4,727 research outputs found

    Aspects of the planetary Birkhoff normal form

    Full text link
    The discovery in [G. Pinzari. PhD thesis. Univ. Roma Tre. 2009], [L. Chierchia and G. Pinzari, Invent. Math. 2011] of the Birkhoff normal form for the planetary many--body problem opened new insights and hopes for the comprehension of the dynamics of this problem. Remarkably, it allowed to give a {\sl direct} proof of the celebrated Arnold's Theorem [V. I. Arnold. Uspehi Math. Nauk. 1963] on the stability of planetary motions. In this paper, using a "ad hoc" set of symplectic variables, we develop an asymptotic formula for this normal form that may turn to be useful in applications. As an example, we provide two very simple applications to the three-body problem: we prove a conjecture by [V. I. Arnold. cit] on the "Kolmogorov set"of this problem and, using Nehoro{\v{s}}ev Theory [Nehoro{\v{s}}ev. Uspehi Math. Nauk. 1977], we prove, in the planar case, stability of all planetary actions over exponentially-long times, provided mean--motion resonances are excluded. We also briefly discuss perspectives and problems for full generalization of the results in the paper.Comment: 44 pages. Keywords: Averaging Theory, Birkhoff normal form, Nehoro{\v{s}}ev Theory, Planetary many--body problem, Arnold's Theorem on the stability of planetary motions, Properly--degenerate kam Theory, steepness. Revised version, including Reviewer's comments. Typos correcte

    Synthesizing Switching Controllers for Hybrid Systems by Continuous Invariant Generation

    Full text link
    We extend a template-based approach for synthesizing switching controllers for semi-algebraic hybrid systems, in which all expressions are polynomials. This is achieved by combining a QE (quantifier elimination)-based method for generating continuous invariants with a qualitative approach for predefining templates. Our synthesis method is relatively complete with regard to a given family of predefined templates. Using qualitative analysis, we discuss heuristics to reduce the numbers of parameters appearing in the templates. To avoid too much human interaction in choosing templates as well as the high computational complexity caused by QE, we further investigate applications of the SOS (sum-of-squares) relaxation approach and the template polyhedra approach in continuous invariant generation, which are both well supported by efficient numerical solvers

    Hydrogen atom in crossed electric and magnetic fields: Phase space topology and torus quantization via periodic orbits

    Get PDF
    A hierarchical ordering is demonstrated for the periodic orbits in a strongly coupled multidimensional Hamiltonian system, namely the hydrogen atom in crossed electric and magnetic fields. It mirrors the hierarchy of broken resonant tori and thereby allows one to characterize the periodic orbits by a set of winding numbers. With this knowledge, we construct the action variables as functions of the frequency ratios and carry out a semiclassical torus quantization. The semiclassical energy levels thus obtained agree well with exact quantum calculations

    M\"obius Invariants of Shapes and Images

    Full text link
    Identifying when different images are of the same object despite changes caused by imaging technologies, or processes such as growth, has many applications in fields such as computer vision and biological image analysis. One approach to this problem is to identify the group of possible transformations of the object and to find invariants to the action of that group, meaning that the object has the same values of the invariants despite the action of the group. In this paper we study the invariants of planar shapes and images under the M\"obius group PSL(2,C)\mathrm{PSL}(2,\mathbb{C}), which arises in the conformal camera model of vision and may also correspond to neurological aspects of vision, such as grouping of lines and circles. We survey properties of invariants that are important in applications, and the known M\"obius invariants, and then develop an algorithm by which shapes can be recognised that is M\"obius- and reparametrization-invariant, numerically stable, and robust to noise. We demonstrate the efficacy of this new invariant approach on sets of curves, and then develop a M\"obius-invariant signature of grey-scale images

    Gopakumar-Vafa invariants via vanishing cycles

    Get PDF
    In this paper, we propose an ansatz for defining Gopakumar-Vafa invariants of Calabi-Yau threefolds, using perverse sheaves of vanishing cycles. Our proposal is a modification of a recent approach of Kiem-Li, which is itself based on earlier ideas of Hosono-Saito-Takahashi. We conjecture that these invariants are equivalent to other curve-counting theories such as Gromov-Witten theory and Pandharipande-Thomas theory. Our main theorem is that, for local surfaces, our invariants agree with PT invariants for irreducible one-cycles. We also give a counter-example to the Kiem-Li conjectures, where our invariants match the predicted answer. Finally, we give examples where our invariant matches the expected answer in cases where the cycle is non-reduced, non-planar, or non-primitive.Comment: 63 pages, many improvements of the exposition following referee comments, final version to appear in Inventione

    SecDec: A general program for sector decomposition

    Full text link
    We present a program for the numerical evaluation of multi-dimensional polynomial parameter integrals. Singularities regulated by dimensional regularisation are extracted using iterated sector decomposition. The program evaluates the coefficients of a Laurent series in the regularisation parameter. It can be applied to multi-loop integrals in Euclidean space as well as other parametric integrals, e.g. phase space integrals.Comment: 42 pages, 12 figures. Replaced by published version. Cuba library included in the progra
    corecore