1,840 research outputs found

    A unified method for augmented incremental recognition of online handwritten Japanese and English text

    Get PDF
    We present a unifed method to augmented incremental recognition for online handwritten Japanese and English text, which is used for busy or on-the-fly recognition while writing, and lazy or delayed recognition after writing, without incurring long waiting times. It extends the local context for segmentation and recognition to a range of recent strokes called "segmentation scope" and "recognition scop", respectively. The recognition scope is inside of the segmentation scope. The augmented incremental recognition triggers recognition at every several recent strokes, updates the segmentation and recognition candidate lattice, and searches over the lattice for the best result incrementally. It also incorporates three techniques. The frst is to reuse the segmentation and recognition candidate lattice in the previous recognition scope for the current recognition scope. The second is to fx undecided segmentation points if they are stable between character/word patterns. The third is to skip recognition of partial candidate character/word patterns. The augmented incremental method includes the case of triggering recognition at every new stroke with the above-mentioned techniques. Experiments conducted on TUAT-Kondate and IAM online database show its superiority to batch recognition (recognizing text at one time) and pure incremental recognition (recognizing text at every input stroke) in processing time, waiting time, and recognition accuracy

    Augmented incremental recognition of online handwritten mathematical expressions

    Get PDF
    This paper presents an augmented incremental recognition method for online handwritten mathematical expressions (MEs). If an ME is recognized after all strokes are written (batch recognition), the waiting time increases significantly when the ME becomes longer. On the other hand, the pure incremental recognition method recognizes an ME whenever a new single stroke is input. It shortens the waiting time but degrades the recognition rate due to the limited context. Thus, we propose an augmented incremental recognition method that not only maintains the advantage of the two methods but also reduces their weaknesses. The proposed method has two main features: one is to process the latest stroke, and the other is to find the erroneous segmentations and recognitions in the recent strokes and correct them. In the first process, the segmentation and the recognition by Cocke-Younger-Kasami (CYK) algorithm are only executed for the latest stroke. In the second process, all the previous segmentations are updated if they are significantly changed after the latest stroke is input, and then, all the symbols related to the updated segmentations are updated with their recognition scores. These changes are reflected in the CYK table. In addition, the waiting time is further reduced by employing multi-thread processes. Experiments on our dataset and the CROHME datasets show the effectiveness of this augmented incremental recognition method, which not only maintains recognition rate even compared with the batch recognition method but also reduces the waiting time to a very small level

    Real-time Online Chinese Character Recognition

    Get PDF
    In this project, I built a web application for handwritten Chinese characters recognition in real time. This system determines a Chinese character while a user is drawing/writing it. The techniques and steps I use to build the recognition system include data preparation, preprocessing, features extraction, and classification. To increase the accuracy, two different types of neural networks ared used in the system: a multi-layer neural network and a convolutional neural network

    Content Recognition and Context Modeling for Document Analysis and Retrieval

    Get PDF
    The nature and scope of available documents are changing significantly in many areas of document analysis and retrieval as complex, heterogeneous collections become accessible to virtually everyone via the web. The increasing level of diversity presents a great challenge for document image content categorization, indexing, and retrieval. Meanwhile, the processing of documents with unconstrained layouts and complex formatting often requires effective leveraging of broad contextual knowledge. In this dissertation, we first present a novel approach for document image content categorization, using a lexicon of shape features. Each lexical word corresponds to a scale and rotation invariant local shape feature that is generic enough to be detected repeatably and is segmentation free. A concise, structurally indexed shape lexicon is learned by clustering and partitioning feature types through graph cuts. Our idea finds successful application in several challenging tasks, including content recognition of diverse web images and language identification on documents composed of mixed machine printed text and handwriting. Second, we address two fundamental problems in signature-based document image retrieval. Facing continually increasing volumes of documents, detecting and recognizing unique, evidentiary visual entities (\eg, signatures and logos) provides a practical and reliable supplement to the OCR recognition of printed text. We propose a novel multi-scale framework to detect and segment signatures jointly from document images, based on the structural saliency under a signature production model. We formulate the problem of signature retrieval in the unconstrained setting of geometry-invariant deformable shape matching and demonstrate state-of-the-art performance in signature matching and verification. Third, we present a model-based approach for extracting relevant named entities from unstructured documents. In a wide range of applications that require structured information from diverse, unstructured document images, processing OCR text does not give satisfactory results due to the absence of linguistic context. Our approach enables learning of inference rules collectively based on contextual information from both page layout and text features. Finally, we demonstrate the importance of mining general web user behavior data for improving document ranking and other web search experience. The context of web user activities reveals their preferences and intents, and we emphasize the analysis of individual user sessions for creating aggregate models. We introduce a novel algorithm for estimating web page and web site importance, and discuss its theoretical foundation based on an intentional surfer model. We demonstrate that our approach significantly improves large-scale document retrieval performance

    Seq-UPS: Sequential Uncertainty-aware Pseudo-label Selection for Semi-Supervised Text Recognition

    Full text link
    This paper looks at semi-supervised learning (SSL) for image-based text recognition. One of the most popular SSL approaches is pseudo-labeling (PL). PL approaches assign labels to unlabeled data before re-training the model with a combination of labeled and pseudo-labeled data. However, PL methods are severely degraded by noise and are prone to over-fitting to noisy labels, due to the inclusion of erroneous high confidence pseudo-labels generated from poorly calibrated models, thus, rendering threshold-based selection ineffective. Moreover, the combinatorial complexity of the hypothesis space and the error accumulation due to multiple incorrect autoregressive steps posit pseudo-labeling challenging for sequence models. To this end, we propose a pseudo-label generation and an uncertainty-based data selection framework for semi-supervised text recognition. We first use Beam-Search inference to yield highly probable hypotheses to assign pseudo-labels to the unlabelled examples. Then we adopt an ensemble of models, sampled by applying dropout, to obtain a robust estimate of the uncertainty associated with the prediction, considering both the character-level and word-level predictive distribution to select good quality pseudo-labels. Extensive experiments on several benchmark handwriting and scene-text datasets show that our method outperforms the baseline approaches and the previous state-of-the-art semi-supervised text-recognition methods.Comment: Accepted at WACV 202

    Publications of H.D. Mills

    Get PDF

    Advanced document data extraction techniques to improve supply chain performance

    Get PDF
    In this thesis, a novel machine learning technique to extract text-based information from scanned images has been developed. This information extraction is performed in the context of scanned invoices and bills used in financial transactions. These financial transactions contain a considerable amount of data that must be extracted, refined, and stored digitally before it can be used for analysis. Converting this data into a digital format is often a time-consuming process. Automation and data optimisation show promise as methods for reducing the time required and the cost of Supply Chain Management (SCM) processes, especially Supplier Invoice Management (SIM), Financial Supply Chain Management (FSCM) and Supply Chain procurement processes. This thesis uses a cross-disciplinary approach involving Computer Science and Operational Management to explore the benefit of automated invoice data extraction in business and its impact on SCM. The study adopts a multimethod approach based on empirical research, surveys, and interviews performed on selected companies.The expert system developed in this thesis focuses on two distinct areas of research: Text/Object Detection and Text Extraction. For Text/Object Detection, the Faster R-CNN model was analysed. While this model yields outstanding results in terms of object detection, it is limited by poor performance when image quality is low. The Generative Adversarial Network (GAN) model is proposed in response to this limitation. The GAN model is a generator network that is implemented with the help of the Faster R-CNN model and a discriminator that relies on PatchGAN. The output of the GAN model is text data with bonding boxes. For text extraction from the bounding box, a novel data extraction framework consisting of various processes including XML processing in case of existing OCR engine, bounding box pre-processing, text clean up, OCR error correction, spell check, type check, pattern-based matching, and finally, a learning mechanism for automatizing future data extraction was designed. Whichever fields the system can extract successfully are provided in key-value format.The efficiency of the proposed system was validated using existing datasets such as SROIE and VATI. Real-time data was validated using invoices that were collected by two companies that provide invoice automation services in various countries. Currently, these scanned invoices are sent to an OCR system such as OmniPage, Tesseract, or ABBYY FRE to extract text blocks and later, a rule-based engine is used to extract relevant data. While the system’s methodology is robust, the companies surveyed were not satisfied with its accuracy. Thus, they sought out new, optimized solutions. To confirm the results, the engines were used to return XML-based files with text and metadata identified. The output XML data was then fed into this new system for information extraction. This system uses the existing OCR engine and a novel, self-adaptive, learning-based OCR engine. This new engine is based on the GAN model for better text identification. Experiments were conducted on various invoice formats to further test and refine its extraction capabilities. For cost optimisation and the analysis of spend classification, additional data were provided by another company in London that holds expertise in reducing their clients' procurement costs. This data was fed into our system to get a deeper level of spend classification and categorisation. This helped the company to reduce its reliance on human effort and allowed for greater efficiency in comparison with the process of performing similar tasks manually using excel sheets and Business Intelligence (BI) tools.The intention behind the development of this novel methodology was twofold. First, to test and develop a novel solution that does not depend on any specific OCR technology. Second, to increase the information extraction accuracy factor over that of existing methodologies. Finally, it evaluates the real-world need for the system and the impact it would have on SCM. This newly developed method is generic and can extract text from any given invoice, making it a valuable tool for optimizing SCM. In addition, the system uses a template-matching approach to ensure the quality of the extracted information

    Reliable pattern recognition system with novel semi-supervised learning approach

    Get PDF
    Over the past decade, there has been considerable progress in the design of statistical machine learning strategies, including Semi-Supervised Learning (SSL) approaches. However, researchers still have difficulties in applying most of these learning strategies when two or more classes overlap, and/or when each class has a bimodal/multimodal distribution. In this thesis, an efficient, robust, and reliable recognition system with a novel SSL scheme has been developed to overcome overlapping problems between two classes and bimodal distribution within each class. This system was based on the nature of category learning and recognition to enhance the system's performance in relevant applications. In the training procedure, besides the supervised learning strategy, the unsupervised learning approach was applied to retrieve the "extra information" that could not be obtained from the images themselves. This approach was very helpful for the classification between two confusing classes. In this SSL scheme, both the training data and the test data were utilized in the final classification. In this thesis, the design of a promising supervised learning model with advanced state-of-the-art technologies is firstly presented, and a novel rejection measurement for verification of rejected samples, namely Linear Discriminant Analysis Measurement (LDAM), is defined. Experiments on CENPARMI's Hindu-Arabic Handwritten Numeral Database, CENPARMI's Numerals Database, and NIST's Numerals Database were conducted in order to evaluate the efficiency of LDAM. Moreover, multiple verification modules, including a Writing Style Verification (WSV) module, have been developed according to four newly defined error categories. The error categorization was based on the different costs of misclassification. The WSV module has been developed by the unsupervised learning approach to automatically retrieve the person's writing styles so that the rejected samples can be classified and verified accordingly. As a result, errors on CENPARMI's Hindu-Arabic Handwritten Numeral Database (24,784 training samples, 6,199 testing samples) were reduced drastically from 397 to 59, and the final recognition rate of this HAHNR reached 99.05%, a significantly higher rate compared to other experiments on the same database. When the rejection option was applied on this database, the recognition rate, error rate, and reliability were 97.89%, 0.63%, and 99.28%, respectivel
    corecore