4 research outputs found

    Mathematical Models and Algorithms for Network Flow Problems Arising in Wireless Sensor Network Applications

    Get PDF
    We examine multiple variations on two classical network flow problems, the maximum flow and minimum-cost flow problems. These two problems are well-studied within the optimization community, and many models and algorithms have been presented for their solution. Due to the unique characteristics of the problems we consider, existing approaches cannot be directly applied. The problem variations we examine commonly arise in wireless sensor network (WSN) applications. A WSN consists of a set of sensors and collection sinks that gather and analyze environmental conditions. In addition to providing a taxonomy of relevant literature, we present mathematical programming models and algorithms for solving such problems. First, we consider a variation of the maximum flow problem having node-capacity restrictions. As an alternative to solving a single linear programming (LP) model, we present two alternative solution techniques. The first iteratively solves two smaller auxiliary LP models, and the second is a heuristic approach that avoids solving any LP. We also examine a variation of the maximum flow problem having semicontinuous restrictions that requires the flow, if positive, on any path to be greater than or equal to a minimum threshold. To avoid solving a mixed-integer programming (MIP) model, we present a branch-and-price algorithm that significantly improves the computational time required to solve the problem. Finally, we study two dynamic network flow problems that arise in wireless sensor networks under non-simultaneous flow assumptions. We first consider a dynamic maximum flow problem that requires an arc to transmit a minimum amount of flow each time it begins transmission. We present an MIP for solving this problem along with a heuristic algorithm for its solution. Additionally, we study a dynamic minimum-cost flow problem, in which an additional cost is incurred each time an arc begins transmission. In addition to an MIP, we present an exact algorithm that iteratively solves a relaxed version of the MIP until an optimal solution is found

    Solving Multi-objective Integer Programs using Convex Preference Cones

    Get PDF
    Esta encuesta tiene dos objetivos: en primer lugar, identificar a los individuos que fueron víctimas de algún tipo de delito y la manera en que ocurrió el mismo. En segundo lugar, medir la eficacia de las distintas autoridades competentes una vez que los individuos denunciaron el delito que sufrieron. Adicionalmente la ENVEI busca indagar las percepciones que los ciudadanos tienen sobre las instituciones de justicia y el estado de derecho en Méxic

    Integer programming approaches for semicontinuous and stochastic optimization

    Get PDF
    This thesis concerns the application of mixed-integer programming techniques to solve special classes of network flow problems and stochastic integer programs. We draw tools from complexity and polyhedral theory to analyze these problems and propose improved solution methods. In the first part, we consider semi-continuous network flow problems, that is, a class of network flow problems where some of the variables are required to take values above a prespecified minimum threshold whenever they are not zero. These problems find applications in management and supply chain models where orders in small quantities are undesirable. We introduce the semi-continuous inflow set with variable upper bounds as a relaxation of general semi-continuous network flow problems. Two particular cases of this set are considered, for which we present complete descriptions of the convex hull in terms of linear inequalities and extended formulations. We also consider a class of semi-continuous transportation problems where inflow systems arise as substructures, for which we investigate complexity questions. Finally, we study the computational efficacy of the developed polyhedral results in solving randomly generated instances of semi-continuous transportation problems. In the second part, we introduce and study the forbidden-vertices problem. Given a polytope P and a subset X of its vertices, we study the complexity of optimizing a linear function on the subset of vertices of P that are not contained in X. This problem is closely related to finding the k-best basic solutions to a linear problem and finds applications in stochastic integer programming. We observe that the complexity of the problem depends on how P and X are specified. For instance, P can be explicitly given by its linear description, or implicitly by an oracle. Similarly, X can be explicitly given as a list of vectors, or implicitly as a face of P. While removing vertices turns to be hard in general, it is tractable for tractable 0-1 polytopes, and compact extended formulations can be obtained. Some extensions to integral polytopes are also presented. The third part is devoted to the integer L-shaped method for two-stage stochastic integer programs. A widely used model assumes that decisions are made in a two-step fashion, where first-stage decisions are followed by second-stage recourse actions after the uncertain parameters are observed, and we seek to minimize the expected overall cost. In the case of finitely many possible outcomes or scenarios, the integer L-shaped method proposes a decomposition scheme akin to Benders' decomposition for linear problems, but where a series of mixed-integer subproblems have to be solved at each iteration. To improve the performance of the method, we devise a simple modification that alternates between linear and mixed-integer subproblems, yielding significant time savings in instances from the literature. We also present a general framework to generate optimality cuts via a cut-generating problem. Using an extended formulation of the forbidden-vertices problem, we recast our cut-generating problem as a linear problem and embed it within the integer L-shaped method. Our numerical experiments suggest that this approach can prove beneficial when the first-stage set is relatively complicated.Ph.D
    corecore