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Abstract 

In this project, I am going to build a web application for handwritten Chinese 

characters recognition in real time, which means this system will determine a 

Chinese character while user is drawing/writing. While utilizing different tools to 

build the app, the techniques I use to build the recognition system including data 

preparation, preprocessing, features extraction, and classifying. To increase the 

accuracy, two different types of neural networks will be used in the system: multi-layer 

neural network and convolutional neural network. 
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1 INTRODUCTION 

 

The 21st century is often called “the century of information.” As innovation 

and knowledge increases, the information era continues to advance. In China, more 

and more people are beginning to use computers in different aspects of their lives, 

including simple daily tasks, work, leisure and entertainment. Given the diverse 

range of education in the Chinese speaking community, the first problem is how to 

facilitate entering Chinese characters using a standard alphanumeric keyboard, 

which directly affects the application and development of processing Chinese 

character information on the computer.  

"Pinyin is the official romanization system for Standard Chinese. It includes 

four diacritics denoting tones. Pinyin without tone marks is used to spell Chinese 

names and words in languages written with the Latin alphabet, and also in certain 

computer input methods to enter Chinese characters." [1] Everyone struggles when 

entering Chinese characters on a computer; people who utilize the Pinyin input 

method, often misspell the intended word, at least on the first try. Even though 

other input methods that deconstruct characters into a series of strokes can be used, 

this requires the user to be knowledgeable about the structure of Chinese 

characters. In light of this situation, the “handwriting style” input method, in which 

a user writes characters directly onto a tablet, has become more and more popular. 

As long as the user writes the Chinese characters on an electronic “writing pad” (as 



2 
 

they would on normal paper), the computer will identify characters by capturing 

locus points of the handwriting. 

In terms of discipline, Chinese character recognition can be categorized as 

pattern recognition and image processing, but also involves artificial intelligence, 

formal language and automata, statistical decision theory, computer science and 

other disciplines. Therefore, it is a comprehensive technical science. Due to the 

large number of Chinese characters, complex character structure, and word 

similarity, Chinese character recognition is more difficult than character 

recognition of other languages. With the advances in pattern recognition and 

computer science technology in recent years, Chinese character recognition has 

made a great deal of progress.  

Collecting handwriting input can be done in two different ways: online and 

offline. “Online handwriting involves the text as it is written on a special digitizer 

or PDA, where a sensor picks up the pen-tip movements as well as pen-up/pen-down 

switching. This kind of data is known as digital ink and can be regarded as a digital 

representation of handwriting.” [2] The basic unit of Chinese character recognition 

is a single stroke. The combination of strokes, the stroke location, and the 

relationship between strokes are used to identify characters. “Offline handwriting 

involves the text in an image which are usable within computer and text-processing 

applications. The data obtained by this form is regarded as a static representation 

of handwriting” [2] Because of the arbitrariness of human handwriting, the 

difficulty of handwriting Chinese character recognition is much higher than printed 
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Chinese character recognition. “Both online and offline recognition methods can be 

roughly divided into two categories: structural and un-structural.” [3] 

The basic principle of handwritten Chinese character recognition is 

processing pattern matching between the input characters and each standard 

character. The basic process involves calculating the degree of similarity and then 

returning the standard character with the greatest degree of similarity. However, 

human handwriting is arbitrary, and cursive writing combining multiple strokes 

into one often occurs. Also, the text will sometimes overlap with background. Thus, 

the preprocessing stage is needed to recognize handwritten characters. In this 

stage, the main goal is to achieve the normalization of the Chinese character’s 

image, which normalizes the character’s size and corrects the distortion of the 

handwritten input. The program then proceeds to the character recognition stage, 

which will complete the identification of the Chinese character. This involves 

feature extraction and classification design. Lastly, the final phase is post-

processing. The program will make use of Chinese character structures, the 

semantics, the meaning, and other contextual information to process error 

correction and finalize it. Even though characters are processed using three stages, 

the error rate of the character recognition is still high for even slightly illegible 

characters.  

In the early stage of character recognition research, some scientists 

underestimated the problems and difficulties that may actually occur. At the time, 

many people thought the shapes of the ten Arabic digitals, zero to nine, were very 
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simple and correctly identifying them would not be difficult. However, in practice, 

although there are only ten digits and their glyphs are not complicated, it is really 

hard to ensure a 100% correct recognition rate because so many different writing 

styles exist.  If even a highly educated person cannot recognize some especially lazy 

handwritten numbers, then there are surely some that a computer cannot 

comprehend. 

Online handwritten Chinese character recognition also suffers from similar 

problems. In the beginning of the study of automatic character recognition, some 

people thought that online handwritten Chinese character recognition should be 

easier than the printed Chinese character recognition. This is because the latter's 

recognition target is two-dimensional graphics and overlapping strokes are not 

easily separated. When doing online handwriting recognition, the user is writing 

characters on a board. The strokes of Chinese characters will be separated and 

imported into the computer one by one, which forms a one-dimensional string of 

strokes. As long as all types of strokes and mutual relations are correctly 

determined, that single word can be correctly identified as well. In theory, this 

perspective is correct, but it’s very difficult to achieve in practice due to the volume 

of Chinese characters, the complex shape, and the orders of strokes and cursive 

writing when people are writing Chinese characters. Therefore, these affect 

recognition rates greatly. Let’s discuss them separately below. 

a. Variation in the number of strokes 
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The forms of strokes of Chinese characters also have specifications. For 

example, the character “厂” has two strokes: “一” and “丿”, which cannot be finished 

in one stroke. Another example, the character “美” should be divided two parts. One 

is “羊” and the other is “大”. However, some people will consider it as “兰” and “大”. 

These are all common sense, but the educational level and writing habits of people 

are in endless variety. As a result, to require everyone to conform to a standard 

stroke form will not be easy. 

b. Stroke trend 

Writing direction of strokes of Chinese characters are mostly from left to 

right or top to bottom. But there are some exceptions, such as the first stroke on the 

top of “手”, “受”, and “系” should be from right to left. But some people tend to write 

from left to right and it becomes horizontal “一” so that stroke string will change 

thus resulting in incorrect recognition. There’re easier problems that occur, like the 

word “夭”. Its first stroke is similar as the previous example. If the first stroke is 

written as “一”, it will become “天”. There are quite a lot of these kinds of words in 

Chinese characters, such as “禾” and “未”, “壬” and “王” and so on. 

c. Stroke order 

The order of strokes is an important factor affecting the performance of 

online handwriting Chinese character recognition. For example, take the character 

“女”. Some people will write “ㄑ” first, and others will write “一” first. With different 

order, a word can have two different stroke strings. Some words are composed of a 
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couple of parts. If people write in different orders, the change in stroke strings is 

even larger. For instance, the word “送” has two parts: “辶” and “关”. Some people 

write “辶” first; on the contrary for other people, “关” will be written first. Another 

example of the word “因”. The standard writing will be “冂” first, then inside, “大”. 

Finally, close the box at the bottom with “一”. However, some people will just write 

a big box, “口”, first, and then construct the inside, “大”. These principles seem 

simple, but the writing habits of millions of people are not uniform. Obviously, this 

stroke sequence problem will inevitably impact online handwriting Chinese 

character recognition. 

d. Cursive writing 

Cursive writing is an important factor that affects online handwritten 

Chinese character recognition. Perhaps this is the most difficult factor to overcome. 

In order to speed up writing, people often write cursively. The higher the education 

level, the more obvious the cursive writing problem becomes. This is also a reason 

why raising the recognition rate of the majority of online handwritten Chinese 

character recognition systems is so difficult, even more than solving the stroke 

order problem.  

There are three types of handwriting Chinese calligraphies: regular script, 

semi-cursive script, and cursive script, shown in Figure 1. In Regular script, vertical 

and horizontal strokes are straight and bodies are upright. On the other hand, 

cursive script is very scratchy and some words are almost finished within one 
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stroke. There was a great calligrapher in Jin Dynasty and almost no one can 

recognize some of his writing. The semi-cursive script is between last two scripts. 

The strokes are not completely straight, with larger arcs, and are often written 

cursively. For instance, the character “口” originally has three strokes, which will be 

written like “ ”. This does not only change the number of strokes, but also the type 

of stroke is not the same. These situations are numerous and are the main factor of 

performance. 

      

There are two ways to solve the above problem. The first way is restricting 

the way users write. We could require people to write in regular, proper script. 

Strokes have to be straight and smooth. Stroke order has to follow the standard. No 

cursive writing is allowed. According to these requirements, writing characters in 

this style is usually called “restricted handwriting.” If people write characters 

Regular Script Semi-cursive Script Cursive Script 

FIGURE 1: DIFFERENT STYLES OF SCRIPTS 
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according to these provisions, the recognition rate can be very high. Unfortunately, 

it is hard to change people's writing habits and styles. Making such excessive 

demands is not only difficult to do, but also does not conform to the principle of 

user-friendly interface. Therefore, another way to solve the above problem — the 

appropriate method to solve the problem—is to make an effort to improve the 

character recognition software.  
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2 EXISTING SOLUTIONS 

2.1 PREPARATION 

Handwritten Chinese character recognition is divided into online and offline. 

Online is usually based on strokes and the data processed is a series of point 

coordinates. On the other hand, offline is usually based on images that are typically 

a bitmap containing pixel values.  Both include three stages: preprocessing, feature 

extraction, and classification. However, the actual methods that will be used in each 

stage are different and these particular methods can also be used in multiple 

different stages. Several common methods will be described below. 

Preprocessing plays an important role in handwritten character recognition. 

Most of the time, handwriting is captured in an unconstrained environment. 

Writing styles and habits are not standardized. As a result, these handwritten 

characters that are collected will have these qualities: font sizes and shapes are 

different, strokes have different degrees of distortion, and characters are missing 

strokes. If these characters in their initial state are directly used for character 

recognition, it will cause large errors. Therefore, the primary purpose of 

preprocessing is to reduce similar transformation, which ultimately improves the 

recognition rate. 

Image binarization is a process that can usually be used in offline 

handwriting recognition. An image is actually a two-dimensional matrix and the 

values in the matrix correspond to the pixel in that position. Binarization will 
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change all values of the matrix to either zero or one. Zero represents black and one 

represents white. Reversing this is acceptable, and depends on the actual 

circumstances. So, each pixel of such image can be represented as a binary number. 

This can greatly reduce the storage space needed for processing the character 

image. Now, fast bit operations can be used to process these images, saving a lot of 

computing time.  

“Normalization is considered to be the most important pre-processing factor 

for character recognition. Normally, the character image is linearly mapped onto a 

standard plane by interpolation/extrapolation. The size and position of character is 

controlled such that the x/y dimensions of normalized plane are filled.” [4] Based on 

the relationship between the horizontal and vertical coordinates, normalization can 

be one dimension or two dimensions. One dimensional normalization means all 

points in the same row or same column still remain in the same row or column after 

normalization. According to the characteristics of the mapping function, 

normalization methods are generally divided into linear normalization, moment 

normalization, and nonlinear normalization. According to the mutual influence 

between the horizontal coordinates and vertical coordinates, it produces a pseudo 

two dimensional normalization. 
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2.2 BACKPROPAGATION NEURAL NETWORK 

Backpropagation (BP) is a very efficient algorithm, which was proposed by 

Paul Werbos in 1986. [5] It is designed to arrange neurons in layers: one input 

layer, one or more hidden layers, and one output layer. “Each node from input layer 

is connected to a node from hidden layer and every node from hidden layer is 

connected to a node in output layer. There is usually some weight associated with 

every connection.” [5] Figure 2 is a simple neural network. The neurons in each 

layer only accept the input from other neurons in the previous layer. The output 

layer is an outcome of the input layer after one goes through all hidden layers. 

Because of this design, the backpropagation neural network model solves problems 

that other basic models cannot solve.  It will change the I/O problem of a set of 

sample data into a nonlinear optimization problem.  By using a gradient descent 

Input Layer                Hidden Layer               Output Layer 

FIGURE 2: NEURAL NETWORK 
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method and an iterative algorithm to complete learning and memorization, this 

problem is solved. The increase of neurons in hidden layers can increase the 

adjustable coefficient, allowing problems to be solved more accurately. 

The backpropagation algorithm trains the multilayer neural network, and 

each time the training example will be calculated twice during delivery. First, feed 

forward computation, which begins at the input layer, is followed by passing all the 

layers. After the whole neural network is traversed, an output is produced. At this 

time, the error is calculated between the actual output and the desired output. 

Second, backpropagation computation, which is in the opposite direction, starts 

from the output layer back to the input layer. During this process, the error is used 

to adjust the weights layer by layer until the final result is approached. 

Thus, “since this method requires computation of the gradient of the error 

function at each iteration step, we must guarantee the continuity and 

differentiability of the error function. Obviously we have to use a kind of activation 

function other than the step function used in perceptrons, because the composite 

function produced by interconnected perceptrons is discontinuous, and therefore the 

error function too.” [5] The most popular activation function is sigmoid: 

𝜑(𝑧) =  
1

1 + 𝑒−𝑧
 

This equation will create a nice S curve between 0 and 1. The derivative of sigmoid 

is 
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𝑑𝜑

𝑑𝑧
(𝑧) = 𝜑(𝑧)(1 − 𝜑(𝑧)) 

 

 

“The way to control the Neural Network is by setting and adjusting the 

weights between nodes. Initial weights are usually set at some random numbers 

and then they are adjusted during Neural Network training.” [6] The weights are 

usually set to a smaller number in order to avoid saturation or anomalies in the 

network if the weights reach the maximum.  

According to the requirements of BP algorithm, it is divided into the following 

steps. First, take one data from the training data set as an input vector for the 

network. Second, calculate the output vector through the algorithm with that input 

vector. Third, calculate the difference of error between the output vector and the 

target vector. Fourth, go over the algorithm in reverse from the output layer to first 

hidden layer and adjust each weight based on the result in order to reduce the 

error. Last, repeat steps one to four for each data in the training data set until we 

get the minimum error. 

FIGURE 3: SIGMOID EQUATION GRAPHING 
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The first two steps in the algorithm will be repeated during recognition even 

after the neural network is completely trained. Training will stop when the error 

between actual output and expected output is low enough, which is usually 

determined by the programmers. At this time, all weights are fixed and won’t 

change any more. 

2.3 CONVOLUTIONAL NEURAL NETWORK 

Convolution neural network (CNN) is one kind of artificial neural network, 

which has become a hotspot in the field of image recognition. Its weights sharing 

network structure makes it more similar to the biological neural network, which 

reduces the complexity of the network model and the number of weights. The 

advantage of such effect will be more obvious when the inputs are multidimensional 

images. These images can be directly the input for the network, which avoids the 

complex feature extraction and data reconstruction in the traditional recognition 

algorithm. CNN is a multilayer perceptron that specially designed for two-

dimensional shape recognition. 

The difference between CNN and ordinary neural network is that CNN 

consists of convolutional layers and pooling layers. In convolutional layer, one 

neuron is only connected with some neighboring neurons rather than fully 

connected in normal neural network. So, it usually contains several feature maps 

that compose of a number of rectangular array of neurons. The neurons in the same 

feature map share weights, where the weights form a filter or kernel. The kernel is 
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initialized in the form of random fractional matrix and will get reasonable weights 

during the training process. The direct benefits of shared weights (kernels) is to 

reduce the connection between each layers in the network while reducing the risk of 

over fitting. Pooling usually has two forms: mean pooling and max pooling. 

Obviously, mean pooling will take the mean value of an area and max pooling will 

take the largest number of an area. Pooling can be seen as a special convolution 

process. Convolution and pooling greatly simplify the complexity of the model and 

reduce the number of parameters in the model. 

 

Mean Pooling Max Pooling 

FIGURE 4: POOLING LAYER 
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Convolutional neural network usually uses a number of pairs of convolutional 

layers and pooling layers, which forms a stack structure as a feature extractor. They 

continually reduce the size of feature map, but the quantity tends to be increased. A 

classifier is right after the feature extractor, which is usually composed of a multi-

layers perceptron that one layer is fully connected to next layer. Figure 5 is a 

typically convolutional neural network structure. 

2.4 QUICKSTROKE 

Writing Chinese characters with the use of the keyboard is not only difficult 

but inconvenient. Simplified Chinese character symbols can be classified by up to 

4400 ideograms, which is non-trivial compared to the 26-character English alphabet 

and 10-character Arabic numeral. “An ideal input device for ideographic text would 

use on-line handwritten input. Common touch-sensitive input devices like 

TouchPads, tablets, or PDAs are all capable of capturing such on-line handwriting 

data in the form of pen or finger trajectories.” [7] Many researchers and 

development teams have gained ground toward improving writing and recognizing 

Chinese characters. QuickStroke which is an incremental recognition system for 

FIGURE 5: ARCHITECTURE OF CONVOLUTIONAL NEURAL NETWORK [25] 
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“printed and partially cursive Chinese characters” [7] is not only fast, but also more 

accurate than other similar systems. An article by Nada P. Matic, John C. Platt, 

and Tony Wang titled “QuickStroke: An Incremental On-Line Chinese Handwriting 

Recognition System” explains the methodology and results of why QuickStroke is an 

improved system for recognizing Chinese ideograms. 

QuickStroke first does a coarse 

classification by initiating the pre-

classifier.  This pre-classifier shrinks 

the set of character candidates to a 

smaller group. This would make 

recognizing characters faster and 

efficient, similar to parsing only what                               

is needed. QuickStroke has 33 groups 

which come from the 4400 GB classes 

of simplified Chinese characters. The pre-classifier uses these groups to recognize 

the first 3 strokes given to it. “We choose an initial set of classes for each group 

based on the similarity of these first three strokes. We then train a first prototype of 

the pre-classifier on this limited set of classes and use bootstrapping to label all 

available training data into groups.” [7] Figure 6 shows the user interface of 

QuickStroke, which recognizes a character within a few strokes. In addition, many 

variations exist when it comes to writing, such as when people write characters in 

different order. In order to accommodate this, QuickStroke allows the 33 groups to 

FIGURE 6: THE USER INTERFACE OF 

QUICKSTROKE [7] 
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overlap which allows each character to be in more than one group. “For example, 

the first three strokes of a particular character can be written using different stroke 

order by different writers, which in turn leads to one variant of a class belonging to 

one group and another variant belonging to an alternate group.” [7] 

QuickStroke then does a detailed classification by using pairs of neural 

networks for each of the 33 groups. The result is that each detail classifier is a 

vector of n probabilities based on the user’s input. These two processes are also 

efficient as the group’s identity is static and do not change. Thus, more inputs from 

the users simplify the algorithm by not calling the pre-classifier again. 

From this article, the result from the test using QuickStroke included twenty 

writers to be used for training and validation. Partial character tests will be three 

or more strokes and complete character tests will be done with whole characters. 

Partial character accuracy reading for the 4400 GB classes of simplified Chinese 

characters for top one characters resulted in a 97.3% accuracy. Complete character 

accuracy reading came to around 96.3% accuracy. These show that QuickStroke is 

precise for both partial and complete character inputs. “Our testing results indicate 

that, on average, only half of the total number of input strokes need to be entered in 

order for the system to recognize the character (i.e., 6 strokes out of an average of 

12). Thus, users of QuickStroke can enter characters much faster than alternative 

input methods.” [7] 
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3 PROPOSED SOLUTION 

3.1 DATASET 

 The dataset I’m going to utilize is “a pair of online and offline Chinese 

handwriting databases built by the Institute of Automation of Chinese Academy of 

Sciences (CASIA). The handwritten samples were produced by 1,020 writers using 

Anoto pen on papers and include both isolated characters and handwritten texts 

(continuous scripts).” [8] They provide six datasets of online and offline data: half 

for isolated characters and half for handwriting texts. However, “the total number 

of Chinese characters is very large, e.g., the standard set GB18030-2000 contains 

27,533 characters, which are not yet exhausted. We estimate that the number of 

characters used by most people day to day is about 5,000, which is almost the 

maximum that ordinary educated people can recognize.” [8] Some characters that 

FIGURE 7: SCANNED PAGES OF ISOLATED CHARACTERS AND HANDWRITING 
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are not used often were filtered out. The resulting dataset contains 3755 level 1 and 

3008 level 2 Chinese characters, 52 English letters, 10 Arabic digits, and some other 

frequently used symbols. 

3.2 IDEA 

I will build three types of neural 

networks: 

1. Strokes: use coordinates to 

determine what stroke it is 

2. Direction: use strokes’ coordinates 

to determine the writing direction 

3. Image: use the whole image to 

determine character 

First, classify all Chinese characters 

into four classes depending on writing 

direction. 

1. From top to bottom. 

2. From left to right. 

3. From upper right to lower left. 

4. From outside to inside. 

FIGURE 8: WRITING DIRECTION 
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Each class will have its own neural network which is trained within each data set. 

If the result is not accurate enough, I will try to create more classes based on 

Chinese character components within each writing direction class. 

 The workflow will be similar to the following: first, “pen” down, users start to 

write a character and “pen” up, users finish writing. At this time, the character can 

be either partial or full. Second, the program will determine the writing direction 

according to the input coordinates. Third, pass the input to the specific writing 

direction neural network to recognize character. At the same time, an image of the 

input will be used in the image neural network. 

3.3 TOOLS 

3.3.1 Python 

I am going to write programs for preprocessing, classification, and neural 

networks in Python. Python is a very powerful programming language and contains 

tons of extensions and libraries. For example, “NumPy is an extension to the Python 

programming language, adding support for large, multidimensional arrays and 

matrices, along with a large library of high-level mathematical functions to operate 

on these arrays.” [9] I can use it to do some complex calculations such as 

multiplication of multi-dimensional arrays and the sigmoid function. Therefore, I 

can build a simple neural network with NumPy. However, if I don’t want to 

construct the neural network by myself, there are still many libraries for it (e.g. 

scikit-neuralnetwork, PyBrain, Lasagne, Blocks, TensorFlow, Keras, Deepy). 
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3.3.2 XAMPP 

 “XAMPP is a free and open source cross-platform web server solution stack 

package developed by Apache Friends, consisting mainly of the Apache HTTP 

Server, MariaDB database, and interpreters for scripts written in the PHP and Perl 

programming languages. XAMPP stands for Cross-Platform (X), Apache (A), 

MariaDB (M), PHP (P) and Perl (P)…… XAMPP also provides support for creating 

and manipulating databases in MariaDB and SQLite among others.” [10] This will 

be used for building the web application which is the user interface. 

3.3.3 jSignature 

“jSignature is a JavaScript widget (a jQuery plugin) that simplifies creation 

of a signature capture field in a browser window, allowing a user to draw a 

signature using mouse, pen, or finger.” [11] The reason why I chose this tool is 

because of its features – “[it] captures the signature as vector outlines of the 

strokes. Although jSignature can export great bitmap (PNG) too, extraction of 

highly scalable stroke movement coordinates (aka vector image) of the signature 

allows much greater flexibility of signature rendering.” [11] I can use these stroke 

movement coordinates to detect users’ writing directions and type of strokes. Then, 

I can construct them as an input for the neural network to test. 

3.3.4 Keras 

Keras is a third-party neural network library that is extremely simplified and 

highly modularized. It gives full play to the operation of GPU and CPU based on the 

development of Python and Theano (a numerical computation library for python. 
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The purpose of its development is to quickly have neural network experiments. “We 

can easily construct both sequence-based networks (where the inputs flow linearly 

through the network) and graph-based networks (where inputs can “skip” certain 

layers, only to be concatenated later). This makes implementing more complex 

network architectures much easier.” [12] 
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4 IMPLEMENTATION 

4.1 DATASET PREPARATION 

In this research, the online characters dataset (OLHWDB1.1) from CASIA will 

utilized. These data will be stored in .pot format files. Table 1 shows the structure of 

each character in a file. After decoded, each file will generate 3755 common Chinese 

characters. 

 

Below is a snippet of code to read data from files. The only data we need it’s 

the coordinates of stroke points, which will be processed into features. In order to 

TABLE 1: FORMAT OF ONLINE ISOLATED CHARACTER DATA FILE 

(*.POT) 
http://www.nlpr.ia.ac.cn/databases/handwriting/Online_database.html 
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quickly grab these features as input for neural network training, they will be stored 

into a database. 

my_path = 'OLHWDB1.1trn_pot' 

 

# Iterate files 

for file_name in os.listdir(my_path): 

    data_file = open(my_path + '/' + file_name, 'rb') 

    total_bytes = os.path.getsize(my_path + '/' + file_name) 

 

    current_bytes = 0 

    word_count = 0 

 

    # Iterate characters 

    while current_bytes != total_bytes: 

        data_length, = struct.unpack('H', data_file.read(2)) 

        tag_code, = struct.unpack('I', data_file.read(4)) 

        stroke_number, = struct.unpack('H', data_file.read(2)) 

        current_bytes += data_length 

 

        all_x_coor = [] 

        all_y_coor = [] 

 

        # Iterate strokes 

        for stroke_index in range(stroke_number): 

            stroke_x_coor = [] 

            stroke_y_coor = [] 

 

            # Iterate coordinates of points 

            while 1: 

                x, = struct.unpack('h', data_file.read(2)) 

                y, = struct.unpack('h', data_file.read(2)) 

                if x == -1: 

                    break 

                stroke_x_coor.append(x) 

                stroke_y_coor.append(y) 

 

            if len(stroke_x_coor) > 1: 

                all_x_coor.append(stroke_x_coor) 

                all_y_coor.append(stroke_y_coor) 

 

        end_tag1, = struct.unpack('h', data_file.read(2)) 

        end_tag2, = struct.unpack('h', data_file.read(2))  
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4.2 PREPROCESSING 

4.2.1 Introduction 

The better and complete image information we get from preprocessing, the 

more ideal the result obtained in the later processes of feature extraction and 

character recognition. If the result of preprocessing is not ideal, it not only reduces 

the system's recognition rate, but also affects the speed of recognition and the 

overall performance is reduced. In this paper, the involved techniques are: de-hook, 

normalization, and smooth. 

4.2.2 De-hook 

“Hooks can occur at the beginning and end of strokes due to inaccuracies in 

pen-down detection and rapid or erratic motion in placing the stylus on, or lifting it 

off the tablet.  Usually,  hooks  can  be  detected  by  their  location, small  size  and  

large  angular  variation.” [13] In some papers, authors only compare the number of 

points with a specific threshold [13]. Stroke will be removed if it’s below the 

threshold. In this reach, to remove hooks, start from the first point, and determine 

the direction of two points. (Detail of direction will be explained in the feature 

extraction part.) Continue to next point until the direction is changed. Then 

calculate the straight distance between the first point and the target point. If the 

distance is below the threshold, all points before the target one will be removed. 

Here, the threshold is calculated by the following logic for each stroke: 

threshold = 10% * max( (max_x_coordinate – min_x_coordinate),  

   (max_y_coordinate – min_y_coordinate) ) 
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Repeat the same thing for hooks at the end of strokes, but going backward instead. 

The threshold is tested between 5% and 25%. If it’s too low, hooks cannot be 

detected. On the contrary, higher threshold will eliminate wrong segments. So, the 

experiment shows that 10% - 15% has better results. To choose a lower percentage 

10% in this research because trying to keep the segment rather than missing 

stroke. 

 

4.2.3 Normalization 

Normalization is a very important part of preprocessing. Since the original 

images have huge differences in size, they must be normalized in order to have a 

unified size. This is very helpful to reduce training time of the neural network and 

improve recognition accuracy. The standard character image is used to unify 

different original characters to the same height and width. Normalization has two 

methods: projectile normalization [13] [14] and frame normalization. Projectile 

Original Character After de-hooked Character 

FIGURE 8: HOOK REMOVAL 
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normalization basically projects all points into target size of frame by ratio current 

size and target size. On the other hand, frame normalization will be utilized here 

because the former will stretch characters if the ratio of the height and the width 

between current size and target size are different. I think this may cause losing or 

changing the characteristics of input character so I rather keep the original ratio. 

Back to frame normalization, that is, the outside border of a character is enlarged or 

reduced in proportion linearly to the required size. First of all, the height and the 

width of the original character will be compared with the height and the width of 

the standard character, through which we’ll get a transformation coefficient, and 

then change all points in original character by a ratio of this transformation 

FIGURE 9: NORMALIZATION 
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coefficient. However, the dataset does not start with a 0 x coordinate and a 0 y 

coordinate. To solve this problem, simply find the minimum x coordinate and y 

coordinate of a whole character and then set all points relative to them. After the 

character is normalized, its position may move either toward the x-axis or the y-

axis, so it can be centered. Firstly, calculate the spans over the x-axis and y-axis, 

which is the distance between the maximum coordinate and minimum coordinate of 

each axis. If the span of one axis is larger than the other one, all coordinates of that 

axis will add half of its span. 

if x_span > y_span 

 for all y coordinates + y_span / 2 

else 

 for all x coordinates + x_span / 2 
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4.2.4 Smooth Using Bezier Curve 

 The main purpose of smoothing is to reduce the noise in the character. Noise 

is unavoidable in image processing. Due to the existence of noise, the image will be 

unclear, the feature will not be obvious, and it seriously affects the performance of 

feature extraction and recognition. Therefore, efficient noise processing in image 

processing is essential. The types of noise are very complex and their impact on 

each image is also different. Selecting the appropriate noise reduction methods 

according to the nature of the noise is needed in order to achieve desired results. 

Here, a Bezier curve is proposed.  

 

  

FIGURE 10: SMOOTH 
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4.3 FEATURE EXTRACTION 

4.3.1 Directions 

 Define eight directions for two adjacent points shown as below. Along with 

the order of points in each stroke, generate a list of directional code. Discard the 

current direction if it is the same as previous one. Limit a maximum of 20 

directional codes per list and also a maximum of 20 strokes per character. 

Therefore, a 20x20 array will be generated at the end. Fill with zeros if the array is 

not full.  

 

4.3.2 Zones 

Standard Chinese characters are written within a square box so that each 

word occupies the same space. Chinese characters include two types of structures: 

single characters and composite characters. Single characters cannot be divided, 

1 

2 
3 

4 

5 

6 8 

7 

FIGURE 11: 8 DIRECTIONS 



32 
 

such as "大" and "中". On the other hand, composite ones are constructed by basic 

components. More than 90% of Chinese characters are composite. There are many 

combination structures. Here are some common ones: 

 Half surrounded structure: 同, 过, 句 

 Full surrounded structure: 回, 国, 围 

 Top-bottom structure: 吉, 尖, 笑 

 Left-right structure: 咯, 叫, 说 

 Top-middle-bottom structure: 赢, 奚, 亵 

 Left-middle-right structure: 糊, 脚, 谢 

 Triangle (“品” shape) structure: 品, 森, 惢 

 Here, the frame of a character will be divided into 9 different regions so that it 

will cover most of the structures. Based on the order of strokes, the program will 

detect which region will be reached first. Therefore, an array with size of nine is 

FIGURE 12: 9 ZONES 
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generated as a feature input for the neural network. Fill with zero if not all zones 

have been passed over. 

4.3.3 Binary Image 

This part will generate a 30x30 pixel binary image of the character. Simply 

initialize a 2-dimensional array with zeros and set a specific position to 1 according 

to the coordinate of character points. Convert them to integers since points in 

graphics are floating-type numbers. At the end, this binary image will be used in 

the convolutional neural network. 

 

 

4.4 NEURAL NETWORK 

There are two types of neural networks that will be utilized in this research: 

multi-layer neural network and convolutional neural network. 

FIGURE 13: BINARY IMAGE 
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4.4.1 Multi-layer Neural Network 

The input layer of this neural network contains neurons for features obtained 

during feature extraction. The direction feature is a 2-dimensional array with size 

20x20. On the other hand, the region feature only contains 9 pieces of data that 

represent 9 zones. Hence, the input layer has a total 409 = 20 × 20 + 9 neurons. 

The second layer is the hidden layer. Hidden layer is customizable. It can be 

one or more layers and each layer can contain any numbers of neurons. During the 

experiment, I’ll test different setups to see which way has better results. More layer 

or less layer? More neurons or less neurons? 

FIGURE 14: NEURAL NETWORK STRUCTURE 
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The output layer contains 3755 neurons because the dataset only have 3755 

unique Chinese characters. Each neuron is the probability of the corresponding 

character. 

Twenty of this type of neural network will be built according to the number of 

strokes. Since people will write cursively, characters will not have too many strokes. 

However, if it exceeds 20 strokes, we just consider the first 20. 

4.4.2 Convolutional Neural Network 

Same as multi-layer neural network, the number of neurons in input layer and 

output layer of CNN are fixed. The input is the 30x30 pixel image of the characters 

and output will have 3755 probabilities of each character. Besides, different 

structures of CNN will be tested in experiment. 

4.5 POST-PROCESSING 

Both neural networks will produce two lists with the probability for each 

character. Pick top 10 from these two lists and sort them in descending order of the 

probabilities. Give a value 10 to the highest probability and 1 to the lowest 

probability. Then sum all the values for the same character and sort them in 

descending order. Figure 15 is an example. 
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5 RESULT 

An experiment has been done on a total of 240 writers and each of them 

contains 3755 characters from CASIA dataset. Randomly choose 168 out of 240, 

which is 70%, for training the neural network. The rest 72 (30%) is for testing 

purpose. This is based on the regular training process ratio in neural network – 7:3.  

The results are shown below. 

TABLE 2: MULTI-LAYER NEURAL NETWORK RESULT 

FIGURE 15: FIND THE MOST PROBABLE CHARACTER 
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TABLE 3: CONVOLUTIONAL NEURAL NETWORK RESULT 
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FIGURE 16: DIFFERENT STRUCTURES OF MULTI-LAYER NEURAL 
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FIGURE 17: DIFFERENT STRUCTURES OF CONVOLUTIONAL NEURAL 
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As we can see in Table 1 and Table 2, neither increasing the number of 

hidden layers nor the number of neurons can always improve the performance. So, 

neural network is like a black box. We cannot determine what kind structures are 

better for training the model for any recognition. The only way is try different 

setups and see which can produce better results. 

 

Comparing to QuickStroke, the accuracy of recognition does not have 

significant improvement because first one or two strokes are mostly similar so it’s 

very hard to recognize. 

Figure 18 is the actual user interface on a web browser. The top square box is 

the drawing area for users to write the character. A clear button at the bottom to 

remove all drawings. Following is the top 10 predicted results, sorted by descending 

order of probability. The program will automatically predict the input while user is 

drawing. The run time is a bit slow and it takes about 8 to 10 seconds to display the 

results. I have tested it and figured out that the program spends too much time to 

load the trained models. 

TABLE 4: FINAL RESULT 
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FIGURE 18: USER INTERFACE 
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6 CONCLUSION AND FUTURE WORK 

It is difficult to conquer the problem of online handwritten Chinese character 

recognition. Through data acquisition or transmission equipment, it is convenient 

and fast to input Chinese characters into a computer. Online handwritten Chinese 

character recognition has very broad prospects for application, and has become a 

popular but difficult research area in the field of machine recognition. 

Even though there have been a lot of research advancements on online 

handwritten Chinese character recognition, the recognition performance still 

remains unsatisfactory because of the large number of Chinese characters, the huge 

amount of noise in handwriting, and the amount of similarity between certain 

characters. The main topics handled in this research can be summarized below: 

 Analyzing the research about online handwritten Chinese character 

recognition. Describe in detail the work at each stage in the process of 

Chinese character recognition and the processing algorithms or 

methods used in each stage. 

 Feature extraction is the key of whole Chinese character recognition 

system. In order to improve the performance of character recognition, 

the feature accuracy plays an important role. Thus, the usage of 

preprocessing, which contains hooks removal, normalization, and 

stroke smoothing, can improve the performance of feature extraction. 
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 Utilize different types of neural networks to improve the performance 

of recognition: multi-layer neural network and convolutional neural 

network. 

 Utilize different tools to build a real time handwritten Chinese 

character recognition web application. 

The use of current knowledge to solve Chinese character recognition system 

is still partial and incoherent. Comprehensively utilizing various types of knowledge 

and researches to apply to online handwritten Chinese character recognition will 

require further, in-depth research. Meanwhile, improving the performance of each 

part of online handwritten Chinese character recognition so that the recognizing 

speed and result accuracy are enhanced is the goal of my current study.  
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