faces with
a common edge are assigned the same colour. The geometric dual of a plane map M
is a plane graph G = M* as described above, with a vertex of M* corresponding to
each face of M and vice versa, two vertices of M* being adjacent if and only if the
corresponding faces of M share an edge. Thus, where M is cubic, every face of M*
will be a triangle and vice versa. The geometric dual of a proper face colouring of a

map M is then a proper vertex colouring of M*,

The term planar graphs will be used for graphs, as above, which could be
represented as a drawing in the plane without crossings, regardless to whether this has
actually been done. Similarly non-planar graphs cannot be drawn in the plane

without crossings.

2.2 Representing Colourings

Apart from the usual graphic representation of a graph it is often useful to represent
the graph as a partial symmetric latin square or a triangular array based on such a
square. The main advantage of such a representation is clarity. Graphical colour
labels in dense non-planar graphs are not always clear and Kempe chain operations in

such graphs are often easiest to follow on a triangular array.

Lemma 2.2.1 Any given edge, total or semi-total colouring of a graph can be

represented as a (possibly partial) latin square.
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Proof. To obtain a (possibly partial) latin square from an edge or total or semi-total
colouring of any graph, we need first to label the vertices, v, ..., V.. Then we colour
each of the elements a;; and aj; in the square with the colour Qf the edge from v; to v;
and each element a; in the square with the colour of the vertex v;. Where the given
colouring is an edge colouring, we fill the element a; in the square with any colour
which has not been used on the edges (thus, in effect, extending the edge colouring to
a semi-total colouring). Where the graph is not a complete graph, all remaining
eleménts have no entries. These can be left empty or filled with a symbol such as ‘#

or “*’ to indicate that there is no edge between the two given vertices. |

Corollary 2.2.2 Any given edge, total or semi-total colouring of a graph can be
represented as a (possibly partial) triangular array comprised of the lead'ing diagonal

and either the top right hand triangle or the bottom left hand triangle. |

Both the (possibly partial) latin square and the triangular array are unambiguous. The
latter has the further advantage of having just one element for each edge and is thus

easier to manipulate by Kempe chains.

The cyelic Cayley table corresponds to the cyclic latin square in which

aj=i+j—1 (mod n).

Lemma 2.2.3 Every K, can be assigned a total or semi-total colouring using a cyclic

Cayley table.

Proof. We can have a colouring of K, because the cyclic Cayley table is symmetric
and the leading diagonal provides the vertex colours. When n is odd these are all
different, a; = 2i — 1 (mod n), and the colouring is a total colouring; when # is even

the colouring is a semi-total colouring. [ ]
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2.3 Kempe Chains

The oldest colouring tool is still the most effective, namely the concept of a Kempe

chain. These can be defined for all of the colourings mentioned in Subsection 2.1.2.

Where G has a vertex colouring 4, a vertex Kempe chain with respect to ¢ is a
maximal set of vertices coloured with just two colours and inducing a connected
subgraph of G. More explicitly, let the colour set C be listed as {cy, ..., ¢;} and vertex
set V(G) as {vy, ..., v»}, and suppose that 4(v;) =c,. Then the [p, q] vertex Kempe
chain at v; is the maximal set of vertices of G, all of which have colour ¢, or ¢, that
includes v; and induces a connected subgraph of G. In the context of vertex

colourings, this Kempe chain will be denoted by ;[p, g].

Let G have a total or semi-total colouring 4. A Kempe chain with respect to gis a
maximal connected set of elements (i.e. vertices, edges or spines) of G coloured with

just two colours, say ¢, and ¢,. There are six possibilities here.

1. The chain could be the edge set of a circuit. If v; is any vertex on the éircuit, then
we call the chain the [p, g] Kempe chain, or circuit, through v; and denote it by

ilp, gl or ilp, ql;. (Note that the colour of v; cannot be either c, or ¢, in this case).

2. The chain could be {v;}U P U {v,}where v; and v; are the vertices at the ends of a

path whose edge set is P. If u(v;) = c,, then we call this chain the [p, g] Kempe
chain starting at v; and denote it by [p, g];. (Note that the colour of v; may be ¢,

or ¢, depending on the parity of the path length).

3. The chain could be {v,}UPU{s ;1 where P is as above and u(v;) = ¢, , but (v;) is

neither ¢, nor ¢g; here, s;is a spine at v, We denote this chain by [p, g[;.
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4. Similarly, the chain could be {s;} U PU{v;}, with z(v;) neither ¢, nor ¢, but 2(v;)

equal to -one of the colours; this chain is denoted by ;]p, gJ;.

5. If neither end vertex has either of the colours ¢, or ¢, the chain would be

{s;}UPU{s;}; this chain is denoted by i]p, gl;.

6. Finally, the chain could involve no edges. Thus there is some vertex v; such that
the chain consists of just v; and a spine at v; (if u(v;) = ¢, or ¢,) or of two spines at
vi (otherwise). Only the first possibility is useful; in this case we denote it by

ilp, ql; . The other is never referred to further in this thesis.

For any type of Kempe chain, the corresponding Kempe interchange or swap is an
operation in which the two colours on the chain are exchanged, the colours on the
remainder of the graph being held constant. The swap is denoted by the symbol “+”
and changing the bracket style of the notation for the Kempe chain; for example, the
swap corresponding to the chain ;[p, gJ; is denoted by + i(p, q);. If 1 is the original
colouring, then the resultant colouring after the colour swap in chain ;[p, gJ; is denoted
by to + (p, q);. Similarly, for /Ip, g[;, we use the same notation: the resultant

colouring is denoted by to + i(p, g);.

Let G have an edge colouring . An edge Kempe chain with respect to s a
maximal connected set of edges or spines of G coloured with just two colours, say c,

and ¢;. These are defined as for semi-total colourings above except that there are only

two possibilities, a circuit and a path.

1. The chain could be the edge set of a circuit. If v; is any vertex on the circuit, then

[p, ] is called the edge Kempe chain through v; and denoted by ;)p, q[; or ips ql.
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2. The chain could be {s;} U PU{s;} where v; and v; are the vertices at the ends of a

path whose edge set is P, with spines s; and s; each coloured either ¢, or ¢;. If
L(s?) = cp, then we call this chain the [p, g] edge Kempe chain starting at v; and

denote it by ip, g};.

In Chapters 5 and 6, we shall make use of the idea of starting with an edge or semi-
total (A + 1)-colouring and altering it. As we shall see, a A-edge-colouring and a

(A + 1)-edge colouring can both be regarded as a semi-total (A + 1)-colouring.
The following lemma follows from the definitions above.

Lemma 2.3.1 Let y be a semi-total colouring of G; then for each colour pair cp, ¢,
each vertex v; of G lies on or is at the end of a Kempe chain j[p,ql, where i = j if and

only if the colour c, is on vertex v; or on a spine at v;. u

2.4 Webs of Kempe Chains

In the following chapters we shall often use Kempe interchanges with the intention of
converting one colouring of a graph into another. In the context of achieving a total
colouring from a semi-total colouring, it is important to note that two [p, g] Kempe
chains in a semi-total colouring, say i[p, q; and ,[p, 4];, may be incompatible with a
total colouring, in that a vertex at an end of one has the same colour (¢, or ¢;) as a
vertex at an end of the other, and these vertices are adjacent. If (say) v; and v, are
adjacent with (v;) = ¢, and u(v) = c,, then they may become incompatible if one of
the chains is subjected to a Kempe interchange. Hence the following definitions. Let

A be an edge or semi-total colouring of a graph G using colours ¢y, ..., cas; for any



pair of colours @ (g two \p, ¢! Kempe chains ilp, ¢flj and,\p, q\s are said to be web-
adjacent if one of'v, or vj is adjacent to one of Ji-or  the adjacent vertices each
independently having one ofthe colours (b (4 The set ofall Jp, ¢/ Kempe chains is
said to be the [p, g/ Kempe web, denoted by E, |p, ¢/, for the colouring ¢i. The \p, ¢!
Kempe web is partitioned into web components, E/[p, ¢/, where v, is a vertex in that
component. Where two vertices v, and vyare coloured ( (gl they are part of the
same web component if and only if it is possible to get from one to another via
adjacent |p, g/ Kempe chains. In total-, semi total- and edge-colourings every

complete circuit is a separate web component.

Example 2.4.1. G=Q"

The graph G = has V(G) = {vi, ..., Vi} and eq e E{G) if and only if

/-/=1,2, 5or 6 (where the subscripts are considered modulo 7). This can be given

the semi-total colouring // represented both by the diagram and triangular array in

Figure 2.4.1 below.

0 23 Mo 6 N
% *
1 2 3 4 5 V1

) 5 4 3 F %
"3 5 1 2 F

4 4 5 2 F
rs 31 4
6 5 3
\Vy. 2

Vi

Figure 2.4.1

The web of [1,2] Kempe chains consists ofall the 1, 2 entries see (Figure 2.4.2):



0 Vi v M Vs WV
sk
Mo o1 2 A3 N6 M7
* *
V] vVl 3 4 1
% %
AY;] 3 1 2
sk
\VA Va5 2
V5 Vs I r57
Vo Vo 67
Vi 2
Figure 2.4.2

The web  [1,2], coloured in the diagram as [red, orange] has two components, each

component comprising one chain, one is a path the other is a circuit:

1) the chain i[l,2]7, consists of the edges en and s27 and the end vertices vi and v?;

2) the circuit 3[1,2]s, consists ofthe edges s34, s+ €"s and 3.

There are no other webs in // with a circuit component. In every other web, the

separate paths have adjacent vertices;  [1,2] is the only web with two components.

The [1,3], [1,4], [2,3], [2,4], and [3,4]-webs each consist ofa single Kempe chain.

The [1,5], [2,5], and [3,5]-webs each have just one connected component comprising

a pair of web-adjacent Kempe chains connected by two edges to form a circuit.

For example, S*[1, 5] comprises the Kempe chain s[1, 5|6 (having edges ¢34, 545, ese
and the end vertices V3, vg) and the Kempe chain 2[1, 5]i (having edges s2:, g7 and the
end vertices 2, vi); these are web-adjacent by the edges ~23 and Ci6, so that the Kempe
chains and the web-adjacency edges form a circuit. Finally, the Z,[4,5]-web, is
comprised of a pair of web-adjacent Kempe chains which do not form a simple

circuit. (There are three web-adjacency edges, €:2, 643 and "45).
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&2 M3 4 5
* *
" S 4 oy 7 w
* *
"3 S /3s
*
~ 4 5 w6
"5 N
5 v
~ ~
Figure 2.4.3

In general the next edge ofa Kempe chain ilp, ¢\ can be traversed on an array as
follows. Suppose we are at an entry at a®, having just arrived from a vertex v,.
From position aythere will be two entries the one previously traversed is a; or XU
the other is either gk or %. If  follow the column from ay, to %. If gjk from ay,
follow the column to gjj and then follow the row to a/k Each successive edge is

traversed in a similar way.

Other terms and notation will also be presented in context at appropriate points in the

text.

Summary of Chapter 2:

We have presented the basic notation that will be used in the thesis and introduced the
new concepts of semi-total colouring and web-adjacency. Since there are euiTcntly
several different definitions and notations for many ofthe concepts defined in this
thesis, we hope that any reader more familiar with these others, will bear in mind that
‘decisions become harder to make as the number of alternatives increases’ [2.2] and

forgive us if our decisions have not coincided with their own preferences.



19

CHAPTER 3

GRAPH COLOURINGS AND LATIN SQUARES

3.1 Overview: Latin Squares and Edge Colourings

3.1.1 Introduction

Many combinatorial structures including colourings of graphs can be represented by
latin squares. In particular (see Section II.1.2 on page 98 of [3.1]), a latin square of -

side n can represent the following different combinatorial objects:

The multiplication table of a quasigroup on n elements;

e a 1-factorization of the complete bipartite graph K, ,;

e an edge partition of the complete tripartite graph X, , . .into triangles;
e asetofn? mutually non-attacking rooks on a nXnXxn board;

e asingle error detecting code of word length 3, with n* words from an n-symbol

alphabet.

In this section; we will also add equivalences relating to K, and total colourings. The
fact that so many apparently-different structures are equivalent means that insight into
each structure leads to insight in every other. A theorem relating to latin squares such
as: we can always find a latin square of order n > 3 which has a transversal, has an
analogue for every other equivalent structure. In colouring, this is: for all n = 3, we
can always find an n-edge colouring of K, ,in which a set of n edges, one of each

colour, forms a 1-factor, see the remark following the proof of Lemma 8 of [3.2].
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We shall explore the relationship between latin squares and colourings of K, , and K.
A theorem about the beta parameters of a semi-total colouring of K, will be presented.

We then comment on a conjecture by Mahmoodian.

3.1.2 Latin squares and edge-colourings of K, ,

A single latin square is an nXn array of objects each with three distinguishing
factors i, j and k (two of which determine its position in the array), where each factor
has a range of n values that it can take, such that each value of each factor occurs just
once with any other. A set of mutually orthogonal latin squares, MOLs, is an
nXxn array of objects each with up to (n + 1) distinguishing factors 1, ..., n + 1, such

that each factor occurs just once with every other.

Usually, a single latin square is represented as an nXn array {a;} of cells in which
each cell a; contains just one entry from a set S of n symbols, say {1, ..., n}, such that
each symbol occurs exactly once in each row and once in each column. Where the
row set is denoted by V and the column set by B; let the rows be called

vy i=1,2,...,n,the columns b, j=1, 2, ..., n and the entry a;;= k where k € S.

It is well established that an edge colouring of a complete nXn bipartite graph K, can

be represented by a latin square and vice versa as follows.

A complete bipartite graph K, , has vertices in two distinct sets v;, i =1, 2, ..., n and
b; j=1,2, ..., nsuch that each v; is adjacent to each b; but no two vertices v; are
adjacent (nor two b;’s). We can assign a proper edge-colouring to the edges of K,
using just A = n colours. Each such colouring can be represented as an nxn square
where each element a;; represents the colour used on the edge (v;, b;). Every ordering

of the vertices of a proper edge colouring of K,,, generates a latin square since each
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vertex has one and just one edge of each colour. Every latin square generates an
ordering ofthe vertices of a proper edge colouring of K,,nsince each colour is on one

and just one entry of each row and column.

Any set” 1 ..., At] of k mutually orthogonal nxn latin squares can be
represented as an nxn array {#%}, each 'y now being a "-tuple apg, . . %lt), the
symbols cijp (for fixed p) corresponding to the latin square Ap. Alternatively, we may
represent each cell by a (A+ 2)-tuple, the first two positions of which record the row
and column in the array. Thus, the system is represented by a set S of f objects, each
object a(E+ 2)-tuple (/,j, ayi, ..., aijk). From the {k + 2)-tuple (/./, 3§72, ee-, ciijk),
the index pair can now be chosen at random to generate further sets of MOLs. Note
that, if we choose any two distinct coordinates (say /, m), then for each ordered pair

(fj). {i,j= 1, ..., n), there is exactly one s &S with si = i andSn=j-

Example 3.1.1 {(n=2 (i,j: k D)
a 1, 1,d,222),d1,3:3,3), 2, 1:2,3), (2, 2: 3, 1), 2, 3: 1,2), 3, 1 3, 2),

(3, 2: 1,3% (3, 3: 2,1)

ken i m 1 2B
h 1 2 3 \ f h 1 2 3
o2 3 301 2
h 3 1 2 y / vV f h 2 3 1

Figure 3.1.1(z,y)

7 h /3 ' h u h
kK 1 3 kK 1 2 3

32 1§ kK 3 1 2
o2 103 kK 2 3 1

Figure 3.1.1 (k1)
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A latin square 4 is said to be in column standard form if the elements in the first

column are in natural order: ay =i (i=1, ..., n). (cf. row standard form).

A latin square 4 is said to be in standard form if the elements in the first row and

column are in natural order: a;; =ay =i (i =1, ..., n).

Lemma 3.1.1 4 latin square can always be reduced to column standard form by
applying a suitable permutation of S.
Proof. Let A be an nxn latin square. Apply the permutation #{an) =i (i=1, ..., n)

to all the entries of 4; then the first column is now in natural order. |

Lemma 3.1.2 Let P and Q be orthogonal latin squares. Then their column standard
forms are also orthogonal.
Proof. If we apply any permutation 7; to the entries of P and any permutation 7 to

the entries of O, then by definition the resulting squares are orthogonal. |

Lemma 3.1.3 No more than n— 1 mutually orthogonal latin squares are possible.
Proof. Let P, ..., P,, be mutually orthogonal, nx »n latin squares. By Lemma 3.1.2,
we may assume that they are all in column standard form. Then
P)=1(@G=1,...,m). Noweach P; (i=1, ..., m) must have the symbol 1 on row
2, and these must occur in distinct cells (2, /}) where none of the /; can equal 1. Thus,

m < n—1 as required. |

A complete set of mutually orthogonal latin squares is a set of (n — 1) mutually

orthogonal (7 x #) latin squares.
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3.1.3 Beta parameter

An nxn symmetric latin square A may represent a semi-total colouring u of K, as

follows: a;; = u(vy) (i=1,...,n);
aij = qji =1Lt(6(,',j)) Gj=1,...,n, i#7j)
(Note that, for vertices of G labelled vy, ..., va, we denote the edge viv; by eg, j) )

Using the definition of the beta values given in Chapter 2, in the case of X, we can
express [, as follows: let Sy, S, ..., Sk be the non-empty vertex colour classes; then

k(1S
B, = ;[I 2"} This representation allows us to evaluate ZK,,).

Main result (1)

0, (n odd)

Theorem 3.14 fS(K,)= {n
X (neven).

Proof. Note that A(K,) =n-1.
Where colouring u is the cyclic Cayley table in which a;; =i + j — 1(mod n), from
Lemma 2.2.3, we have:

Case 1: nisodd. Colouring u is a total colouring of K, and so AK,) = 0.

Case 2: nis even. Here, the cyclic Cayley table has the odd entries 1, 3, ...,n— 1
each occurring twice on the diagonal, hence in 4, A(K;) = n/2. To show that this is the
best for all colourings of K, we establish that there can be no.colouring with more
than n/2 distinct entries on the diagonal. Since K, can always be represented by a

latin square, A, and n is even, every entry occurs an even number of times. Since A is

_—
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symmetric, every entry also occurs in an off-diagonal position an even number of
times. Hence, every entry occurs on the diagonal an even number of times. Thus, as

required, there cannot be more than n/2 distinct diagonal entries. B

3.2 Conjugates

3.2.1 Colourings of conjugates

The row set, column set and entry set of a latin square may be permuted (set-wise) to
produce other, conjugate, latin squares. Therefore we let the identity permutation of
the initial latin square be called the (i, j, k)-conjugate. Let each entry of the square be
a;=k, as above. Each element of the latin square can be regarded as an ordered triple
(i, j, k) where in the (i, j, k)-conjugate, i and j give the positional information and % the
information concerning the entry. There are six possible arrangements of symbols
{i,j, k}; these are (3, j, k), (i, &, j), (G, i, k), (j, k, 1), (k, i, j) and (%, j, i). For each of
these arrangements we can choose to create a latin square by letting the rows be
represented by the symbol in the first position, the columns by the symbol in the
middle position and the entry in the latin square by the symbol in the last position.
This will give us at most six different latin squares; for each arrangement (x, Y, 2) of

{i, j, k} the (3, x, z)-conjugate of L is the tfanspose of the (x, y, z)-conjugate.

Lemma 3.2.1 Let x, y, z be any permutation of i, j, k. If the (x, y, z)-conjugate of a
latin square is symmetric, then the (x, z, y)- and (y, z, x)-conjugates are identical.
Proof. Let L=L" be the (, y, 2)- (and the (9, x, 2)-) conjugate and let M and N be
respectively the (x, z, y)- and (y, z, x)-conjugates. Then, forany p, g=1,2, ..., n, the
(p, q) entry of M is the integer r such that the (p, r) entry of Lis g. Thus the (7, p)

entry of L is also g, and thus the (p, ¢) entry of Nis r. Thus M = N. =
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Main result (2)
Corollary 3.2.2 [fany three conjugates ofa latin square are symmetric, then all six

conjugates are identical. |

Where eunxn latin square coiTesponds to an edge colouring of £,,», we may refer to
the entries as colours, and consider two latin squares to be isochromatic if the two
colourings of Knn are isochromatic. If 4\ and A] are colourings of generated by
different conjugates of the same latin square, then we will say that 4\ is conjugate to
A>. The conjugate colourings of K, or are the colourings generated by the

conjugates of L where Z is a latin square derived from the colouring of K, or

Example 3.2.1

Consider the following set of triples {i,j, k):

a1, 1n,71d,2,2),1,3,3),1,4,4), (2, 1,2), (2,2, 3), (2,3,4), (2,4, 1), 3, 1, 3),
3,2,4),3,3,1),3,4,2),4, 1,4), (4,2, 1), (4, 3,2), (4, 4, 3).

These can be represented as three colourings of " 4,4 and the six conjugate latin

squares (i,j, k), (i, kj), (. i k). G, k /), {k i,j) and {kj, D) in Figures 3.2.1, K, J, /:

K n i n g J K ki kK I 91 53 74

s 12 3 4 p 1 2 3 4 x 1 4 3 2

o2 3 4 1 ho4 1 2 3 k. 2 1 4 3

no3 4 1 2 ho3 4 12 k. 3 2 1 4

po4 1 2 3 ho2 3 4 1 kK 4 3 2 1
Figure 3.2.1

Note that the other thi'ce conjugates give the same three colourings as above:
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Kli i i i, J i i, i i, I |k k, k; K,

i1 2 3 4 k|1 4 3 2 i1 2 3 4

Ll2 3 41 k12 1 4 3 L4 1 2 3

iLl3 41 2 k13 2 1 4 iWl3 41 2

.4 1 2 3 k, 14 3 2 1 a2 3 4 1
Figure3.2.2

3.2.2 Colourings derived from MOLs

We now consider the set of n%, (k + 2)-tuples representing k mutually orthogonal
squares as above, and we may assume that they are in column standard form. We
note that MOLs have been studied in many combinatorial contexts such as in the
study of mutually equiorthogonal frequency hypercubes (see [3.3]), but feel that the
relationship with graph colourings is of sufficient merit to deserve further study in its
own right. As noted in Section 3.1.2, the orthogonality property implies that we

could have chosen any of the (k + 2) coordinates to be our row indicator and any other

k+2
to be our column indicator. Hence we could take any of the ( 5 )conjugates and

obtain another set of k MOLS (not necessarily in column standard form) from the
same data: (x1, x2, 4, j , ..., X; ..., X¢), since, by definition, there are no two elements

with the same entries in two different orthogonal squares.

Example 3.2.2 The mutually orthogonal set of 4x4 latin squares (i, j, x, y, z):
(1,1,1,1,1),(1,2,2,2,2),(1,3,3,3,3),(1,4,4,4,4),(2,1,2,4,3),(2,2,1,3,4),
(2,3,4,2,1),2,4,3,1,2),(3,1,3,2,4),(3,2,4,1,3),(3,3,1,4,2),(3,4, 2,3, 1),
4,1,4,3,2),4,2,3,4,1),(4,3,2,1,4),(4,4, 1,2, 3)
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can be represented by rows =y, columns = i, or by rows = x ,columns =y, to give the
sets of mutually orthogonal latin squares in Figures 3.2.3 and 3.2.4 which are also

represented by their graph colourings.

Y
Figure 3.2.3
Z h h h o h X h h h h Y " nh h h
5 1 3 4 2 7 1 2 3 4 % 1 4 2 3
g2 4 3 1 Ji 2 1 4 3 Ji 2 3 1 4
n 3 1 2 4 7B 3 4 1 2 75 3 2 4 1
w4 2 1 3 w4 3 2 1 u 4 1 3 2
I
Figure 3.2.4
I f2 3 Y4 J F f2 f3 f4 Z fo f3 Y4
X 1 4 2 3 x 1 4 2 3 X 1 3 4
X 4 1 3 2 X 3 2 4 1 X 4 2 1 3
a2 03 1 4 X 4 1 3 2 X 2 4 3 1
M 302 4] X 2 3 1 4 X% 3 1 2 4

We can see from the figures that the three colourings in {{X Y Z)/ i J} are
isochromatic to those in {(/,J, Z)/ x,y). Moreover, in each set ofthree, we find that by
re-labelling they are mutually isochromatic. For example, / and J become the same

when we re-label as follows: /(x?) =%, /(Y&)" /(m) = X]. Hence we could choose

colours to make each set of colourings look the same.
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3.3 Isochromatic Conjugates

3.3.1 Isotopy

Two latin squares L, M are isotopic if there are bijections from the row, column and

entry sets of L to the respective sets of M, that map L to M.

Given two such latin squares, the bijections mentioned in the definition are equivalent
to exchanging the orders of the vertices within the rows and columns, and re-labelling
the entries of L, to give us M. That is, we perform a permutation on the vertex set
(that gives an automorphism of the graph) and a permutation on the colour set. Thus,

the corresponding coloured graphs are isochromatic.

Remark 3.3.1 It follows that two isochromatic edge colourings A and u of K,,,, can be
represented by two nXn latin squares L and M which are either isotopic, or such that
L is isotopic to M. Conversely, if L and M are thus related, then they represent

isochromatic edge colourings of K, .. [ |

Since every conjugate of a latin square is also a latin square, we can see that every
colouring of K, , has conjugates which are also colourings of (various copies of) K, ,.
That is, the original K, , has vertex set V \U B and colour set S, while the conjugates

also give complete bipartite graphs with vertex sets V v Sand BU S.

The colourings of K,,, generated by the conjugates of any nxn latin square can be

seen to have a very close relationship.

In the first 4x4 example, 3.2.1 above, there are three distinct conjugates, Figure 3.3.1
(@), (b), (c). One latin square is symmetric, the other two are transpositions of each
other. To isochromatism, all three can be represented by the same colouring, Figure

3.3.1 (d); we must however re-order one of the vertex sets.
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(6)" "o
Figure 3.3.1

This follows because example 3.2.1 is in fact the cyclic Cayley tabic with n = 4, and

so it is isotopic to all its conjugates by the following theorem of Denes and Keedwell.

Theorem 3.3.1 (Denes and Keedwell [3.4, Theorem 4.2.2]) Let A be an nxn cyclic

Cayley table or any group table. Then every conjugate ofA is isotopic to A. |

Corollary 3.3.2 LetA be an nxn cyclic Cayley table representing an edge
colouring, T, of then every conjugate ofA represents Tlto isochromatism.
Proof. We have seen above that isotopic nxn latin squares represent the same

colouring of to isocliromatism. [

We now consider other circumstances under which we find isochromatic conjugates.

Lemma 3.3.3 Two colourings o fKn,, are isochromatic only ifthe webs have the

same distribution ofpaths and circuits. ]

Corollary 3.3.4 There exist latin squares A such that not every conjugate o fA
represents the same colouring o fK;_,, to isochromatism.

Proof. That in general the conjugates are not isochi'omatic can been seen by
considering the bi-colour circuits. Consider the 7x 7 latin square A (see [3.1], Table

IL. 1.7, latin square 7.56), shown in Figure 3.3.2.



Figure 3.3.2

K Jo 7 i
hoo0 1

h 1+ 0 3
Lo 2 3 0
h 3 4 6
n 4 5 1
h 5 6 4
n 6 2 5
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7576
5 6
6 4
1 5
0 2
3 0
2 1

4 3

The corresponding edge-colouring of Kjj has the following set of circuits for each

pair of colours:

Jo, 1[ = C4 u Cio,
10, 4[ = C4 u Cio,
11,2[=Cls,
11,5[ = C14,
12, 4[ = Cla,
3, 4[ = Cl4,
14, 5[= Ci4,

Jo,2 = C4u Cio, 10, 3[ = C4 u Cio,
10,5 =Co u Cg, o, 6[= Ci4,

11,3 ~ Ci4, 11, 4[ = C4 V C4u Co,
11,6 =C4u Cio, 12, 3[ = C4 u Cio,

12,5 ~ Ci4, ]2,6[ = C4 u Cio,

13,5 - Ci4, 13,6 [=C4 V Ca V Co,

14,6 = C4u Cio, 15,6 [=Cou Cg

Note that only two ofthe above webs, [0, 5[ and ]5, 6 [, are Cgu Cg

However the circuit colourings in the conjugates are different

The (z, *,y)-eonjugate of 4, is given in Figure 3.3.3. po

J x K k s~ k&
h o 1 - 3 4
p 10 3 2
T 2 5 0 1 3
4 5 4 6 0 1
p 6 2 4 5 0
h 3 6 5 4 2
h 4 3 1 6 5

N O = W N B W

6
6
5
4
2
3
1
0
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The edge-colouring circuits are as follows:

Jo, 1] —C4 V Cio, 10, 2[ = C4 uCio, 10, 3[ = Co u Cg,

10, 4[=Co V Cg, 10,5[ = Ci4, Jo, 6[ = Ci4,

11,2[ = C4uCio, 11, 3[ = Ci4, 11,4[=C4 UC4uCo,
11, 5[ = Co V Cg, 11, 6[ = C4 v Cio, 12, 3[ = C4 w C4 w Co,
12, 4[ = Cia, 12, 5[= Co V Cg, ]2, 6[= C4 w Cio,
13,4[ = Ci4, 13, 5[ = C4 uCio, 13,6 [=Co v Cg,

14, 5[=C4 uCio, 14, 6[ = Co u Cg, 15,6 [=C1a

Note that here six webs: 10, 4[, 11, 5[, 12, 5[, 14, 6[, 10, 3[ and ]3, 6] are Co u Cg.

The {kj, 0-conjugate is given in Figure 3.3.4.

Jo T2 T3 74 5 76

o 1 2 5 6 3 4

k 1 0 4 6 3 2 5
kK 2 6 0 1 4 5 3
kK 3 2 1 0 5 4 6
o 435 2 0 6 1
kKk 5 4 6 3 1 0 2
k 6 5 3 4 2 1 0

Figure 3.3.4

The edge-colouring circuits are as follows:

lo, 1[= C4 u Cio, Jo,2 —Cs u Cio, 10, 3] —C4+ w C4 LI/ Co,
10, 4] = Cis, 10,5 —Cs+ w Cio, lo,6 [= Cis,
]1,2[ = C4 u Cio, 11,3 —Ci4, 11,4] = CH4,

11, 5[ = Co V Cg, Jt.e ~ Cid, 12, 3[ = Co ~ Cg,

12, 4] = Co u Cg, 12,5 —C4+ w C4+ u Co, 12, ¢ [ = C4+ w Cio,
13,4 = Cid, 13,5 = C4 uCio, 13, 6 [ = Ci4,

14, 5[=C4 U CIo, 14,6 - Ci4, 15,6 [= Co uCg.

Note that four webs: |1, 5[, 12, 3[, ]2, 4[ and ]5, 6] have Co u Cg

Since each conjugate has a different number of webs with circuits Co u Cg, there is no

isocliromatism between any ofthem. ]
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3.3.2 Uniqueness of colourings of K, and K, ,

When the leading diagonal of a latin square is a transversal, all the vertex colours of
K, are different. When this is a symmetric latin square we have a proper total
colouring of K,,. As only odd values of # give a proper total colouring of K, this can
only occur when # is odd. It has been noted (in different words) by Yap [2.1 page
119] that up to isochromatism, K3 and K5 have just one (A+1)-total colouring whereas
K7 has two. The unique colourings of K3 and Ks are both cyclic Cayley tables and
hence, from Corollary 3.2.5, all conjugates are isochromatic. In general this is not
the case but we will show that for K, ,, there are at most three different conjugate
colourings and for K, at most two. We must note here that the definition of ‘the same’
in [2.1], Yap, and the definition of ‘UTC, uniquely total colourable’ in [3.4], Akbari et
al., are different: UTC is only concerned with graphs that have a fixed vertex
labelling. Both allow colourings to be the same if we change the labels of the colours,
but only [2.1] allow two colourings to be the same if we change the labels of the
vertices. Since the definition by Yap is contained in our definition of isochromatism,
this is the one that we shall use in general. However, we have to use the UTC
definition in Chapter 5 and also in Section 6.4 in order to make use of existing

theorems. But which definition is in use will be made clear at the appropriate time.

By [3.4, Theorem 4.2.1], a latin square L and its conjugates form 1, 2, 3 or 6 distinct
isotopy classes. We shall say that L belongs to the system 1, /2, W3 Or s

accordingly.

The proof also implies that when L € . then each class consists of 6/c of the

conjugates. We now describe the isotopy classes for each ..
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In v, all conjugates are isotopic.

In y,, the (i, j, k), G, k&, i) and (%, i, j) conjugates are isotopic, as are the (j, i, k), (i, &, /)

and (%, j, i) conjugates.

If a latin square L belongs to 3, then there are three possibilities for the isotopy

classes. The three pairs of isotopic conjugates may be:

@) the (i, j, k) and (j, i, k) conjugates; the (i, k, j) and (j, k, i) conjugates; the
‘(k, J, ) and (k, i, j) conjugates;

(i)  the (i, j, k) and (i, k, j) conjugates; the (j, i, k) and (%, i, j) conjugates; the
(k, j, i) and (j, k, i) conjugates;

(iii)  the (i, j, k) and (k, j, i) conjugates; the (j, i, k) and (j, %, i) conjugates; the

(i, k, j) and (%, i, j) conjugates.
In yg, each conjugate is a distinct isotopy class.

Lemma 3.3.5 If alatin square L belongs to the system \§1 or \f,, then all conjugate
colourings of the corresponding K,,, are isochromatic. IfL belongs to the system 3,
then there are two non-isochromatic conjugate colourings of the corresponding K p.
Finally, if L belongs to the system ¢, then there are three non-isochromatic
conjugate colourings of the corresponding K, .

Proof. By definition, each latin square isotopic to L generates an isochromatic
colouring of K;,,. Therefore, if a latin square is isotopic to all of its conjugates, then

all conjugate colourings are isochromatic.

If L belongs to >, then the colourings corresponding to the (i, j, k), (j, k, i) and (%, i, j)

conjugates are isochromatic, as are those corresponding to the (j, i, k), (i, &, j) and
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(k, j, i) conjugates. However, the colourings corresponding to the (i, j, k) and (j, i, k)

conjugates are also isochromatic, by Remark 3.3.1. Thus all conjugate colourings are

isochromatic.

Now suppose L belongs to 3. There are three cases to consider, corresponding to the

above possibilities for the isotopy classes.

Case (i) Here, each pair of isotopic conjugates gives isochromatic colourings. Also,
the colourings corresponding to the (j, &, j) and (%, i, j) conjugates are isochromatic, by
Remark 3.3.1. Thus, all four of the (i, %, j), (j, &, ij, (k, j, i) and (%, i, j) conjugates are
isochromatic. However, none of the latter correspond to L or LT, and so by Remark

3.3.1 they are not isochromatic to the (i, , j) and (%, i, j) conjugates.
Cases (ii) and (iii) follow by analogy.

Finally, suppose L belongs to Ve. Then, by Remark 3.3.1, two conjugates give

isochromatic colourings if and only if the corresponding latin squares are transposes
of each other. Thus, there are three non-isochromatic colouringé, corresponding to:
the (i, j, k) and (j, i, k) conjugates; the (j, k, i) and (%, j, i) conjugates; and the (%, i, j)

and (i, k, j) conjugates. ]

Corollary 3.3.6 If any three conjugate colourings A of K, , have symmetric latin

squares, then all conjugate colourings are identical. u
Note that Corollary 3.3.6 also follows from Corollary 3.2.2.

Corollary 3.3.7 Every (semi-)total colouring A of K,, has no other conjugate

colouring to isochromatism.
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Proof. A latin square can only represent a (semi-)total colouring /I of Kj if it is
symmetric. Ifthe conjugate colouring // is also symmetric, then it is identical to A, if
it is asymmetric then it is not a (semi-)total colouring. If//is isotopic to a symmetric
latin square s , then 6'has two identical conjugates one of which is isotopie to A,

hence all conjugates are isochromatic to X. |

Example 3.3.8
The colourings //a and ju" with the latin squares A and B representing the two different

colourings of A mentioned in [2.1] are given in Figure 3.3.5, below:

A Qg B B I T J By 7B J4a J 6 ii
N 1 2 3 4 5 6 7 n 1l 2 3 4 5 6 7
no2 3 4. 5 6 7 no2 506 7 4
h 3 4. 5 6 7T . 2 B3 1. 5 6 1 44 2
u 4 5 6 71 L 2, c 4 7 2. 1. 3
c 5 6 L 2. 3 44 ho S 2, 4 3 la
c 6 7 1. 2. 3 44 5 ho 6 4. 1. 3 2a
h 7 L 2 3 4. 5 6 h 7T 4 2 3 5 6

m I £ 1

/
Figure 3.3.5

The symbols that differ in these latin squares are indicated by the suffix A or B. In the

graph colouring the differences are shown as thicker lines.

From Corollary 3.3.2, since ” is a cyclic Cayley table all the conjugates are

isochromatic to //a- Call the other colouring the (/,/, k) -conjugate of B. The
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symmetry in JD ensures that the i & J)- and (J k i)- conjugates are identical to each
other but they are not symmetric and hence are not isochromatic to 4.
Let the (/, k y)-conjugate of B be C. The colourings ju" and /0 of from B and C
respectively, are also shown in Figures 3.3.6 and 3.3.7. That they are not the same can
be seen by the distribution of chains, since

//B: 18 X(CH) U 6 X(C4) u3 x (Q) and

jhc: 9 X(c1a) u 6 X(Ca:

B i g1 13 74 15 76 JI

p 12 3 4 5 6
y 2 3 1 5 6 7 4
p 3 1 5 6 7 4
L 4 5 6 7 2 1 3 70
h S 6 7 2 4 3 1
L 6 7 4 1 3 2 5
h 7 4 2 3 1 5 6
Figure 3.3.6 74
C, the (/, k j) - conjugate of B
C gk ki k. ~ k g k
p 1 2 3 4 5 6
h 3 1. 2 7 4 5 6
h 2 7 1 6 3 4 5
p 6 5 7 1 2 3 4
n 17 4 6 5 1 2 3
h 4 6 5 3 7 1 2
jy 5 3 4 2 6 7 1
Figure 3.3.7

D, the (j, k i)- conjugate of B is identical to C.
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3.4 Main Classes of Colourings

3.4.1 Sub-squares

When a set of m elements appear on the same m rows and m columns, this is called

an mXxm sub-square.

Theorem 3.4.1 The number of mXm sub-squares is the same in every conjugate.
Proof. Taking any typical mXxm sub-square in A, suppose its rows and columns are
the intersections of rows iy, ..., i, with columns ji, ..., jm of A. Then there are exactly
m distinct entries (colours), ki, ..., kn, in the positions occupied by the sub square. In
(for example) the (i, &, j)-conjugate, B, there will be a corresponding mXm sub-square
whose rows and columns are the intersections of rows iy, ..., i, with columns

ki, ..., kn of B, and whose distinct entries are jy, ..., jm. Thus, there is a 1-to-1
correspondence between the mXxm sub-squares of A and B; and a sirﬁilar argument

applies to the other conjugates. ||

Lemma 3.4.2 A 3x3 sub-square has just three Kempe circuits.

Proof. Let the colours in the sub-square be a, b and ¢. No circuit can have more than
six elements. If the 3x3 had a 2x2 sub-square, then it would not be possible to have
just three colours and so would not be a sub square, therefore every circuit has six
elements. Every set of two colours must be in just one of these circuits, therefore we

have ]a, b], la, c[, and ]c, b[. n

Theorem 3.4.3 The number of Kempe circuits in all 2X2 and 3% 3 sub-squares is the
same in every conjugate.
Proof. From Theorem 3.4.1 above, every 2X2 sub-square has a one to one

correspondence with a 2x2 sub-square in each conjugate; therefore the number of
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such circuits is invariant. Since for each 3x3 sub-square there are just three circuits,

the number of Kempe circuits remains the same. [ |

However the same is not necessarily true of other circuits, as was seen in Example
3.3.8. The elements in a general m-circuit Cy, in a colouring A with latin square A,
will appear on just two columns in the (i, &, j)-conjugate, colouring &, this is not to say

that there is no isochromatic circuit C,, in 6, but its existence is not automatic.

3.4.2 Main classes

Two latin squares L and M, are main class isotopic if L is isotopic to a conjugate of
M. A main class of latin squares is an equivalence class under main class isotopy.
The edge-colourings of K, corresponding to a main class of nXxn latin squares is

said to be a main class of colourings.

By [3.4, Theorem 4.2.1] the main classes of latin squares fall into four sets, depending

on whether L belongs to the system vy, W2, W3 or e of Section 3.3.2.

We now mention an important theorem by Pittenger [3.5] which we rephrase in terms
of colourings of K,,,. We recall, Chapter 2, that where 4 is a colouring of K,, ,, a
Kempe chain swap 1 = p+ i(x, y) will swap the colours of the circuit ;]x, y[ which
goes through v;. Where ¢+ is a dummy colour not used on any edge of 4, or i3
where u(ey) = ca, fen) = co, and where ¢, # ¢, and both p(ey) = ¢, plex) = c, are in
the same circuit ;]x, y[, then a (x, y:a) swap, yz3 = U+ x(x, y:a), is such that either
Hax= p+ {a n+l)i+ ia, n+l) + (a, x); + (a, )i+ i X + i, n+1);+ Wy, n+l); or
sy = f+ g, n+l)+ a, kD + (g, X))+ da, )i+ ilx Y + iy, n+1);+ ix, n+l),.

See the example Figure 3.4.1 where 1y = 1 +13(4, 2:0),.
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Should we need to distinguish which particular swap that we are making we shall
denote 3. by ix(x, y:a) because 3 4(e;) = cx, and U3, by 1x(y, x:a) because

s4(e;j) = ¢ These swaps are reversible as shall be shown in section 3.5.

Kih B Js Jo Js Jo_ Kiji Jo Ji s Js_Js
i 0 1 2 3 4 5 it4 1 2 3 0 5
L1l 2 3 4 50 i1 2 3 4 5 0
512 3 4 5 0 1 10 3 4 5 2 1
i3 4 5 0 1 2 13 4 5 0 1 2
isi4 5 0 1 2 3 iii12 5 0 1 4 3
15 0 1 2 3 4 i 50 1 2 3 4
i |
i figure 3.4.1 7

Theorem 3.4.4 [Pittenger — Re-phrased] It is possible to swap from one main
class colouring of K, , to any other via the cyclic Cayley table by performing Kempe

chain and (x, y:a) swaps. : [ |

That the (x, y:a) swap is necessary can be seen from the cyclic Cayley table x; where
n is a prime number. This has all Kempe circuits of length 2» and hence all

= + i(x, y) are isochromatic to ¢;. Compare the latin squares ua an& U in
figure 3.3.5. The [1, 3]-web show that these are not isochromatic since all circuits are
C14 1n up but we have Cs, C4 and Ce in . In most cases we need only Kempe chains
to swap between main classes. In the case of K, 4 we can swap any 2X2 subsquare in

A to get B; as shown below.

Theorem 3.4.5 (Denes and Keedwell [3.4, p 129]) There are only two 4x4 main
class latin squares: the cyclic group and the Klein group. Every 4x4 latin square is

isotopic to all it’s conjugates. |

Corollary 3.4.6 To isochromatism, there are just two main class colourings of Ka 4.
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Proof. To isochromatism there isjust one colouring ofthe main class " 44 given in
Example 3.2.1. Call this main class 4. A is the cyclic Cayley table which we know
has the same colouring for every conjugate. Since we cannot have any 3x3
subsquares, the only other main class 4x4 latin square (known as a Klein group) is B
where B =4 + h(i, 3). Thatv4 and B are not isochromatic can be seen from the fact
that every web in B has two components, each a C4, whereas there are only two such
webs in 4, the remaining webs having just one component, a Cg. Not only are the

conjugates of B isochiomatic, their latin squares are identical. See figures below.

(a) (6) (©)

Figure 3.4.1: The Klein group conjugate colourings o fK4J.

K17 Jl 7 74 Js N k k Kk N R B4
L1 2 3 4 n 1 2 3 4 kK 1 2 3 4

2 1 4 3 no2 1 4 3 4 02 1 4 3
4 13 4 1 2 h 3 4 1 2 L 3 4 1 2
hoo4 302 1 no4 3 2 1 ko4 3 2 1

Figure 3.4.2: The Klein group main class 4x4 latin square and conjugates.
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Main result (3)

Theorem 3.4.7 To isochromatism, the number of ways to colour K, ,, is equal to
3w+20 +p
where

@ is the number of main classes of nX nlatin squares in the system e;
6 is the number of main classes of nXxnlatin squares in the system \J3;
p is the number of main classes of nXnlatin squares in the union ;U Ya.

Proof. The result follows directly from Lemma 3.3.5. n

Main result (4)
Corollary 3.4.8 To isochromatism, there are only as many ways to (semi)-total
colour K, as there are main classes of nxn latin squares containing a symmetric latin
square.
Proof. By definition, each latin square isotopic to L generates an isochromatic
colouring of K,. From Corollary 3.3.7, a (semi)-total colouring A of K, has no other
conjugate colouring to isochromatism. L can represent A only if it is symmetric.
Hence there is only one isochromatic colouring for each main class containing a

symmetric latin square. |
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3.5 Critical Sets

We can apply the parallel between latin squares and graph colourings to various other
concepts involving latin squares. For example hypercubes‘ [3.6] and secret sharing
schemes [3.7]. The latter are re_lated to the following problem: Given a particular
edge-cblouring Hof K,,,_consider Usn = WK, — E) where E C E(K,). What is the
maximum value of |E] such that 4 is the unique edge-colouring of K, to which us, can
be extended? By Corollary 3.4.8, this is the same number for every latin square in
each main class. Hence, although it is not yet known how many edges are
neccessarily in Usp, fof every n, we know that, to isochromatism, we can restrict our

search to just one latin square for each symmetric main class.

In a similar way, for edge colourings of K, ,, we can re-phrase a conjecture by
Mahmoodian, who defines a critical set, s, to be a minimal set of coloured edges

MH(K,n — E) of K, such that s has a unique extension to an edge colouring u of K, ..

Conjecture 3.5.1 [Mahmoodian [3.8] — Re-phrased] For any edge colouring u of

Kyn the number of edges in any critical set, ys = (K, » — E), is greater than or equal
i .
to l_n A _l . u

We can now consider the answer to this conjecture in relation to the circuits in K, ,.
However, we must point out that in terms of the original conjecture, two latin squares
are considered to be different if the vertex labels are different, hence two isochromatic

colourings are not necessarily considered to be the same.
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When considering s = (K, » — E) and y(E) to be restrictions of a colouring of K, »
where the vertex labels are fixed, and us(E) to be the uncoloured edges in (K, » — Us),

we get the following lemmas:

Lemma 3.5.2 A necessary condition for s to be a colouring of a critical set for
H(K.p) is that the subgraph (K, » — E) has no more than one vertex with degree A.
Proof. If there were two vertices, v; and v, in E with vertex degree A and the graph
colouring s could be extended to a colouring 4 of K,, ,, then, since all vertices are
isomorphic, (s could also be extended to a colouringy of K, where the labels of v;

and v; are exchanged. Hence there are at least two reconstructions possible. n

Lemma 3.5.3 A necessary condition for ys = (K, — E) to be a colouring of a
critical set for (K, ) is that the subgraph W(E) has no Kempe circuits.

Proof. 1f any set y(E) contained edges of colours {1, 2}, say, which are a Kempe
circuit ,[1, 2] in (K,n), then u(E) is also the set removed from ,ul(K,,,,,), where
M(Kon) = (Knn) + x(1, 2). Hence ug, can be extended to at least two possible

colourings # and y; of K,, . ||

Corrollary 3.5.4 A necessary condition for (s to be a colouring of a critical set is
that ug has at least (n—1) different colours.
Proof. 1If there were two colours not in /g, then by Lemma 3.5.3 all circuits using

these colours have been removed. Hence there are at least two reconstructions

possible for each such circuit. u

We recall Pittenger’s Theorem, and consider (x, y: a) swaps. A potential (x, y: a)

swap is a set of edges that in could be recoloured by an (x, y: @) swap. Note that there
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are two potential swaps x(x, y: a) and x(y, x: a) for each set of four edges which obey

the necessary conditions for the existence of an (x, y: a) swap.

Where (3= + wlx, y : a), we have t(ey) = ¢y, s(en) =cy, cx # ¢, and both edges
3(ey) = cx, Ms(en) = ¢y are in the same circuit ;]x, y[, by construction since the two
parts of the original circuit (one now swapped) are now connected by z(e;) = cx and

M3(en) = ¢y, instead of by en) = cx, ulex) = cy.

Hence we can define y3,, + .,-k(x, y :a) to be the inverse of swap u + x(x, y :a) above,
and L3, + 1(y, X :a) to be the inverse of swap u + u(y, x :a), which is to say that if
Max = f+i(a, n+1); + a, n+1) + i(a, x) + (a, y)j + ;0 X + i(x, n+1); + (3, n+1); then
U=+ (a, n+1)+ a, n+l);+ (@, X)i+ a, Y + j(x, Y+ ix, n+1) + iy, n+l);.
Similarly if
My = U+ {a, n+l)j+ a, n+1)+ {a, X) + a, y)j + i(x Y + iy, n+1); + x(x, n+1); then
U=y +ia, n+l) + da, n+1);+ (a, y); + @, )1+ iy, X + i(x, n+1)+ y, n+1);.
Therefore we can see that

Main result (5)
Lemma 3.5.5 A necessary condition for us = (K, — E) to be a colouring of a
critical set for [(Ky,x) is that the subgraph W(E) has no potential (x, y: a) swaps.
Proof. If any potential (x, y: a) swaps existed in 4(E) then the set us = (K, — E) is

also extendable to (= u+ a(x, y: a). L

Note that the smallest potential x + ik(x, y: a) swap has just six edges.

Bid o ds B d J2 s
. I fa X .. A i x a
Figure 3.5.1 h Ht+uxy:a)=tp
Liy a . i ia Yy

b i X Yy .. : i 'y X
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The relevant part of the latin squares for these six edges are shown in figure 3.5.1.
Any critical set would require at least one ofthese edges; where we are considering
two colourings to be the same to isochromatism, somewhere in the critical set there

would have to be another edge ofthe same colour.

Lemma 3.5.6 The conditions in 3.5.2 - 3.5.5 cibove are not sufficient.
Proof. In the following example pE{K,,,n ~ E) has at least one edge of each ofthe n
colours, these have an element from each circuit, there are no potential (x, y: a)

swaps, nevertheless, there are the two given reconstructions possible.

PE N Jr 71 14 M 71 ™ 73 14 Pi Jl Ji 73 74
h 1 h 1 2 3 4 h 1 4 2 3
h 4 h 2 1 4 3 h 3 2 4 1
h 2 h 3 4 1 2 h 4 1 3 2
h 3 n 4 3 2 1 v 2 3 1 4
Figure 3.4.2
Note however that these colourings are the same to isochromatism. n

It is possible that to isochromatism the problem ofreconstruction is simplified and we

present the following conjecture.

Conjecture 3.5.7 To isochromatism, necessary and sufficient conditionsfor a
colouring p(Kn.n - E) to be a critical setfor p{Knn ), are that the colouring ofp(E)

has no Kempe-circuits nor any potential (x, y :a) swap.
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Justification. That these conditions are necessary has been shown in lemmas above.
That they are also sufficient may follow from further consideration of Pittenger’s
theorem. Suppose that two colourings # and £ can be obtained from (K, — E).
They can be swapped from one to another by a sequence of Kempe chain and (x, y: a)
swaps. The colourings cannot be close enough to be swapped directly as there are no
edges in y(E) that would allow such a swap. If any circuit [x, y] or (x, y: a) swap t

alters the colour of all the edges {x, y} in ys then the colourings are isochromatic.

Therefore, the first swap must be a transitional colouring with a different set of
colours in 1;(K, » — E). At each stage some of the edges in ts = t(K,,» — E) may be
swapped but they would then need to be re-swapped back again. Since we have
elements from every chain and (x, y: a) swap of the original colouring, it may be

possible to prove that to re-swap, the colourings ¢ and 4 need to be isochromatic. B

We now consider how many elements are in (5. Given a colouring 4 of K,,,. There
are n elements of each colour. Consider colours c, ¢y and c,. There are n(n—1)/2
pairs of elements c,. Let one pair be u(e;) = ¢, and (len) = ¢, incident with edges ey
and ey Let u(ei) = cx, then u(ey;) = ¢, and both e; and ¢; are in the same circuit

iJx, y[. This is the centre of a potential (x, y: a)-swap. Therefore, either we have an
element from ;]x, y[ and one of the edges c, in any s, or we have at least two
elements on the circuit in s as we need at least one edge from each part of the circuit
[X, y] otherwise it could be swapped. It would then appear that we need at least two
elements in s for each complete circuit C»,. The number of shared edges is indicated
by the following result by Cooper et al. Refering to cyclic Cayley tables, Cooper et

al, [3.9] state that:
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Theorem 3.5.8 (Cooper et al. - Re-phrased) Let L he a cyclic Cayley table o forder n.

Then L contains a minimal critical set o fsize

Example 3.5.1

121 72 713 74 E N Jr 73 74
/A | 4 4, 1 2 3 4
h 3 h 2 3 4 1
h p 3 4 1 2
C m4 h 4 12 3

Figure 3.4.3

Now we refer back to the conjecture by Mahmoodian, 3.4.9. Since a graph which has

a representation composed entirely of 2x 2 subsquares has ~ e d g e disjoint

circuits, hence needs at least 4J elements in any critical set. Similarly, though the
cyclic Cayley tables for prime n, have just n{n - 1)/2 circuits C2nyet by the theorem

they also need elements in any critical set. Since the result is true for the

4-]
extremes, the Mahmoodian conjecture seems potentially provable, to isochromatism,

by considering Kempe circuits and {x, y :a) swaps.
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Summary of Chapter 3:

In this chapter we have discussed the relationship between latin squares and graph
colourings arriving at a number of useful results in particular the enumeration of the
number of different edge colourings of K, and the number of (semi-) total-colourings

of K,,. We discussed the Mahmoodian conjecture and related this to graph colourings.

Summary of main results by Jini Williams in Chapter 3

0, (n odd)

Theorem 3.14 S(K,)= {n Main result (1) page 23
X (neven).

Corollary 3.2.2 If any three conjugates of a latin square are symmetric, then all six

conjugates are identical. Main result (2) page 25

Theorem 3.4.7 To isochromatism, the number of ways to colour K, , is equal to
3w+20 +p
where
w is the number of main classes of nX nlatin squares in the set Cg;,
@ is the number of main classes of nX nlatin squares in the set Cs;
p is the number of main classes of nXnlatin squares in the set C{U C,.

Main result (3) Page 41

Corollary 3.4.8 To isochromatism, there are only as many ways to (semi)-total
colour K, as there are main classes of nXn latin squares containing a symmetric latin

square. Main result (4) page 41

Lemma 3.5.5 A necessary condition for us = y(K,» — E) to be a colouring of a
critical set for (K., ) is that the subgraph W(E) has no potential (x, y: a) swaps.

Main result (5) page 44
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CHAPTER 4

VERTEX COLOURINGS

4.1 Planar Graphs and Kempe’s Argument

The problem of colouring planar maps is conveniently represented in terms of the
vertex colouring of plane triangulations. The main interest in this context concerns
4-colourings; in addition there are two important theorems concerning the conditions

under which a planar graph is 3-colourable.

In this chapter, a graph G is said to be (vertex) p-chromatic if ¥(G) < p.

If an independent set C of vertices can be deleted from a graph G so that G — C is
(p — 1)-chromatic, then clearly G is p-chromatic. Thus, the following theorems of
Heawood and Groétzsch have immediate corollaries concerning the 4-chromaticity of

planar graphs.

Theorem 4.1.1 (Heawood [4.1]) A plane triangulation is 3-chromatic if and only if all

vertices have even degrees. u

Corollary 4.1.2 Let G be a plane graph, and suppose that an independent set of
vertices C can be deleted from G, and edges added to G — C, to form a triangulation
all of whose vertices have even degree. Then G is 4-chromatic.

Proof. Let H be the triangulation described. By the theorem, }(H) = 3 and so

G - O) < 3; thus, since C is independent, ¥(G) < 4. u
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Theorem 4.1.3 (Grotzsch [4.2]) Every planar graph G without triangles is
3-chromatic. Moreover, any vertex 3-colouring of a 4-circuit or a 5-circuit in G can

be extended to a 3-colouring of all of V(G). |

Corollary 4.1.4 If an independent set C of vertices can be deleted from a plane graph
G such that G — C is triangle-free, then G is 4-chromatic.

Proof. Since G — Cis 3-chromatic and C is independent, this is immediate. |

Corollary 4.1.4 provides a sufficient, but not a necessary, condition for a planar graph
to be 4-chromatic; there are many 4-chromatic graphs (for example K3), from which it

is not possible to delete an independent vertex set and leave a triangle-free graph.

Given a simple plane graph G with a vertex colouring 4 and one or more non-
triangular féces, the operation of compatibly triangulating G consists of adding
further edges (but no further vertices) to G. This operation partitions the non-

triangular faces into triangles in such a way that g remains a vertex colouring.

Main result (1)
Theorem 4.1.5 Let F be a face of a simple plane graph G, and suppose
u: V(G) — {ci, ¢, ¢3, ca} is a vertex colouring of G such that exactly three colours
occur on the vertices of F. Then F can be compatibly triangulated.
Proof. We proceed by induction on the face degree m of F. Since G is simple, m > 2,
and there is nothing to prove if m = 3. Let the vertices of F, in order, be vy, ..., vy If
m = 4, then just two of the colours on the vertices of F are the same, sb that either v,

# V3 0r V2 # 4, and we may triangulate F.

Now suppose the theorem is false, and let G, with face F, be a counterexample where

m is a minimum. We may assume that the colours of vy, ..., v, are cy, c3, ¢.
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If ¢, (for example) occurs only once, then we may triangulate F by joining that vertex
to every other vertex of F. Thus we may assume that each colour occurs at least

twice, and that u(v1) = ¢, 4(vi) = c3. Let j be the least integer such that ((v)) = ca.

If j =2, then add the edge v, cutting off a triangle of F, to form a face Fy. Since ¢;
occurs at least once more, the inductive assumption implies that Fy can be

triangulated.

If j > 2, then by adding the edge v,,v; we partition F into two faces, F; (containing vi)
and F,. Clearly, three colours occur on the vertices of F;. If the colour ¢; occurs on
F, then this is also true of F; and, by induction, F' can be triangulated. Otherwise,
remove the edge v,,v; and add instead the edge vyv;. Since u(v,) =3, this edge
partitions F into two faces each containing three colours, and the inductive argument

again applies. |

Corollary 4.1.6 Let G be a plane graph with vertex four-colouring y, and let S be a
colour class of 4. Then there is a subset R of S such that edges may be added to

G - R to form a triangulation all of whose vertices have even degree.

Proof. With respect to 4, let the colour set be {c1, ¢2, ¢3, ¢4} and let S be the set of
vertices coloured c4. Let R = {v € S: the neighbours of v belong to all three colour
classes cj, ¢, c3}. For each v € S - R, we may re-colour v with the colour from

{c1, 2, c3} not present on its neighbours. The resultant colouring, 4, is such that R is
the set of vertices coloured c;. With respect to 4, each face F of G — R ,that is each F
of z1(G ~ R) has vertices of exactly three colours and by Theorem 4.1.5, any non-
triangular face of £4(G — R) may be compatibly triangulated; this triangulation is such

that by Theorem 4.1.1 each vertex has even degree. L
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A fundamental property of plane graphs, vital for all approaches to colouring theory
of such graphs, is Euler’s formula. We recall from Chapter 2 that we use n, m and/

respectively for the numbers of vertices, edges and faces of a plane graph.

Theorem 4.1.7 (Euler [4.3]) Letg be a connectedplane graph; then n - m + f=2.

Corollary 4.1.8 (Kempe [4.4]) In anyplane cubic graph, there must be aface with

five or fewer boundary edges. |

lhe geometric dual of Corollary 4.1.8 is:

Corollary 4.1.9 any plane triangidated graph, there must be a vertex o fdegree at

most 5. |

Kempe’s attempted proofofthe Four Colour Theorem [4.4] can be restated in modern

terms (using vertex colouring) as follows:

‘If there are planar graphs G of chromatic number 5, then there are S-critical graphs,
that is, graphs G of chromatic number 5 such that deleting any vertex reduces the
chromatic number. Let G be such a graph. Then there is a vertex 4-eolouring p of

G - (vol where by Corollary 4.1.9, d{vy) < 5.

Figure 4 1



‘If d(vo) <4, then clearly a 4-colouring of G - {vo} can be extended to a 4-colouring
of G. If d(vo) =4, then the neighbours of vq must all receive different colours. Let us
suppose that the neighbours in cyclic order are vi, . . M with //(v/) = c, 4).
Ifthere is a [1, 3] Kempe chain that includes only one ofvi, V3, then the corresponding
Kempe interchange will allow G to be 4-coloured (see Figure 4.1.1). Thus there must
be a Kempe chain i[l, SJs; but together with the path ViW0\3 this produces a closed
Jordan curve with V2 and M on opposite sides. Thus there cannot be a Kempe chain
2[2, 4 ]4, and so a Kempe interchange on the chain containing (say) V] will allow G to

be 4-coloured, contradicting the assumption that G is 5-criticaF.

Thus, any 5-critical planar graph has only vertices of degree five or more and at least
one vertex of degree 5. The number ofvertices of degree five in a critical graph was
shown to be at least 13 out of a minimum number of 26 vertices by Errera in 1925
[4.5] and at least 15 out of a minimum number of 32 vertices by Franklin in 1938
[4.6]. (Note that these results were expressed in a face-colouring rather than a vertex-
colouring context.) By 1968 it was proved by Ore and Stemple [4.7] that a 5-critical

planar graph must have at least 40 vertices.

The case with d(vo) = 5 is where Kempe made his mistake in 1879 which was noted

by Heawood eleven years later.

Figure 4.1.2
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Translated into the vertex-colouring context, Kempe said in effect:

‘Where r/(vo) = 5 and vq is the only vertex ofthe critical graph G not assigned a
colour; when the neighbours of vq in cyclic order are vi, V5, then one ofthese (say
vi) is adjacent to two of'the same colour (v2 and V5); let //(vi) = c\, jufv:) =//(V5) = G;
then since all four colours must appear on the neighbours ofvq, we may set /(V3) = G,
ju(vs) = G (see Figure 4.1.2). In this context this will be called the standard
labelling. Ifthere is a Kempe chain i[l, 3] (resp i[l, 4]) that does not include V3 (resp
M), then the coiTCSponding Kempe interchange will allow a 4-colouring of G. Hence
there are Kempe chains i[l, 313 and i[l, 4]4. But if i[l, 3]3 exists then ][2, 4]4 cannot
exist, since the union of i[1, 3]3 with the path ViW\3 is a closed Jordan curve with />
and M on opposite sides, and similarly if i[l, 4]4 exists then s[2, 3]3 cannot exist.
Hence, both the interchanges 2(2, 4) and $(2, 3) can be made and G can now be

4-coloured, giving a contradiction. Hence every planar graph can be 4-coloured.’

Figure 4.1.3

Heawood, however, noticed that although neither 2P, 414 nor $[2, 313 exist in the

original colouring of G - {vq}, perfonning either ofthe corresponding Kempe
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interchanges could create the other Kempe chain; see Figure 4.1.3. This is because
the chains 2[2, 4] and s[2, 3] may possess shared or adjacent vertices, as in Figure
4.1.3 above. In (a), the chains possess the shared vertex shown enlarged, while in (b)
a pair of adjacent vertices of the two chains are shown enlarged. The graph in Figure
4.1.3 has been lost and rediscovered many times and will be called the Kittell graph
after the earliest known discoverer, see [4.8], and denoted by 73 for brevity. Other

work on Kittel’s graphs can be found on [4.9]. The colouring of 773 depicted in Figure

4.1.3(a) will be called the Kittell colouring, to(7s).

In 1o(7s) the edges of the vertex chains [1, 4]/ [2, 3] and [1, 3]/ [2, 4] have been
highlighted. After the operation p(7s) = to(7s) + 2(2, 4), the colouring () can be

re-labelled with the standard labelling Figure 4.1.3(b).

4.2 Heawood Graphs

Given a supposed 5-critical triangulation G with a vertex vy of degree 5, we may (as

in Section 4.1) label the 4-colouring £ of G — {vg} with the standard colouring

Ho(v1) = c1, Uo(v2) = c2, to(v3) = 3, Lho(Va) = Ca, Lo(V5) = C2.

Then we may perform a Kempe interchange and thus 4-colour G unless:

(1) 1[1, 3] = 1[1’ 3]3:
(2) 1[17 4] = 1[1’ 4]4;
(3) sl[2, 313 is a Kempe chain of 1 = tio + 2(2, 4);

(4) 2[2, 4}4 is a Kempe chain of 1, = i + 5(2, 3).
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We call these four conditions the Heawood conditions; any colouring of G — {vg}
obeying these conditions is a Heawood colouring. Note that, if a colouring x4 of

G — {wp} does not obey these conditions, then G is 4-chromatic by Kempe’s argument,
and hence any non-Heawood colouring of G — {vp} may be called a Kempe

colouring. The following lemma is an immediate consequence of the definitions.

Lemma 4.2.1 Let it be a Heawood colouring of G — {vo} as above, and suppose there

is a Kempe interchange that transforms [t into a Kempe colouring. Then G is

4-chromatic. [ |

Let Cy, C; be two vertex Kempe chains with respect to a vertex 4-colouring of G.
Then the distance ¢(Cy, C3) is the minimum number of edges in any path from a
vertex in Cj to a vertex in C,.  Let ¢, = ¢(2[2, 4], s[2, 3]). Kempe’s argument is
correct in all cases where ¢, = 2. Heawood’s counter example had ¢, = 1. Various
other counter-examples will be studied in detail in this section, together with specific
examples where Kempe’s algorithm also successfully colours G in cases where ¢, = 1

and ¢, =0.

Main result (2)
Theorem 4.2.2 Let u be a vertex 4-colouring of G — {vo} where G is a critical graph
and d(vo) = 5. Let the colours of the neighbouring vertices vy, ..., vs be as in the
standard colouring, with ¢, as above. Then if G has a Heawood colouring, ¢y, < 2.
Proof. If ¢ > 2, then p+ 2(2, 4) = 1, where /4, is such that no vertices adjacent to
5[2,3] have been affected. Hence 13 = 14 + 5(2, 3) is a Kempe colouring of G
allowing s = 13+ o(0, 2) to colour the previously uncoloured vo with colour c; such

that 4(vo) = c2. Therefore G has a vertex 4-colouring and was not a critical graph. B
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At any vertex of G- {vo} there are just three possible Kempe chains. A Heawood
colouring //0 f G - {vo} with the standard labelling, has just the following Kempe

chains involving the neighbours of VQ

i[U 313, i[l, 414, 2[1, 2]5, 2[2, 313, 2[2, 4], 3[3, 414, 4[4, 2]/s, 5[2, 3].

We will call the corresponding set of eight Kempe interchanges, So, Ifeach
interchange in So produces a further Heawood colouring, then // is said to be

completely Heawood or 8H.

Example 4.2.1: colourings of 1%

Figure 4.1.3 (a) showed the Kittell colouring //o("s)- The edges of some ofthe chains
were highlighted. Figure 4.1.3 (b) is labelled to show that //](//g) = //oC*g) + 2(2, 4) is
still a Heawood colouring and the relevant edges are similarly highlighted. In the
Kittell colouring, the chains i[l, 3]3, i[l, 44, 2[1, 2]$ and 3[3, 4]4 each use every
occurrence ofthe given colours and hence any combination ofthe corresponding
interchanges leaves the colouring isochromatic to po- For example, see

M)+ i(1, 3) in Figure 4.2.1 (a) below. Similarly, either ofthe interchanges 4(4, 2)5
or 2(2, 3)3 result in colourings isochromatic to either ofthe interchanges 2(2, 4) or

5(2, 3) hence they all correspond to //o(/yg)t 2(2, 3)3, shown in Figure 4.2.1 (b).

Figure 4.2.1
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If »n ofthe eight interchanges So produce a further Heawood colouring, then p is said

to be «-Heawood or nH.

Example 42.2; the Errera graph

The colourings of'the near triangulation of a graph, which we will call the Errerra
graph, was shown to have a sequence of 7 //colourings by Errera [4.10]; these are
shown in Figure 4.2.2 below. They have since been presented in papers by various
authors for example, Holroyd and Miller [4.11] and Hutchinson and Wagon [4.12].
There is in each case one chain such that the corresponding Kempe interchange
produces a Kempe colouring as shown (highlighted and exchanged) in Figures 4.2.3.
Note that as these are near triangulations the uncoloured vertex, vq, is not shown but
assumed to be outside the graph with edges to the vertices ¥4 ..., v§ with the standard

colouring

llo(V1) = Cl, /4)(V2) = C2, /4)(V3) = C3, /4)(V4) = C4, /4)(V5) = C2.

Figure 4.2.2 The Errera graph with IH colourings

I1F

Figure 42.3 Kempe colouring ofthe Errera graph
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Although in any Heawood colouring , there are eight Kempe chains involving the
neighbours of vg, in many cases o + 2(2, 4) and 4 + 5(2, 4) are isochromatic. This
occurs whenever 1[1, 3]3 is a tree containing all the vertices of these colours and is
particularly likely to occur in small graphs since there are often insufficient vertices to
have more than two [2, 4] chains. That is the case in both the above examples, where

if we have two [2, 4] chains then ¢ = 2 and the graph has a Kempe colouring.

Let 1 be a colouring of G — {vp} where G is a plane triangulation and d(vg) = 5. We
say that 1 is Kempe-colourable if a sequence of Kempe interchanges from x will
produce a colouring of G — {vp} that allows vq to be coloured. Although the four
colour theorem has been proven, this still allows for the theoretical existence of an
infinitely 8H colourable graph. However, we conjecture that no such colouring exists.

Moreover, we make the more specific conjecture as follows.

Conjecture 4.2.3 Let G — {vo} be as above. Then every 4-colouring is Ke}npe-
colourable. There is no graph which can be given an 8H colouring which will
continue to be 8H after an arbitrary sequence of interchanges in Sy . In particular, no
colouring remains Heawood after, to isochromatism of the standard colouring, an

infinite sequence of alternating ;[2, 4], and 3[3, 414 exchanges. n

Although unproven, an out line of our justification for conjecture 4.2.3 is as follows.
It would appear that after a'number of p +3(3, 4)4 + 2(2, 4) exchange sequences, we
arrive at a colouring 4 for which the 3[3, 414 chain is not the complete set of all
vertices colours c¢3, cs. When we then exchange the 3[3, 4]4 chain, we either prevent
the 4[1, 3]5 from existing or separate this from ;[1, 4]4, and so get a Kempe colouring.

We believe that an argument should be possible, by using Theorem 4.2.2 to establish
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a particular set of vertices and paths which would require the existence of K3, 3. This,
with Kuratowski’s Theorem [4.13] and the non existence of the paths of K33, would

prove the four colour theorem without the need for a computer.

Note however, that there are many heuristics for finding colourings, see [4.14]. A
study of such heuristics may result in the discovery other infinite chain sequences that

are incompatible Kuratowski’s Theorem.

4.3 Rotatable Triangles

Suppose that in a colouring & of G we have a triangle ¢ = {v;, vj, v} with u(v)) = ¢,
H(V)) = cq, (Vi) = cr, such that, if we rotate the colours on ¢ (so that the colour of v;
becomes c,, that of v; becomes ¢, and that of v, becomes c,), the new colours do not
clash with ény of the remaining colours. Then we shall call ¢ a rotatable triangle.
The operation of altering the colours in this way will be denoted by ;;x(p,4,7), so that

the new colouring is denoted by 1 = 4 + ijx(p,q,7).

Theorem 4.3.1 Let G be a plane graph with vertex 4-colouring y and a triangle

t = {vi, vj, i}, where u(vi) = ¢p, 4(vj) = cqand p(vi) = ¢,. Let N, Nj, Ny denote the
sets of vertices of G —t adjacent to v;, vj, vi respectively. If the operation ;;,(p,q,7) is
possible, then just two colours appear on each of the sets Ni, Nj, Ni.

Proof. Vertex v; can be recoloured with colour ¢ only if the colour ¢, is not present
on /V;. Since the colour ¢, is not present on &, the only colours on N; are ¢, and the

fourth colour. Similar arguments hold for N; and N. L
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Figure 4.3.1

In the Kittell colouring, Figure 4.1.3 (a), the given colouring // of G - vq has two
rotatable triangles adjacent to the uncoloured vertex. Triangle ¢t = {v2, V3, 23}, where
M*72) = @, /AyF) = G and //(V23) = Cl, can be rotated by // + 2,3,23(2,3,1) = ju* where
Fxiyi) ~ G, //x(v3) = A and //x(v23) = Q. See Figure 4.3.1. This is now colourable by
Fx+23,4)x + 00, 3). Similarly we could colour G by

F+5445(2.,4,1)+ 53,40 + 00, 4).
However, a rotatable triangles are rare. But there are similar components which are

much more common.

4.4 Rotatable Spiders

Suppose that in a colouring // of G we have a triangle ¢t = (v/, W\ v} with //(v,) = O,
II(vy) = (g Fi™k) = G; such that it is not rotatable. If we rotate the colours on ¢ as in
Section 4.3, we have a set R of vertices in G -t which are now the same as the
colours on adjacent vertices. If we can recolour these R vertices by exchanging the
vertex colours on non intersecting, but possibly multi coloured, paths leading from
them, then the operation of altering the colours in this way is denoted by

F\- F ijkipFhr) *. We will call the triangle ¢ and the set of non intersecting paths, a

rotatable triangle spider.
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ib)
Figure 4.4.1

Two examples ofrotatable triangle spiders in the Kittell colouring are shown above in
Figure 4.4.1. In {a) t = {V3, where //(V3) = G, fill) = ¢\ and ju{1}) = G.

Let /1 = /lo+ 3xj-3, 1, 4). Then //i(v3) = a, = €4 and //i(v",) = €3. Here the set
F(/Ji) is comprised of//i(vz) = G and //i(vi2) = G. We can independently interchange

paths /2 = +x(3, 2) + 12(1,4) to get a Kempe colouring which by

/713 = 12 +2(2,3) + 0(0,3) becomes a proper colouring.

In () t = (V3, W, \34}, where //(V3) = G, ju{Vy) = G and //(V34) = Q.
Let 4l = jlbo+3,y34 (3, 4, 2). Then //i(v3) = G, //i(Vy) = @ and //i(v34) = 3. Here the
set R(GUJ) is comprised of//i(v4) = Gt and jU\(v¢) = G. We can independently

interchange j§j = jU +4(4, 1) + 22, 3) + 0(0,3) to get a proper colouring.

There are three kinds ofrotatable triangle spiders: those that take the colouring to
another Heawood colouring, those that take it to a Kempe colouring and those that
take it to a proper colouring, i.e. allow the missing vertex to be coloured. All three are

shown for the Errera colouring, (Figure 4.4.2).
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Figure 4.4.2

Note however that since any two Kempe chains from different points of the triangle
could require the same alternating colour, their chains can cross. Hence a rotatable
triangle spider is not available for all triangles. Nevertheless we feel that the
following conjecture is justified.

Main conjecture (3)
Conjecture 4.4.1 1n any Heawood colouring lly there is always at least one

rotational triangle spider leading directly to either a Kempe orproper colouring. |

This conjecture is not a mere restatement ofthe four colour theorem. This is a way of
recolouring. However this claim must be tempered by the knowledge that, as has

been noted by other combinatorists: nearly every method ofrecolouring works.

Summary of chapter 4:

In this chapter we consider the various aspects ofthe (vertex) 4-Colour Theorem. We
presented a way to compatibly triangulate a graph and several methods to swap from
the standard uncompleateable colouring to a completable colouring under specific

circumstances.
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Summary of main results by Jini Williams in Chapter 4

Theorem 4.1.5 Let F be a face of a simple plane graph G, and suppose
w: V(G) = {ci, 2, €3, 4} is a vertex colouring of G such that exactly three colours
occur on the vertices of F. Then F can be compatibly triangulated.

Main result (1) page 50

Theorem 4.2.2 Let i be a vertex 4-colouring of G — {vo} where G is a critical graph
and d(vo) = 5. Let the colours of the neighbouring vertices vy, ..., vs be as in the
standard colouring, with ¢, as above. Then if G has a Heawood colouring, ¢, < 2.

Main result (2) page 56

Conjecture 4.4.1 In any Heawood colouring u, there is always at least one
rotational triangle spider leading directly to either a Kempe or proper colouring.

Main conjecture (3) page 63
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CHAPTER 5

EDGE COLOURINGS

5.1 Planar Graphs

A cubic map is a plane graph of regular vertex degree 3. It was recognised as long
ago as 1880 by Tait [5.1] that colouﬁng the edges of such a map M with three colours
is equivalent to colouring the faces of M with four colours. If the face colour set is
{1, 2, 3, 4}, then a pair of adjacent faces can have just one of six colour pairs. This is
also equivalent to saying that in the dual of the four coloured map, an edge connects
vertices in just one of six possible colour pairs. In the cubic graph we may associate a
colour pair and it’s complementary pair with a colour in the colour set {q, b, c}, and
thus give a 3-edge colouring to G. For example, we may associate the pairs {1, 2},
{3, 4} with a; {1, 3}, {2, 4} with b; {1, 4}, {2, 3} with ¢. Then, given a proper face
4-colouring of M, we may colour each edge using the colour a, b or ¢ in direct

correspondence with the colours of the faces and obtain a proper edge 3-colouring.

Importantly, Tait also proved the converse result: that every proper edge 3-colouring
of M gives rise to a face 4-colouring that is unique to isochromatism. Hence, if a
partial edge 3-colouring of M can be altered to allow the edge-colouring to be
completed, then we may translate this into a face 4-colouring. Thus, since every face
4-colouring of a cubic map corresponds by duality to a vertex 4-colouring of the dual
triangulation, the results of Chapter 4 on vertex 4-colourings df triangulations have

analogies in terms of edge 3-colourings of cubic maps. See Figure 5.1.1.
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Figure 5.1.1

The Zhou Shugtio [5.2] graph colouring as vertex, map and edge colourings.

In this form, the Kittell graph colouring //0(/7s), of Chapter 4 becomes Figure 5.1.2.
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Figure 5.1.2

An exchange of one known vertex or edge colouring of a graph G for another known
colouring ofthe same graph will be called a transition. A vertex transition is usually
possible via a sequence of vertex Kempe chain or rotatable triangle exchanges; each
of'these has a corresponding set of edge-colour exchanges. For a vertex Kempe chain
[1,2], or part thereof, the corresponding set of edge Kempe chains /4, c] can be quite
large as there are disconnected chains /b, c] corresponding to each circuit in [1,2].
Similarly a single edge-colour exchange /b, ¢/ may correspond to a set of vertex chain

exchanges where several nested circuits [3, 4] and [1,2] have their colours swapped.
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Hence, although we can obtain the same result by either vertex- or edge-exchanges,
there are certain transitions which are simplified when using edge, rather than vertex,
exchanges and vice versa. In both, an infinitely 8-Heawood colouring, with the eight

Kempe interchanges Sodescribed in Chapter 4, could still exist.

There are, however, edge 3-colourings with conesponding vertex 4-colourings,

between which a transition is not possible using just the given colour set. Consider
the edge 3-colourings ofthe graph G given in Figure 5.1.3. We name this the Zhou
ShuGuo graph [5.2] after its discoverer. These are, to isochiomatism, the only edge

3-colourings of G; we denote these by //i,

a—-o0 0O O

Y 2 V3

Figure 5.1.3

From the figure, it is clear that any Kempe exchange in /!l results in an isochromatic
colouring so that there is no sequence of Kempe exchanges from /4 to fionor from

Jli\ to //3, whereas we may move between /A and /3 using Kempe exchanges.

In the 1990 Zhou ShuGuo attempted to prove the Four-Colour Theorem and used this
graph as an example of the need to go beyond Kempe exchanges; although the
attempt was unsuccessful, the example does suggest that reliance on Kempe

exchanges is insufficient for a successful proof, as we also conjectured in Chapter 4.
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Where misa prime number and where //i is a graph colouring of corresponding to
the cyclic Cayley table; in Chapter 3, we showed that there was no transition to any
other colouring of via Kempe chain interchanges alone, but that, nevertheless,
this could be done by using Pittenger’s interchanges. These interchanges, however,
do not necessarily exist for non bipartite graphs. Not only do they require the
existence of a four circuit, but consider (v, y: @) swap: where the vertices of the
four cycle are vi, hi, V> and 62 in a bipartite graph, we know that we have a Kempe
chain vi]x, >'[v2, where vi is not adjacent to V> , hence we have a transition to a proper
edge colouring, but in a general graph there is no guarantee that Vj|x, y/ will not return
to an adjacent vertex. In Figure 5.1.3 colouring jU has many four cycles but none
have a valid Pittenger interchange. For example, consider the four cycle v/, vg,

Vi2 and V7, in this case /2 = M + 6,g(a, h: ¢) would give us y/i(es,8) = =c but

GJa, is not a transition to a proper edge colouring.

We now show that for edge colourings, that there is an alternative transition via a
sequence of Kempe exchanges from /U to y/g when we introduce a fourth, dummy,

colour which does not appear in either colouring. See Figure 5.1.4.

W(

0 r4’l

/4 JU& isochromatic to 3

Figure 5.1.4
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Here, u; is as above; (4 is an intermediate edge 4-colouring; and s is an edge

3-colouring isochromatic with g3, The transition from £4 to s is obtained as follows:
Ha = fa+ 1(a, d) 2+ 1(b, d)12+ 12(a, D)1 + 2(b, €) 2+ 1(c, a);
Us = ta + 12(b, a)1 + 7(b,d)12 + 1(a,d)2, isochromatic to /.

Note that this is not the only route from g to ts.

5.2 Edge 4-colour Transitions

It will now be shown to be possible to find a transition between any awkward set and
another known edge 3-colouring. This is a method for all cubic graphs, planar or
non-planar. However, it is only relevant to the four colour theorem if we accept that
there is a proper 3-edge colouring of the graph. Furthermore, unlike in works such as

by Yasuyuki Tsukui [5.3], the method below preserves the structure of G at all stages.

Main theorem (1)

Theorem 5.2.1 [Holroyd and Williams] Every edge 3-colouring of a class 1 (not
necessarily planar) cubic graph can be obtained from every other edge 3-colouring of

the same graph by a series of (edge) Kempe interchanges using at most four colours.

Proof. Let G be aregular class 1 cubic graph. Let g and 4 be any two edge
3-colourings of G, using the colours a, b, c. We shall transform z; to g by a sequence
of Kempe interchanges involving the temporary use of a fourth colour, d. The set F
of edges e such that s(e) = c is a 1-factor of G. By using + «(d, t2(ey))y for every
edge exy € F we transform /4, to a temporary colouring such that each edge in F is

coloured d. Then E(G) — F is a union of even circuits. In each circuit of E(G) - F,
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we must convert each edge coloured c to a or b then, if necessary, exchange these

colours throughout the circuit to match the colours in .

Let C be a circuit of E(G) — F. We can immediately swap x]b, c[y for every exy € C
that has colour ¢ and is between two edges of colour a, and also swap z]a, c[w for
every exw € C that has colour ¢ and is between two edges of colour b. If no edges
coloured ¢ remain then, by a final swap pla, blq if necessary, we have the edges of C
coloured as in ;. If just one edge coloured ¢ remains, then (as C is an even circuit)
this edge lies between edges of the same colour, and can be coloured a or b as above.
We may therefore assume that there are at least two distinct edges, ey and ey,
coloured c and all the edges on the path from x to y are coloured alternately a and b.
We now exchange colours a and b on this path. Now each of the edges e, and ey, has
the same colour on each side, and we may proceed as before. Eventually, therefore,
we produce a sequence of Kempe interchanges that give the edges in C the same
colours as in 4. We proceed in the same way with the other circuits of E(G) — F,
then finally apply + (d, ¢) to each edge in F, to give us a colouring identical to z;.

We have used only four colours and the theorem is proven. L

5.3 Colour Difference

5.3.1 Equi-nets and trans-nets

The concept of the transition net between two (face or edge) colourings of a cubic
graph has been previously explored by Zhou ShuGuo, F. Holroyd and F. Loupekine

[5.4] in unpublished work. We here introduce a related concept.

Let 14 and u, be two edge 3-colourings of a cubic graph G, using colour sets
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PE, = [A, B, C) and W> = {a, b, c] respectively. (It is possible that.® = q, etc.)
There are six bijections from Wi to W2, for convenience, we denote them by ¢ 6,

p, a, p, yas follows.

® AF=ca BEFb CFcl O AFLh, B2, C >« p'. A +¢, B +=d, C +>D,

! A0, BF>e, C 2D, P A¥Le, B+>b, C+>14 y. A+>b, B +>t/, C +>c.

For each ofthese bijections, » we define a partition of E{G) into an equi-net and

a trans-net as follows:

E KG: P2(g)= " t g e E(G): pz(g) # opi(g)}.

Figure 5.3.1 shows the six such partitions into equi-nets (pink) and trans-nets (blue) of
two colourings pl and p2 of a cube. All colourings of the labelled cube and the
relevant equi-nets will be shown, in a more concise manner, in Section 5.3.2, figures

5.3.8 and 5.3.9 on page 80.

4

Oc O

B om0
0oO—O

By, Ty

Eé, Ti

Figure 5.3.1
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Each maximal comiected set of edges in any equi-net will be called a component.
For every two colourings p| and  of G using colour sets W\, W2 as above, where the
colour on an edge ey is ca in pi and (zin pz, the edges Ay incident with ey, have
colours cb and cc in pi and colours (b and (¢in p? and edges ¢w, ¢j. incident with ey,
have colours cg and cc in pi and colours (band (¢ in pz, then we will say that the edge
has the same local colouring w.r.t. pi and pz. Where however, the edges ey, etx, eg
are as above but edges ¢”, ¢ have colours cb and cc in p, and colours (¢ and (@ in pz
then we will say that the edge has a different local colouring w.r.t. pi and pz. Figure
5.3.2 shows (a) ey, an edge with the same local colouring and (b) an edge with a
different local colouring w.r.t. pi and pz. Note that on the given example only pz(c**)
is equivalent to the c-reduction of [5.3] and that in all cases where both colourings
have this same local colouring, we need only consider the smaller planar graph
formed by removing the edge and joining the spines of the same colour. The same

transformation for pi(cy) and pz(Cy) could result in a non planar graph.

0/\'/\0

Plipy) Pl\{pxy) Plipxy)

{a) Same local colouring {b) Different local colouring
Figure 5.3.2
A graph is covered by a set of components if every edge of the graph is in at least
one component. A graph is partitioned by a set of components if every edge of the
graph is in just one component. Coverings of graphs have been discussed by many

authors, see [5.5] and [5.6], but we believe the following to be a new aspect.
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Lemma 5.3.1 For any two edge-colourings ofa graph G, with the equi-nets defined
as above, G is partitioned by the components of.
(i) E~FoEp, and
(ii) Fa, Fp, Ey.
Proof. (/) Any edge coloured A in pi that is not in has colour Zor c in pi.
Hence it is in either Fe or Fpbut not both. A similar argument follows for the edges

coloured Bin p\, and for those coloured C.

(ii) Any edge coloured 4 in pi thatis not in Ea, has colour 6 or ¢ in pi. Hence it is in
one of By or E~but not both. As in part (i), similar arguments follow for the colours

B and C. Hence the graph is uniquely covered by the given components. ]

We will call both these partitions, equi-coverings. Where we wish to distinguish
between them we will call them equi-covering-(i) and equi-covering-(M) for

Fe, Fp and Ea, Fp" Fy respectively. In an equi-covering, we will call any vertex
where components from at least two distinct equi-nets are incident a junction vertex.

Any vertex that is not a junction vertex will be called an inner vertex.

Lemma 5.3.2 Everyjunction vertex in an equi-covering has componentsfrom all
three equinets.

Proof First note that the two equi-coverings correspond to the following 3x3 MOLs.

i 4 B C ii ABC

n la b c a a c b
p \c a b p ¢ b a
9 \b ¢ a Y b a c
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Each element a, for example, represents the inclusion of an edge, coloured & in pz, in

the given equi-net (row) matched with the given edge coloured the colour of the

column heading in colouring pi.

Suppose that there was a junction joining just two components. One component has
just one edge at the junction. Therefore the other two edges are in another
component. From the latin squares we can see that if any two edges at a vertex are in
an equi-net then the third edge is forced to be in the same equi-net; which is a

contradiction. Hence all three equi-nets meet at a junction. ]

If Pi and Pz are edge-colourings of a graph G, with colour sets W\, W2, such that
Pz = ~ oPi where "is a bijection from W\ to W2, then we say that pz is

autochromatic to pi, and the bijection is an autochromatism.

Lemma 5.3.3 Where pz is autochromatic to pi, the two equi-coverings corresponding
to Pi and Pz are such that: one hasjust one component, namely E{G), and the other is
a partition into the colour classes ofp).

Proof. Let the colours be A, B and Cin pi and a, b, ¢ in pz. Again consider:

ilda4 B C i\d4 B C
n 1‘1 bic a-a ....... c -b
plec a b p ¢ b a
6\b ¢ a y\'b a c

The bijection ~is one of @ 0, p, a, P, y and hence the corresponding equi-net is E(G)
and the other two equi-nets of this equi-covering are empty. Equally, each equi-net of
the other equi-covering corresponds to one colour class. For example, if C=a, then

= {e e E(G): pi(g) =A}; Be= {ee E(G): pi(e) = B};

Bp= {e e E(G): p\{e) = C}. |
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A decomposition of the edges of a graph into three sets of independent thiee-armed
stars S3 such that at any vertex we have either three incident stars or just one star, as

shown in figure 5.3.3, will be call a tri-star structure.

Figure 5.3.3

An equi-covering with the tri-star structure will be called a tri-star equi-covering.
Not all cubic graphs can have this structure; in particular, |E(G)| must be a multiple of

9 for a tri-star decomposition to exist at all.

Tri-star equi-coverings can be found from planar face colourings, see figures 5.3.10
and 5.3.11 (page 87) where four face-colourings of the hexagonal prism are shown,
two of which give a pair of edge 3-colourings that produce a tri-star equi-covering.

They can also be found from non planar edge colourings, see figures 5.3.12 (page 89).

Lemma. 5.3.4 Where a vertex v is ajunction vertex in equi-covering-(i), then it is an
inner vertex in ecfui-covering-(ii) and vice versa..

Proof. A junction vertex in any equi-covering has just one edge from each equi-net.
These correspond to three bijections from MW to Wj. From the latin squares one can

see that that these must all be in the same equi-net, but in the other equi-covering. =

Lemma 5.3.5 A graph with the tri-star structure has as manyjunction vertices as

components.
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Proof. Each vertex is either an inner vertex, at a centre of a star, or a junction vertex
incident with three stars. If for any colour c, there are m inner vertices they are
adjacent to 3m junction vertices. This must include all the junction vertices therefore
there are exactly 3m junction vertices. Each of these has an edge from three different
stars so there are at least m stars of both other colours. There cannot be more than m
stars of any other colour as there are only 3m junction vertices, hence there are m

stars of each colour, and the number of components and junctions is equal. n

Main result (2)

Theorem 5.3.6 If equi-covering-(i) of any two colourings of a graph G, has the tri-
star structure, then so has equi-covering-(ii) and vice versa.

Proof. In atri-star-equi-covering there is just one inner vertex in each cbmponent.
From Lemmas 5.3.4 and 5.3.5, in equi-covering-(i) we have as many components, and
hence as many inner vertices, as we have components. Each inner vertex becomes a
junction and each junction becomes a component in equi-covering-(i7). We have as
many components as before, each with at least three edges, therefore they must have

exactly three edges and other equi-covering-(if) must also have tri-star structure. M
Hence, we can now say that such pairs of colourings have tri-star-equi-covering.

Lemma 5.3.7 In a cubic graph with tri-star structure, every circuit is even.

Proof. In any circuit, the junction vertices and inner vertices must alternate. n

Although Lemma 5.3.7 is true for both planar and non planar graphs, where the graph

is planar these circuits may refer to faces, or groups of connected faces.

Corollary 5.3.8 A cubic graph with a tri-star structure is triangle-free. u
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Lemma 5.3.9 A graph with a tri-star structure and no 4-circuits is non-planar.
Proof.  In a planar graph with a tri-star structure and no 4-circuits, every face must
have at least six edges. From Corollary 4.1.8 we know that every planar graph has at

least one face with at most five edges, therefore, the graph is non-planar. ]

Main result (3)
Theorem 5.3.10 Let two colourings of G be p\ and juj- At least one ecjui-net has a
component consisting o fa single edge unless they have tri-star equi-covering.
Proof.  Let the two colourings of G be pi and p? with equi-nets Ea, Ep Ey Eg and
Ep. We can call the colour on any edge eli c4 in p| and (ain pz.
Ifthe edges incident to edge eu have the same local colouring w.r.t. pi and pz, then
we can call the colours on the respective edges ¢b in pi and cf pz and cc in pi and @
Pz so that all five edges are in the same component of equinet E” and hence ciz is a
single-edge component of Ea. See figure 5.3.4.

The edge was chosen at random and the colours are arbitrary. Hence, only if all the
edges are coloured in such a way that they each have a different loeal colouring

w.r.t Pi and pz, can we have an equi-net with no component consisting of a single
edge. Therefore, we can see that the colourings ofthe graph G with no single equi-net

edge are such that, at any vertex, the edges are all as in Figure 5.3.5.

Same local colouring w.r.t. pi and py. eqiii net edges in blue.

Figure 5.3.4
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Y3Y5)s

Different local colouring w.r.t: p\ and py equi net edges in blue

Figure 5.3.5

By Lemma 5.3.2, no component can have just two edges in an equi-net; therefore, if
any ofthe edges in equinets Ep Ey, Eg or Ep are not in a larger component then they
are themselves a component consisting of a single edge. If any edge is in a larger
structure that is not a tri-star then it must have the same local colouring and hence it is
a single edge component of a different equi-net. Therefore, for any colourings p| and

P: with no such component, every equi-net must have the tri-star structure. |

5.3.2 A measure for colour difference

We now consider two different edge-colourings and count how often the edge colours
appear together, match up, when one colouring is laid on top of'the other, overlaid.
This has the same sense ofmaximal difference as we had in orthogonality when we
considered latin squares in Chapter 3. We now show that equi-coverings measure this
maximal colour difference and show the importance of'the tri-star equi-covering.
When G is planar, the difference in edge colourings is reflected by the difference in

face colourings.
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Lemma 5.3.11 IfG is aplanar graph with Pvo colourings p\ and  which have tri-
star equi-covering, then, in the correspondingface-colouring, where p\ has an edge
e\2 whose local colouring givesfigure 5.3.6 (0), then pi gives Figure 5.3.6 {b) to
automorphism ofthe colours.

Proof Ifthe local colouring was as in figure 5.3.6 {a) in both, then there is an equi-

net with figure 5.3.6 (c) and hence no tri-star equi-covering. Only with a different

loeal colouring {b) can we get a tri-star equi-covering (d).

)

With this result in mind, we consider how different two colourings can be in terms of

their equi-coverings.

Colourings of'the cube.
Figure 5.3.7
Figure 5.3.7 shows all the non-automorphic colourings of the cube when we consider
a fixed vertex labelling. The full set of equi-coverings for Figure 5.3.7 is given in

Figures 5.3.8 and 5.3.9 below.
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The two equi-coverings for each pair of colourings are isochromatic but this is not
true in general. Asymmetric graphs, for example, camiot have isochromatic equi-
coverings since they would need to be automorphisms: from Lemma 5.3.4 we can see

that this is not possible.

NI (NIZT) 0Y(v) (iii)/(iv)

Figure 5.3.8 Equi-covering (i)

(0/(zv) (n)/(nz)

Figure 5.3.9 Equi-covering (ii)

We now consider the problem of quantifying the difference between any two
colourings ofthe same graph. We believe that the following is a sensible measure of

this difference.

Main concept (4)
The colouring difference, cd{X{of] is the greatest number of components with more
than one edge (large components), T, that appear in both equi-coverings, qualified by

the number of components that have just one edge (solitary components), a.

For a pair of automoiphic colourings, by Lemma 5.3.3, one equi-covering has just one

large and no solitary components therefore the colouring difference is 1(0). In the



case ofthe cube above, since (i1)/(ii), (i1)/(ii1) and (ii)/(iv) have just one large and four
solitary components in each equi-covering, they are said to have colouring difference
1(4). All others pairs have two large and two solitary components in each equi-
covering and are said to have colouring difference 2(2). A colouring difference of
1(4) is deemed greater than 1(0) but less than 2(2). For any graph G, the colour
difference between any two planar colourings with the greatest possible number of
large components and of solitary components in both equi-coverings will be said to be
the maximal colouring difference for G {mcd{G)[A{0)\). Since colour difference is
defined in relation to edge colourings, the equi-coverings can relate to finite non-
planar cubic 3-edge colourings where again cdf4,{(7)\ and mcd{G){X{(7)] give the

maximum number of components that could be considered to be the same.

Theorem 5.3.12 The maximal colouring differencefor the cube is cJ[2(2)].

Proof. This follows from figures 5.3.8 and 5.3.9 above, where all possible colourings
of'the cube are compared. ]
The reason that we must consider the solitary components separately is that, as we
found in Theorem 5.3.10, solitary components arise when ever the local colouring is
the same, hence they indicate a measure of similarity as well as difference. This

becomes clear when we look at the following examples.



#1(6) #1(4)1
#3(3)1 #2(4)
(iii/iv)
c<i[6(0)1 #2(5)1

Figure 5.3.11

Figure 5.3.10 shows a selection of four out of'the full set oftwelve colourings of the
hexagonal prism. We can see, in the equi-coverings, figure 5.3.11, that the colour
differences range from #1(4)1 for (i/iii), which have just one, four sided face,
differently coloured, to #6(0)1 for (ii/iv) where no more than three faces are the
same to automorphism. Note that we have cd/\{6)\ for (i/ii) since all faces are
matched to (i) except for one hexagonal face. By this measure of difference, the
difference caused by changing a hexagon is greater than that caused by changing a
square. We feel that this is logical. Note that in all cases, the equi-coverings point

out all possible groups of faces that could be considered the same.

&
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Main result (5)
Theorem 5.3.13 Two edge 3-colourings of a graph G with tri-star equi-covering
have colour difference cd{A(0)] where A=|V(G)|/2 and o=0.
Proof. In a tri-star structure there are no small components, and the large
components are in one-to-one correspondence with the inner vertices. Thus the

number of large components is |V(G)}2. u

Main result (6)
Theorem 5.3.14 The maximal colour difference mcd(G)[A(0)] for any graph is such
that A < |V(G)|2, equality being achieved only when G has a tri-star equi-covering.
Proof. In any large component the number of edges is at least 3. Hence, we can have
at most one third as many large components as edges. Since G is cubic we have
3V(G)/2 edges and therefore mcd(G)[A(0)] has A < V(G)/2, the inequality being strict
if there are either any edges not in large components or any large components with

more than three edges. n

5.3.3 Colour difference in the infinite plane

We can also consider face colourings of the infinite plane and their related 3-edge
colourings. In these cases we do not have a value for the colour difference but have a
measure for how often particular colours will match up when overlaid.

From the proof of Theorem 5.3.10, we know that if an edge is a single-edge
component of any equi-net then it has the same local colouring in both colourings.
Hence every such local group of four colours will match up.

Consider the octagon-square tessellation with a tri-star structure in Figure 5.3.12.

This can be represented by the planar colourings £ and i, Figures 5.3.14 and 5.3.15.
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It is only possible to join up the edges of'the given plane colouring, both vertically
and horizontally, as a non planar graph. Since the edge 3-colourings ofthis non
planar graph have equi-coverings with the tristar structure, they have maximal
colouring difference V(G)/2. Where n = V(G), in this example * = 144, although we
have no value for # in the infinite plane we can use the value for the smallest
repetitive section ofthe tri-star structure to give a measure of finite colouring

d iffer en c e,Inthis case there is a section of twenty-four vertices (Figure
5.3.13) which can be used to build up the whole ofthe block. In this case X =24/2.
givingyb<i[12(0)]. Note that both the octagon and the square colouring in //i is based
on the cyclic Cayley table order four and the octagon (only) colouring jIb is based on

the cyclic Cayley table order three.

Figure 5.3.12 Figure 5.3.13



Figure 5.3.14 Figure 53.\5 i
Al Qi | 12

Another graph with tristar structure in the infinite plane and in any non planar graph
formed as before, is shown in Figure 5.3.18. Two planar colourings with this edge
colouring as an equi-covering are shown in Figures 5.3.16 and 5.3.17. The smallest
repetitive structure has six vertices. Hence these colourings can be said to have finite

colouring differencefcd/[3{0)\.

Figure 5.3.16 Figure 5.3.17 Figure 5.3.18

In all these colourings, the value ofthe colour difference is easy to compute without
the necessity to decide in advance which colours are to be considered the same.
Hence this is a device useful whenever a comparison between two apparently random

colourings of'the same graph is required.

&
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Summary of chapter 5:

We discuss the existence of planar graphs with known edge 3-colourings such that
have no transition sequence using Kempe (edge)-interchanges. We then show that
there is a way of getting round the problem by making use of a temporary colour. We

then study a measure of difference between two edge 3-colourings of the same graph.

Summary of main results by Jini Williams in Chapter 5

Theorem 5.2.1 [Holroyd and Williams] Every edge 3-colouring of a class 1 (not
necessarily planar) cubic graph can be obtained from every other edge 3-colouring of
the same graph by a series of (edge) Kempe interchanges using at most four colours.

Main result (1) page 69

Theorem 5.3.6 If equi-covering-(i) of any two colourings of a graph G, has the tri-

star structure, then so has equi-covering-(ii) and vice versa. Main result (2) page 76

Theorem 5.3.10 Let two colourings of G be py and . At least one equi-net has a
component consisting of a single edge unless they have tri-star equi-covering.

Main result (3) page77

The colouring difference, cd[A(0)] is the greatest number of components with more
than one edge (large components), A, that appear in both equi-coverings, qualified by
the number of components that have just one edge (solitary components), o.

Main concept (4) page 80
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Theorem 5.3.13 Two edge 3-colourings of a graph G with tri-star equi-covering

have colour difference cd[A(0)] where A = |V(G)|/2 and o= 0.

Main result (5) page 83

Theorem 5.3.14 The maximal colour difference mcd(G)[A(0)] for any graph is such

that A < |V(G)|2, equality being achieved only when G has a tri-star equi-covering.

Main result (6) page 83
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CHAPTER 6

TOTAL COLOURING

6.1 Graphs and Total Colourings

6.1.1 Complete graphs

In the context of (A + 1)-colourings we regularise G by adding spines to the vertices
so that each vertex is incident with A edges and spines, see Chapter 2.
A spine and vertex colouring of G with respect to the colour set
C={cy,c ..., cas1} 1s a colouring of the spines and vertices of G such tﬁat:

@) the spine colours at any vertex are distinct from each other and from the

vertex colour;

(i)  the restriction to the vertices is a proper vertex colouring.
We use the notation £(V) for such a colouring, to emphasise that it is defined only on
vertices and spines (but may possibly be extendable to a total colouring that willithen
be denoted by ).
For any vertex v, a colour is said to be present at v if it is the colour either of v or of a
spineatv. Fori=1,..., A+ 1 +¢ we denote by S; the set of vertices of G at which

the colour ¢; is present. (The colouring (V) will always be defined by the context.)

In a semi-total colouring, if two adjacent vertices have the same colour, then they and
the edge between them, are said to be opposed. The number of edges which are
opposed is the f-number. A total colouring is a semi-total colouring with S=0,

which is to say, that no two adjacent vertices have the same colour. The f-number of
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G is the least number of opposed edges possible in any semi-total colouring of G.
The f-number of a type 1 graph is #=0. The S-number of a type 2 graph is a value
such that > 0. Given a total or semi-total colouring of G using A + ¢ colours, for
each colour ¢; there is a set of m; edges having colour c;, these édges being
collectively incident with 2m; vertices. There remain V —2m; vertices having c;
present either as a vertex colour or as a spine colour; we denote this set of vertices by
S;. If there are insufficient independent vertices for a colour to be on V —2m;

independent vertices, then, in a total colouring, S; must include spines.

The total colourings of complete graphs have beén completely classified. The results
for odd »n have been known since total colouring was discovered [6.1] and those for
even n, theorem 6.1.2 below, were proven by A Hilton in 1998 [6.2]. We will not
present a proof to this theorem but will present certain observations relating to it

which lead to a conjecture which we explore further in Section 6.3.

Lemma 6.1.1 The complete graphs of odd order are all type 1.
Proof The cyclic Cayley tables of Chapter 2 (Lemma 2.2.3 page 13) provide a proper

total colouring for each such graph. [ |

In stating the following theorem, we use Hilton’s notation: e(G ) and o'(G) are
respectively the number of edges, and the maximum number of independent edges, in

the complement G of G.

Theorem 6.1.2 (Hilton’s Theorem [6.2]) Suppose G is a graph of order 2n having

A(G) = 2n—-1. Then G is type 1 if and only if

e(G)+a'(G)2 n. u
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Observations on Hilton’s Theorem. Consider the semi-total colouring i(K2,)
corresponding to the cyclic Cayley table for 2n. By construction, every vertex has an
odd colour. From Theorem 3.1.4, these are in pairs, giving £ = n.
Vertices v; and v,+1 have colour c; and are joined by an edge e(1,,+1) with
H(eq ni1)) = Cnst. Sir;ﬁlarly:

U(V2) = [(Vns2) = €3, (€@ n+2) = Cna3; --.

H(Vm) = UVnim) = Com-15 H(€(mpn+m)) = Cnazm-1(mod 2n); ....

H(Vn) = [(Van) = Con-1, M€, 2n)) = Cr1.
There are two cases: n is even and » is odd; but we will only consider odd » here.
Odd n: By construction all the opposed vertices are coloured with odd colours and
the corresponding beta edges are coloured with even colours since n + 2m —1 is even.
Since no vertex is even, every even colour, ¢z, is in a chain ,{cs..1, ézk]n+x, from every
vertex v, to the cher vertex of the same colour. Moreover, the construction of the
colouring is such that every vertex colour is in a chain 1[c2x.1, C2x]n+x Which uses every
edge of both colours. Therefore, since all vertices are initially isomorphic, we can
choose to colour K, in such a way that the set A qf ' (G) independent edges
correspond to the ax,n+x elements in the cyclic Cayley table which have the even
colours ¢u2¢1. We can then let the set B consisting of the other (e(G) - a'(G))
dependent edges have different even colours until either all even colours are used or
we have a triangle in B which forces an edge to have an odd colour, such as in graph
Number (69) in our catalogue, Appendix (6.1). Triangles are resolvable special cases
but since doing so here, would throw no light on the point that we wish to make, we
shall ignore them. When we remove just the set A from K5,, we have a semi-total

colouring ¢ of G = K2y —A. Ifn = &’(G) > 0 then we have f, =n — &(G) and the
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colouring is not a proper total colouring. We still need to change the colour on

another n — &’(G) vertices. We have a possible transition to a proper total colouring

with the Kempe interchange sequence

14 —
=+ Zx,. [Cav2s-15Carzs, 1¥i» Where yi=(x; +(n+ 1)/2) and W < &'(G).

i=1
In each case vy is a vertex which was coloured with an odd colour c¢,+2x in £41(K24), but
has the even colour ¢,42x.1 in the semi-total colouring t(G1), with ¢,42 now on the
spine. Since the colours c,42:.1 are all different, there is no other vertex of that colour,

and the vertices are no longer opposed. If n —2a’(G) > 0 then we have
B =n -2 &’(G) and the colouring is not a proper total colouring. We must then

consider the spines caused by the removal of the set B of e(G)-a'(G) dependent
edges. There are as many even colours as odd colours, therefore, there are still

(n —2'(G)) even colours that can potentially be used in transitional chains

lCni2x42j-1, Cna2xlzj Where vy is a vertex still opposed in g. It can be shown that these
transitions exist, but for now we leave this discussion with a concluding observation:
Deleting an edge in £;(K>,), allows a Kempe interchange to an initially opposed
vertex allowing this vertex to be given a colour not used on any of its neighbours;
while deleting an independent opposed edge in £4(K>,), allows the two vertices to
remain the same colour and still allows a different initially opposed vertex to be given

a colour not used on any of its neighbours. If, when all the spines have different

colours in some colouring u3, we have £; > 0, then e(G )+ (x’((—? ) < n, but, if e( G)

+0/(G) > n then we can make the required swaps to eliminate all opposition. .

We will refer again to Hilton’s Theorem in Sections 6.1.2 and 6.4. However, our

observation was included order to indicate that the following conjectures are known to
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be true for complete graphs. We shall discuss beta values further in Section 6.3, and
in Appendix (6.1) we have a catalogue of 70 small type 2 graphs where it can be seen

that the following conjectures are true in those cases.

Lemma 6.1.3 Every type 2 graph contains an edge-critical type 2 subgraph.
Proof. Given a type 2 graph G, we may remove edges systematically until a type 1
graph is found we then replace that edge and continue. If no more edges can be

removed then the subgraph is critical. ||

Similarly we also have f—critical graphs for semi-total colourings. In a S-critical
graph removing any edge will reduce the value of £, though not necessarily bby the
same number. As we saw in discussing Hilton’s Theorem, removing some edges

reduces £ by two, others by just one.
Lemma 6.1.4 Any graph G contains a [-critical subgraph H with f(H) = XG). R

Main conjecture (1)
Conjecture 6.1.5 Removing any set of p edges from a [B-critical graph G will
reduce f by between p and 2p.

Main conjecture (2)
Conjecture 6.1.6 Adding an edge to a [-critical graph G will increase S by at
most 2.
We believe that the beta-classification of graphs is an important an area of study in
it’s own right: not just because it would help solve the total colouring conjecture. To
be able to classify graphs by their f-number would give us deeper insight into the

fundamental underlying structure of total colourings.
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6.1.2 Conformable Graphs

We now consider Chetwynd and Hilton’s Conformability Lemma [6.3]. We shall

however present our own proof of this lemma as it leads on more readily.

Let 1 be a vertex colouring of a graph G, using A + 1 colours. We shall order the
colours by parity, as follows: the first g(4) colours, cy, ..., ¢4, €ach occur on an even

number of vertices while the remaining () colours each occur on an odd number of

vertices, giving q(u) + r(¢) = A + 1.

We use the same notation in the case that G is a type 1 graph and x is a total colouring

of G, by restricting u to the vertices.

Lemma 6.1.7 (the Conformability Lemma)

Let G be a type 1 graph and i a proper total colouring of G using A + 1 colours.
(1) Ifnis even, then def(G) = r(u);

(2) ifnis odd, then def(G) = q(L).

Proof. Ifniseven,thenfori=1,..., A+ 1 the number of vertices that are not

incident with an edge coloured c; is even. Hence S; is even.

For each of the () colours c; used on an odd number of vertices, there is also an odd
number of vertices that are neither coloured c; nor incident with an edge coloured c;
and hence there is an odd (and thus non-zero) number of spines for each of the r(x)

colours ¢;. Thus def(G) 2 r(L).
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Similarly, if # is odd, then for any colour c, the number of vertices that are not
incident with an edge coloured c, is also odd. For each ofthe gfju) colours Gused on
an even number of vertices, there is an odd number of vertices that are not coloured cy
and hence there is an odd (and therefore non-zero) number of spines with each ofthe

qfjLi) colours . Thus def(G) > qfjLi). |

Chetwynd and flilton define a graph G to be conformable if it has a proper vertex

(A + 1)-colouring fi= such that where ¢#.J) + r(//) = A+ 1 as above.
A A (if Ois even);
deAG)>\

\qfu) (if MIS 0dd).

Such a colouring of G is said to be a conformable colouring. It follows from this
lemma that every type 1 graph is conformable and every non-confoimable graph is
type 2. However, there are many conformable type 2 graphs; for example, g - {e),

Figure 6.1.1. Further conformable type 2 graphs will be found in Appendix (6.1).

Figure 6.1.1

Main result (3)
Lemma 6.1.8 Every graph with at least A spines is conformable.

Proof. Let G be a graph with at least A spines. That is, def/G) > A. By Brooks’
Theorem [1.6], there is a proper vertex colouring //o f G using just A colours; that is,

ca+l is unused and hence g{p) > 1. But ¢fi) + r{p) = A+ 1. Thusr(//) <A and ifnis
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even the graph is conformable. Only if # is odd and ¢(x) = A+1 would the graph be
non conformable. However, no colouring can have every colour on an even number
of vertices when n is odd. Therefore, there is at least one colour on an odd number of
vertices and #() =1 and g(u) < A giving.

r(u) (if niseven);

deflG) = Az {q( ) (f nis odd).

and G is conformable. [ |

When 7 is even, since every edge joins two vertices, G can have at most An/2 edges.

However when 7 and A are odd, the number of edges is at most one less. A graph is
called overfull it |E(G)| > A(G) [V(C%J .

This means that, for even n, a graph is never overfull and for odd #, a graph is overfull

only if the number of spines is less than A. This gives the following corollary.
Corollary 6.1.9 For odd n, if G is not overfull then G is conformable.

Conjectures on overfull graphs and conformability were explored in [6.4] by Hilton,

Holroyd and Zhao, where the author of this thesis, Jini Williams, was also mentioned.

Main result (4)
Lemma 6.1.10 Let G be a non-connected graph, each of whose components is of

maximum degree A. Then G is conformable if every component is conformable.

Proof. Let m be the least integer such that there is a non-conformable graph G with
m conformable components each of maximum degree A. Let G be one component

and let G, = G — G|. Then, since G, has m — 1 components, it is conformable. Thus,



there is a vertex (A + 1)-colouring x of G whose restriction to each of G; and G
_ obeys the appropriate inequality. Let:

s be the number of colours on an even number of vertices of G and an even
number of vertices of G;

t be the number of colours on an odd number of vertices of G| and an odd
number of vertices of Gy;

1 be the number of colours on an even number of vertices of Gy and an odd
number of vertices of Gy;

v be the number of colours on an odd number of vertices of G; and an even
number of vertices of G».
Case 1: n(Glj and n(G) are odd.
Then def(Gy) > s + u,def(Gy) 2 s + v,s0def(G) 2 2s+u+v=>u+vand Gis
conformable.
Cqse 2: n(Gy) and n(G») are even.
Then deflGy) = t +v,def(G2) 2 t + u,sodef(G) 2 2t +u+v 2 u+vand Gis
conformable.
Case 3: n(Gy) is odd and n(G») is even.
Then def(G1) = s + u, def(G2) = t tu,s0 def(G) 2 2u+s+1t>s+tand Gis
conformable.
Case 4: n(G) is even and n(G) is odd.
Then deflG1) = t + v, def(G2) 2 s +v, 50 deflG) = 2v+s+t 25 +tand Gis

conformable.

Lemma 6.1.11 The only connected irregular graphs with A =2 are paths, all of

which are conformable.
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Proof. Only cycle graphs are regular with A= 2. Path graphs are type 1 and can be

coloured with the colours as in Figure 6.1.2. They are therefore conformable.

Figure 6.1.2
Main result (5)
Theorem 6.1.12 Any non-conformable irregular graph G is an induced subgraph of

a type 2 conformable graph H ofthe same maximum degree, where n{H) = n{G) + 1.

Proof. Let G be a non-conformable (hence type 2) irregular graph. There is at least
one vertex, v, with at least one spine. Attach a vertex w to this spine, adjacent only to
V. Then w has A - 1 spines, and thus deffH) > A- 1. By Lemma 6.1.8, Ffis
conformable if any vertex other than w also has a spine. When there is no such spine
def{t[) = A- 1. Where G has vertex colouring //, which is the closest possible to
conformable, let //have the same colouring on all vertices except for vertex w. Call

this colouring 6.

(® G has an even number of vertices.

We cannot have just one colour in p on an odd number of vertices hence r{p)> 2.
We can choose w to have a colour in ¢{p). Giving ¢{9)>I> and r{0) < A- 2.

Hence, deffH) = A- 1> r{0) and His conformable.

(/) G has an odd number of vertices.

As G has at least one spine, ¢{/p) > 2. We can choose 1r to have a colour in r(p).

Giving r{0)>3, q{0) < A- 2, hence, defiH) = A- 1> ¢{0) and //is conformable. m
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It is conjectured by Chetwynd and Hilton [6.3] and qualified by Hamilton [6.5] that:

Conjecture 6.1.13 (The Conformability Conjecture) Let G be a graph satisfying
AG) = % (\V(G)|+ 1). Then G is type 2 if and only if G contains a subgraph H with
AG) = A(H) which is either non-conformable, or, when A(G) is even, consists of

Kay+1 with one edge subdivided.. W
This conjecture if proven, would yield the following set of important corollaries.

Corollary 6.1.14, Corollary (1) to conjecture 6.1.13. Let G be a type 2 graph that
does not consist of an odd complete graph with one edge subdivide. If every type 2
graph G satisfying MG) = V2 ([V(G)|+ 1), contains a subgraph H with A(G) = A(H)

which is non-conformable then every critical subgraph H of G is non-conformable.

Proof. Suppose that the smallest non-conformable subgraph H of G, A(G) = A(H),
was not critical. A(G) =A(H) = % (V(G)[+ 1) = Y% (V(H)|+1). Since H is not
critical we could remove one edge an have a smaller type 2 graph G; satisfying
AGy=AH) = Y% ((V(H)|[+ 1) =" (](G;)|+ 1). Hence there would be another smaller
type 2 subgraph H; of Gi, A(G) = A(G;) = A(H,) which were not a critical graph and H
would not be the smallest. This is a contradiction, therefore the smallest non-
conformable subgraph H of G would be critical. But if G were a critical graph then it
would be type 2; hence, as it could not have a smaller non conformable subgraph that
is critical, the graph itself would need to be non conformable. Hence every critical

subgraph H of G would be non-conformable. u

Corollary 6.1.15, Corollary (2) to conjecture 6.1.13. Let G be a type 2 graph that
does not consist of an odd complete graph with one edge subdivided. If every type 2

graph G satisfying A(G) = 72 (|V(G)|+ 1), contains a subgraph H with A(G) = A(H)
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which is non-conformable then every graph with at most two maximum vertices of

degree A(G) = % (|\V(G)|+ 1), is type 1.

Proof. Every graph G with just one vertex of maximum degree A(G) has

deflG) = V(G)|—1 and A(G) < V(G)|-1. Hence def(G) = A(G) and by Lemma 6.1.3
the graph is conformable. Any subgraph H with A(G) = A(H) would also have just
one vertex of maximum degree and therefore could not _have def(H) < A(H). Since G

has no non conformable subgraph, if the conjecture is true then G is type 1.

Every graph G with just two vertices of maximum degree A(G) has

def(G) =2 V(G)|-2. Hence deflG) = A(G) when V(G)|-2 = A(G). By Hilton’s
Theorem [6.2], the only type 2 graphs with V(G)|~2 < A(G) are of the form K~ E,
all which have more than two vertices of maximum degree. Hence all graphs with
just two vertices of maximum degree satisfying 4(G) = % (|V(G)|+ 1), have

deflG) > A(G) and from Lemma 6.1.3 are conformable. If G has a non-conformable
subgraph H with the same degree then it is not critical. The critical subgraph H must
contain either or both the major vertices, but this must also have def(H) > A(H) for
the same reason and hence is conformable, which is a contradiction. Hence, either the
conjecture is invalid or all graphs with just two major vertices satisfying

AG) = % (V(G)|+ 1) are type 1. ]

Corollary 6.1.16, Corollary (3) to conjecture 6.1.13. Let G be a type 2 graph that
does not consist of an odd complete graph with one edge subdivided. If every type 2
graph G satisfying A(G) = % (|V(G)|+ 1), contains a subgraph H with A(G) = A(H)
which is non-conformable then the total colour conjecture holds for all graphs with at

"G)|.

most two maximum vertices degree A(G) > %
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Proof. If from Corollary 6.1.15 all graphs with at most two major vertices satisfying
AH) = % ((V(H)|+ 1) were type 1, then any type 2 graph H has at least three major
vertices with A(H) > 7 (|V(H)|+ 1). Where H has degree A(H) = (|[V(H)|-1) we
know that the graph satisfies the total colouring conjecture. Where H has degree
A(H) < (|V(H)|-1), we could create a graph G by introducing a new edge e(; 2
between any major vertex v; in H and any vertex v, to which v, is not adjacent. This
gives us a graph with at most two maj or vertices. If the conjecture were valid, G
would be type 1 and hence colourable with A(G) + 1 = A(H) + 2 colours. Let u be
such a colouring. When we remove e(; 2y from G we have H coloured with A(H) + 2

colours and the total colouring conjecture would be proven. |
The corollary above also follows more fully from the following conjecture:
Conjecture 6.1.17 Every critical type 2 graph has more than two major vertices. #

Zhang Zhongfu, a major contributor to this study [6.6], also posed a question in [2.1]

which rephrased becomes:
Conjecture 6.1.18 Every critical type 2 graph has more than one major vertex. B

The proof of either of these conjectures would hold for all graphs. Moreover, we feel
that it would probably be easier to prove the total colouring conjecture via proving
6.1.17 than via the conformability conjecture 6.1.13. Studies of the conformability

conjecture can be found in works such as [6.6] and [6.7].

We now, for completeness, propose our own conjecture.
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Main conjecture (6)
“Conjecture 6.1.19 [Holroyd and Williams] Every type 2 critical graph G satisfying

AG) <¥(V(G)|-1) is conformable. n

Since A(G) < %2 (|V(G)|+ 1) for n =2 is A(G) < 1¥4 it is clear that K3 is not

conformable, hence the need to amend the equation.

We also need to point out that in an analysis of the first 50 critical graphs as
catalogued by Hamilton Hilton and Hind [6.8], only 19 (38%) are non-conformable
see Appendix (6.1). Similarly in the 100 smallest type 2 graphs as catalogued by
Marek Kubal , [6.9], only 20 (20%) are non-conformable. It must be noted that each
of the graphs in this second list either appears in Appendix (6.1) or consists of a

type 1 éppendage attached to one of the said critical graphs by a set of spines. From
the large number on conformable type 2 graphs, it is clear that conformability on its

own is insufficient and that we must refine the concept.
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6.2 G*-conformability

6.2.1 G*-conformable graphs

Since it is clear that conformability is insufficient to ensure that a graph is type 1, we
must find a more restrictive variant of the concept. We now make the following

definition.

Recall that §; is the set of vertices of G at which the colour ¢; is present on a spine or
vertex.

A spine and vertex colouring of G with respect to the colour set C = {c1, €2, ...y Ca+14¢}
is as in section 6.1 except that we now have (A + 1 + £) colours and hence at any vertex,

at least one, and up to (A + ¢), spines.

Consider the problem of finding a total (A + 1 + £)-colouring for a graph G (where ¢ > 0).
We could define a vertex colouring 4 of G to be (A + 1 + £)-conformable if (in analogy

with the definition in Section 6.1):

r(u ) (f niseven);

def(G) Z{ e
q(u ) (f nisodd)

where we recall from Chapter 2 that defy(G) = E defy(v) = deflG) + {V(G)|.

eV (G)

However, since [V(G)| = A + 1, any vertex (A + 1 + £)-colouring has at least A spines.
Hence, from Lemma 6.1.3, the vertex colouring will be (A + 1 + £)-conformable for any

graph, and the concept is not useful.
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Therefore we say that G is G¥-conformable for (A + 1 + ¢) colours, if it has a spine and
vertex (A + 1 + #)-colouring such that G — S; has a 1-factor for each i=1,..,A+1+1t

A G*-conformable colouring will be denoted by p(V*).

Theorem 6.2.1 If G has a total (A + 1 + £)-colouring, then G is G*-conformable for
(A + 1+ 1) colours.

Proof. Let ube such a total colouring. Then foreachi =1, ...,A+1 +¢, the set

{e € E(G): ul(e) =c;} is a 1-factor of G —S;, and so the restriction (V) is

G*-conformable. [ |

For the remainder of this section, we assume ¢ = 0; that is, we study (A + 1)-colourings.

Main result (7)

Corollary 6.2.2 A graph which has no G*-conformable colouring is type 2. - n

We let V(G - W;) denote the set of vertices left in G when the vertices W; are removed
and |V(G - W))| mean the number vértices that are in V(G — W;). We let |S;| denote the
number of vertices in S;.  Similarly (G - (.S; U S;)) will denote the number of vertices
left after all vértices in S; and S; and both are removed. We let |S; U S;| denote the
number of vertices in S; and S; or both, hence |G - (S; U S)|=|(G - S;) -S| Fora
connected graph G, the subgraphs G — S; may be disconnected.

For any graph X, we denote by o(X) the number of odd componénts, that is, the number

of connected components that have an odd number of vertices.
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Lemma 6.2.3 A necessary condition for G to be G*-conformable is that it should have a
spine and vertex colouring such that no subgraph G — S; has an odd component.

Proof. Clearly, if G — S; has an odd component, then it cannot have a 1-factor. |

We owe the following definition to theorem to Tutte [6.10].

Definition. (Tutte) 1-barrier. A graph G has a 1-barrier if there is a set of vertices W

in G such that o(G — W) > |W|.

Theorem 6.2.4 (Tutte) G has a I-factor if and only if it does not have a 1-barrier. W

Lemma 6.2.5 (V) is not a G*-conformable colouring of G if there is a colour c; and a
set of vertices W < V(G - S;) such that o(G —( S; v W)) > |W].
Proof. Assume that 4(V) has such a colour. By Tutte’s Theorem 6.3.5, the subgraph

G — §; does not have a 1-factor and hence (V) is not G*-conformable. u

Corollary 6.2.6 A graph is type 2 if it has no spine and vertex colouring such that
o(G - (S; v ) < |S; U Si| for each pair of colours c;, c;.

Proof. Take W=S§; U S;. |

Theorem 6.2.7 It is possible for a graph to be G*-conformable and also type 2.

Proof. Figure 6.2.1 shows six copies of graph Number14 in Appendix (6.1).
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Figure 6.2.1
Two copies ofthree 6r*-conformable colourings: /ly and /4, are given in order to show
the corresponding 1-factors for all four colours. It can easily be verified that these are, to
isochromatism, the only G*-conformable vertex colourings possible. For each ofjli /4,
jIuand for every colour, G - §j the 1-factor shown are the only 1-factors possible.
However, at least one edge is forced to be in G - Siand G - Sj for some colours ¢, * G,

hence the graph is type 2. u

Main result (8)
Corollary 6.2.8 4 C*-conformahle graph which is also type 2 cannot have disjoint
I-factorsfor all G - Si.
Proof. Where G is G*-conformable there is no l-barrier in G-Si, and thus there is
always a I-factor. Where G is type 2 and yet G'*-conformable, the said 1-factors cannot

be disjoint, else the graph would be type 1. |

Observation 6.2.9 Ofthe first 50 type 2 graphs as catalogued by Hamilton, Hilton and
Hind - [6.9] only the one shown infigure 6.2.1 theorem 6.29. has G"-conformability’

See appendix (6.1). [ ]
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6.2.2 Cubic graphs
We now study the case of cubic graphs; since regular cubic graphs have no spines in the

current context, spine and vertex colourings become just vertex colourings. In this and

the next subsection, we denote |S;| by n;.

Main result (9)
Theorem 6.2.10 Let G be regular cubic graph. Then a necessary condition for G to be
type 1 is that G should have a G*-conformable vertex colouring u(V*) such that, for
every pair of colour sets S; and S, the subgraph G — S; — S; has:
(i) at least (n; + n)/2 components;
(ii) at most (n; + nj)/2 components with less than four vertices;
(iii) an even number 2q of odd components, where 2q < min{n;, n;}.
Proof. Note that G has an even number of vertices. Suppose that G is type 1 and let u be
a total 4-colouring of G; then 4(V*) is a G*-conformable vertex colouring. For each
vertex v with z(v) = ¢;, and for each other colour ¢;, we have a chain ([i, j]) in 4(G)
which ends at a vertex with colour either ¢; or ¢;. As G is a cubic graph and the vertices
have been coloured with only four colours, each chain passes through alternate vertices of
the other two colours. No two of these chains can be incident to the same edge except at
the end vertices ¢; or ¢;. For example consider 4([1, 2]). The edges in the chain are
alternately c; and ¢, and the incident vertices are alternately c3 and c4. An edge not on
the chain but incident with a vertex coloured c; has colour ¢4 and vice versa; for any such
edge the other incident vertex must have colour ¢; or ¢;. Therefore each chain creates a

distinct connected component in G - S; — S;.
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(i), (i1): Hence we have at least as many components as chains. We have exactly

(n; + n;)/2 chains, and hence exactly (n; + n;)/2 of the components of G ~ §; - §; are
chains. We may possibly also have circuits 2([3, j]) each giving distinct even components
in G- 8;— S;. Since each circuit has at least four vertices, parts (i) and (ii) follow.

(iii): Where 4([i, j1) has both end vertices the same colour, c; or ¢, it has an even number
of incident vertices and hence creates an even component of G — S; - S;. Thus each odd
component has exactly one vertex of each colour ¢;, ¢j; so there must be at most

min{n;, n;} of these. By Theorem 6.2.1 (since |V(G)| is even), n; and n; must be even, and

hence the number of odd components of G — S; — S; must be even. L

We can now see why number 14 in our catalogue (Appendix 6.1) is type 2. To
isochromatism there are just three distinct conformable vertex colourings, all three are
G*-conformable. These were shown in figure 6.2.1 where they were called x4, 4, and ..
Although in every case, for all choices of ¢; and ¢; we have (iii) an even number of odd
components, for some choices of c; and ¢; we also have G — S; — §; with either (i) less than
(n; + n;)/2 components, or (if) more than (r; + n;)/2 components with less than four
vertices.

We now conjecture that:
Main conjecture (10)

Conjecture 6.2.11 Let G be a regular cubic graph. Then the necessary condition for G
to be type 1, stated in theorem 6.2.10, is also sufficient.

Justification  This could only be untrue if there existed components of G ~ §; - §; from
M(V*), with edges that could not be allocated a chain g([i, j]). We believe that it should

be possible to show that no such components can exist under the given constraints. n
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We can also consider ‘acyclic proper colourings of graphs’. A proper k-colouring of a
graph G is acyclic if for each pair of colours, the subgraph induced by that pair has no

cycles [6.11]. See also Boiron, Sopena and Vignal [6.12].
With this definition, we feel that the following conjecture would be easier to prove.

Main Conjecture (11)
Conjecture 6.2.12 Let G be regular cubic graph. If G has an acyclic G*-conformable
vertex colouring u(V*) with colour sets S; and S;, such that every G — S; - S; has
(i) exactly (n; + nj)/2 components;
(if) an even number 2q, of odd components, where 2q < min{n;, n;};
then G is a type 1 graph.
Justification From the previous lemmas and theorems, if the vertex colouring could not
be extended to the edges of the graph, then G is type 2. However, now that we have ruled
out the existence of circuits and have a path for every pair of vertices, we feel that a proof

is possible. [ |

6.2.3 Semi-regular cubic graphs

A semi-regular graph was defined in [6.13] to be a graph G with odd degree, A(G), and
def(G) =1 (so that G has exactly one spine and an odd number of vertices). In the
following lemmas and theorems we consider G to be a semi-regular cubic graph with the

spine on vy, with a G*-conformable spine and vertex colouring £(V*) such that

K1) =crand w(s;) =ca.
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It is convenient in this subsection to define the following function ¢ on the pairs {i, j} of
distinct elements of {1,2,3,4}. (Note that {'depends on w(V*)).
12ph=1
{({2, 3}) = 1 if one vertex adjacent to v; has colour c; and the other has colour ¢; or ¢3;
{({2, 4}) = 1 if one vertex adjacent to v; has colour c; and the other has colour ¢; or c;
{({i, j}) = 0 otherwise.

Main result (12)
Theorem 6.2.13 Let G be a semi-regular cubic graph. Then a necessary condition for G
to be type 1 is that G should have a G*-conformable spine and vertex colouring p(V*)
(as above) such that, for every pair of colour sets S; and S;, the subgraph G - S; — §; has:
(i) at least (n; + n)/2 — {({i, j}) components;
(i) at most (n; + n)/2 — {({i, j}) components with less than four vertices;
(iti) an odd number of odd components, bounded above by min{n;, n;}, except where
{i, 7} = {1, 2}, in which case it has an even number of odd components, bounded above
by min{n;, np} - 1.
Proof. Suppose that G is type 1 and let x4 be a total 4-colouring of G; then u(V*) is a
G*-conformable vertex colouring. Parts (i) and (ii) follow as in the proof of theorem
6.2.10, except that, if {({i, j}) =1, then there is a ([i, j]) chain starting at v, that again
does not create a connected component in G - §; - ;.
(#@i0): If 2 ¢ {3, j}, then (arguing as in the proof of theorem 6.2.12) each odd component
of G - §; - §j corresponds to a chain ending in one vertex of each colour ¢;, ¢;. Since n;
and n; are odd (by Theorem 6.2.1), the number of these must be odd. The argument also

holds for G — S, - §3 and G - §; - S4, since the exceptional cases when a vertex adjacent
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to v; has colour ¢; do not affect the argument. In the case of G —S; -S>, we must

discount the trivial [1, 2] chain at vy, yielding an even number of odd components. |

'We now make the equivalent conjectures as in the case of regular graphs.
Main conjecture (13)
Conjecture 6.2.14 Let G be a semi-regular cubic graph. Then the necessary condition

for G to be type 1, stated in Theorem 6.2.13, is also sufficient. [ ]

Main conjecture (14)
Conjecture 6.2.15 Let G be a semi-regular cubic graph. If G has an acyclic
G*-conformable vertex colouring u(V) with u(vy) = ¢y, (1) = ¢z and if, for each pair S;,
§j of colour sets, the subgraph G — §; — S:
(i) has exactly (ni + n)/2 — {({i, j}) components;
(i) has'an odd number of odd components, bounded above by min{n;, n;}, except where
{i,j} = {1, 2}, in which case an even number of odd components, bounded above by
min{ny, n,} — 1, then G is a type 1 graph. |
We feel that it should be possible to prove these conjecture by considering the edges that

link §; N Sjand G —S; — S;.

Since the conditions required by type 1 graphs, as given above, could be easily tested by
a computer, such tests could cut down the number of calculations required in any attempt
to classify a graph. This is especially true in the case of (semi)-regular cubic graphs,
where we have even more counter conditions. The problem of classification is still NP-
hard in general [1.12] but is only occasionally difficult for individual graphs; the cubic

graphs with the above conditions which do not quickly yield a solution for either type
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will be very rare. In the appendix to (6. 2), we present outlines of algorithms that would
quickly classify relatively small graphs, though defining the limits and degree of
difficulty is beyond the scope of this thesis. By considering 1-factors individually, rather
than vin reference to other edges already coloured, the computation is simplified; though

the number of steps is clearly dependent on the size of .

The starting point for these algorithms is Brooks’ theorem and any vertex colouring
would depend on using a sensible method for finding new vertex colourings. However,
since we have no desire to find a minimal value for c, the problem is easier than that
usually studied. It seems reasonable to predict that a maximal use of colours, an
‘equalised colouring’ similar to that studied in relation to edge colouring [6.13] should

give a quicker result.

Although this new concept of conformability works well for most graphs, there are still a
few graphs which are both G*-conformable and type 2. G*-conformability begins with a
vertex spine colouring, the alternative approach, beginning with an edge colouring is

considered in the next section.
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6.3 Semi-total Colourings and the  parameter

6.3.1 Introduction

Let G be any graph and let ¢ be a semi-total colouring of G using A + 1 colours. A
beta edge of G (with respect to L) is an edge e such that g(vi) = u(v,). We recall

(Chapter 2) that 3, is the number of such edges, and that
B =min{f,: pa semi-total colouring of G using A + 1 colours}.

A non-triangular edge of a graph is an edge that does not lie on any triangle. A
critical edge of a type 2 graph, is an edge whose deletion results in a type 1 graph. If
G is a type 1 graph and e is an edge of G , then we say that e is critical for G if

G u{e} is type 2. A near type 1 graph is a connected type 2 graph with a non-
triangular critical edge. In particular, any critical graph with a non-triangular edge is
near type 1. Surcritical graphs are obtained from critical graphs by addihg edges of
G without increasing the maximum degree. The seventy smallest critical and
surcritical type 2 graphs are given f-colourings in Appendix (6.1). As we have
already conjectured, we believe that adding any critical edge to a type 1 graph can
result in at most two beta edges. However, we will now concentrate on that which we

can prove and the main result of this section is that for A > 4:
3A
AG) < —4—+ (A= Dlogy(A+1) +5,

where A is a parameter that we show to be at least 3 (though this value can almost

certainly be improved).
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6.3.1 Graphs with small maximum degree
We begin with the straightforward case A < 2.

Theorem 6.3.1 Let G be a near type 1 graph with A<2. Then B<A.

Proof. Case 1: A= 1. The only graph to consider is K>, for which f=1.

Case2: A =2. Thecycles C, (n = 1 or 2 (mod 3)), are the only connected type 2
graphs with A = 2 and they are all near type 1. Denote their vertices, in cyclic order,
by V1, ..., V. Consider the semi-total colouring u of C, (where n = 3i + 1 or 3i + 2) as
follows. List the vertices and edges in cyclic order: vy, €12, V2, €23, ..., Vi em, 1), and
allocate the colours cyclically from v; to ei.1, 35

U(v1) = c1, pler) = c2, [(va) = €3, ..., f(V3ia1) = €3, te3i1,3) = C1.

Then:

where n = 3i + 1, define p(v3;) = ¢3, ieqi,3ien) = €2, W(V3in1) = €1, UeGir1, 1) = €35
where n = 3i + 2, define pu(vs) = ca, tleai, 3ie1)) = €3, U(V3is1) = C2, f€@Gin1, 3i42)) = €1,

U(V3i2) = €2, UleGivz, 1)) = C3.
In each case, we have f§,=2. Thus, 8 < 2 (and in fact f=2). u

Throughout the remainder of the section, we assume that G is near type 1, with a non-
triangular critical edge e;2. The vertices vy, v, are said to be the central vertices. We
then cut ¢, 2, to form spines s; and 57 at v; and v,. The other edges incident with the
central vertices are the central edges, and the vertices adjacent to the central vertices
are the satellite vertices. A semi-total colouring of G — e; 3 in which £(s;) = u(s2) is
said to be a G-colouring (because the spines may be rejoined to form a semi-total
colouring of G). This context should be assumed unless otherwise stated. We now

define the following notation.
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In a (total or semi-total) colouring u of G - e; 5, the number of neighbours of a
vertex v, that have colour c; is denoted by N(y, v,, ¢;) or N(v, c;) for brevity, when u
is unambiguous. Frequently, an (i, j) Kempe chain will be assumed to end at v, but it

will not be known whether 4(v;) is ¢; or c¢j; we then write
N(v, ¢i : ¢j) = max{N(v,, c;), N(v;, ¢;)}.

Lemma 6.3.2 Let G be as assumed above, with maximum degree A.
(i) Suppose pand Bare G-colourings such that:
(@) u(v1) =ci, W(v2) = ¢, &wy) = cj, &Kva) = c, the satellite vertices having
the same colours in pand 9
(b) where @ is the number of beta edges not incident with either vy nor v,,
BUG)= @ + N1, c)) + N(v2, ¢p) and P G) = @ + N(v1, ¢p) + N(vy, ¢y);
(© inG- €12: V1 and v, each have at least A adjacent vertices whose colour

is neither c; nor c;.

Then [G) <@ +A-A-1).

(ii)  Suppose pand @are G-colourings with the same vertex colours except only
that W(vw) = ci, Qvi) = Cj, (V) = €z, AV,) = ¢k, U(Vy) = Cx, AWy) = ¢y, where
N, v, ¢) =0, N(6, vy, ¢;) =0 and v, has at least ¢ adjacent vertices whose colour is
neither c; nor cj. Then, where @ is the number of beta edges not incident with v, vy

nor vy,

BG) < o +(A-1) +1(A-9).

Proof. (i) Since the central vertices have degree A — 1in G — ) 5:

N(Vl, C,') +N(V1, Cj) < (A -A- 1), N(Vg, Ci) -+ N(Vz, Cj) < (A -A- 1)
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Therefore ,Bﬂ + ﬂ9= 2(0-!- (N(Vl, c) + N(vs, Cj) + N(vy, Cj) + N(»z, C,‘))

< 20+2(A-A-1).

In each of x and 6, the number of beta edges incident with neither v; nor v; is the
same, ¢. We need only consider the beta edges at vertices v; and v,. If f, has

N(v1, ¢i) + N(vz, ¢j) > (A — A —1), then Byhas N(vi, ¢)+ Ny )< (A—A-1)and
vice versa. Therefore at least one of 8, and fpis bounded above by ¢ + (A— A 1),

as required. Hence,
Lo +(A-A-1).

Part (ii) follows similarly. _ | |
Main result (15)

Theorem 6.3.3 Let A(G) = 3 and suppose there is a total (A + 1)-colouring u of

G — e12 such that p(vy), i(s1), u(v2) and u(s;) are not all distinct. Then B <A.

Proof. The case u(v,) # u(v,), u(s,) = u(s,) does not arise since this would imply
that G is type 1. Up to isochromatism there are four other cases, as follows. See
Figure 6.3.1.

Case 1:/ Hv1) = t(v2) = ¢y, Ws1) = H(s2) = ca.

Then y may be interpreted as a semi-total colouring of G with £, = 1, simply by re-

joining the spines. Thus, f=1.

Case 2: p(vy) = c1, 1(s1) = 2, H(v2) = c2, U(s2) = C1.
Let 1 = p + 1(1, 2)1; thus, the colours at v; and s; are simply exchanged. The spines
may be re-joined, and we have a semi-total colouring of G whose only beta edges can

be incident with v;. Thus, 8, <A.



Figure 6.3.1

Cm'g 3: X *i) = = ci, X-i) = <4, X-*i) = G.
Let /2 = /~+ 1(1, 2)i + 2(1, 3)2; thus, spine and vertex colours are interchanged at both
the vertices v\, V2. Again the spines may now be re-joined to form a semi-total
colouring of G. We have N(p2, G,vi) < A- 1, A(//2, B, ) < A- 1. There are no

other beta edges; thus p < 2(A - 1). This bound may be improved as follows.

Consider the i]2, 3/y Kempe chain; if y ~ 2, then the colouring //s = // + (2, 3)~ has
at most (A - 1) beta edges at }j, and the beta edge ~12- Thus, p <A4. Alternatively,
ifthe above chain terminates at \2, then let  =p> +i(2, 3)2- Then the pair of
colourings p2. Miobey the conditions of Lemma 6.3.2, with A= 1 (because of the
Kempe chain) and x = 0, to give the result.

yg< A-2.

4: = Cl, X i) = @, X *2) = ci, X-2) = G.
Let /s =// +2(2, 3)2; thus, the colours at V2 and S: are simply exchanged. The only

possible beta edges are incident with V2, and 1,2 is not a beta edge. Thus, ps < A-1.

The conclusion is that P < 4. n

The result when A = 3 is a special case.
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Main result (16)
Theorem 6.3.4 Let G be a near type I graph with A = 3; thenp < 2 unless all
type 1 total colourings ju of G ~ cij have I/(v]) = p{v:), Mts\) # juf{s:) when p <3.
Proof. Note that the condition X i) » X"2), " M-isi) corresponds to Case 3 in
Theorem 6.3.3 and p < 3. Thus we must verify that we have p < 2m Cases 1, 2 and

4 above, and also (Case 5) when ju(v\), ju{s\), ju{v:) and p{s:) are distinct.

Cases 1 and 4 follow directly from the proofof Theorem 6.3.3, see Figure 6.3.1.

Case 2

Figure 6.3.2

2: XAH) = ci, XA) = C2, X*z) = C2 X-"z) = ci.
By Theorem 6.3.3, P <3\ let us assume thatp ~ 3. See Figure 6.3.2.
There is a minimum-length (and hence chordless) path P m G - ei> from vi to v?; let
us re-number the vertices of G such that the vertices on this path are (in order) vi, ...,
Vq (so that vi retains its label and the vertex that was v? becomes v*). Fori= 1,...,¢q
let the vertex adjacent to v, and not on P (where it exists) be labelled vi. If” = 3 then
the edges e> and "23, and the vertex W, must have colours distinct from each other

and from ci, @, giving a contradiction; thus ¢> 3.
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If u(vy) # cpor (wy) # Ca, then g4 = u+ (1, 2); has at most two beta edges at v;,
giving a contradiction. Thus, y(v2) = t(w1) = ca. Now let 1 = iy +1(2, x1)2 where

Ule12) = c, . The assumption B=3 implies (vs) = u(w2) = c, .
Now fori= 2, s 4 — 1 let,u(e,-,,-+1) = Cx‘ .

Suppose that there is some first y (not equal to g — 2) such that Li(vys) # Cy, and
HUwy1) # ¢, . Then we can do a sequence of Kempe interchanges, each involving

just one edge and its incident vertices, to obtain a G-colouring

My =t +1(2, x1)2 + ... + y(%1, Xy)y+1 With at most two beta edges.

Suppose otherwise that £i(vy.2) = u(wysy) = Cy, fory=1, ..., g—2. Then, since

H(vy) = c2, we must have tiegs, 4.1) = €2 = f(wg.1). Starting an analogous argument
from v, rather than vy, we must have 1(v,.1) = c1, (€41, q) = €3 O c4; assume c3. But
now 1 + 4(1, 2), + 4(1, 3),.1 has at most two beta edges, contradicting the assumption

that f=3.

Case 5: Consider now the possibility that U(v1), Uis1), i(v2) and u(sz) are distinct, see
Figure 6.3.3. We may assume 2(v)) = ¢, t(s1) = 2, fi(s2) = €3, U(v2) = ca.

There is a 1]2, 3], Kempe chain to some vertex v, where vy is not v; but may be v,

Case 5(a): The chain is 112, 3]x, x> 2.
Let yo = pt +1(2, 3)x. This is a G-colouring, the only possible beta edges being at

those at v, that are not on the chain 1[2, 3],. Thus, & < 2.



119

Case 5

Figure 6.3.3

Case 5 (b)\ The chain is i]2, 3]2.

Since //is a total colouring of G - "12, and there are only four colours available, the
vertices on the chain must alternate in colour between ci and (. Since ju{vl) = c| and
//(V2) = (4, there are an even number of vertices on the chain, contradicting the fact

that //(.si) = @ and ja{si) » 3. Thus, this case cannot occur.

Thus, the only arrangement in which it is possible that p>2\s the Case 3

arrangement with piyi) = piyi), ja{s\) " pisi)- |

Main conjecture (17)

Conjecture 6.3.5 Let G he any critical cubic graph; then p{G) < 2.

Justification No known critical cubic graph requires //(vi) = pfo), ja{s\) ™ pi’sj) on
all colourings of G - ei2 for any edge g12, yet this would be need to bethecase for
every edge in any counter example. Therefore we conjecture that it is always possible

to find a way to alter any colouring with this colour aiTangement into one of'the other

cases, in which case p <2. ]
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6.3.3 A>3 and four distinct colours at vi, V3, si, si

The case A> 3 where there are fewer than four colours at vi, V2, Ji, S2 has been
covered by Theorem 6.3.3. We now assume that these colours are distinct.
For the remainder of this section, we assume that//is a total (A + 1)-colouring of

G - 12, the colour labels being such that

JUWi) = CIl, JUiSi) = C2,JU(S2) = C3,JUM = C4.

We refer to this as the stage 0 colour arrangement at vi and V2, see Figure 6.3.4. The
stage 0 chains (when they exist) are Kempe chains i]2, 3[2, i]2, 4 ]2, i[l, 3b, i[l,4]2.
N’l 2A+1

A+6

A+l A+l
A+5

A+4

Stage 0

A+3

Figure 6.3.4

We let N\ be the set of neighbours of vi and V2 theset of neighbours of V2, in G - ci,2.

(Thus, u N2 is the set of satellite vertices). We denote thevertices in NV by

v3, ..., va+l and those in N2 by va+3, V2Ah, the labels being chosen so that:

i MCH N=¢c (=3, .., A+ 1);

(ii) /(C(2,a+3)) = c1, (C(2ya+4)) = C2:

(iii) /MC@,A+0) =G (=5, ..., A+ 1)

Note that, as ci,2 is a non-triangular edge, all the above vertices are distinct; note also

that the label va+2 is not used for any satellite vertex.
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We say that // obeys the stage 0 inequalities if

MjLi, v3, c3) < A - 3, Niju, v4, c4) <A - 3,

NJLL vats, Cl) <A - 3, Niji, vatd, @) <A - 3.

We now proceed to define stage 7 colour arrangements and inequalities for / > 0.

We say that // has the stage 1 colour arrangement (Figure 6.3.5) if (possibly after re-
numbering the colours):

@) IT has the stage o colour arrangement;

i)  liiyi) = GMAB) = (5

(iii) /(v4) = €7, lI(vA+4) = cg.

W‘l' )

0 0

(0} Oo
A

G Q A"
A-Y G
Stage 1
Figure 6.3.5

For r> 1, we say that jUhas the stage ¢ colour arrangement if (possibly after re-

numbering the colours):

(i) Jjli has the stage 1 colour arrangement;
(i) Mv.)=0G,.i({=35,

(iv) jsiva+ip = c2i (i=15, 2 "),
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A+13

'A+l

A+l 1

C kQ

A+9

A+T7

A+6

Figure 6.3.6

Note that, in this case, there are at least 2"\* colours, and therefore edges c/,i and e"+2
and hence vertices v/ and vat/ (/ =3, ..., 2'¥") We say that fi obeys the stage ¢

inequalities if jUobeys the stage o inequalities and

Nip, ¥, G) <A- 3, Nip, vat, ¢/) <a -3 =5, ..., 2",

Figure 6.3.6 shows the stage 2 arrangement.

Remark 6.3.1 For (0 <y <zy). Iffj has the stage ¢ colour arrangement, then it also has

the stagej colour arrangement; the same is true of the stage ¢ and stagej inequalities.

Remark 6.3.2 The stage ¢ colour arrangement uses 2¥“*colours. Thus a necessary
condition for G to have a colouring with the stage ¢ colour arrangement is

A > 2 1; in particular, the central vertices must each have degree at least 2"~ 1.

Our proof of the general result hinges on an inductive argument that, if

Jj3iG)>A- 1+ @+ 1DA- D+ (A- 2™+ 1), then any total colouring of G - "1,2 has
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stage (¢ + 1) colour arrangement and inequalities. Here, the parameter A is a number
such that we know that any vertex v; or va4; has at least A adjacent vertices with colour

not equal to ¢; (except that for vas3, vas4 the colour in question is ci, ¢; respectively).

Remark 6.3.3 In this section we establish that, provided A > 4, we may take A =3.
It should be noted, however, that almost certainly this result can be improved, in that

it should be possible to show that A may be taken to increase with A.

Main resuit (18)
Theorem 6.3.6 Let G have A 2 4, f>3A -7, and let 1t be a total (A + 1)-colouring
of G —e12; then:
(i) the stage 0 chains exist and the stage 0 inequalities hold;
(ii) any total colouring p of G ~ e has stage 1 colour arrangement, and the
Jollowing chains (the stage 1 chains) exist:
11, 515, 112, 513, 2[4, 513 112, 6]ass, 213, 6]as3, 2[4, 6]ass;

i1, 7]y 112, 7l4, 213, 71a;  1l1, 8lass, 213, 8lass, 2[4, 8lasa.

Proof. By Theorem 6.3.3, the colours at vy, 51, v, 52 are distinct and we may number

them so that there is the stage 0 colour arrangement at vy, v,.

(i) Consider the Kempe chain ]2, 3];. If x # 2, then the G-colouring u + (2, 3), has
at most (A — 1) beta edges, all at vy, contradicting our assumption that > 3A - 7.

Thus the chain is 1]2, 3[.

Next, consider 1[1, 3],. If x # 2, then y+ (1, 3), +1(2, 3 haS at most (2A — 3) beta
edges: (A — 1) at v, and at most (A ~2) at v (¢(v3) # ¢, owing to the chain ;]2, 3[2).

This again contradicts our assumption (since A = 4), so there is a chain 1[1, 3[5.
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Similarly, there is a chain ;]2, 4]>.

Now consider the chain {[1, 4],. If x # 2, then there is a G-colouring
pa=p+ (1, Dx+1(2, 1 + 23, 4)2 with
B1=N(vx, c1: €a) + N(v1, ¢2) + N(v2, ¢3)
(since all the neighbours of v,, v; and v, are the same in both in xand ;).
Similarly there is a G-colouring
o= p+1(1, )+ 1(2, 3)2 +1(3, )1 +2(2, 4)2 with
B = N(vy, ¢1 : ca) + N(vy, ¢3) + N(, ©3).
Now N(v,, c1 : ¢s) < A-1, and vy and v, each have at least one adjacent vertex
coloured neither ¢; nor ¢3. Thus by Lemma 6.3.2, < 2A — 3. Our assumption is
again contradicted, and we conclude that there is a chain ([1, 4],.
There are thus two stage 0 chains through each of the vertices v3, v4, Va3, Va4, Which
end at the central vertices. Therefore the stage 0 inequalities hold.
(i) Let (vs) = cq; then @ # 1, 3, and we have seen that @ # 2. If =4, then the
G-colouring £+ (2, 4)2 + 1(4, 3)3 has beta edges only at v, and v3. Thus a stage 0
inequality implies 8 < 2A — 4, contrary to assumption. Therefore o> 4. Now

consider each of the chains [1, al., 112, @];, 2[4, aly.

If w # 3, then the G-colouring g1 = u+ 1(1, @), + 1(, 3)3 + 1(2, 3); has at most
(3A —7) beta edges: (A — 1) beta edges at v, (A — 3) at v3 (as above) and (A — 3) at v;
(because £1(v3) # ¢ and the 1]2, 4], chain implies z(v4) # ¢2). This contradicts our

assumption, and so the chain ;[1, s exists.

If x # 3, then the G-colouring 1+ 1(2, 0), + 1(, 3)3 has at most (2A — 4) beta edges:

(A —1)atv,, (A—3)atv3. Again this contradicts our assumption, and ]2, ¢]s exists.
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Remark 6.3.4. Before going on to consider the chain 1[4, o]y, we nofe that the
existence of the chains established above implies that N(x, vi, ¢2) < (A —4) (since v3,
v4 and v, cannot have colour ¢3), and similarly that N(x, vy, ¢3) < (A —4). By
symmetry we also conclude that, where ¢4 is the colour on va 4 4, then va+3, va+4 and

v+ cannot have cynor c3 hence N(u, v2, ¢2) < (A —4) and N(, va, ¢3) < (A —4).

Now let us consider 2[4, ,. If y # 3, then there also exists 3[¢, 4], where z # 2.
Consider the colouring
s = p+ 304, @), + 12, 4),.

Since 3(4, &), may disrupt ¢ (112, 412), we must consider the cases g =2, g # 2.

Casel: g=2
Then py = p+ 34, &), +1(2, 4)2 + 1(4, 3)3 is a G-colouring with
Bi =Ny, €4 ca) + N(va, €2) + N(v3, ¢3)
SA-D+A-4)+(A-3)=3A-8,

which contradicts our assumption.

Case2: q # 2
Let pis = p3 + 1(4, 3)3. = 4+ 3(¢t, 4); + 12, 4)g + 1(4, 3)3.
This a G-colouring with

Bs= N(vy csa:ca) + N(vg, c2: cs) + N(v3, ¢3) < 2(A - 1) + N(v3, c3).

We must also consider the G-colouring
He= U+ 1(2’ 3)2 + 3(47 a)l + 1(39 4)r-
If r =2, then (arguing as for () t7= p+1(2,3)2+34, &);+13,4)2 +1(4,2)3is a

G-colouring with £ < 3A - 8, contradicting our assumption.
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If r # 2, then let kg = us +1(4, 2)3. We have

Bs= Nvgcs:co)+ Ny c3:cg) + Nvs, ¢2) £ 2(A = 1) + N(vs3, ).

Comparing fs and Sz we can chose either us or 1z to get the lowest value for fas in
part (i7) of Lemma 6.3.2 giving
B<20-1)+3(A-3)

< 3A -7 provided that A = §.

Thus, having established the case for A =3 in Theorem 6.3.4, we have contradicted
our assumption except possibly when A = 4. We have already established that z(v3)
cannot be ¢y, ¢, ¢3 or ¢4, and a similar argument applies to vs, so that if A =4, both of

these must have colour ¢s. But then the ]1, 5] chain must end at both v; and v4, which

is a contradiction. This completes our analysis of chains at vs.
Next, let t4(v4) = ¢, We must consider each of the chains 1[1, A, 112, #x 213, "y

For 1]2, 1 and 113, ¥],, the arguments are similar to the above with the G-colourings
with the highest beta values being:

61 = u+ 1(% 2)s + 3(4, Y1+ 2(3, 4), where x # 4, and

& = p+ (¥, 3)y + 22, P1 + 4(¥, 41 + 2(2, 4), where y # 4, these both have

BSA-1)+(A-3)+(A-4)=3A-38.
The argument for [1, 7}, is as follows.

If w # 4, we must consider the G-colouring
O=p+1(L, Pw+ 1(% Da + 12, 1)1 + 23, 4)a;

this has at most (A — 1) beta edges at v,, and at most (A — 3) at each of v4, v; and v,.
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However, if we let 1 = 1 + 1(2, 3)2, then this total colouring has the same properties
as 1 and we may draw the same conclusions regarding Kempe chains, giving:

an = o+ 1(1, Pw+ 1(% 4)a + 13, )1 +2(2, 4)2.

The vertex colours of @ and ay differ only at v; and v,, and by Lemma 6.3.2 (using
Remark 6.3.4),
BLA-D+(A-3)+(A-3)=3A-T.

This contradicts our assumption, and we conclude the existence of 1[1, 4.

The cases of the chains at va,3 and va.4 follow those for the chains at v4 and v
respectively. Thus, letting z6(vas3) = ¢5 f(Vass) = Cs then none of 4, 6, Ecanbe 1,2, 3
or 4, and there are chains

1[1, s, 112, Y4, 213, Y4,

112, Olas3, 213, Olas3, 2[4, Slass,

1[13 8]A+43 2]3’ €]A+49 2[4’ g]A+4-

Thus ¢, % 6, € must be distinct, since (for example) if = §, then the (2, y) chain
starting at v; cannot end both at v4 and at va4s.

It follows that we may assume =5,y =7, 6= 6, €= 8, so x has a stage 1 colouring
arrangement as required. Moreover, with these colour choices, the argument has also

established the existence of the stage 1 chains. u

In order to make the inductive step, we need additional terminology and notation.

Let a total colouring ¢ of G — e;, have the stage ¢ colour arrangement. Let & be a
central edge, where (&) = ., 5 < a < 2"*? (that is, & is not e(1.3), €14, €@, A+3), OF

eea+). There is a unique satellite vertex Vy, in the stage ¢ arrangement with
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Xv )= let > denote the edge thatjoins v to vi or V2. Let /[(<%%) = It may be
that b < 4, in which case we stop. Otherwise, b = and there is a unique vertex

adjacent to v\ or v? with jU®»"))= (h Let ¢ denote the edge thatjoins to vl or

V2- Continuing in this way, we eventually reach an edge £g with juffq) = ¢\, ¢j, G or ca
(that is, one ofthe edges g(ij), gq,4), "(2,at+3), or g2,AH)). We say that the sequence

= £ ..., 6" is the cascade sequence of £.. The edge £ is in the cascade set Sj
{i= 1, ..., 4) according as X 4 ) = o; its branch number, br(6") < r+ 1, is the number
ofedges in its cascade sequence. We define the edges *(2,a+3), *(2,aH4), g(i,3), *(1,4) to
belong to 5', respectively and to have branch number 1. Ifca is the colour of
an edge belonging to Si, we say that Cais associated with S, and we write A(ca) = /.
The cascade sets partition the central edges with colours (1 < a < 2™%), and (for
z> 4) the branch number ofan edge £ with //(£9) = where 2" <z <2"'is

br(6 =" = [log, z] - L

Al 291 51)63' 55 57)59 61 63 65 '66'64 62 6C)50)56' 54) (52 50 (48

6 +8 1C 12 16 (18 '20

Figure 6.3.7
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The stage 4 colour arrangement is shown in Figure 6.3.7. Note that the numbers refer
to a total colouring. In the figure the cascade set S; is violet, S; is blue, S3 is orange

and Sy is yellow.

We may now define the stage ¢ chains as follows (though we do not at this stage
imply their existence). Foreachz, 5 < z < 2'*2, there are three possible stage ¢ chains
ending at the vertex with colour ¢, (in the stage ¢ arrangement); they are the [i, z]
chains (i =1, ..., 4) starting at v; or v,, except that where ¢, is associated with S; the
(j, z) chain is not a stage ¢ chain. (Thus the chains at each stage also belong to the

subsequent stages).

Let us assume that @ has the stage ¢ colour arrangement and chains.

Briefly, our inductive step consists in taking a central edge &, with u(€) = ¢, where
21 « z < 2*? and letting ¢, denote the (currently unknown) colour of the vertex v, or
Va+, incident with £ Since both vertex v; and v, have the same properties by

symmetry, we can assume that this vertex is v, (i.e. that e is incident with v;). Let us

suppose that we can make an initial Kempe interchange that either:
(i) brings the colour ¢, to vy or sy; or:
(ii) brings the colour ¢; or ¢; to v,

and that does not involve any edge in X(¢) or the satellite vertex incident with such an
edge. Then the edge colour may next be exchanged for the above colour, to start a
Vizing fan exchange that sequentially éxchanges edge colours‘with colours at s; or
v1. (The name is in recognition of the Vizing fan argument, [6.14]). Then (as will be

shown) we eventually produce a G-colouring @ with X @) below the required bound.
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To be precise, an initial exchange for a central edge e, (or ea+; as the case may be) in

S; (where the colour of the incident satellite vertex is ¢,) is a Kempe interchange

jk, 0)4 where:
@) ke {1,234}\ {i};
(ii) eitherj =z (or A + z as the case may be) orj = f{l ;

(iii) the interchange does not use a central edge in S; or end at a satellite vertex

incident with such an edge.

We shall derive a bound for (G) on the assumption that an initial exchange exists.

First, we must consider in more detail the structure of a cascade sequence X(¢&). Itis
possible that all the edges in X(&;) are incident with the same central vertex, but in
general this will not be so, and then we partition the sequence into a sequence

Fy, Fy, ..., F;, where each F; is a sequence of edges incident with the same central
vertex, the central vertices alternating between the F;. Each such subsequence is said
to be a Vizing fan. The branch number of F; is the number of edges in F; and is

denoted by br(F)).

Note that with these definitions, in a stage # colouring the cascade sequences for the

2*%) each have branch number 7 +1.

‘new’ edges e,, eas; 2 <z <
Main result (19)
Lemma 6.3.7 Let u be a total (A + 1)-colouring of G — e, » with stage t colour
arrangement, chains and inequalities; let 2" < 7 < 2% let & = eq p or egavy. If
there is an initial exchange at &, then AG) < 2(A-1) +t(A—-A) + (A - 2" + 1)
where A 2 3. Moreover G) < (A ~D+@E+DA-N)+ A -2 +1) where Fy is

the complete cascade.
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Proof. Weassume 3> (A-1)+(¢+1DA-A)+(A- 2'*! 4 1) and derive a
contradiction. Various cases can occur, depending on the cascade set of & and the
nature of the initial exchange. The arguments are very similar and give slightly
different bounds on f depending on how many of the central vertices change colour.

In this proof, we deal in detail with a case that gives the largest bound for £.

Thus, let us assume that & € S; where & = e(1 ), and that u(v,) = c4. (The argument
is analogous for & € S in the case & = €@,a+7). Assume that there is an initial
exchange E involving colours ¢, ¢, and ending at a vertex v,. Note that if 1[¢, 1],
does not exist then at most one of ,i[a, 1], ori[¢, 1]x2 can go through v,. Hence we
can choose which ever initial exchange E does not go through v,. Let ug= u + E;
then ugp(v)) = ue(v)) = c1 0r co. Let ps = g + 1(x, 2); (where x =1 or ¢ as the case
may be); then

Ua(v1) = ¢z and a(s1) = pa(vy).
Partition X(¢&) into Vizing fans Fy, ..., Fy, with br(F) =1; (i=1, ..., f). Note that

!
since 2! < 7 < 2"*2, we haveEbr(F,.) =t+1. LetFi1 =&, 813,..., &, the colours

i=t

on these edges being c1.1, ..., ¢,, respectively and the incident satellite vertices being
VLI ees Vyy - (Thus c1.1 = ¢; and v1 1 = v,). Then we may sequentially exchange the

edge colours on the & ; with the spine colour at one end and the (same) vertex colour

on the other, to obtain the semi-total colouring of G ~ ¢ »:

= pa+ Fr=pia+1(a, o) + (e, iz + oo+ (645604 )y, -

Then, f1(s) = ¢, .
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If F, is the complete cascade, then €y =Csand W= fy + 2(4, 3)2 is a G-colouring:

L
ﬂw-—'N(a), vx’ 1 : a) + ZN(w’ V]’i’cl,,') +N(a)’ v27 C3)+ N(a], vls C2)

i=l

LY
< A=1) + Y N(@,v,;,¢,,) +N(@, va, c3)+ N(@, v1, ©2).

i=1

Now our assumption concerning E implies that we may replace @by u in the N(, , )
terms except if c, = c1,; for some i and v, is adjacent to v;;. However, in this case the
beta edge from v, to vy is one of at most (A — 1) beta edges at vy, and so we may

avoid double-counting that edge and still conclude that
I
Bo< N, 1: @) + Y, N,,,¢,,)+ N(va, ¢3) + N(vy, ¢2) -
i=1
But we also have 1[2, 3[2, which has not been affected by the cascade, hence the
G-colouring @y = 4 + 1(2, 3) 2 + 2(4, 2)2 has

I .
ﬂwo = N(aba Vi, 1: a) + ZN(a)oivl,iacl’i) + N(abs V2, C2) + N(%& Vi, C3)
i=1

L
S A-1+ Y N@,,c,)+ Ny, ¢2) + Nwy, c3).
i=1
Moreover, by the stage ¢ inequalities,

Nisc1)) SA=-3 (@G >1).

Finally, none of the (2" - 2) vertices v; (3 < i £2*") has colour ¢; or ¢3. Hence, by

Lemma 6.3.2, we have
B A-D+@+1D)A- D+ (A-2"4 1), which contradicts our assumption.

Thus F; is not the complete cascade.
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Since, 4 has the colour c,, on the spine s; and also on the non-central vertex incident

with the first edge in F, (which, we recall, is incident with v,), then with respect to 4,

there is a Kempe chain i]c,, , 3[;.

If y# 2, consider the G-colouring 8= + 1(¢c,, , 3)y. We have

L
Bo=N(B,vs, 1: @) + Y N(O,vy;,c,,) + N6, vy, 3: ¢, )+ N6, w1, ca).

i=1
Since none of the vertices adjacent to v, have had their colour changed to c,, we have

(arguing as before):

I
Bo < (A=1)+ Y N(v,;,¢,,) + Nt vy, 31 ¢y, ) + Nty vy, €2)

i=1
S20-D+LA-H+A-2"+1)

=2A0-D+LA-D)+@A-2""+1).

f
But /; < Zbr(F,.) =t + 1. This contradicts our assumption concerning AG), and we

i=1

conclude that vy = v, and that we have the chain 1] ¢, , 3[2.

Denote by QO the corresponding Kempe exchange 1(c,; , 3)2, the first side exchange.
Then, since 14 + Q) has colour ¢, , On 2, we may now implement the Kempe

exchanges F; corresponding to the Vizing fan F,.

Continuing in this fashion, we arrive at a semi-total colouring

y25 =ﬂA+F1+Q1+F2+...+Qf.1+Ff.
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In checking that the side exchanges Q; exist, the estimates of fBincrease for successive
exchanges, since the number of Vizing fan exchanges increases, but are always below
the bound 2(A—- 1) + t(A—-A) + (A - 2 4) given in the statement of the lemma.
The last edge in the sequence Fymust be e;4 (as we have assumed & € Sy), and thus

Hs1) = ¢, 1, = Cas Ufs2) = c3, p(v2) =cq. Thus, we have a G-colouring

Hfinal = Ur + 2(49 3)2’

with

4
ﬁﬁnal = N(,Bﬁnal, Vs 1: CZ) + Z N(lgﬁnal’vi,j’ci,j)
1

i=l j=

+ N(Btinat, V1, €2) + N(Bsinat, V2, €3)

SA=1)+ @+ 1)A~A)+ N1, c2) + N(va, c3)
f
(since Zl,. =t+1).
i=]

We now make final use of Lemma 6.3.2. In the original colouring 4, there is a
Kempe chain 1]2, 3[2; let 4o = g+ 1(2, 3),. This colouring has the same properties as

4, and an analogous argument to the above leads to a final G-colouring with
Bna < (A=1) + (@ + DA~ )+ Ny, ¢3) + N(va, €2)

and whose vertex colours differ from those of t5,, only at v; and v,.

Thus, by Lemma 6.3.2,
LGS A-D+E+DA-A)+ (A-2"1+1)

S 2A-D+tA-2)+(A-2"141).



135

and the result is proven for & € Sy such that

i) & is adjacent to v; (rather than vy);

(i1) the initial exchange involves the vertex colour rather than the spine colour

at the central vertex.

By symmetry we can see that if & is adjacent to v,, this will not affect the conclusion
as we are in effect beginning from the second fan. Similarly if & belongs to S,

symmetry with S4 shows that this give us the same result.

Should & belong to cascade set S, or S3, the initial exchange will involve only the
spine colour. Since the sequence no longer affects the colours of v; or v; in the final
semi-total colouring of G resulting in a lower bound for £ than given by the above

argument. u

Main result (20)
Lemma 6.3.8 Let G be a near type 1 graph with maximum degree A > 4 and with a
total (A + 1)-colouring u of G - e1 2 having stage t colour arrangement, chains and
inequalities. Ift = 0, AG)> 2(A-1)+t(A—-A) + (A -2 + 1), then we may

2t+2

choose the colours c; and ca, (2" <z < 2™*?) 50 that u has the stage (¢t + 1) colour

arrangement, chains and inequalities.
Proof. Let2™!' <z < 2"

By Lemma 6.3.7, if B(G) > 2(A — 1) + #(A = A) + (A — 2"*! + 1) there is no initial
exchange at either of the vertices v, vay;. Suppose y(v,) = co where & < 22 Let v,

be the satellite vertex with z(v,) = ¢4 (note that w < 2" Let g€ S;and g, € S
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We have an initial exchange unless each of the exchanges 1(1, @),, 1(2, 0),, 2(3, @),
2(4, @), (except possibly (i, @), with m = 1 or 2 as appropriate) exist. However, the
corresponding stage ¢ chains n(k, @) exist for ke {1,2,3,4}\{i, j}. Thus atleast
one such chain must end both at v, and at v,,, which is a contradiction. Therefore

there is an initial exchange, contradicting Lemma 6.3.7. Thus, o> 2",

A similar argument holds for the vertices va4,. Thus, all of the vertices v,, Va4,

(2" < z < 2"*?) have colours distinct from the colours ¢, (1 £ & <2*?). Choose vy,
v, (for example), with u(vy) = ¢y, 1(v,) = c5. Let [ be such that neither & nor & belong
to ;. Suppose that / = 1. Then, because there are no initial exchanges, there are

1[1, Yy and 4[1, J], chains, and so ¢y # c¢s. The same conclusion follows (for
example) for vy, va:,, 50 we conclude that the vertex colours at these vertices are all

distinct. Therefore they can be chosen so that there is a stage (¢ + 1) colour

arrangement, giving also the stage (¢ + 1) chains.

Finally we deal with the stage (¢ + 1) inequalities. Consider a vertex v,

(2*! <z < 2"*%); the argument for a vertex va,, is analogous and will not be given.

We can see that y(v;) # ¢,. Fori=1,2,31et v, be the vertex adjacent to v, such

Mezwi) = ci. If & € S3 or Ss, then the existence of the stage (¢ + 1) chains {[1, 2y

112, z], (where vy is the satellite vertex coloured c;) shows that neither y nor v, can
"o 2

have colour c,.

Suppose now & € ;. We still have H©,) # Co Assume [ (y, ) = ¢;; then there is a

Kempe chain ,[1, z],, and a (stage (¢ + 1) ) chain »]3, 2], that cannot end at v, - Thisis
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either disjoint from |[1, bz]wl or goes through edge u(e;1) = c;. In the latter case there

is a vertex v,3 which is not c,.

If the chains are disjoint then the G-colouring w=u+ ,(1,2),, + 2(3, 2),y + 1(z, 2)1 has

Bo < Nowi, 1)+ N, 3) +N(1,2) S (A-1) + (A= 3) + (A-2""+2),
contradicting our assumption that AG) >2 (A= 1) + (A~ A) + (A -2 + 1).
Thus 2 vw1) # ¢, and the stage (¢ + 1) inequality for v, holds.

If & € S5, then the conclusion holds with only two Kempe interchanges rather than

three. ' ]

Corollary 6.3.9 Let G be a near type I graph with maximum degree A 2 4 and with
a total (A + 1)-colouring uof G-e12. Ifg 21,
FG) >2(A - 1) + (g-1)(A - 3) + (A — 27 + 1), then we may choose the colours so that

U has the stage q colour arrangement, chains and inequalities.

Proof. The statement is true if # = 1 by Theorem 6.3.6, and thus (by induction, using
Lemma6.3.8)forl < g <t

(Note that the stage g inequalities allow the choice 3 for A). u

Main result (21)
Theorem 6.3.10 Let g = 1 and let G be a near type 1 graph with
KG)> 2A-1D)+ (g-1)A-3) +(A-27+ 1) = 2(A+1) + g(A - 3) — 27 ; then

AG) = 272 1.
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Proof. Since G is near type 1, there is a total (A + 1)-colouring & of G — e1,2, whose
colours may be ordered so that it has stage g colour arrangement. The number of

vertex colours involved in such an arrangement is 27", hence the result. [ |

Main result (22)

Corollary 6.3.11 Let G be a near type 1 graph with A2 4; then
3A
BKG) < —4—+ (A-3)logx(A+1)+5.

Proof. From Lemma 6.3.9, when A(G)>2(A-1)+(@—-1)A-3)+(A-27+1) we
may choose the colours so that g has the stage g colour arrangement, chains and

inequalities.

From Theorem 6.3.10, in such cases A(G) > 292 —1; A+1> 29+2;

llog,(A+1)| = g + 2. On the other hand, when g> |log,(A+1) ] -2, then there is

no stage g colour arrangement, hence
KG) <2A-1)+(@-1)A-3)+(A-27+1).

Letq = |log,(A+1) | - 1. Thus 2%*' - 1 < A(G) <27** - 1. Therefore, by the result

of the theorem, V

KG) < 2(A+1) +q(A-3)-27;

A+1
<2+ +(A-3)log(A+ 1)=1) — 4

A+1

= A+(A-3logx(A+ 1)+ 5-"4

3A '
< T + (A = 3)logx(A + 1) + 5, as required. ||
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6.4 Total Chromatic Numbers of Certain Graph Classes

The results in this subsection (with the exception of theorem 6.4.1) are joint with
M.A. Seoud, A. E. Abd El Magsoud and R.J. Wilson; see [6.15] and [6.16]. Note that

the latter was published under Jini Williams’ maiden name, J. Senior.

The Cartesian product G x H of two graphs G and H with vertex sets V(G) and V(H)

is the graph with vertex V(G)X V(H) where the vertex v, ,, is adjacent to the vertex
Vig ) whenever g; = g; and A; is adjacent to &, or k; = hjand g; is adjacent to g;. See

Figure 6.4.1. Note that there is copy of G for every vertex in H and vice versa.

In the first subsection, we present a general result concerning Cartesian products,
which generalizes most of the work of [6.15] on Cartesian products involving the
cycles C,, the paths P, and the stars S, (where C,, P, and S, are respectively the

cycles, paths and stars with » vertices).

6.4.1 Cartesian products [6.15]

Main result (23)
Theorem 6.4.1 Let G be a type 1 graph of maximum degree Ay, H a class 1 graph of

maximum degree A, such that y(H) < Ay + 1. Then G XH is type 1.
Progf. Let y be a total (A; + 1)-colouring of G using the colour set
X={0,1,..., A} (considered as elements of the cyclic group Z an ) let 1o(Ve) be a

vertex colouring of H using X; and let x3(Ex) be an edge colouring of H using the
colourset Y= {A; +1,A; +2, ..., A; + Az}. For typographical convenience, let us

denote the edges of G X H as follows. If g, is adjacent to g» in G by €er82) and Iy

adjacent to i, in Hby e, ,, ,, and g;, h; are arbitrary vertices of G and H respectively,
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Figure 6.4.1.
the

n edgejoining ) to ) is denoted by and the edge joining to
Mg  is denoted by g(|2).g let //be the following colouring ofthe vertices

and edges of G x//:

Hence we let the edge colouring jU{Eh) of //remain the same in each copy of H. We
give every copy of G an isochromatic total colouring where each copy differs from //i

by the value //2(Wy, ). Therefore two adjacent vertices of G x //o f the form

and ) have distinct colours, as do two adjacent vertices ofthe form and
). Given any vertex v = ~the colours ofthe edges joining v to a vertex of
foiTu v, )all belong to X and are distinct from //( « ,); while the colours ofthe

other adjacent edges are distinct and belong to Y.

Main result (24)
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Corollary 6.4.2 (c.f.[6.15], Theorem 1) Let F = P, X S,; then G is type 1 if m 23

orn 3.

Proof. Note first that P; X S, = Cy, while P; X Sz = Py X St = K;, so that these

products are type 2.

Let F=P,, X S, wherem =3 orn =23. If m 23, then take G = P,,, H = S, and apply

the theorem; if n = 3, then take G = S,,, H = Py, [ |
Main result (25)

Corollary 6.4.3 (c.f. [6.15], Theorem 2) Let F = C,, X S, where m 23, n = 2; then

F is type 1 except when F = Cs X Sz, which is type 2.

Proof. When n = 2, the result (including the anomaly at m = 5) follows from

Chetwynd alnd Hilton [6.3]. Assuming n 2 3, we have that S, is type 1; moreover,

2C) < Ay + 1 =3, and so we may apply the theorem, taking G = S,, H = Cpn. n

Main result (26)
Corollary 6.4.4 (c.f. [6.15], Theorem 3) Let F = C,, XP, wherem = 3,n 2 2; then
Fis type 1 except whenm = 5 and n = 2.
Proof. The case n =2 follows from corollary 6.4.3 since P, = S5; thus let us assume

n 2 3. Take G = P,, H = C,, and proceed as in corollary 6.4.3. . n

Main result (27)
Corollary 6.4.5 (c.f. [6.15], Theorem 4) Let F = C,, XC, wherem = 3,n 2 3 and
one of m, n is a multiple of 3; then F is type 1.
Proof. We may assume that m is a multiple of 3. Then C,, is type 1, and we may take

G = Cp, H = C,, and proceed as in corollary 6.4.3. |
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J I/~ 4 Figure 6.4.2.

The following cases, Theorem 4 of [6.15], are not covered by corollary 6.4.5.
Main result (28)

Theorem 6.4.6 For F = Cn x C,, where m is even, n ~6 andm >3,n >3; Fistype 1.

Proof. The graph Cm x C,, can be seen as the net of a Taurus, see Cg x Ce Figure
6.4.2. Let ¢ =C,, H= C,, and denote the vertices of G and # (in natural order) by
gi, ..., gmand h\, ..., hmrespectively. We now use the notation for edges developed

in the proofoftheorem 6.4.1.

Let m = 2p. Temporarily delete all edges ofthe form Qz/-i,iig.h for /= ...,p and all
h G V{H). The resulting graph E is a union ofp copies of Pi x C«. (see Figure 6.4.2)
By Corollary 6.4.4, pi x C»istype 1and has a total colouring p using the elements

ofZ4. Now colour each component Ep using the same colouring p\ thus, since in

every component we have //( v, J # . ].)A= 1, .,%) then in E we have

V6 1715 j ) vop2' y

LAY A N0 =1, 1, ...,M) and also

Mg/t Ay) ~ ~ e s F)
It follows that, when we replace the edges g(2/-1,2%/? we have AMAY A M )
z=1, .., mJ=1, .., 7Z)and can colour these edges with a fifth colour, we now

have a total 5-colouring (i.e. a type 1 colouring) of F. ]

6.4.2 Powers of Paths [6.13]
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Let G be any graph. The kth power G (denoted by G") is the graph with vertex set
V(G), where v and w are adjacent in G if the distance from v to win G is at most .
Thus, if the vertices of P, are denoted by vy, ..., v, in natural order, then v; and v; are

adjacent in P,Fif and only if i —j| < k.
In the statement and proof of the following theorem, we use Hilton’s notation (see
page 89).

Main result (29)

Theorem 6.4.7 If1 <k<n-1,thenG= Plis type 1 except when n is even and

('(G)r+3a'(G))<n.

Proof. Note first that P; is type 1 and that, if G = P,', then ’(G)= 0, hence the

statement is true whenn =1 or 2.

Let n > 2; we consider four cases.

Casel: 1 k< (n-1)/2.

Define a total colouring u as follows:
Uy =cywhere 1 <A< 2k+1and A = 2i-1 (mod (2k + 1));

Megp)=cywhere 1< A< 2k+land A =i+j-1(mod (2k + 1)).

This is a proper (A + 1)-total-colouring based on part of the cyclic Cayley table

introduced in Chapter 3.
Case2 k=n-1.

In this case, P,* is the complete graph K,,, which is type 1 if n is odd and type 2 if n is

even.
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Case3 n2 <k<n-2andnisodd.

Here, we have A(P,,k) =n-1=A(K,), and P,," isa subgraph of K. Thus, since n is

odd, then restricting a total n-colouring of K, to P,," gives a (A + 1)-colouring.
Case4d n/2 £k<n-2andnis even.

Hilton [6.2] has shown that a graph G with n even and A = n — 1 is type 2 if

e(G)+ a'(G) <n/2.

When G = P,f, we have e(G ) = (n - k)(n—k—1)/2, and the following i =n -k ~1
edges form an independent edge set in G: {e k2)s €2k43)s €B4Ys + vy €1, n=1)s €(i, m)} -

Since these edges use every available vertex in G , this is a maximal set and
&d(G)=i=n—-k-1.
It follows from Hilton’s result that G is type 2 if
n-kmn-k-1)2 +(n-k-1) <n”2
(n-k-1?* +3(m-k-1) <n

and hence, as required, (' (G)*+3(G)) <n. |
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Summary of Chapter 6

In Section 6.1 we looked at the conformability conjecture and came to the conclusion
that since every graph with at least A spines is conformable, the concept needs

refining. We presented various conjectures with relation to the beta parameter.

In Section 6.2 we presented a necessary condition for a graph to be type 1, which we
named G*-conformability. This categorises the majority of known graphs, though
there are still a few graphs that are G*-conformable and type 2. We then imposed

further conditions on cubic graphs, which we believe categorise them all.

In Section 6.3 we considered near type 1 graphs: graphs that become type 1 when an

edge not belonging to a triangle is removed. We discussed the beta parameter and
classification by f-number of such graphs. We discovered that where G is a nearly
type 1 graph with A> 4, then

BAG) < %+ (A —3)logx(A + 1) + 5.
In Section 6.4, we discussed the classification of certain Cartesian products and all
powers of paths. We found several classes of cross product that are always type 1 and

that for most m and n, that is: where m is even, n #5 and m =3, n 23, then C,, XC,

is type 1 and that Pris type 1 except when # is even and (&'(G) 2+30/(G)) <n.

In Appendix (6.1), we present a catalogue of surcritical graphs with no more than ten
vertices. In Appendix (6.2), we present an algorithm for checking for
G*-conformability which will either produce a colouring for G or prove that no such
colouring exists. Clearly due to the effort involved, this would need to be done by

computer.
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Summary of main results by Jini Williams in Chapter 6

Conjecture 6.1.5 Removing any set of p edges from a f-critical graph will reduce

B by between p and 2p. Main conjecture (1) page 92
Conjecture 6.1.6 Adding an edge to a P-critical graph will increase by at most 2.
Main conjecture (2) page 92

Lemma 6.1.8 Every graph with at least A spines is conformable.
Main result (3) page 94

Lemma 6.1.10 A non-connected graph, each whose components is of maximum
degree 4, is conformable if every component is conformable.

Main result (4) page 95
Theorem 6.1.12 Any non-conformable irregular graph G is an induced subgraph of

a type 2 conformable graph H of the same maximum degree, where n(H) = n(G) + 1.

Main result (5) page 97

Conjecture 6.1.19 [Holroyd and Williams] Every type 2 critical graph G satisfying

A(G) <¥(|V(G)|-1) is conformable. Main conjecture (6) page 101

Corollary 6.2.2 A graph which has no G*-conformable colouring is type 2.

Main result (7) page 103
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Corollary 6.2.8 A G*-conformable graph which is also type 2 cannot have disjoint

1-factors for all G — S;. Main result (8) page 105

Theorem 6.2.10 Let G be regular cubic graph. Then a necessary condition for G to
be type 1 is that G should have a G*-conformable vertex colouring p(V*) such that,
for every pair of colour sets S; and Sj, the subgraph G — S; - S; has:

(i) at least (n; + n;)/2 components;

(ii) at most (n; + n;)/2 components with less than four vertices.

(iii) an even number 2q of odd components, where 2q < min{n;, n;}.

Main result (9) page 106

Conjecture 6.2.11 Let G be a regular cubic graph. Then the necessary condition for
G to be type 1, stated in Theorem 6.2.10, is also sufficient.

Main conjecture (10) page 107

Conjecture 6.2.12 Let G be regular cubic graph. If G has an acyclic
G*-conformable vertex colouring ((V*) with colour sets S; and Sj, such that every
G - Si— S has

(i) exactly (n; + nj)/2 components;

(if) an even number 2q, of odd components, where 2q < min{n;, n;};

then G is a type 1 graph. Main conjecture (11) page 108

Theorem 6.2.13 Let G be a semi-regular cubic graph. Then a necessary condition

Jor G to be type 1 is that G should have a G*-conformable spine and vertex colouring
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U(V*) (as above) such that, for every pair of colour sets S; and S;, the subgraph
G - S;—Sj has:

(i) at least (n; + nj)/2 — é({i, J}) components;

(i) at most (n; + m)/2 - {({i, j}) components with less than four vertices;

(iii) an odd number of odd components, bounded above by min{n;, n;}, except where

{i, j} = {1, 2}, in which case an even number of odd components, bounded above by

min{n,, n,} — 1. Main result (12) page 109

Conjecture 6.2.14 Let G be a semi-regular cubic graph. Then the necessary

condition for G to be type 1, stated in Theorem 6.2.13, is also sufficient.

Main conjecture (13) page 110

Conjecture 6.2.15 Let G be a semi-regular cubic graph. If G has an acyclic
G*-conformable vertex colouring (V) with u(vy) = c1, u(s1) = ¢z and if, fbr each pair
S;, Sj of colour sets, the subgraph G — S; — S

(i) has exactly (n; + n)/12 — {({i, j}) components;

(i) has an odd number of odd components, bounded above by min{n;, n;}, except
where {i, j} = {1, 2}, in which case an even number of odd components, bounded above by

min{ny, np} — 1, then G is a type 1 graph. Main conjecture (14) page 110

Theorem 6.3.3 Let A(G) > 3 and suppose there is a total (A + 1)-colouring y of
G — e such that pu(vy), u(s1), u(v2) and p(ss) are not all distinct. Then B <A.

Main result (15) Page 115
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Theorem 6.3.4 Let G be a near type 1 graph with A =3; then B < 2 unless all

type 1 total colourings it of G —e have p(vy) = p(v2), u(s1) # [s2), when [ <3,

Main result (16) Page 117

Conjecture 6.3.5 Let G be any critical cubic graph; then XG) < 2.

Main conjecture (17) Page 119

Theorem 6.3.6 Let G have A > 4, f>3A ~ 17, and let u be a total (A + 1)-colouring

of G — e; then:
(i) the Stage 0 chains exist and the Stage 0 inequalities hold;

(ii) any total colouring p of G — e has Stage 1 colour arrangement, and the

Jollowing chains (the Stage 1 chains) exist:
1[1, 513, 112, 515, 2[4, 5135 112, 6)as3, 213, 6]ass, 2[4, 6lass;

1[13 7]4’ 1]2’ 7]49 2]3a 7]4; 1[17 8]A+47 2]3’ 8]A+43 2[4’ 8]A+4°

Main result (18) Page 123

Lemma 6.3.7 Let u be a total (A + 1)-colouring of G — e1 2 with stage t colour
arrangement, chains and inequalities; let 2" <z < 2% let & = eqp or egary.  If
there is an initial exchange at &, then (G) £ 2(A—1) + (A - 2&) +(A=2""4+1)
where A > 3. Moreover BG) < (A—1)+ @+ 1)(A=A) + (A =2 + 1) where Fy is

the complete cascade. Main result (19) Page 130
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Lemma 6.3.8 Let G be a near type 1 graph with maximum degree A > 4 and with a
total (A + 1)-colouring 1 of G — ey having stage t colour arrangement, chains and
inequalities. Ift = 0, AG)> 2(A—1) + #A - L) + (A = 2" + 1), then we may
choose the colours c; and car, (2™ <z < 2"?) 50 that p has the stage (¢ + 1) colour

arrangement, chains and inequalities. Main result (20) Page 135

Theorem 6.3.10 Let g = 1 and let G be a near type 1 graph with
BG > 2A-1)+ (@ DA-3)+(A-27+1)= 2(A+1) + g(A — 3) — 27 ; then

AG) = 27" 1. Main result (21) Page 137

Corollary 6.3.11 Let G be a near type 1 graph with A2 4; then

KG) < §ZA— +(A-3)logx(A+1) +5. Main result (22) Page 138

Theorem 6.4.1 Let G be a type 1 graph of maximum degree Ay, H a class 1 graph of
maximum degree Ay such that Y(H) < Ay + 1. Then G XH is type 1.

Main result (23) Page 139

Corollary 6.4.2 (c.f. [6.15], Theorem 1) Let F = Py, X Sy; then G is type 1 if m >3

ornz23. Main result (24) Page 140

Corollary 6.4.3 (c.f. [6.15], Theorem 2) Let F = C,, X S, where m 23, n > 2; then

F is type 1 except when F = Cs X Sy, which is type 2. Main result (25) Page 141
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Corollary 6.4.4 (c.f.[6.15], Theorem 3) Let F = C,, XP, Where m 2 3,n 2 2; then

Fis type 1 except whenm =5 and n = 2. Main result (26) Page 141

Corollary 6.4.5 (c.f. [6.15], Theorem 4) Let F = C,y XC, Wherem = 3,n 2 3 and

one of m, n is a multiple of 3; then F is type 1. Main result (27) Page 141

Theorem 6.4.6 Let F = C,, XC, wherem iseven,n #5andm 23,n 23;then F is

type 1. Main result (28) Page 142

Theorem 6.4.7 If1 <k<n-1,thenG= P.listype 1 except when n is even and

('(G)*+3a'(G)) <n. Main result (29) Page 143
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CHAPTER 7

APPLICATIONS

We now consider how graph colourings can be applied in the non academic world.
There are many applications already in use for vertex and edge colouring but there are
as yet no known practical uses for total colouring. All possible attempts to apply
total colouring are therefore conjectural, but some are more plausible than others.
Therefore following suggestions are simply that: suggestions. Clearly the type of
research required to justify or dismiss any of the following conjectural application of
total colour is beyond the scope of this thesis. The appendices include algorithms for

finding colourings which may be used in an application should one be found.

The fields of electric and electronic theory hold many applications for edge colouring.
Therefore, the close link between total and edge colouring, leads us to feel that there
are certain applications of edge colouring which would be improved if total colouring

was taken into account.

The entertainment industry is always on the look out for new games:

especially computer games. Although it is also true, that the number of games
invented, exceeds the number that become commercially successful: as can be
verified by visiting charity shops after Christmas. Nevertheless the number of
different games that could be produced by using graph colouring is endless: the
details of each are so variable that it would be impossible to mention them all.
Therefore we present just one example from each of the main aspects of graph

colouring that have been studied in this thesis.
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(1) Patience squares (Chapter 3)

This is a straightforward card game of patience. The standard 52 card pack is well
shuffled. The aim is to deal the cards into three separate 4x4 latin squares. Since we
have thirteen cards in a pack there are four cards left over, these are placed as they
arise in a separate ‘exchange’ pile. Each card is turned up when dealt and placed in
up to three rows of four base cards. This can be done until a cards is dealt that has the
same rank as one already on the table. As each repeat card is dealt, it is placed
(partially) on top of one of the existing base cards. This must be done in such a way
that no two cards have the same rank in any row or column. If there is no place for
the card to go at the time it is dealt it goes to the discard pile. The aim is to have as
few cards as possible in this pile at the end of the game. If at a further point in play,
the top card of the discard pile can be used, then the player is allowed to use it. This
frees the card underneath for use. The base cards use cards of different rank and the
thirteenth value goes to the ‘cheat’ pile. The player is allowed to reallocate one top
card to a vacant place by using a ‘cheat’ card just once, after which the ‘cheat’ card is
turned face down to prove that it is has been used.

A beginner’s level can be created for this game by including Jokers in the ‘cheat pile’.

A master’s level on the other hand can insist that the squares produced are MOLs.

(2) Map colouring (Chapter 4)

The manipulation of graphs and colourings is a source of intellectual interest as well
as amusement. A program could be produced where a map is generated either real or
at random and the user has to find a four colouring in as short a time as possible. The
graphics are, by virtue of the task involved, predisposed to being colourful and
attractive. Alternatively, two colourings A and B of the same map could be presented

where the task is to transform A into B by means of Kempe interchanges.
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(3) Computer Jigsaws (Chapter 5)
This game is based on the task of finding two graph colourings of'the plane where a
tri-star equi-net has been given, as in figure 7.1. Pieces could me moved to show the

colour allocated or the faces could be filled using the fill option with a limited palette.

Figure 7.1

(4) Network colourings. (Chapter 6)

Here we have a graph with edges and vertices and, as with map colouring, each level
could have successively more complicated graphs which the player would be required
to total colour in a limited amount oftime. The colours could be pre allocated with
the aim of finding a transition from the given colour to another via Kempe and

Pittenger interchanges.

But entertainment, though perhaps the most lucrative application, may not be the only
way that total colouring could be put to use.

Dr David Caroliaro has already investigated the link between hypergraphs and fire
prevention, [talk PGCC 2004 after presentation of doctoral thesis] and there could well

be links to total colouring in similar circumstances.
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Secret sharing

Consider also a secret sharing scheme, where we have a number of people with
passwords in various locations. We need to change these passwords at regular
intervals but do not want two people in neighbouring locations to have the same
password. (For example, because we may want to know who is accessing the data).
If we plot these people on to an adjacency graph we can assign the graph a total
colouring and by means of exchanging the colour chains keep a record of which

person has which password at any one time.

A similar colouring could be generated for the variation of the communications
problem where we have fixed frequencies (which could be seen as coloured vertices)
and acceptable interactions (which could be seen as defined edges) but could have
unacceptable interactions such as interference whenever two people with similar
frequencies meet within a certain distance (which could be adjacent vertices with the

same colour).

Electrical impulse systems

It is well known that nerves are a bundle of nerve fibres. We will now consider a
possible model for tracking the course of the electrical impulses that are transmitted
by such fibres. Unless otherwise referenced, in this discussion of the model, all the
quotes in italics below are from the same source, the Oxford World Encyclopaedia
[7.1] as this gives a concise outline of the known facts. There are many other sources
that would give a more thorough picture, but we only require an outline here.

We know that every nerve fibre ‘carries undirectional signals to and from the brain
independently of neighbouring fibres in the nerve’. We can model these fibres as

undirected edges of a graph.
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Each fibre is insulated from the others ‘to prevent electrical interference between
adjacent fibres in the nerve’. But although in physical terms these fibres initially run
in parallel, they have different end points. Therefore let us suppose that in terms of

our graph these bundles of fibres/edges are incident at one vertex only.

‘Signals carried in the fibre are called impulses because they travel as discrete bursts
of electrical activity’. Let us consider that each edge has a colour and that there is no
colour in common in any bundle of fibres. We can consider each impulse to be an |
edge Kempe chain, affecting each edge in the chain from the moment that the colour

is changed.

‘Each burst is followed by a short period when no further impulses can travel along
the nerve. These spaces enable the information to be coded into bursts’. It is |
important to finish with one interchange before starting the next, hence the time delay.
Once the previous interchange has been completed there is no hindrance to the next

interchange taking place.

‘Information at the receptor end of the nerve fibre is thus coded into burst patterns
eventually to be translated into appropriate action by the brain.” The different

sequences of colours affect the eventual outcome in different ways. Not all chains
will have the same end vertex as the chain could only end at a vertex or spine of an

appropriate colour.

‘The junction between two nerve cells is called a synapse’ In our model this junction

is a vertex.

‘The transfer of impulses is mediated by the release of chemicals called

neurotransmitters across the gap of the synapse.” The interchanges in our model will
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be determined by the colours of the chains themselves. The neurotransmitters can

therefore be modelled as colour assignments.

‘Amplification or moderation of the impulse can occur at this point.” In our model the
impulse could be stable if the chain ends at a vertex where there are no neighbours of
that new colour; it would continue into a further impulse if there is only one
neighbouring vertex with the new colour; it could be suppressed if it ends at a spine; it
could initiate a different impulse, (be amplified), if there are two or more

neighbouring vertices with the new colour.

‘Most fibres split into several smaller fibres at their ends enabling each neurone to
communicate with many other fibres.” That is to say that, in out model, most vertices

are adjacent to more than two other vertices.

It was noted by Geary in [7.2] that ‘memories are not fixed and immovable facts; they
are emerging from an ever changing maze of neural firing formations and synaptic
connections’. In the same article Professor Steven Rose of The Open University was
quoted as saying that ‘memory is a dynamic property simultaneously residing
everywhere and nowhere in the brain’. Our model, would have exactly that structure:
the end vertices of each impulse could be at any distance from the ihitial vertex and in
any part of the network. We also note that the breakdown of the cell adhesion

molecules in Alzheimer’s disease in our model is mirrored by the breaking of edges.

The dual to this model has the edges as synapses and vertices as nerve fibres.

A total colouring model could, therefore, well prove useful in the field of neurology.

For an overview of current accepted knowledge in this field see Golden [7.3]
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Art

The symbiotic relationship between Mathematics and Art is a study in

itself and has generated much interest leading to numerous books, conferences and
artworks. However, since graph colouring has not yet reached the popular realm we

feel that it is important to note a few of the possible applications.

Take the colouring of the infinite sub triangulation of the plane in Appendix 7.3 as an
example. An installation could be formed with hemispheres and spheres of decreasing
diameter as follows:- Seven differently coloured large hemispheres are placed as
vertices to form the seven colour tiling flower f(@p). Medium sized spheres are
chosen with diameters such that they are half the size of large hemispheres, these are
joined on a frame overlaying the large hemispheres, the colours are chosen so that
they form g(@;). Small spheres are now chosen with diameters half the size of
medium sized spheres. They are fixed on a frame overlaying the medium spheres.
The colours are chosgn so that they form g«(@). Tiny spheres are now chosen with
diameters half of that of the small hemispheres, the colours are chosen so that they
form u(ws). Depending on the size of the original hemispheres this pattern can be
continued until the size is too small to be distinguished. The result is a fractal total

colouring and an art work.

Now consider the graphs themselves. Molecular models are used in chemistry for
practical purposes but are also interesting as works of art. Since total colouring has
no known practical applications the three dimensional models of total coloured graphs
are even more interesting from an artistic point of view as they are an abstract concept

with a physical form.
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Latin squares and arrays for edge and total colourings make excellent two

dimensional paintings. MOL’s and Mutually Orthogonal Arrays make excellent three

dimensional and textile works.

Another work can be based on the observation that a single latin square is a set of
nXn objects each with three distinguishing factors i, j and k, such that each factor
occurs just once with any other. This is equivalent to nXn pedple being given
differently coloured hats, coats and gloves in such a way that no two people are
dressed the same to isochromatism. Applied to K, we have an nXxn set of coloured
edges and vertices. Each vertex and colour has been given an arbitrary , but
consistent label. Therefore, people wearing matching hats and gloves could represent
the vertices, in which case the edges are such that the hats do not match the gloves.
However, since the edge from v;to v; is the same as from v;to v; is the person with
green hat and red gloves is wearing the same colour coat as the person with red hat
and green gloves, regardless of what that colour might be. Hence a truly modern
installation would be a set of people dressed as above with no other remit than to
socialise in the same room. Alternatively we could be more conventional and at set
times, arrange our people on a grid such that they stand in rows of the same colour hat
and in columns of the same colour gloves. There will be exactly' one person per
square. One conjugate is therefore, the same people arranged in rows of the same

colour coat and in columns of the same colour hat, and another by gloves and coat.

The complete set of MOLs and conjugates could be displayed as a continuous display

of slides when the original installation has to be disbanded.

There are innumerable ways of using total colour in the world of Art and an

exhibition of such woks would be an exciting application for total colouring.
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Summary of Chapter 7

In conclusion, just as Hu Cadarn was unable to say why barley grows from barley
seed, we still do not know the answers to many of the questions that have arisen from
the study of graph colourings. Unlike Hu, we have not yet invented the colouring
plough, but we have found out many things in our search which may yet prove useful.
Applications of total colour may not be in existence other than by chance, but there is
much scope for future efforts. Each application of combinatorics which is presented,
makes it possible for people working in other fields to harness the mathematics to

their own endeavours, hence distributing awareness and increasing knowledge.
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Appendix (6.1)
We present the seventy critical and surcritical type 2 graphs with no more than ten vertices.

Catalogue of Critical and Surcritical Graphs

This appendix revisits the Catalogue of Critical graphs Numbers 1-50 by Hamilton
Hilton and Hind [6.8] Although many of the graphs also have other names, in this

appendix each graph from [6.8] will be refered to as HHHx, where x is a number 1-50.

We present two copies of each graph. The first copy has coloured edges showing a
best possible B-colouring. In order that the f-edges can be easily identified, they have

been given a thicker line. The second copy has grey edges.

As well as the graphs identified in [6.8], where they exist, we show best f-colourings
of further surcritical graphs where these are obtained from HHHx by adding new
edges up to degree A, but no new vertices. These edges will be called surcritical
edges. In some cases these surcritical graphs overlap, for instance the graphs HHH42
and HHHA43 are both sub-graphs of Ks s and hence share this and Kss—e as surcritical
derivatives. The graphs will also be given a number which refers to its place in this

catalogue, for instance K 5 is No. 57.

All possible further surcritical edges will be shown as thin dotted lines in the second
(grey edged) copy. This copy, will be given a conformable vertex colouring where

such a colouring exists, otherwise it will have all vertices coloured white.

We give a third copy of the only graph, HHH12, with a G*-conformable colouring.

Here multi-edges replace the relevant edges of the conformable vertex colouring.



(No. 1) HHH\

(No. 3) ///m3

(No. 5) HHm
12=1

(No. 8) HHHI
P=|

(No. 10) HHm
p=2

The Catalogue.

(No. 6) HHm +e
p=-i

(No. 2) /m m

(No.4) /m m
(5=1

(No.7) HHm
/2=1

(No. 9) HHW+e

P=3

(No. 11) HHH9
p=|\
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(No. 12) HHHXO
P=2

(No. 14) HHHI2
J3-1

(No. 16) HHHIj+e

(No. 18) HHHU
/3=

(No. 20) HHHI6
/2=i

# »

S~

(No. 13) M /m i
/3=2

(No. 15) ////m s

(No. 17) HHH\3+2e
fi=4

(No. 19) HHHI5
A=1

(No. 21) HHH\6 + ¢
p=2
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(No. 22) HHH\6+2e
p=4

(No.24) Ilffm? + e

(No. 27) HHH?29
P=\

(No. 30) HHHII,
p=\

(No. 25)HHHn
p=|

(No. 28) HHKI1\
/?7=1

(No. 23)
P=1

(No. 26) HHHX9
p-|

(No. 29) HHH2?
P=\



(No. 31) HHH2j+e
13=\

(No. 32) HHH24
P=|

(No. 33) HHH2A+e
p=1

(No. 34) HHH25
p=2

(No. 35) HHH2(>
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(No. 36) HHH21
P=\

(No. 37) HHHI1%
/?7=1

(No. 38) HHH29

(No. 39) HHmO
p=2
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(No. 40)
P=\

(No. 41)
B-1

(No.42) mm 33
p -\

(No. 43) HHH34
p -\

(No. 44) & %55
p=i
wr»je=jas)as*Enss?sas-K*2f..«54

%

) »
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(No. 45) HHH36

1

e,

A g s~

(No. 46) HHH37

N,

T

B ik

T T TR,

Pt i

& A G SO T

(No. 47) HHH3S

(No. 48) HHH39

T o e i S

(No. 49) HHHA40

i

1
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(No. 50) HHH4\ (No. 51) HHHAI + e

p=\ /7=1
(No. 52) HHH42 (No. 53) HHHA42 + e(ci)
/2=1 /3=2
(No. 54) HHH42 + e (b) (No. 55) HHH42 + 2e(a +b)
P- f=2

a*
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(No. 56) HHH42 +2e= HHH43 + ¢ (No. 57) HHH42 + 3¢ = HHH43 + 2e
p=3 A=5

(No. 58) HHHA43 (No. 59) HHH43+ e

P= P=\

(No. 60) HHH43+2e
p=\
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(No. 61) HHH44
p=~

(No. 62) HHHA45
P=5

(No. 63) HHH46
p-35



(No. 64) HHHA4I
p=1

(No. 65) HHH4%
P=1\

(No. 66)  ifflT/48 +e = HHHA49 + e
'P=2

(No. 67) HHH4S+2e = HHHA49 + 2e

HHHS50 + e



(No. 68) HHH4&+3e = HHHA49 + 3e
A=5

(No. 69) HHHA49
P=|

(No. 70) HHHS0
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~
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End of catalogue.
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Appendix (6.2)
We present brief descriptions of algorithms for classifying graphs. For any graph G,
we denote by p(G) the number of even components, that is, the number of connected
components with an even number of vertices. We denote by gure(G — (Si Y S;)) the

components, odd and/or even, in (G —(S; U S;)) which have less than four vertices.

Algorithm for Regular Cubics

(1) Find a vertex colouring x(V(G)) that is non-isochromatic to any colouring
previously tested. If all have been tested, the graph is type 2, therefore, stop.

(2) Check for (ordinary) conformability. If not conformable go back to (1).

(3) Count ; for all i.

(4) Compare o(G —(S; U S))) and |S; U S{. If o(G - (S; U S))) > |S; w Si then
H(V) is not G*-conformable, go back to (1).

(5) Apply Tutte’s condition to find a 1-factor in G - §; for each colour ¢;. If for
some colour ¢;, no 1-factor can be found go back to (1)

©) If [0(G —(Si USp) + p(G~(S;i W S)))| < (mi+ nj)/2, go back to (1).

(D) If |guree(G — (Si U SY)| < (ni + 1))/2, go back to (1).

(8) If |o(G - (S: U S))| > 2g, or odd, where 2q < min{n;, n;} go back to (1).

(9) Find a new (untested) set of 1-factors, such that we have one 1-factor for
each colour. If no new set can be found go back to (1). (This includes the
case where no 1-factor can be found for some colour c;)

(10) If in the set of 1-factors thé same edge is in two 1-factors, go back to (9).

(12) If a set Fy is found which gives a proper total colouring: stop.

This method should result in a proper total colouring. If however an exhaustive

search fails then since all possibilities have been tried then the graph is type 2. The
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method for semi regular graphs is so similar we will not present it. However, since in
general, graphs with degree greater than three are more likely to have just one
connected components for all or most (G - S; - §;) the method has fewef known
conditions and hence though in the following algorithm the number of steps are fewer
the number of operations within each step will be much longer as the general case is
an NP-problem. Nevertheless, in practical terms, solutions for relatively small graphs

such as those in appendix (6.1) have be achieved by this method.

Algorithm for general non cubic graphs

(1) Find a vertex colouring £(V(G)) that is non-isochromatic to any previous
colouring. If all other vertex colourings have already been tested then the graph
is type 2, therefore, stop.

(2) Check for (ordinary) conformability. If not conformable go back to (1).

(3) Find a spine-vertex colouring (V) with £(V(G)) that is non-isochromatic to any
spine-vertex colouring that has previously been tested. If no new spine —vertex
colourings exists go back to (1).

(4) Count »; for all i.

(5) If o(G~(S: uS)) |>[(S: U Sy, go back to (3)

(6) Apply Tuttes condition to find a new (untested) set of 1-factors Fy in G — S; for
each colour ¢;. If no new set of l-factors can be found, go back to (3).

(7) If any edge is in two 1-factors of Fy, go back to (6).

(8) This is a proper total colouring: stop.

Again this algorithm should result in a proper total colouring. If however an
exhaustive search fails then since all possibilities have been tries then the graph is

type 2. The method for semi regular graphs is so similar we will not present it.
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Appendix (7.1)
We find an algorithm for finding a semi-total colouring with low beta number.

Colouring a Known Graph

The following method of colouring a known graph is based on the concept of a
‘greedy algorithm’. Though it has not been proven to be the best possible method

there are none, to our knowledge, that have been proven to work any better.

This method builds up a colouring using the webs of Kempe chains defined in
Chapter 2. First choose a maximum vahie fort, i.e. welett< T. Then we decide
how hard we need to try to get a proper (A + T )-total colouring, which is to say that
we decide in advance how many iterations of each stage we are prepared to make

before going on to the next stage, we call the number of iterations s, for the stage ¢
total colouring process and b, for stage ¢ f-colouring process. We iterate as follows

from *,

*For each vertex in turn we attempt to find a (locally) total colouring with A+t colours
with up to s; iterations. If this fails, we find the best beta colouring that we can with
A+t colours up to b, iterations. When all vertices have been considered and ¢t = T, we

stop: but if #< 7, we introduce the next colour ¢ + 1 and begin again at *,

In more detail but nevertheless in outline we proceed as follows with the notation as

above and below.
An acceptable edge colour for ey, y is one which is not on neither vertex v, nor vy.

An acceptable vertex colour for v, is one which is not on any adjacent vertex.
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An acceptable Kempe interchange from v; is one which does not end at any vertex

adjacent to another vertex of the other (new) colour.

An acceptable web from v, is one which does not use any colour of any vertex

adjacent to v, nor does it include any vertex adjacent to vy.

Step 0. Lett = 0. Chose a maximal vertex call it v; call the neighbours of v; : v; where
i=1,2, .., A+l. Consider each labelled vertex v;, in numerical order, label any
unlabelled neighbours v; with the next (unused) label v;. Eventually all vertices will

be labelled.

Step 1. We now find an (A + 1)-edge colouring and attempt to find a (A + 1)-total
colouring. Colour the edge ey,; with c; as in Chapter 6. Where this is acceptable,
colour vertex va+1 with colour ¢; and colour each of the vertices v; with ¢, for all

i <A+1. (Inthe case of K; there is no colour c;,; and we must go directly to step 2 .
We continue with successive vertices v;. At each vertex we first assigning acceptable
colours to the edges incident with v; then, if there are uncoloured edges, we use
Kempe interchanges until a proper (local) colouring has been achieved at v;. This can
always be done via Vizing’s theorem. We then assign acceptable vertex colours to
the neighbours of v; and then, if there are uncoloured vertices adjacent to v; we look at
a further s; < 5, Kempe chains until we find one which would give us a proper (local)
colouring and when the first one is found we apply the said Kempe interchange and
go to the next vertex viy1. If when s; =5, we have not found a chain that would give
us a proper local colouring then we apply the Kempe interchange that gave us the best

beta value and go to the next vertex vi.;. When all edges and vertices have been
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assigned colours, if the colouring is a proper total colouring we stop. If the colouring

is a semi-total colouring we go on to the next stage, first setting b=0.

Step 2.

We wish to find a proper (A + ¢ +1) total colouring. We have a subset of vertices (V)
such that each vertex is in only if it is opposed. We arrange the vertices v; of (Vp) in
numerical order and consider the vertices with smallest i first. At each v; we look at
every available Kempe chain leading from a spine. If vany acceptable intercharige is
found we apply it and go on to the next vertex in (V). If there are no acceptable
Kempe interchanges, we consider every available web. We interchange the first one
that is acceptable. If this has resulted in a type 1 graph we stop otherwise we go on to
the nest vertex in (V). If however, no web is acceptable we apply any Kempe or web
interchange that reduces beta providing all the new opposed vertices are in of (V)
which we have not yet considered otherwise we do not alter anything but repeat the
search w.r.t. the next vertex. This avoids including new vertices in (Vg). When we
have looked at all vertices in (Vg) welet b = b + 1. If now, we have b = b, then we go

on to the next step. If b < b, then we repeat this step for all opposed vertices.

Step 3. If the number of colours that we have been using in the last stage of step 2 is
(A+1t)=(A+T) then we stop. This is the best beta colouring that we could achieve
within our limitations. If however, 1< T, then we introduce the hext colour ca++1 @S a
spine at every vertex in G. Now we go back and repeat step 2 with this new set of

spines. Clearly the first vertex in the new (Vg) will be assigned the colour ca4s+1.



Appendix (7.2)
We remark on a particular infinite set of nested total colourings.

Fractal Colouring

Consider the standard tessellation of seven hexagons each with a different colour.

The central hexagon is never adjacent to any other hexagon ofthe same colour. When
the piece is kept in the same orientation we can cover the infinite plane in such a way
that any colour can be chosen as the central hexagon with sides adjacent to all six
other colours. The dual ofthis graph is a regular triangulation ofthe plane, A= 6.

This dual is a proper vertex colouring each with just one neighbour of every other
colour. This vertex colouring can be extended to several complete but different total

colourings. A sample ofthe hexagonal tessellation and dual are shown in figure 7.2 1.

Figure 7.2.1

A sub-triangulation ofthe plane is derived from a triangulation ofthe plane where
each of'the original triangles is subdivided into four smaller triangles by joining the

mid points of each edge across the plane of each triangle.

Lemma A.7.2.1 Any total colouring o fthe triangulatedplane, G\, provides aproper

vertex colouring o fthe siib-triangulation, G?.
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Proof. Consider any total colouring of a triangulation ofthe plane. The vertices of
the total colouring are already a proper vertex colouring ofthe plane. Consider such a
colouring where the labels ofthe colours have not yet been fixed. Take any edge el in
Gi, call the colour c¢l. Let the vertices incident with el be v? and vg with colours &
and G respectively. There are two incident triangles in the plane, call them {v2, V3 and
Vitand (V3 2 and V5}, see figures A.7.2.2 - A7.2.4. To create Gj we replace edge el
with a new vertex, call it vi and two new edges elg and g, 3. We do a similar
operation to every other edge. Now in G2, v| has neighbours {v2, V3, \24, V25, V34, V35}.
Since the original graph had a total colouring, vi is not the same colour as either ofthe
old vertices, V2, V3, to which it is adjacent nor is it the colour of an edges from V2, V3 to
Vi or V5 in Gi, hence M is not the same colour as the vertices to which it is now

adjacent. Hence the colouring G2 is a proper vertex colouring. m

(@) ®)

Figure A.7.2.2

A ib)

Figure A.7.2.3
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Figure A.7.2.4

A delete-triangulation ofthe plane is the reverse of a sub-trianguiation. G.\ is
derived from a triangulation ofthe plane Gi, by removing every other vertex (call
these, f7) and all edges incident with them and then creating a single edge between
the vertices in (F - Vi) such that where v! is a vertex in F then we get a triangulation

ofthe plane with an edge 623 in G i where we had edges ei” and 3 in G\

Note that the reverse of lemma A.7.2.1 is not necessarily true. In the case of Figure
A.7.2.2 the vertex colouring (b) only provides a total colouring for a delete-
triangulation ofthe plane if we choose the particular vertices given in (a), the other set
of vertices would give an improper colouring to the edges. For example, if we chose
vi to be a vertex in G.i then we would have two red edges and two blue edges

incident with e

Theorem A.7.2.2 There is a sequence o ftotal colourings which lead to isochromatic

vertex colouringsfor an infinite number o fsub-triangulations o fthe plane.

Proof. Again consider figure A.7.2.1. This is a standard seven colour vertex

colouring ofthe triangulation of'the plane G|_which we will call p{G/). Note that we
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can initially call any colour on a vertex, colour ¢;. We can extend this fragment to the
entire plane by repeating the sequence so that every horizontal has the colours in the
same order {1, 2, 3,4, 5, 6, 7}; this causes every forward slash diagonal to be

{1,4,7,3,6,2,5} and every backward slash diagonal to be {1, 3,5, 7, 2, 4, 6}.

We can then total .colour the edges to get the (specific) total colour in figure 7.2.4 (a).
Call this colouring &G,). From &G1) we can get the vertex colouring of the sub-
triangulation G, in figure 7.3.4 (b) Call it 1(G>).

Since every vertex in 4(G») has neighbours of every other colour in the same order,
we could re-label the colours to get our original colouring, hence u(G5) is
isochromatic to x(G;). However, note that other total colourings such as those in
figures 7.2.2 (@) and 7.2.3 (a) lead to vertex colourings 7.2.2 (b) and 7.2.3 (b) which
are non isochromatic to #(G) since there are now vertices which do not have every

neighbour of a different colour.

In £4(G») we can call any colour c; on any vertex. From this vertex every horizontal
has the colours in the sequence {1, 5, 2, 6, 3, 7, 4} (whichis {1, 4,7, 3, 6, 2, 5}
reversed); every forward slash diagonal has the sequence {1, 6, 4, 2, 7, 5, 3} (which is
{1,3,5,7,2,4, 6} reversed); every backward slash diagonal has the sequence

{1,2,3,4,5,6,7}.

We now total colour the edges of to 1(G») with the (specific) colouring in figure

A.7.2.5 (a). Call this total colouring &G>).



@0 (6) /<(33).
Figure A.7.2.5

From this total colouring we can get the vertex colouring of'the sub-triangulation in
figure A.7.2.5 {b) Call it Again we can call any colour ¢! on any vertex.
Since we could re-label the colours to get our original colouring, //(Gs) is also
isomoiphic to ju{G\). From this vertex every horizontal has the colours in the
sequence {1,3, 5, 7, 2, 4, 6}; every forward slash diagonal has the sequence
{1,7, 6, 5,4, 3,2} (whichis {1,2,3, 4, 5, 6, 7} reversed); every backward slash

diagonal has the sequenee {1,5, 2, 6, 3, 7, 4).
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Figure A.7.2.6 6{G")

We now total colour the edges of ju{G") to get figure A.7.2.6. Call this 6{G").
From this total colouring we can get the vertex colouring ofthe sub-triangulation in

figure A.7.2.7 Call it //(G4).

ccC
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Figure A.1.2.7 (Gy)

Again we can call any colour ci on any vertex. From this vertex every horizontal has
the colours in the sequence {1, 2, 3, 4, 5, 6, 7}; every forward slash diagonal has the
sequence {1, 4, 7, 3, 6, 2, 5}; every backward slash diagonal has the sequence{1, 3, 5,
7, 2,4, 6} this is identical to (Gy).

Since w(Gs)= #(G1) we know that we can continue to find total colourings and

isomorphic vertex colourings for an infinite number of further sub-triangulations. B

Since all the above colourings are standard vertex colourings based on a standard
tiling pattern, we do not claim to have invented them. However, we believe that we
are the first to have noticed that what we are looking at is an infinite set of nested total

colourings.
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