
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 12-20-2016

Real-time Online Chinese Character Recognition
Wenlong Zhang
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Artificial Intelligence and Robotics Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Zhang, Wenlong, "Real-time Online Chinese Character Recognition" (2016). Master's Projects. 504.
DOI: https://doi.org/10.31979/etd.u4m4-8w8a
https://scholarworks.sjsu.edu/etd_projects/504

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F504&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F504&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F504&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F504&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F504&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/504?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F504&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Real-time Online Chinese

Character Recognition

Wenlong Zhang

Computer Science Department

San Jose State University

San Jose, CA 95192

408-924-1000

December, 2016

The Designated Project Committee Approves the Project Titled

Real-time Online Chinese Character Recognition

by

Wenlong Zhang

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

December 2016

Dr. Robert Chun Department of Computer Science

Dr. Katerina Potika Department of Computer Science

Ezekiel Calubaquib Software Engineer in Cohesity

Abstract

In this project, I am going to build a web application for handwritten Chinese

characters recognition in real time, which means this system will determine a

Chinese character while user is drawing/writing. While utilizing different tools to

build the app, the techniques I use to build the recognition system including data

preparation, preprocessing, features extraction, and classifying. To increase the

accuracy, two different types of neural networks will be used in the system: multi-layer

neural network and convolutional neural network.

i

Contents

1 Introduction ... 1

2 Existing Solutions ... 9

2.1 Preparation ... 9

2.2 Backpropagation Neural Network ... 11

2.3 Convolutional Neural Network .. 14

2.4 QuickStroke .. 16

3 Proposed Solution .. 19

3.1 Dataset .. 19

3.2 Idea .. 20

3.3 Tools .. 21

3.3.1 Python ... 21

3.3.2 XAMPP ... 22

3.3.3 jSignature ... 22

3.3.4 Keras ... 22

4 Implementation ... 24

4.1 Dataset Preparation ... 24

4.2 Preprocessing .. 26

4.2.1 Introduction .. 26

4.2.2 De-hook ... 26

4.2.3 Normalization ... 27

4.2.4 Smooth Using Bezier Curve .. 30

4.3 Feature extraction .. 31

4.3.1 Directions ... 31

4.3.2 Zones ... 31

4.3.3 Binary Image .. 33

4.4 Neural network ... 33

4.4.1 Multi-layer Neural Network .. 34

4.4.2 Convolutional Neural Network ... 35

4.5 Post-processing ... 35

5 Result ... 36

ii

6 Conclusion and Future Work .. 42

7 References .. 44

1

1 INTRODUCTION

The 21st century is often called “the century of information.” As innovation

and knowledge increases, the information era continues to advance. In China, more

and more people are beginning to use computers in different aspects of their lives,

including simple daily tasks, work, leisure and entertainment. Given the diverse

range of education in the Chinese speaking community, the first problem is how to

facilitate entering Chinese characters using a standard alphanumeric keyboard,

which directly affects the application and development of processing Chinese

character information on the computer.

"Pinyin is the official romanization system for Standard Chinese. It includes

four diacritics denoting tones. Pinyin without tone marks is used to spell Chinese

names and words in languages written with the Latin alphabet, and also in certain

computer input methods to enter Chinese characters." [1] Everyone struggles when

entering Chinese characters on a computer; people who utilize the Pinyin input

method, often misspell the intended word, at least on the first try. Even though

other input methods that deconstruct characters into a series of strokes can be used,

this requires the user to be knowledgeable about the structure of Chinese

characters. In light of this situation, the “handwriting style” input method, in which

a user writes characters directly onto a tablet, has become more and more popular.

As long as the user writes the Chinese characters on an electronic “writing pad” (as

2

they would on normal paper), the computer will identify characters by capturing

locus points of the handwriting.

In terms of discipline, Chinese character recognition can be categorized as

pattern recognition and image processing, but also involves artificial intelligence,

formal language and automata, statistical decision theory, computer science and

other disciplines. Therefore, it is a comprehensive technical science. Due to the

large number of Chinese characters, complex character structure, and word

similarity, Chinese character recognition is more difficult than character

recognition of other languages. With the advances in pattern recognition and

computer science technology in recent years, Chinese character recognition has

made a great deal of progress.

Collecting handwriting input can be done in two different ways: online and

offline. “Online handwriting involves the text as it is written on a special digitizer

or PDA, where a sensor picks up the pen-tip movements as well as pen-up/pen-down

switching. This kind of data is known as digital ink and can be regarded as a digital

representation of handwriting.” [2] The basic unit of Chinese character recognition

is a single stroke. The combination of strokes, the stroke location, and the

relationship between strokes are used to identify characters. “Offline handwriting

involves the text in an image which are usable within computer and text-processing

applications. The data obtained by this form is regarded as a static representation

of handwriting” [2] Because of the arbitrariness of human handwriting, the

difficulty of handwriting Chinese character recognition is much higher than printed

3

Chinese character recognition. “Both online and offline recognition methods can be

roughly divided into two categories: structural and un-structural.” [3]

The basic principle of handwritten Chinese character recognition is

processing pattern matching between the input characters and each standard

character. The basic process involves calculating the degree of similarity and then

returning the standard character with the greatest degree of similarity. However,

human handwriting is arbitrary, and cursive writing combining multiple strokes

into one often occurs. Also, the text will sometimes overlap with background. Thus,

the preprocessing stage is needed to recognize handwritten characters. In this

stage, the main goal is to achieve the normalization of the Chinese character’s

image, which normalizes the character’s size and corrects the distortion of the

handwritten input. The program then proceeds to the character recognition stage,

which will complete the identification of the Chinese character. This involves

feature extraction and classification design. Lastly, the final phase is post-

processing. The program will make use of Chinese character structures, the

semantics, the meaning, and other contextual information to process error

correction and finalize it. Even though characters are processed using three stages,

the error rate of the character recognition is still high for even slightly illegible

characters.

In the early stage of character recognition research, some scientists

underestimated the problems and difficulties that may actually occur. At the time,

many people thought the shapes of the ten Arabic digitals, zero to nine, were very

4

simple and correctly identifying them would not be difficult. However, in practice,

although there are only ten digits and their glyphs are not complicated, it is really

hard to ensure a 100% correct recognition rate because so many different writing

styles exist. If even a highly educated person cannot recognize some especially lazy

handwritten numbers, then there are surely some that a computer cannot

comprehend.

Online handwritten Chinese character recognition also suffers from similar

problems. In the beginning of the study of automatic character recognition, some

people thought that online handwritten Chinese character recognition should be

easier than the printed Chinese character recognition. This is because the latter's

recognition target is two-dimensional graphics and overlapping strokes are not

easily separated. When doing online handwriting recognition, the user is writing

characters on a board. The strokes of Chinese characters will be separated and

imported into the computer one by one, which forms a one-dimensional string of

strokes. As long as all types of strokes and mutual relations are correctly

determined, that single word can be correctly identified as well. In theory, this

perspective is correct, but it’s very difficult to achieve in practice due to the volume

of Chinese characters, the complex shape, and the orders of strokes and cursive

writing when people are writing Chinese characters. Therefore, these affect

recognition rates greatly. Let’s discuss them separately below.

a. Variation in the number of strokes

5

The forms of strokes of Chinese characters also have specifications. For

example, the character “厂” has two strokes: “一” and “丿”, which cannot be finished

in one stroke. Another example, the character “美” should be divided two parts. One

is “羊” and the other is “大”. However, some people will consider it as “兰” and “大”.

These are all common sense, but the educational level and writing habits of people

are in endless variety. As a result, to require everyone to conform to a standard

stroke form will not be easy.

b. Stroke trend

Writing direction of strokes of Chinese characters are mostly from left to

right or top to bottom. But there are some exceptions, such as the first stroke on the

top of “手”, “受”, and “系” should be from right to left. But some people tend to write

from left to right and it becomes horizontal “一” so that stroke string will change

thus resulting in incorrect recognition. There’re easier problems that occur, like the

word “夭”. Its first stroke is similar as the previous example. If the first stroke is

written as “一”, it will become “天”. There are quite a lot of these kinds of words in

Chinese characters, such as “禾” and “未”, “壬” and “王” and so on.

c. Stroke order

The order of strokes is an important factor affecting the performance of

online handwriting Chinese character recognition. For example, take the character

“女”. Some people will write “ㄑ” first, and others will write “一” first. With different

order, a word can have two different stroke strings. Some words are composed of a

6

couple of parts. If people write in different orders, the change in stroke strings is

even larger. For instance, the word “送” has two parts: “辶” and “关”. Some people

write “辶” first; on the contrary for other people, “关” will be written first. Another

example of the word “因”. The standard writing will be “冂” first, then inside, “大”.

Finally, close the box at the bottom with “一”. However, some people will just write

a big box, “口”, first, and then construct the inside, “大”. These principles seem

simple, but the writing habits of millions of people are not uniform. Obviously, this

stroke sequence problem will inevitably impact online handwriting Chinese

character recognition.

d. Cursive writing

Cursive writing is an important factor that affects online handwritten

Chinese character recognition. Perhaps this is the most difficult factor to overcome.

In order to speed up writing, people often write cursively. The higher the education

level, the more obvious the cursive writing problem becomes. This is also a reason

why raising the recognition rate of the majority of online handwritten Chinese

character recognition systems is so difficult, even more than solving the stroke

order problem.

There are three types of handwriting Chinese calligraphies: regular script,

semi-cursive script, and cursive script, shown in Figure 1. In Regular script, vertical

and horizontal strokes are straight and bodies are upright. On the other hand,

cursive script is very scratchy and some words are almost finished within one

7

stroke. There was a great calligrapher in Jin Dynasty and almost no one can

recognize some of his writing. The semi-cursive script is between last two scripts.

The strokes are not completely straight, with larger arcs, and are often written

cursively. For instance, the character “口” originally has three strokes, which will be

written like “ ”. This does not only change the number of strokes, but also the type

of stroke is not the same. These situations are numerous and are the main factor of

performance.

There are two ways to solve the above problem. The first way is restricting

the way users write. We could require people to write in regular, proper script.

Strokes have to be straight and smooth. Stroke order has to follow the standard. No

cursive writing is allowed. According to these requirements, writing characters in

this style is usually called “restricted handwriting.” If people write characters

Regular Script Semi-cursive Script Cursive Script

FIGURE 1: DIFFERENT STYLES OF SCRIPTS

8

according to these provisions, the recognition rate can be very high. Unfortunately,

it is hard to change people's writing habits and styles. Making such excessive

demands is not only difficult to do, but also does not conform to the principle of

user-friendly interface. Therefore, another way to solve the above problem — the

appropriate method to solve the problem—is to make an effort to improve the

character recognition software.

9

2 EXISTING SOLUTIONS

2.1 PREPARATION

Handwritten Chinese character recognition is divided into online and offline.

Online is usually based on strokes and the data processed is a series of point

coordinates. On the other hand, offline is usually based on images that are typically

a bitmap containing pixel values. Both include three stages: preprocessing, feature

extraction, and classification. However, the actual methods that will be used in each

stage are different and these particular methods can also be used in multiple

different stages. Several common methods will be described below.

Preprocessing plays an important role in handwritten character recognition.

Most of the time, handwriting is captured in an unconstrained environment.

Writing styles and habits are not standardized. As a result, these handwritten

characters that are collected will have these qualities: font sizes and shapes are

different, strokes have different degrees of distortion, and characters are missing

strokes. If these characters in their initial state are directly used for character

recognition, it will cause large errors. Therefore, the primary purpose of

preprocessing is to reduce similar transformation, which ultimately improves the

recognition rate.

Image binarization is a process that can usually be used in offline

handwriting recognition. An image is actually a two-dimensional matrix and the

values in the matrix correspond to the pixel in that position. Binarization will

10

change all values of the matrix to either zero or one. Zero represents black and one

represents white. Reversing this is acceptable, and depends on the actual

circumstances. So, each pixel of such image can be represented as a binary number.

This can greatly reduce the storage space needed for processing the character

image. Now, fast bit operations can be used to process these images, saving a lot of

computing time.

“Normalization is considered to be the most important pre-processing factor

for character recognition. Normally, the character image is linearly mapped onto a

standard plane by interpolation/extrapolation. The size and position of character is

controlled such that the x/y dimensions of normalized plane are filled.” [4] Based on

the relationship between the horizontal and vertical coordinates, normalization can

be one dimension or two dimensions. One dimensional normalization means all

points in the same row or same column still remain in the same row or column after

normalization. According to the characteristics of the mapping function,

normalization methods are generally divided into linear normalization, moment

normalization, and nonlinear normalization. According to the mutual influence

between the horizontal coordinates and vertical coordinates, it produces a pseudo

two dimensional normalization.

11

2.2 BACKPROPAGATION NEURAL NETWORK

Backpropagation (BP) is a very efficient algorithm, which was proposed by

Paul Werbos in 1986. [5] It is designed to arrange neurons in layers: one input

layer, one or more hidden layers, and one output layer. “Each node from input layer

is connected to a node from hidden layer and every node from hidden layer is

connected to a node in output layer. There is usually some weight associated with

every connection.” [5] Figure 2 is a simple neural network. The neurons in each

layer only accept the input from other neurons in the previous layer. The output

layer is an outcome of the input layer after one goes through all hidden layers.

Because of this design, the backpropagation neural network model solves problems

that other basic models cannot solve. It will change the I/O problem of a set of

sample data into a nonlinear optimization problem. By using a gradient descent

Input Layer Hidden Layer Output Layer

FIGURE 2: NEURAL NETWORK

12

method and an iterative algorithm to complete learning and memorization, this

problem is solved. The increase of neurons in hidden layers can increase the

adjustable coefficient, allowing problems to be solved more accurately.

The backpropagation algorithm trains the multilayer neural network, and

each time the training example will be calculated twice during delivery. First, feed

forward computation, which begins at the input layer, is followed by passing all the

layers. After the whole neural network is traversed, an output is produced. At this

time, the error is calculated between the actual output and the desired output.

Second, backpropagation computation, which is in the opposite direction, starts

from the output layer back to the input layer. During this process, the error is used

to adjust the weights layer by layer until the final result is approached.

Thus, “since this method requires computation of the gradient of the error

function at each iteration step, we must guarantee the continuity and

differentiability of the error function. Obviously we have to use a kind of activation

function other than the step function used in perceptrons, because the composite

function produced by interconnected perceptrons is discontinuous, and therefore the

error function too.” [5] The most popular activation function is sigmoid:

𝜑(𝑧) =
1

1 + 𝑒−𝑧

This equation will create a nice S curve between 0 and 1. The derivative of sigmoid

is

13

𝑑𝜑

𝑑𝑧
(𝑧) = 𝜑(𝑧)(1 − 𝜑(𝑧))

“The way to control the Neural Network is by setting and adjusting the

weights between nodes. Initial weights are usually set at some random numbers

and then they are adjusted during Neural Network training.” [6] The weights are

usually set to a smaller number in order to avoid saturation or anomalies in the

network if the weights reach the maximum.

According to the requirements of BP algorithm, it is divided into the following

steps. First, take one data from the training data set as an input vector for the

network. Second, calculate the output vector through the algorithm with that input

vector. Third, calculate the difference of error between the output vector and the

target vector. Fourth, go over the algorithm in reverse from the output layer to first

hidden layer and adjust each weight based on the result in order to reduce the

error. Last, repeat steps one to four for each data in the training data set until we

get the minimum error.

FIGURE 3: SIGMOID EQUATION GRAPHING

14

The first two steps in the algorithm will be repeated during recognition even

after the neural network is completely trained. Training will stop when the error

between actual output and expected output is low enough, which is usually

determined by the programmers. At this time, all weights are fixed and won’t

change any more.

2.3 CONVOLUTIONAL NEURAL NETWORK

Convolution neural network (CNN) is one kind of artificial neural network,

which has become a hotspot in the field of image recognition. Its weights sharing

network structure makes it more similar to the biological neural network, which

reduces the complexity of the network model and the number of weights. The

advantage of such effect will be more obvious when the inputs are multidimensional

images. These images can be directly the input for the network, which avoids the

complex feature extraction and data reconstruction in the traditional recognition

algorithm. CNN is a multilayer perceptron that specially designed for two-

dimensional shape recognition.

The difference between CNN and ordinary neural network is that CNN

consists of convolutional layers and pooling layers. In convolutional layer, one

neuron is only connected with some neighboring neurons rather than fully

connected in normal neural network. So, it usually contains several feature maps

that compose of a number of rectangular array of neurons. The neurons in the same

feature map share weights, where the weights form a filter or kernel. The kernel is

15

initialized in the form of random fractional matrix and will get reasonable weights

during the training process. The direct benefits of shared weights (kernels) is to

reduce the connection between each layers in the network while reducing the risk of

over fitting. Pooling usually has two forms: mean pooling and max pooling.

Obviously, mean pooling will take the mean value of an area and max pooling will

take the largest number of an area. Pooling can be seen as a special convolution

process. Convolution and pooling greatly simplify the complexity of the model and

reduce the number of parameters in the model.

Mean Pooling Max Pooling

FIGURE 4: POOLING LAYER

16

Convolutional neural network usually uses a number of pairs of convolutional

layers and pooling layers, which forms a stack structure as a feature extractor. They

continually reduce the size of feature map, but the quantity tends to be increased. A

classifier is right after the feature extractor, which is usually composed of a multi-

layers perceptron that one layer is fully connected to next layer. Figure 5 is a

typically convolutional neural network structure.

2.4 QUICKSTROKE

Writing Chinese characters with the use of the keyboard is not only difficult

but inconvenient. Simplified Chinese character symbols can be classified by up to

4400 ideograms, which is non-trivial compared to the 26-character English alphabet

and 10-character Arabic numeral. “An ideal input device for ideographic text would

use on-line handwritten input. Common touch-sensitive input devices like

TouchPads, tablets, or PDAs are all capable of capturing such on-line handwriting

data in the form of pen or finger trajectories.” [7] Many researchers and

development teams have gained ground toward improving writing and recognizing

Chinese characters. QuickStroke which is an incremental recognition system for

FIGURE 5: ARCHITECTURE OF CONVOLUTIONAL NEURAL NETWORK [25]

17

“printed and partially cursive Chinese characters” [7] is not only fast, but also more

accurate than other similar systems. An article by Nada P. Matic, John C. Platt,

and Tony Wang titled “QuickStroke: An Incremental On-Line Chinese Handwriting

Recognition System” explains the methodology and results of why QuickStroke is an

improved system for recognizing Chinese ideograms.

QuickStroke first does a coarse

classification by initiating the pre-

classifier. This pre-classifier shrinks

the set of character candidates to a

smaller group. This would make

recognizing characters faster and

efficient, similar to parsing only what

is needed. QuickStroke has 33 groups

which come from the 4400 GB classes

of simplified Chinese characters. The pre-classifier uses these groups to recognize

the first 3 strokes given to it. “We choose an initial set of classes for each group

based on the similarity of these first three strokes. We then train a first prototype of

the pre-classifier on this limited set of classes and use bootstrapping to label all

available training data into groups.” [7] Figure 6 shows the user interface of

QuickStroke, which recognizes a character within a few strokes. In addition, many

variations exist when it comes to writing, such as when people write characters in

different order. In order to accommodate this, QuickStroke allows the 33 groups to

FIGURE 6: THE USER INTERFACE OF

QUICKSTROKE [7]

18

overlap which allows each character to be in more than one group. “For example,

the first three strokes of a particular character can be written using different stroke

order by different writers, which in turn leads to one variant of a class belonging to

one group and another variant belonging to an alternate group.” [7]

QuickStroke then does a detailed classification by using pairs of neural

networks for each of the 33 groups. The result is that each detail classifier is a

vector of n probabilities based on the user’s input. These two processes are also

efficient as the group’s identity is static and do not change. Thus, more inputs from

the users simplify the algorithm by not calling the pre-classifier again.

From this article, the result from the test using QuickStroke included twenty

writers to be used for training and validation. Partial character tests will be three

or more strokes and complete character tests will be done with whole characters.

Partial character accuracy reading for the 4400 GB classes of simplified Chinese

characters for top one characters resulted in a 97.3% accuracy. Complete character

accuracy reading came to around 96.3% accuracy. These show that QuickStroke is

precise for both partial and complete character inputs. “Our testing results indicate

that, on average, only half of the total number of input strokes need to be entered in

order for the system to recognize the character (i.e., 6 strokes out of an average of

12). Thus, users of QuickStroke can enter characters much faster than alternative

input methods.” [7]

19

3 PROPOSED SOLUTION

3.1 DATASET

 The dataset I’m going to utilize is “a pair of online and offline Chinese

handwriting databases built by the Institute of Automation of Chinese Academy of

Sciences (CASIA). The handwritten samples were produced by 1,020 writers using

Anoto pen on papers and include both isolated characters and handwritten texts

(continuous scripts).” [8] They provide six datasets of online and offline data: half

for isolated characters and half for handwriting texts. However, “the total number

of Chinese characters is very large, e.g., the standard set GB18030-2000 contains

27,533 characters, which are not yet exhausted. We estimate that the number of

characters used by most people day to day is about 5,000, which is almost the

maximum that ordinary educated people can recognize.” [8] Some characters that

FIGURE 7: SCANNED PAGES OF ISOLATED CHARACTERS AND HANDWRITING

20

are not used often were filtered out. The resulting dataset contains 3755 level 1 and

3008 level 2 Chinese characters, 52 English letters, 10 Arabic digits, and some other

frequently used symbols.

3.2 IDEA

I will build three types of neural

networks:

1. Strokes: use coordinates to

determine what stroke it is

2. Direction: use strokes’ coordinates

to determine the writing direction

3. Image: use the whole image to

determine character

First, classify all Chinese characters

into four classes depending on writing

direction.

1. From top to bottom.

2. From left to right.

3. From upper right to lower left.

4. From outside to inside.

FIGURE 8: WRITING DIRECTION

21

Each class will have its own neural network which is trained within each data set.

If the result is not accurate enough, I will try to create more classes based on

Chinese character components within each writing direction class.

 The workflow will be similar to the following: first, “pen” down, users start to

write a character and “pen” up, users finish writing. At this time, the character can

be either partial or full. Second, the program will determine the writing direction

according to the input coordinates. Third, pass the input to the specific writing

direction neural network to recognize character. At the same time, an image of the

input will be used in the image neural network.

3.3 TOOLS

3.3.1 Python

I am going to write programs for preprocessing, classification, and neural

networks in Python. Python is a very powerful programming language and contains

tons of extensions and libraries. For example, “NumPy is an extension to the Python

programming language, adding support for large, multidimensional arrays and

matrices, along with a large library of high-level mathematical functions to operate

on these arrays.” [9] I can use it to do some complex calculations such as

multiplication of multi-dimensional arrays and the sigmoid function. Therefore, I

can build a simple neural network with NumPy. However, if I don’t want to

construct the neural network by myself, there are still many libraries for it (e.g.

scikit-neuralnetwork, PyBrain, Lasagne, Blocks, TensorFlow, Keras, Deepy).

22

3.3.2 XAMPP

 “XAMPP is a free and open source cross-platform web server solution stack

package developed by Apache Friends, consisting mainly of the Apache HTTP

Server, MariaDB database, and interpreters for scripts written in the PHP and Perl

programming languages. XAMPP stands for Cross-Platform (X), Apache (A),

MariaDB (M), PHP (P) and Perl (P)…… XAMPP also provides support for creating

and manipulating databases in MariaDB and SQLite among others.” [10] This will

be used for building the web application which is the user interface.

3.3.3 jSignature

“jSignature is a JavaScript widget (a jQuery plugin) that simplifies creation

of a signature capture field in a browser window, allowing a user to draw a

signature using mouse, pen, or finger.” [11] The reason why I chose this tool is

because of its features – “[it] captures the signature as vector outlines of the

strokes. Although jSignature can export great bitmap (PNG) too, extraction of

highly scalable stroke movement coordinates (aka vector image) of the signature

allows much greater flexibility of signature rendering.” [11] I can use these stroke

movement coordinates to detect users’ writing directions and type of strokes. Then,

I can construct them as an input for the neural network to test.

3.3.4 Keras

Keras is a third-party neural network library that is extremely simplified and

highly modularized. It gives full play to the operation of GPU and CPU based on the

development of Python and Theano (a numerical computation library for python.

23

The purpose of its development is to quickly have neural network experiments. “We

can easily construct both sequence-based networks (where the inputs flow linearly

through the network) and graph-based networks (where inputs can “skip” certain

layers, only to be concatenated later). This makes implementing more complex

network architectures much easier.” [12]

24

4 IMPLEMENTATION

4.1 DATASET PREPARATION

In this research, the online characters dataset (OLHWDB1.1) from CASIA will

utilized. These data will be stored in .pot format files. Table 1 shows the structure of

each character in a file. After decoded, each file will generate 3755 common Chinese

characters.

Below is a snippet of code to read data from files. The only data we need it’s

the coordinates of stroke points, which will be processed into features. In order to

TABLE 1: FORMAT OF ONLINE ISOLATED CHARACTER DATA FILE

(*.POT)
http://www.nlpr.ia.ac.cn/databases/handwriting/Online_database.html

25

quickly grab these features as input for neural network training, they will be stored

into a database.

my_path = 'OLHWDB1.1trn_pot'

Iterate files

for file_name in os.listdir(my_path):

 data_file = open(my_path + '/' + file_name, 'rb')

 total_bytes = os.path.getsize(my_path + '/' + file_name)

 current_bytes = 0

 word_count = 0

 # Iterate characters

 while current_bytes != total_bytes:

 data_length, = struct.unpack('H', data_file.read(2))

 tag_code, = struct.unpack('I', data_file.read(4))

 stroke_number, = struct.unpack('H', data_file.read(2))

 current_bytes += data_length

 all_x_coor = []

 all_y_coor = []

 # Iterate strokes

 for stroke_index in range(stroke_number):

 stroke_x_coor = []

 stroke_y_coor = []

 # Iterate coordinates of points

 while 1:

 x, = struct.unpack('h', data_file.read(2))

 y, = struct.unpack('h', data_file.read(2))

 if x == -1:

 break

 stroke_x_coor.append(x)

 stroke_y_coor.append(y)

 if len(stroke_x_coor) > 1:

 all_x_coor.append(stroke_x_coor)

 all_y_coor.append(stroke_y_coor)

 end_tag1, = struct.unpack('h', data_file.read(2))

 end_tag2, = struct.unpack('h', data_file.read(2))

26

4.2 PREPROCESSING

4.2.1 Introduction

The better and complete image information we get from preprocessing, the

more ideal the result obtained in the later processes of feature extraction and

character recognition. If the result of preprocessing is not ideal, it not only reduces

the system's recognition rate, but also affects the speed of recognition and the

overall performance is reduced. In this paper, the involved techniques are: de-hook,

normalization, and smooth.

4.2.2 De-hook

“Hooks can occur at the beginning and end of strokes due to inaccuracies in

pen-down detection and rapid or erratic motion in placing the stylus on, or lifting it

off the tablet. Usually, hooks can be detected by their location, small size and

large angular variation.” [13] In some papers, authors only compare the number of

points with a specific threshold [13]. Stroke will be removed if it’s below the

threshold. In this reach, to remove hooks, start from the first point, and determine

the direction of two points. (Detail of direction will be explained in the feature

extraction part.) Continue to next point until the direction is changed. Then

calculate the straight distance between the first point and the target point. If the

distance is below the threshold, all points before the target one will be removed.

Here, the threshold is calculated by the following logic for each stroke:

threshold = 10% * max((max_x_coordinate – min_x_coordinate),

 (max_y_coordinate – min_y_coordinate))

27

Repeat the same thing for hooks at the end of strokes, but going backward instead.

The threshold is tested between 5% and 25%. If it’s too low, hooks cannot be

detected. On the contrary, higher threshold will eliminate wrong segments. So, the

experiment shows that 10% - 15% has better results. To choose a lower percentage

10% in this research because trying to keep the segment rather than missing

stroke.

4.2.3 Normalization

Normalization is a very important part of preprocessing. Since the original

images have huge differences in size, they must be normalized in order to have a

unified size. This is very helpful to reduce training time of the neural network and

improve recognition accuracy. The standard character image is used to unify

different original characters to the same height and width. Normalization has two

methods: projectile normalization [13] [14] and frame normalization. Projectile

Original Character After de-hooked Character

FIGURE 8: HOOK REMOVAL

28

normalization basically projects all points into target size of frame by ratio current

size and target size. On the other hand, frame normalization will be utilized here

because the former will stretch characters if the ratio of the height and the width

between current size and target size are different. I think this may cause losing or

changing the characteristics of input character so I rather keep the original ratio.

Back to frame normalization, that is, the outside border of a character is enlarged or

reduced in proportion linearly to the required size. First of all, the height and the

width of the original character will be compared with the height and the width of

the standard character, through which we’ll get a transformation coefficient, and

then change all points in original character by a ratio of this transformation

FIGURE 9: NORMALIZATION

29

coefficient. However, the dataset does not start with a 0 x coordinate and a 0 y

coordinate. To solve this problem, simply find the minimum x coordinate and y

coordinate of a whole character and then set all points relative to them. After the

character is normalized, its position may move either toward the x-axis or the y-

axis, so it can be centered. Firstly, calculate the spans over the x-axis and y-axis,

which is the distance between the maximum coordinate and minimum coordinate of

each axis. If the span of one axis is larger than the other one, all coordinates of that

axis will add half of its span.

if x_span > y_span

 for all y coordinates + y_span / 2

else

 for all x coordinates + x_span / 2

30

4.2.4 Smooth Using Bezier Curve

 The main purpose of smoothing is to reduce the noise in the character. Noise

is unavoidable in image processing. Due to the existence of noise, the image will be

unclear, the feature will not be obvious, and it seriously affects the performance of

feature extraction and recognition. Therefore, efficient noise processing in image

processing is essential. The types of noise are very complex and their impact on

each image is also different. Selecting the appropriate noise reduction methods

according to the nature of the noise is needed in order to achieve desired results.

Here, a Bezier curve is proposed.

FIGURE 10: SMOOTH

31

4.3 FEATURE EXTRACTION

4.3.1 Directions

 Define eight directions for two adjacent points shown as below. Along with

the order of points in each stroke, generate a list of directional code. Discard the

current direction if it is the same as previous one. Limit a maximum of 20

directional codes per list and also a maximum of 20 strokes per character.

Therefore, a 20x20 array will be generated at the end. Fill with zeros if the array is

not full.

4.3.2 Zones

Standard Chinese characters are written within a square box so that each

word occupies the same space. Chinese characters include two types of structures:

single characters and composite characters. Single characters cannot be divided,

1

2
3

4

5

6 8

7

FIGURE 11: 8 DIRECTIONS

32

such as "大" and "中". On the other hand, composite ones are constructed by basic

components. More than 90% of Chinese characters are composite. There are many

combination structures. Here are some common ones:

 Half surrounded structure: 同, 过, 句

 Full surrounded structure: 回, 国, 围

 Top-bottom structure: 吉, 尖, 笑

 Left-right structure: 咯, 叫, 说

 Top-middle-bottom structure: 赢, 奚, 亵

 Left-middle-right structure: 糊, 脚, 谢

 Triangle (“品” shape) structure: 品, 森, 惢

 Here, the frame of a character will be divided into 9 different regions so that it

will cover most of the structures. Based on the order of strokes, the program will

detect which region will be reached first. Therefore, an array with size of nine is

FIGURE 12: 9 ZONES

33

generated as a feature input for the neural network. Fill with zero if not all zones

have been passed over.

4.3.3 Binary Image

This part will generate a 30x30 pixel binary image of the character. Simply

initialize a 2-dimensional array with zeros and set a specific position to 1 according

to the coordinate of character points. Convert them to integers since points in

graphics are floating-type numbers. At the end, this binary image will be used in

the convolutional neural network.

4.4 NEURAL NETWORK

There are two types of neural networks that will be utilized in this research:

multi-layer neural network and convolutional neural network.

FIGURE 13: BINARY IMAGE

34

4.4.1 Multi-layer Neural Network

The input layer of this neural network contains neurons for features obtained

during feature extraction. The direction feature is a 2-dimensional array with size

20x20. On the other hand, the region feature only contains 9 pieces of data that

represent 9 zones. Hence, the input layer has a total 409 = 20 × 20 + 9 neurons.

The second layer is the hidden layer. Hidden layer is customizable. It can be

one or more layers and each layer can contain any numbers of neurons. During the

experiment, I’ll test different setups to see which way has better results. More layer

or less layer? More neurons or less neurons?

FIGURE 14: NEURAL NETWORK STRUCTURE

35

The output layer contains 3755 neurons because the dataset only have 3755

unique Chinese characters. Each neuron is the probability of the corresponding

character.

Twenty of this type of neural network will be built according to the number of

strokes. Since people will write cursively, characters will not have too many strokes.

However, if it exceeds 20 strokes, we just consider the first 20.

4.4.2 Convolutional Neural Network

Same as multi-layer neural network, the number of neurons in input layer and

output layer of CNN are fixed. The input is the 30x30 pixel image of the characters

and output will have 3755 probabilities of each character. Besides, different

structures of CNN will be tested in experiment.

4.5 POST-PROCESSING

Both neural networks will produce two lists with the probability for each

character. Pick top 10 from these two lists and sort them in descending order of the

probabilities. Give a value 10 to the highest probability and 1 to the lowest

probability. Then sum all the values for the same character and sort them in

descending order. Figure 15 is an example.

36

5 RESULT

An experiment has been done on a total of 240 writers and each of them

contains 3755 characters from CASIA dataset. Randomly choose 168 out of 240,

which is 70%, for training the neural network. The rest 72 (30%) is for testing

purpose. This is based on the regular training process ratio in neural network – 7:3.

The results are shown below.

TABLE 2: MULTI-LAYER NEURAL NETWORK RESULT

FIGURE 15: FIND THE MOST PROBABLE CHARACTER

37

TABLE 3: CONVOLUTIONAL NEURAL NETWORK RESULT

38

FIGURE 16: DIFFERENT STRUCTURES OF MULTI-LAYER NEURAL

39

FIGURE 17: DIFFERENT STRUCTURES OF CONVOLUTIONAL NEURAL

40

As we can see in Table 1 and Table 2, neither increasing the number of

hidden layers nor the number of neurons can always improve the performance. So,

neural network is like a black box. We cannot determine what kind structures are

better for training the model for any recognition. The only way is try different

setups and see which can produce better results.

Comparing to QuickStroke, the accuracy of recognition does not have

significant improvement because first one or two strokes are mostly similar so it’s

very hard to recognize.

Figure 18 is the actual user interface on a web browser. The top square box is

the drawing area for users to write the character. A clear button at the bottom to

remove all drawings. Following is the top 10 predicted results, sorted by descending

order of probability. The program will automatically predict the input while user is

drawing. The run time is a bit slow and it takes about 8 to 10 seconds to display the

results. I have tested it and figured out that the program spends too much time to

load the trained models.

TABLE 4: FINAL RESULT

41

FIGURE 18: USER INTERFACE

42

6 CONCLUSION AND FUTURE WORK

It is difficult to conquer the problem of online handwritten Chinese character

recognition. Through data acquisition or transmission equipment, it is convenient

and fast to input Chinese characters into a computer. Online handwritten Chinese

character recognition has very broad prospects for application, and has become a

popular but difficult research area in the field of machine recognition.

Even though there have been a lot of research advancements on online

handwritten Chinese character recognition, the recognition performance still

remains unsatisfactory because of the large number of Chinese characters, the huge

amount of noise in handwriting, and the amount of similarity between certain

characters. The main topics handled in this research can be summarized below:

 Analyzing the research about online handwritten Chinese character

recognition. Describe in detail the work at each stage in the process of

Chinese character recognition and the processing algorithms or

methods used in each stage.

 Feature extraction is the key of whole Chinese character recognition

system. In order to improve the performance of character recognition,

the feature accuracy plays an important role. Thus, the usage of

preprocessing, which contains hooks removal, normalization, and

stroke smoothing, can improve the performance of feature extraction.

43

 Utilize different types of neural networks to improve the performance

of recognition: multi-layer neural network and convolutional neural

network.

 Utilize different tools to build a real time handwritten Chinese

character recognition web application.

The use of current knowledge to solve Chinese character recognition system

is still partial and incoherent. Comprehensively utilizing various types of knowledge

and researches to apply to online handwritten Chinese character recognition will

require further, in-depth research. Meanwhile, improving the performance of each

part of online handwritten Chinese character recognition so that the recognizing

speed and result accuracy are enhanced is the goal of my current study.

44

7 REFERENCES

[1] Wikipedia, "Pinyin," [Online]. Available: https://en.wikipedia.org/wiki/Pinyin.

[Accessed 10 August 2016].

[2] Wikipedia, "Handwriting Recognition," [Online]. Available:

https://en.wikipedia.org/wiki/Handwriting_recognition. [Accessed 24 April

2016].

[3] B. Zhu and M. Nakagawa, "Online Handwritten Chinese/Japanese Character

Recognition," 2012.

[4] C.-L. Liu, K. Nakashima, H. Sako and H. Fujisawa, "Handwritten digit

recognition: investigation of normalization and feature extraction techniques,"

Central Research Laboratory, Hitachi Ltd., Tokyo, Japan, 2002.

[5] R. Rojas, Neural Networks - A Systematic Introduction, Berlin: Springer-

Verlag, 1996.

[6] M. Cilimkovic, "Neural Networks and Back Propagation Algorithm," Institute

of Technology Blanchardstown.

[7] N. P. Matic, J. C. Platt and T. Wang, "QuickStroke: An Incremental On-line

Chinese Handwriting Recognition System," ICPR, 2002.

[8] C.-L. Liu, F. Yin, D.-H. Wang and Q.-F. Wang, "CASIA Online and Offline

Chinese Handwriting Databases," in 2011 International Conference on

Document Analysis and Recognition, Beijing, 2011.

[9] "NumPy," [Online]. Available: https://en.wikipedia.org/wiki/NumPy. [Accessed

2 May 2016].

[10] "XAMPP," [Online]. Available: https://en.wikipedia.org/wiki/XAMPP. [Accessed

1 May 2016].

[11] "jSignature," [Online]. Available:

https://willowsystems.github.io/jSignature/#/about/. [Accessed 2 May 2016].

[12] A. Rosebrock, "pyimagesearch," 27 June 2016. [Online]. Available:

http://www.pyimagesearch.com/2016/06/27/my-top-9-favorite-python-deep-

learning-libraries/. [Accessed 14 November 2016].

45

[13] S. M.s and S. Idicula, "On-Line Handwritten Character Recognition using

Kohonen Networks," in Nature & Biologically Inspired Computing, 2009.

[14] D. Singh, S. K. Singh and M. Dutta, "Hand Written Character Recognition

Using Twelve Directional Feature Input and Neural Network," International

Journal of Computer Applications, vol. 1, no. 3, pp. 82-85, 2010.

[15] "Running Python Scripts on Windows with Apache and Xampp," [Online].

Available: http://elvenware.com/charlie/development/web/Python/Xampp.html.

[Accessed 1 May 2016].

[16] L. Austin, "Install Python and Django with Xampp on Windows 7," 9 December

2010. [Online]. Available: http://www.leonardaustin.com/blog/technical/install-

python-and-django-with-xampp-on-windows-7/. [Accessed 1 May 2016].

[17] "how to run python through cgi in xampp all error solved," 11 April 2015.

[Online]. Available: http://learn2programming.blogspot.com/2015/04/how-to-

run-python-through-cgi-in-xampp.html. [Accessed 1 May 2016].

[18] "Apache Spark," [Online]. Available: http://spark.apache.org/. [Accessed 2 Map

2016].

[19] M.-G. Wen, K.-C. Fan and C.-C. Han, "Classification of Chinese Characters

Using Pseudo Skeleton Features," Journal Of Information Science And

Engineering, vol. 20, pp. 903-922, 2004.

[20] B. Verma, J. Lu, M. Ghosh and R. Ghosh, "A Feature Extraction Technique for

Online Handwriting Recognition," in Neural Networks, 2004.

[21] T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke, T. Rückstieß

and J. Schmidhuber , "PyBrain," The Journal of Machine Learning Research,

vol. 11, pp. 743-746, 2010.

[22] M. I. Razzak, S. A. Husain, A. A. Mirza and A. Belaid, "FUZZY BASED

PREPROCESSING USING FUSION OF ONLINE AND OFFLINE TRAIT

FOR ONLINE URDU SCRIPT BASED LANGUAGES CHARACTER

RECOGNITION," International Journal of Innovative, vol. 8, no. 5, pp. 3149-

3161, 2012.

[23] S. Rao and E. Reddy, "Comparative Analysis of Pattern Recognition Methods:

An Overview," Indian Journal of Computer Science and Engineering (IJCSE),

2011.

46

[24] H. J. Kim, J. W. Jung and S. K. Kim, "On-line Chinese character recognition

using ART-based stroke classification," Pattern Recognition Letters, vol. 17,

pp. 1311-1322, 1996.

[25] "UNDERSTANDING CONVOLUTIONAL NEURAL NETWORKS FOR NLP,"

WILDML, 7 November 2015. [Online]. Available:

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-

for-nlp/. [Accessed 15 November 2016].

	San Jose State University
	SJSU ScholarWorks
	Fall 12-20-2016

	Real-time Online Chinese Character Recognition
	Wenlong Zhang
	Recommended Citation

	tmp.1482257779.pdf.qS55T

