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Abstract
This paper presents an augmented incremental recognition method for online handwritten mathematical expressions (MEs).
If an ME is recognized after all strokes are written (batch recognition), the waiting time increases significantly when the
ME becomes longer. On the other hand, the pure incremental recognition method recognizes an ME whenever a new single
stroke is input. It shortens the waiting time but degrades the recognition rate due to the limited context. Thus, we propose
an augmented incremental recognition method that not only maintains the advantage of the two methods but also reduces
their weaknesses. The proposed method has two main features: one is to process the latest stroke, and the other is to find the
erroneous segmentations and recognitions in the recent strokes and correct them. In the first process, the segmentation and the
recognition by Cocke–Younger–Kasami (CYK) algorithm are only executed for the latest stroke. In the second process, all the
previous segmentations are updated if they are significantly changed after the latest stroke is input, and then, all the symbols
related to the updated segmentations are updated with their recognition scores. These changes are reflected in the CYK table.
In addition, the waiting time is further reduced by employing multi-thread processes. Experiments on our dataset and the
CROHME datasets show the effectiveness of this augmented incremental recognition method, which not only maintains
recognition rate even compared with the batch recognition method but also reduces the waiting time to a very small level.

Keywords Handwriting recognition · Mathematical expression recognition · Incremental recognition · Batch recognition

1 Introduction

Nowadays, mathematical expressions (MEs) are used widely
in many fields such as science, engineering, education and
economy. Basically, there are three methods to input math-

B Masaki Nakagawa
nakagawa@cc.tuat.ac.jp

Khanh Minh Phan
pmkhanh7890@gmail.com

Anh Duc Le
leducanh841988@gmail.com

Bipin Indurkhya
bipin@agh.edu.pl

1 Department of Computer and Information Sciences, Tokyo
University of Agriculture and Technology, 2-24-16,
Naka-cho, Koganei-shi, Tokyo 184-8588, Japan

2 NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A
Nguyen Tat Thanh, District 4, Ho Chi Minh city, Vietnam

3 Department of Computer Science, AGH University of Science
and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

ematical expressions to a device: a user can use an editor
like Microsoft Equation Editor (MEE); input the mathemati-
cal equation by a math description language like LATEX;
or employ handwritten ME recognition. The former two
are practical, but the user must select menus and find sym-
bols/expressions in a long list, or remember the grammar of
math symbols/ expressions. They are useful for scientists,
engineers, teachers, businesspeople and other professionals,
but awkward for ordinary people. The last method based on
handwrittenME recognition is easy to use for everybody, but
the recognition rate is still poor.

In recent years, touch-based and pen-based devices using
display-integrated tablets have become more commonplace.
Many people own one or more such devices: they can read
and annotate documents, write memos and draw figures on
their devices in a natural way using a pen or just their finger.
Moreover, they can receive immediate feedback so that they
can interact with these devices in real time.

Self-learning systems on these devices are also becom-
ing available. Learners write MEs for answers, the devices
recognize handwritten MEs, the learners verify or correct
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recognition results, and then they want to know whether
their answers are correct. The success of such systems relies
on handwritten ME recognition, and so the recognition rate
should be high enough for them to be considered trustworthy.

Handwritten ME recognition, especially online handwrit-
ten ME recognition (hereafter we call OHME), however, is
not a new research theme. It started around 1970 with a top-
down approach by Anderson [1] and a bottom-up approach
by Chang [2]. Recently, OHME recognition has been getting
more attention as touch-based and pen-based devices are pro-
liferating into education and learning environments. A series
of contests named CROHME has been held in 2011, 2012,
2013, 2014 and 2016 at International Conferences on Doc-
ument Analysis and Pattern Recognition and International
Conference on Frontiers in Handwriting Recognition.

There are two approaches to recognize an OHME: after
the entire OHME is written (batch recognition), or incre-
mentally as each stroke is written one by one (incremental
recognition). Especially, pure incremental recognition refers
to the method of recognizing an input stroke sequence every
time a new stroke is written. Batch recognition can produce
higher recognition rate because the entire context is avail-
able, but it takes longer to output the result. On the other
hand, incremental recognition reduces the waiting time but
the recognition rate is lower.

We briefly survey previous works in the batch recogni-
tion approach. They reported better recognition rates and
achieved higher ranks in the above-mentioned competitions.

Alvaro et al. [3], who won the first prize at CROHME
2011, second prize at CROHME 2013 and CHROME 2014,
modified the Cocke–Younger–Kasami (CYK) parsing algo-
rithm to parse an input OHME in 2 dimensions (2D) under
two-dimensional stochastic context-free grammar (SCFG).
Their method is stroke order-free. They employed range
search to decrease time complexity from O(n4|P|) to
O(n3logn|P|).

Awal et al. [4] presented another SCFG-based method.
They proposed a global learning approach to learn symbol
segmentation and symbol recognition directly from training
OHMEs. Their system received the second prize and the third
prize at CROHME 2011 and CROHME 2012, respectively.
Their method is stroke order-free.

Yamamoto et al. [5] and Simistira et al. [6] also employed
SCFG red. Stroke order is used to decrease the number
of sub-partitions that must be considered during parsing to
O(n2) and reduce the complexity of the parsing algorithm
to O(n3|P|). Although the complexity is low, it is not robust
for stroke order variations. Le et al. [7] extended the gram-
mar rules to handle common symbol order variations; their
system received the third prize at CROHME 2013 and at
CROHME 2016.

Okamoto et al. [8] published another stroke order-
dependent method using positional relations rather than

parsing. Their method partitions an input OHME into com-
ponents by recursive horizontal and vertical cuts. Then, it
unifies separated components, recognizes symbols, analyses
the structure and generates the output.

Zanibbi et al. [9] proposed a stroke order-dependent
method,whichdecomposes the recognitionprocess into sym-
bol segmentation, symbol recognition and structural analysis.
Their method constructs a 2D arrangement of input symbols,
groupsmultiple input symbols (such as decimal numbers and
function names), analyzes expression syntax and produces an
operator tree. Hu et al. [10] used Edmonds algorithm to find
themaximum spanning tree (MST) in a directed line-of-sight
graph. The MST-based parser finds the higher formula struc-
ture and expression rates.

Julca-Aguilar et al. [11] proposed another graph-based
method. This method builds a context-free graph from the
input strokes and then employs a top-down parsing algorithm
to partition each node until a terminal symbol is reached.

Garain et al. [12] employed a bottom-up approach using a
stroke order-dependentmethod. It combines feature template
matching and HMM for recognizing symbols. The mathe-
matical structures, like superscripts, square roots and limits,
are detected by using the baseline information of each sym-
bol. Finally, the sub-expressions are merged into a larger
expression until the final expression is constructed.

Recently, Le et al. [13] and Zhang et al. [14] introduced
a stroke order-dependent method based on deep learning.
This end-to-end encoder–decoder framework can train sym-
bol segmentation, symbol recognition and classification of
spatial relations together. Experiments show an improved
performance when compared with the other systems.

Our interest is in incremental recognition since it is much
needed for user interfaces of educational applications. We
review these works below.

MacLean et al. [15],whogot the secondprize atCROHME
2012, proposed a top-down parsing algorithm. Whenever a
new stroke is written, they incrementally construct a shared
parse forest representing all recognizable parses of an input
by Ungers method [16]. Then, the most highly ranked tree
is extracted from this forest. They sort input strokes in x-
direction (horizontal) and y-direction (vertical) to segment
them using grammar production rules. This method restricts
the infeasible segmentations while achieving stroke order
independence. However, the worst-case complexity of pars-
ing is still O(n4|P|), which is quite large.

Predovic et al. [17] proposed another incremental method
following the stroke order-free approach by partitioning the
input strokes into multiple stroke regions. Strokes of a region
are ordered according to left-to-right, top-to-bottom and
outside-to-inside relations. They score both the non-terminal
and the terminal grammar objects included in each region and
represent these objects as chart entries. Whenever a system
detects pause or a new action from the user, it determines
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Table 1 Properties of previous works on OHME recognition

Method Properties
Incremental/batch Stroke order-

free/dependent

Alvaro et al. [3] Batch Free

Awal et al. [4] Batch Free

Yamamoto et al. [5] Batch Dependent

Simistira et al. [6] Batch Dependent

Le et al. [7] Batch Dependent

Okamoto et al. [8] Batch Free

Zanibbi et al. [9] Batch Dependent

Hu et al. [10] Batch Free

Julca-Aguilar et al. [11] Batch Free

Garain et al. [12] Batch Free

Le et al. [13] Batch Free

Zhang et al. [14] Batch Free

MacLean et al. [15] Incremental Free

Predovic et al. [17] Incremental Free

Vuong et al. [18] Incremental Free

Phan et al. [19] Incremental Dependent

which chart entries are affected and updates them accord-
ingly.

Vuong et al. [18] proposed a progressive structural anal-
ysis for dynamic recognition by using the mathematical
expression tree (MET). This method is stroke order-free. The
latest input symbol is updated into the corresponding posi-
tion of the MET. Meaningful consecutive symbols in MET
are grouped into a mathematical unit. The advantage of this
method is that it allows the users to correct misrecognized
symbols.

Phan et al. [19] proposed an incremental recognition
method for OHMEs, which is based on the method proposed
by Le et al.. This method employs a bottom-up approach and
updates the CYK table whenever a new stroke is input.

The recognition methods mentioned above incrementally
recognize an input OHME after each written stroke, so we
categorize them as the pure incremental approach. The pure
incremental approach reduces the waiting time but yields a
lower recognition rate due to limited context. To rectify this,
Phan et al. [20] proposed a semi-incremental approach,which
considers larger context to recognize input strokes. Table 1
lists the above-mentioned works on OHME recognition with
their properties.

It is also important to consider the user interface. Lazy
recognition interface delays the feedback of recognition until
it is needed. Users may not need continuous feedback from
ME recognition while writing, but only to see the final results
when they are done. Misrecognition and even display of
correct recognition during writing may interrupt the users

thinking [21]. The batch recognition method is suitable for
such a user interface.

On the other hand, a user interface based on busy recogni-
tion or on-the-fly recognition provides the recognition feed-
back in real time, thereby enabling the users to interact with
the feedback to erase and rewrite strokes in case of incorrect
recognitions. It takes advantage of interactive touch-based or
pen-based devices employing display-integrated tablets. The
incremental recognition approach is suitable for such a user
interface, but it can be applied also for the lazy recognition
interface.

The method proposed here is an incremental recognition
method, which can be incorporated into busy recognition or
on-the-fly recognition user interfaces.

This paper is based on our earlier prototype on which
uses pure incremental and semi-incremental recognition of
OHMEs [19,20]. Since then, we have refined our technique
while removing some redundancies to reduce the waiting
time. Here, we redesign the prototype incorporating these
new techniques and describe here the revised approach in
more detail. We also evaluate prototype on four datasets,
three of which are publicly available. We also present a
detailed analysis of misrecognitions.

The augmented incremental recognition method mini-
mizes the waiting time while increasing the recognition
rate to be nearly the same as that of the batch recogni-
tion. Unlike the pure incremental recognition method, which
only processes the latest stroke, the augmented incremental
recognition method considers the previous segmentation and
recognition results as well as the latest stroke.

Our method is basically stroke order dependent so that its
merit is a smaller time complexity, but it is less robust with
respect to interspersed strokes over multiple symbols com-
pared to stroke order-free methods. Although another work
considers stroke reordering to solve this problem [22], we
confine ourselves to making incremental recognition based
on batch recognition.

We define a stroke as a time sequence of pen-tip or finger-
tip coordinates from pen (finger)-down to pen (finger)-up.

The rest of the paper is organized as follows. Section 2
presents an overview of the batch recognition method and
features employed. Section 3 explains how the augmented
incremental method works. Section 4 presents recognition
experiments, and the conclusions are presented in Sect. 5.

2 Batch recognitionmethod and employed
features

In this section, we summarize the batch recognition method
to recognize OHMEs, from which we reformulate the incre-
mental recognition method. We describe its features in detail
as they form the basis of the incremental method as well.
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The batch recognition is composed of five major tasks: fea-
ture extraction, symbol segmentation, symbol recognition,
spatial relation classification and structure analysis. After all
the strokes for an OHME are input, it is segmented, each
symbol is recognized, its structure and relation are analyzed,
and the Cocke–Younger–Kasami (CYK) [23–25] algorithm
is employed to find the best interpretation of the OHME. We
follow a soft-decision paradigm in that multiple choices are
considered in performing segmentation and recognition. The
process is described in detail below

2.1 Feature extraction

When the userwrites an entireOHMEon a tablet, twenty-one
geometric features are extracted for each pair of consecutive
strokes, where eight features are normalized by the average
height of all input strokes (h) such as such as x- and y-
projections of the nearest bridge between two strokes, x- and
y- distances between two bounding boxes of two strokes and
x- and y-coordinates of the midpoint between centers of two
bounding boxes, while the remaining thirteen features are
calculated from the ratios of two local values. Thus, all the
features are scale invariant. In “Appendix,” Table 7 lists these
features, which are depicted in Fig. 13 and Table 8 explains
the terms and symbols used in Table 7.

2.2 Symbol segmentation

An SVM classifier is used for segmentation, which takes
21 geometric features extracted in the previous step as the
input and generates symbol hypotheses. We assume that the
maximum number of strokes forming a single mathematical
symbol is four plus one additional stroke, because a stroke
is sometimes accidentally chopped while writing (maximum
of four strokes for E plus one additional stroke).

2.3 Symbol recognition

A symbol recognizer is used to recognize each symbol
hypothesis from the previous task. The recognizer is a com-
bination of offline and online recognition methods [26]. For
the online recognizer, we use Markov random field (MRF)
to get a similarity measure for each symbol class. For the
offline recognition, we use the modified quadratic discrimi-
nant function (MQDF) to calculate the distances of the input
pattern to each symbol class. The measurement is different
betweenMRF (probability, the higher the better) andMQDF
(distance, the lower the better). We combine the MRF and
MQDF as follows:

scorecomb = CDF(w1 × scoreon + w2 × scoreoff) (1)

where scorecomb, scoreon and scoreoff are the combination
score, online recognition score and the offline recognition
score;w1 andw2 are the weighting parameters for combina-
tion; CDF is a cumulative distribution function to normalize
the combination score to [0, 1]. The advantages of both the
methods aremaintained in this combined systemwhile reduc-
ing the weaknesses of each method. Particularly, the online
method works well for connected strokes or cursive strokes,
while the offline method can overcome the problem of out-
of-order strokes or duplicated strokes.

The mathematical symbol recognition is almost the same
as the Japanese character recognizer [26] except for three
main modifications. The first and the most important change
is to replace all categories in the Japanese character dictio-
nary by 101 mathematical symbol categories. Second, the
recognition result of each symbol pattern is limited to the
five highest score candidates. Third, the candidates of period,
comma and prime are considered for each recognized sym-
bol. If the symbol has both the height (h) and width (w)
less than a half of the average height (h) and width (w) of
the current OHME, respectively, the probability (old_P) of
“period,” “comma,” or “prime” is added a bonus probability
B which is calculated as shown in (2).

new_P(period/comma/prime) = min(old_P + B, 1) (2)

B = F(h) × G(w) (3)

where F and G are fuzzy functions as shown in (4) and (5).

G(w) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if 0 < w < w
10

5w−10w
4 if w

2 > w > w
10

0 if w > w
2

(4)

F(h) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if 0 < h < h
10

5h−10h
4 if h

2 > h > h
10

0 if h > h
2

. (5)

2.4 Structural relation

Structures or relations among symbols in OHMEs are
ambiguous in some cases even for humans. The spatial
relation only considers the relation between a pair of ele-
ments (an element can be a symbol or a sub-expression).
Therefore, features of a structural relation do not need to
be normalized by the global features of an OHME. First,
a soft-decision approach is developed using the body box,
which can represent the main position and size of each
symbol [7]. For example, the body boxes for ascendant sym-
bols like “d,” “k” and “h” are lower than their bounding
boxes. Figure 1 shows an example of four groups of sym-
bols. The body boxes of two symbols represent their relations
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Fig. 1 Four groups of symbols

better than the bounding boxes. Here, it should be noted
that the body box for each symbol pattern is trainable and
different for each symbol recognition candidate. The body
box of a composite expression (non-terminal symbol) is
defined from its constituent symbols including non-terminal
symbols

Second, from the body boxes of a pair of two successively
written symbols, four features are extracted by (6), (7), (8)
and (9).

Dx = (xm2 − xm1)

w1
(6)

Dy = (ym2 − ym1)

h1
(7)

H = h2
h1

(8)

O = Soverlap
h2 × w2

(9)

where (xmi , ymi ), wi and hi (i = 1, 2) denote the center of
the width and the height of the bounding box, respectively,
and the suffix i is 1 for the preceding body box and 2 for the
succeeding body box.

The features Dx , Dy show the distances between the hor-
izontal centers and the vertical centers of the two body boxes
scaled by the width and the height of the preceding body box,
respectively. The feature H is the ratio of the height of the
preceding body box and that of the succeeding body box. The
feature O is the ratio of the overlapping area over the size of
the succeeding body box. Figure 2 shows an example of all
the terms used to obtain the four features.

Finally, these features are taken as input to obtain the
probabilities for six relations between the pair (horizon-
tal, superscript, subscript, above, below and inside) by
SVMs.

2.5 Structure analysis

We have defined a two-dimensional stochastic context-free
grammar (2D-SCFG). Some rules of the 2D-SCFG for MEs
are shown in Table 2. Although the method is not robust with
respect to unexpected stroke order variations, all the expected
writing order variations are registered in the grammar, such

Fig. 2 Parameters in structural relations

Table 2 Some rules of 2D-SCFG for mathematical expressions

No. Rule

1 Exp → SupExp

2 SupExp → superscript, Number

3 Exp → horizontal, OpExp

4 OpExp → horizontal, Operator_Exp

5 Exp → Number

6 Number → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
7 Operator → {+|−}

as all the permutated orders of an integer in the integer part,
and the numerator, the denominator and the fraction bar in
the fraction part.

We have employed the CYK algorithm, which takes
segmentation probabilities, symbol recognition scores and
relation probabilities of all terminal and non-terminal sym-
bol candidates obtained in the previous steps as the input.
Each candidate in a cell has a score, which is a combination
of segmentation probability, symbol recognition score and
relation probabilities for six relations.

The system configured by the 2D-SCFG invokes the CYK
algorithm to produce a list of candidates for each input
sequence of strokes s = s1, s2, . . . , sn for an OHME. The
algorithm is composed of two stages:

Initial stage: We initialize the first five rows in the CYK
table, because a mathematical symbol is formed from at
most five strokes. In each cell, we store an array of nodes,
each of which contains the candidate production and its
score.

Parsing stage: We employ X
rel→ AB production rules to

reduce two sub-MEs to a non-terminal. Then, we employ
Y → C production rules to reduce the non-terminal further
to another non-terminal.We store five best candidates in each
cell of the CYK table for an OHME. The candidates of the
final result are extracted from the top cell.
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3 Augmented incremental recognition
method

We not only aim to minimize the waiting time but also to
keep the recognition rate as high as that of the batch recogni-
tion (where symbol recognition and building the CYK table
are time-consuming). In this section, we introduce an effec-
tive method that can be processed in parallel. This method
does not only focus on the latest stroke and its neighboring
strokes,whichmaybe combinedwith the latest stroke to form
a symbol, but can also correct erroneous segmentations and
recognitions made far away from the latest stroke, even up to
the first stroke. The proposed method is applicable to batch
recognition methods employing segmentation and isolated
symbol recognition.

In our previous research [20], we have found that human
writers typically spend about 0.8 s between strokeswhen they
are writing. Long breaks over 2 s are not included in the aver-
age. We propose to utilize this elapsed time for processing
input strokes.

Because of these reasons,we expect to return a high recog-
nition rate without interrupting the users.

3.1 Processing flow

The processing flow of the augmented incremental recog-
nition is shown in Fig. 3. This flow contains the pure
incremental recognition method shown in white to which
steps for correcting erroneous segmentations and misrecog-
nitions shown in black are added. To begin with, the system
receives a new stroke from the user. In the second step, it
updates the geometric features and segmentation. In the third
step, it recognizes the symbols related to the recently received
stroke. Then, it analyzes the structure and updates the CYK
table to get the OHME recognition result. The latest result is

Fig. 3 Flow of the augmented incremental recognition

used for the next processing cycle, and the process is repeated
until the input is finished.

The parts shown in black in Fig. 3 are to correct the
erroneous segmentations and recognitions away from the
current stroke. The augmented incremental method applies
the pure incremental process, but additionally performs
other operations to correct erroneous segmentations andmis-
recognitions. This step updates the available segmentations,
recognitions and cells in the CYK table if there is any change
caused by the latest stroke. These steps are repeated after
every new stroke rather than after a whole OHME so that the
recognition result is shown immediately after the user is fin-
ished writing, while employing a larger context to segment
and recognize the input OHME

When the user enters a new stroke, the geometric features
are updated and the segmentation related to the latest stroke
is added. If previous segmentations are changed, they are also
updated in the following steps. First, all the candidates related
to the latest stroke are recognized. Second, the candidates
related to the updated segmentations in the first step are also
updated by the new scores. Third, the CYK table is updated
with new cells added. Finally, the latest result is reused for
the next processing cycle.

3.2 Updating geometric features

In the batch recognition, eight features are normalized by the
average height of all the strokes. For incremental recognition,
however, all the strokes are not available to calculate the
exact average height. Therefore, we approximate the average
height by taking the average from the first stroke to the latest
stroke.Whenever a new nth stroke is input, the average height
(h) is recalculated for the n strokes, eight features of the
stroke pairs in Table 1 for the (n − 2) previous pairs, i.e., a
total of 8× (n− 2) features are renormalized by the updated
h and the twenty-one features are extracted for the latest
pair. Extending the approach of our earlier prototype, the
remaining thirteen features for the previous (n−2) pairs need
not be updated as they are scaled locally by the neighboring
features.

3.3 Adding new segmentation and updating old
segmentations

The process of segmentation includes two steps. First, the
new segmentation probability between the latest stroke and
its previous stroke is calculated. Second, the previous seg-
mentations may be changed because they are dependent on
the eight features normalized by h. Therefore, we recalculate
the new probabilities of all previous pairs. Then, if there is
any pair, the segmentation probability ofwhich changesmore
than the specified segmentation threshold, the probability of
this pair is updated.
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(a)

(b)

(c)

Fig. 4 Example of segmentation changes after inputting a new stroke.
a Segmentation before stroke “3” is added. b Segmentation after stroke
“3” is added. c List of strokes in writing order

If the segmentation threshold is too small, many updates
need to be performed without recovering from the wrong
segmentations. Therefore, we must select a suitable value
for the segmentation threshold.

Figure 4 shows an example of the segmentation step in the
augmented incremental recognition method. A user writes
“13+” and then “3.” The candidate “B+” has the highest seg-
mentation probability before the new stroke for “3” iswritten.
When the new stroke “3” is input, however, the segmentation
probability of the first pair of strokes changes more than the
segmentation threshold; hence, this probability needs to be
updatedwith the result that the segmentation into “1” and “3”
has a higher probability. For the second pair and the third pair,
their segmentation probabilities change less than the thresh-
old; hence, their probability values need not be updated. The
last pair includes the new stroke, so we calculate the new
segmentation probability for it.

3.4 Recognizing new symbol candidates

In the processing cycle, the result of the OHME recognition
is updated up to the latest stroke. The maximum strokes that
form a mathematical symbol are limited to five strokes. Con-
sequently, the latest stroke may affect up to four previous
strokes. All the new candidates that may form symbol pat-
terns with the latest stroke are registered into the recognition
table.

3.5 Updating scores of candidates

If a candidate is composed of a single stroke, its score is free
from thegeometric features and segmentationprobability. If a
candidate is composed of multiple strokes, however, its score
is a combination of a recognition score and segmentation
probabilities as shown in (10).

Scand = log (Srecog)+
k+m∑

i=k

log (Pprob(strokei , strokei+1))

(10)

where

• Scand : Score of a candidate.
• Srecog: Score of a recognition result.
• Pprob: Segmentation probability of 2 consecutive strokes.
• k: Index of the first stroke of a candidate.
• m: Number of strokes of a candidate.

If the segmentation probability changes, scores of the
related candidates (Scand) are updated immediately. Scores of
the single-stroke candidates are not affected by (10); hence,
their scores need not to be updated.

3.6 Adding new cells into CYK table

At this step, the geometric features, segmentations and scores
of all the candidates are available, which are used as the input
for the CYK algorithm. In the batch recognition [7], the CYK
table is constructed in ascending order vertically from the
bottom row to the top row. The lowest row is composed of
terminal symbols. The lower rows must be completed before
the upper rows are generated. On the contrary, the pure incre-
mental recognition adds a cell on the right of each row, from
the bottom row to the top row, in the CYK table whenever
a new stroke is input. Figure 5 shows the difference of the
pure incremental recognition method and the batch recogni-
tion method, where the candidate shown in each cell is the
candidate with the highest score. Each cell also keeps other
symbol candidates recognized for corresponding strokes. For
each processing step, the latest result is extracted from the
cell at the top of the CYK table.

3.7 Updating cells in CYK table

In the pure incremental recognition method, the CYK table
is expanded without changing the existing cells whenever
it receives a new stroke. Therefore, erroneous segmenta-
tions and recognitions in the previous strokes cannot be
corrected.

123



260 K. M. Phan et al.

Fig. 5 An example of building CYK table in the batch recognition
method (left) and the pure incremental method (right)

Fig. 6 Examples of cells that need to be updated with p = 0 (left
figure) and p = 2 (right figure)

In the augmented incremental recognition method, cells
are updated whenever segmentation probabilities and recog-
nition scores are updated. Then, if a cell in row n is updated,
all cells in row (n+1) that connect directly with the updated
cell in row n are updated. All cells in the first row that repre-
sent the recognition results of single strokes do not change.
Only cells in the second and upper row may be updated.

Each updated segmentation affects its corresponding cell
in the CYK table. Based on the position of the corresponding
cells, we can find a list of cells that need to be updated accord-
ing to the algorithm shown in Algorithm 1. Two examples
of such cells are shown in Fig. 6; the gray cell is found by
the algorithm in Algorithm 1, and all the cells in the dashed
rectangle need to be updated. All the cells in this list are
updated by the algorithm shown in Algorithm 2. The update
is performed frombottom to top in theCYK table because the
cells in lower rows are used to build the cells in upper rows.

Algorithm 1 To find cells to be updated
1: for i = 1 to n − 1 do � row 2 to n
2: for j = (p − i + 1) to p do � cell order in a row (left to right)
3: � p is a position of updated segmentation
4: if (−1 < j < n) then � check if a cell is in CYK table
5: Add cell(i , j) into listForUpdate

Algorithm 2 To update cell(i, j)
1: for each cell(i , j) ∈ listForUpdate do
2: if i < 5 then � lower than 5th row
3: t ← group of strokes si , ..., si+ j
4: if t does not in rejecting invalid hypotheses then
5: for each production X → a do
6: if Precog(t |a) > 0 then
7: Add node(X → a, Precog(t |a)Pseg , t) into cell(i , j)
8: for each X

rel→ AB do
9: for k = 0 to i do � % get two sub-cells of cell(i , j)
10: C1 = getcell(k, j)
11: C1 = getcell(i − k − 1, j + k + 2)
12: prob = P(C1|A) × P(C2|B) × Prel (C1,C2|r)
13: ×Pseg(s j+k , s j+k+1) × Pgram(X

rel→ AB)
14: if prob > 0 then

15: Add node(X
rel→ AB, prob, C1, C2) into cell(i , j)

16: for each X → A do
17: if cell(i , j) has node A then
18: Add node(X → A, P(A)) into cell(i , j)

These two algorithms are evoked whenever segmentation is
updated.

An update changes the scores of the candidates in each
cell, after which these candidates are reordered by their
scores. As a result, the new candidate with the highest score
in each cell of the CYK table shows the result of the current
OHME.

Like the complexity of the CYK algorithm from Le et
al. [7], the complexity of this algorithm is still O(n3|P|),
whereas the complexity of the algorithmsproposedbyAlvaro
et al. [3] and Maclean et al. [15] are O(n3logn|P|) and
O(n4|P|), respectively, where n is the number of input
strokes for an OHME and |P| is the number of production
rules in the grammar.

3.8 Examples of updating CYK table

Figure 7 illustrates an example of updating the CYK table in
the augmented incremental recognition method. The paren-
thesized number on the bottom denotes the step of updating
the CYK table after the latest stroke is input. The symbol or
the OHME in each cell is the candidate with the highest score
in that cell.

We assume that the user has been writing “13 + 3.” Fig-
ure 7a shows the CYK table before the stroke “3” is input.
When the system receives the stroke “3,” the segmentation
score between the strokes “1” and “3” are changedmore than
the segmentation threshold, so all the cells related to this seg-
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(a) (b)

(e) (f)

(c) (d)

Fig. 7 Update of CYK table for “13+ 3” where (i, j) denotes position
of the cell. a CYK table before adding stroke “3,” b finding cells to be
updated Added the new cell (0, 4), c updating the cell (1, 0) Adding the
new cell (1, 3), d updating the cell (2, 0) Adding the new cell (2, 2), e
updating the cell (3, 0) Adding the new cell (3, 1), f adding the new cell
(4, 0)

Fig. 8 Function arrangement on three threads

mentation, which are bound by red boxes in Fig. 7b, need to
be updated. Secondly, Fig. 7c shows that the first cell in row
2 is updated. Consequently, the highest score candidate in
this cell is changed from “B” to “13.” Thirdly, the cell in
row 3 which is connected directly to the cell “13” in row 2
is updated as shown in Fig. 7d. Similarly, the cells in row 4
and row 5 related to the cell “13” in the previous stage are
updated as shown in Fig. 7e, f.

3.9 Multi-thread

Following the flow of recognition shown in Fig. 3, if a user
is required to wait for writing a new stroke until the current
recognition process is finished, it makes the user feel uncom-
fortable and unnatural. Therefore, to reduce the time delay in
writing, the augmented incremental recognition is performed
on three threads as shown in Fig. 8.

Thread 1 contains all the functions related to the inter-
face. Thread 2 includes all the functions related to the pure
incremental recognitionprocess. Thread3 covers all the func-
tions that handle the previous strokes. In the previousmethod,
Threads 2 and 3 must wait for each other to complete each
task before going to the next task, which incurs unnecessary
waiting time. However, we improved this by letting these two
threads run independently in the update of the CYK table, so
that Thread 2 need not wait for Thread 3. This optimiza-
tion decreases the waiting time compared with the previous
method. There are two advantages of dividing the system into
three threads. First, the user can write an OHME smoothly
without waiting, even when the system has not finished the
current recognition process for the latest input stroke yet.
Second, the overhead of organizing multiple threads is little
and they decrease the waiting time generally by half (e.g.,
from 0.1 to 0.05 s when the number of strokes is 16 and from
0.24 to 0.12 s when it is 40) because the system can run the
newly added functions and the old ones in parallel.

4 Experiments and discussions

4.1 Datasets

To evaluate our proposed incremental method, we conducted
the following experiments employing Window 10 Profes-
sional on an Intel Core i7-3770 CPU of 3.40GHz with 8GB
memory. We used Hands-Math dataset and the CROHME
datasets. The Hands-Math dataset includes 10,864 OHMEs
that have been collected from 62 elementary school children,
27 junior high school students and 26 members of our labo-
ratory. We use 8266 OHMEs for training and 2598 OHMEs
for testing. The number of symbol classes is ninety-four,
including math symbols used in Japanese elementary and
junior high schools such as numerals, operators, uppercase
and lowercase letters and unit symbols.

The CROHME 2013 [27], CROHME 2014 [28] and
CROHME 2016 [29] events were organized at ICDAR 2013,
ICFHR 2014, and ICFHR 2016. They share the same train-
ing set, which contains 8,836 OHMEs, whereas the numbers
in the testing sets are 671 OHMEs, 986 OHMEs and 1147
OHMEs in CROHME 2013, CROHME 2014 and CROHME
2016, respectively. The number of symbol classes is 101,
including many similar symbols such as {1, |, l}, {P , p},
{S, s}, {C , c}, {X , x ,}, {V , v} and {O , o, 0}.

4.2 Experiments and discussions on the updated
segmentations

Wemade the following three experiments. The results shown
are measured for the testing set. The first experiment is on
segmentation. When a new stroke is input, the segmenta-
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Fig. 9 Average number of updated segmentations per OHME

tions made so far are updated if one of their probabilities
changes more than the segmentation threshold. Figure 9
shows the average number of updated segmentations per
OHME throughout its incremental recognition depending on
the segmentation threshold (Ts). In this experiment, Ts is var-
ied from 0 to 0.3 in steps of 0.01. In all the three datasets,
when Ts = 0, the average number of updated segmentations
is more than 10 per OHME. As Ts is set higher, however, the
number of updated segmentations decreases. This decrease
is faster for the Hands-Math dataset than for the CROHME
2013, 2014 and 2016 datasets. We suggest the explanation
for it. The OHMEs in Hands-Math dataset follow simple
grammars for elementary and junior high schools so that the
structural relations are not so rich and the heights of symbols
within an OHME are not so different. On the other hand,
the CROHME datasets cover complex grammars so that the
structural relations are rich and the heights of symbols within
an OHME vary widely; hence, the segmentations are more
strongly affected by succeeding strokes. When Ts reaches
0.3, however, the average number of updated segmentations
is asymptotic to 0% for Hands-Math, CROHME 2013 and
CROHME 2014 datasets but to 1 for CROHME 2016.

4.3 Experiments and discussions on the recognition
performance

The second experiment is to evaluate the whole system.
We measured four factors. The first is the symbol detec-
tion (“Sym Seg” or symbol segmentation), the second is
the segmentation of symbols with their correct classification
(“Seg+Class”), the third is the correct relationship between
all pairs of symbols (“RelTree,” for Hands-Math, CROHME
2013, and CROHME 2014), plus correct segmentation of
symbols (“Struc Rec,” for CROHME 2016), and the fourth
is the ME recognition rate (“Exp Rec”). We consider that
an OHME is correctly recognized if all symbols, relations

Table 3 Recognition performance on Hands-Math dataset (%)

Method Sym Seg Seg+Class RelTree Exp rec

Batch 92.24 88.24 89.79 68.07

Augmented incremental (seg. threshold: Ts )

0.05 92.46 88.24 89.79 68.07

0.10 92.39 88.22 89.79 67.92

0.15 92.32 88.09 89.72 67.86

0.20 92.24 88.01 89.68 67.78

0.25 92.19 87.92 89.60 67.71

0.30 92.15 87.78 89.58 67.68

Pure incremental 92.11 87.54 89.49 66.96

Tandem 92.34 88.17 89.72 67.89

Table 4 Recognition performance on CROHME 2013 dataset (%)

Method Sym Seg Seg+Class RelTree Exp Rec

Batch 88.49 79.63 71.09 32.34

Augmented incremental (seg. threshold: Ts )

0.05 88.49 79.63 71.09 32.34

0.10 88.48 79.61 71.09 32.34

0.15 88.41 79.56 71.09 32.19

0.20 88.36 79.49 70.94 32.04

0.25 88.30 79.45 70.64 31.89

0.30 88.25 79.38 70.19 31.74

Pure incremental 88.22 79.33 69.30 31.45

Tandem 88.43 79.59 71.09 32.19

and its structure are recognized correctly. We also imple-
mented a tandem recognition method, which recognizes first
j strokes by the batch method and the later strokes by the
pure incremental method. Tables 3, 4 and 6 show Sym Seg,
Seg+Class, RelTree, Struc Rec and Exp Rec by the batch
method, the pure incremental method, the tandem method
and the augmented incremental method.

In the experiment on the three datasets, the augmented
incremental recognition method records the Exp Rec as high
as the batch recognition method when Ts = 0.05 and does
not degrade much even when Ts = [0.15, 0.30]. It has a bet-
ter Exp Rec than the tandem method when Ts ≤ 0.10 and is
always better than the pure incremental method in the range
of Ts = [0.00, 0.30]. The pure incremental method has the
lowest Exp Rec for the three datasets because the context
information it can use is limited. The tandem method uses
all the context information in the first j strokes, but in the
remaining strokes it employs only a limited context; hence,
its Exp Rec is higher than the pure incremental method but
lower than the batch method. In the augmented incremental
recognition, as the segmentation threshold is lowered, more
segmentations are updated as shown in Fig. 9, with the result

123



Augmented incremental recognition of online handwritten mathematical expressions 263

Table 5 Recognition performance on CROHME 2014 dataset (%)

Method Sym Seg Seg+Class RelTree Exp Rec

Batch 84.67 77.21 68.66 32.86

Augmented incremental (seg. threshold: Ts )

0.05 84.67 77.21 68.66 32.86

0.10 84.65 77.18 68.66 32.86

0.15 84.62 77.11 68.46 32.75

0.20 84.58 77.05 68.26 32.66

0.25 84.53 76.95 68.05 32.56

0.30 84.49 76.89 67.65 32.56

Pure incremental 84.46 76.85 67.14 32.15

Tandem 84.59 77.06 68.26 32.66

Table 6 Recognition performance on CROHME 2016 dataset (%)

Method Sym Seg Seg+Class Struc Rec Exp Rec

Batch 91.62 86.05 61.55 43.94

Augmented incremental (seg. threshold: Ts )

0.05 91.62 86.05 61.55 43.94

0.10 91.50 86.01 61.46 43.76

0.15 91.31 85.94 61.29 43.50

0.20 91.21 85.77 61.03 43.33

0.25 91.19 85.71 60.94 42.98

0.30 91.16 85.67 60.59 42.81

Pure incremental 91.11 85.59 59.81 42.28

Tandem 91.26 85.91 61.03 43.15

that the rate of Sym Seg increases as high as that in the batch
recognition method. Lowering the segmentation threshold
also increases the rates of Seg+Class and Struc Rec because
their rates depend on Sym Seg. As a consequence, the can-
didates in the CYK table are updated closer to those in the
CYK table of the batch recognition method. Therefore, the
Exp Rec is maintained closer to the batch method (Table 5).

The results described in Tables 3, 4 and 6 demonstrate that
the performance of the augmented incremental recognition
method mainly depends on the segmentation. For StrucRec,
only one wrong segmentation can make the whole relation
tree wrong. Therefore, the system can recognize more sym-
bols and relations correctly if the correct segmentations are
recovered. Although the augmented incremental recogni-
tion method turns the batch recognition method employing
segmentation and isolated symbol recognition to incremen-
tal and realize recognition performance as the same as the
batch method, it cannot overcome the limitation in Sym
Seg, Seg+Class, RelTree, Struc Rec and Exp Rec even if
the threshold Ts = 0.

Although the commercial system by Myscript reports a
much higher recognition rate in the CROHME competitions

using a large set of roughly 30,000 training patterns rather
than the CROHME training set and a large corpus [27],
our system is the state of the art among academic systems
[3,7,9]. Its performance on Hands-Math is better than on the
CROHME datasets, since we can train the system with sam-
ples that need to be recognized. The difficulty of OHME
recognition is that even misrecognition of a single symbol in
an OHME causes misrecognition of the entire OHME. Thus,
editing and correction functions are provided for OHME
recognition systems in practice.

The most important point, however, is that the proposed
method can turn the batch recognition method into an incre-
mental recognition method. While the batch method can
yield an improved recognition rate with more training pat-
terns and a larger context, our proposed method provides
an incremental system with almost the same recognition
rate.

4.4 Experiments and discussions on thewaiting time

The third experiment is to measure the average waiting time
for recognizing an OHME by the augmented incremental
method in comparison with the pure incremental method and
the tandemmethod. A comparisonwith the batch recognition
is discussed later because the difference is too large to show
in the same graph.

In both the pure incremental and the augmented incre-
mental methods, the waiting time for an OHME is not only
affected by the latest stroke but also by the previous strokes
if their processing was not completed before processing the
latest stroke.

In the augmented incremental method, the waiting time
for an OHME is modeled as follows. After a new stroke i is
written, the thread 2 performs segmentation and the thread
3 performs parsing for stroke i , taking time p2i and p3i ,
respectively, neglecting the small time for the thread 1. In
addition, there is the elapsed time between two consecutive
strokes. We call the elapsed time after writing stroke i as ei .
The waiting time for an OHME is calculated in (11).

Taugm_incremetal =
n−1∑

i=1

f (max(p2i , p3i ) − ei )

+ max(p2n, p3n) (11)

where f (x) = x if x > 0 otherwise 0.
The complexity of p2i and that of p3i are O(i2|P|) and

O(ic|P|), respectively, where ic is the number of cells that
need to be updated and it is much less than i2.

Similarly, the waiting time of the pure incremental recog-
nition method for an OHME is calculated as shown in (12).

123



264 K. M. Phan et al.

Tpure_incremetal =
n−1∑

i=1

f (p2i − ei ) + p2n (12)

where f (x) = x if x > 0 otherwise 0.
Since the four datasets employed for this study do not

have time stamp for each stroke, we measured the average
elapsed time between two strokes using another small dataset
of 2520 handwritten OHMEswith the result of ei = 0.7862 s
where the elapsed time over 2 s is considered too large and
excluded from the average. Although this dataset includes
patterns from elementary school children and older adults,
the elapsed time across all the participants is stable (a differ-
ence of less than 0.2 s), and we consider ei = 0.7862 s to be
reliable.

Figure 10 shows the averagewaiting timeof the pure incre-
mental method, the tandem method [14] and the augmented
incrementalmethodwith 6 values of the segmentation thresh-
old (Ts). In the pure incremental method, the average waiting
time becomes larger as the number of strokes n increases,
since max(p2i , p3i ) > ei for some i on an ordinary CPU,
and the remaining processes for the previous strokes accu-
mulate until the last stroke. Nevertheless, the averagewaiting
time of the augmented incrementalmethod is less than 0.1 s in
most cases, which is acceptable as the instantaneous response
limit. The worst case of 0.35 s occurs when Ts = 0.05 with
more than 35 input strokes, but it is still within the uninter-
rupted response limit of 1 [30] or 2 s [31,32]. The waiting
time of the batch recognition method is also less than 2s but
exceeds 2 s when the number of strokes is increased. More-
over,when the program is runon a low-performanceCPU, the
waiting time exceeds 2 s even before the number of strokes
reaches 40.

The tandemmethod has a noticeable delay (> 0.1s) at the
beginning of writing an OHME and subjects users to unnat-
ural pauses. The pure incremental method shows the best
performance with respect to the waiting time, but its supe-
riority to the augmented incremental method is very small
for OHMEs in Hands-Math, and even for high-level OHMEs
in the CROHME datasets, as long as n is less than 30 or
Ts > 0.10.

For example, assume that a user inputs an OHME com-
posed of 30 strokes, the elapsed time between the 29th stroke
and the 30th stroke is 0.7 s, the time to process the previ-
ous strokes is 0.9 s after the 29th stroke is input and that
to process the 30th stroke is 0.3 s When the user completes
the 30th stroke, the system needs 0.2 s to finish process-
ing the previous process before executing the 30th stroke
and 0.3 s for the last stroke. Therefore, the waiting time for
this OHME is the remaining processing time of the previ-
ous strokes and the processing time for the 30th stroke, i.e.,
0.2+0.3 s

Fig. 10 Averagewaiting timeof the incrementalmethod and the tandem
method. a Hands-Math dataset, b CROHME 2013 dataset, c CROHME
2014 dataset, d CROHME 2016 dataset
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In the experiment of the average waiting time which
is shown in Fig. 10, the average waiting time generally
increases when the number of strokes increases. However,
some unusual cases can happen. For example in CROHME
2014 dataset with Ts = 0.05, the averagewaiting time deeply
drops when the number of strokes increases from 39 to 40.
The first reason is that the OHMEs of 39 strokes have many
updated segmentations and updated cells in the CYK table
than those of 40 strokes so that it need more time to rec-
ognize the OHMEs. Second reason is that the number of
OHMEs that have 39 or 40 strokes is 4 and 2, respectively,
so that the average is affected by one or two OHMEs, which
require large processing time. The similar cases happened in
the experiments in which the average waiting time decreases,
while the number of stroke increases.

The next experiment is to compare the average waiting
time of the augmented incremental method with that of the
batchmethod.Wemodeled thewaiting timeof the augmented
incremental recognition in the previous experiment. On the
other hand, the waiting time in the batch method is trivially
the time to recognize a whole OHME.

Figure 11 shows the average waiting time of the batch
method and the augmented incremental method with Ts =
0.05 which has the worst average waiting time in the third
experiment. The waiting time of the batch method becomes
longer as the number of strokes n increases. The average
waiting time of the batch method crosses the instantaneous
response limit (0.1 s) even when n is less than 5, and the
uninterrupted response limit of 1 s [32] when n = 25 or
more from the user interface point of view.

From these experiment, we can see that the augmented
incremental method is comparable with the pure incremental
recognition method, and it is superior to the tandem method
and the batchmethod significantlywith respect to the average
waiting time.

Consequently, we can conclude from all the experiments
that the augmented incremental recognition method excels
the batch method, the pure incremental method and the tan-
dem method in the recognition rate and the average waiting
time.

We would like to make an additional remark regarding the
recognition rate: it is not so high as the online handwritten text
recognition rate [33,34]. This is because the language context
of mathematical expressions is weaker than that of natural
languages, and the two-dimensional structure of mathemat-
ical expressions is more difficult than the one-dimensional
structure of the text. The most important reason, however, is
due to the condition that an OHME is correctly recognized if
all the symbols, all the relations and its structure as a mathe-
matical expression are recognized correctly. At this moment,
the OHME recognition systems are being deployed for pri-
mary or junior high school students to learn math on a tablet.
The recognition rate must be improved, however, for high

Fig. 11 Average waiting time of the batch method and the augmented
incremental method. a Hands-Math dataset, b CROHME 2013 dataset,
c CROHME 2014 dataset, d CROHME 2016 dataset
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(a)

(b)

(c)

(d)

Fig. 12 Examples of correctly and incorrectly recognized samples with
their ground truth in the datasets. a Ground truth as 51 + 89 =1 40, b
ground truth as 76x2 + 89x + 98 = 0, c ground truth as 13

19 + 2
5 × 16 =

19 33
95 , d ground truth as 2 1

4 − 1
4 = 2

school students, university students and scientists to use the
OHME recognition.

Although the underlying OHMEmethods must be impro-
ved in their recognition rates, the method of augmented
incremental recognition can be applied to the existingOHME
recognition methods to minimize the waiting time without
sacrificing their recognition rates.

4.5 Analysis of results and future works

Correctly and incorrectly recognized samples in the datasets
are shown in Fig. 12. Samples in Fig. 12a, b are recognized
incorrectly by the pure incremental method but correctly
by the augmented incremental method. The gray rectan-
gles located the errors: wrong relation analysis in Fig. 12a
(recognized as 51 + 89 = 140) and wrong symbol recog-
nition in Fig. 12b (recognized as 7678 + 89x + 98 = 0).
Figure 12c, d shows misrecognized samples by all of our
recognition methods due to wrong relation analysis (rec-
ognized as 21

4 .
1

−4 = 2) and a wrong symbol recognition

(recognized as 13
14 + 2

5 × 16 = 1933
95 ), respectively.

The misrecognized OHMEs show that both of the aug-
mented incremental recognition method and the batch recog-
nition method are limited for them. First, our method cannot
work well for OHMEs containing interspersed strokes. Sec-
ond, the current method misrecognizes OHMEs whose
segmentation, symbol recognition or structural relations are
ambiguous although the method keeps multiple candidates.
Third, the structure analysis is the key task degrading the
recognition rate. This task includes the 2D-SCFG which is
definedmanually and does not cover all the contexts in a huge

variety of handwritings. The performance of the augmented
incremental recognitionmethod could be improved by that of
the underlying batch method through gathering more context
information fromOHMEsand training the systemusingmore
OHME patterns with a large ME corpus. Stroke order-free
parsing [12,13] is another candidate to copewith interspersed
strokes.

5 Conclusion

We have presented an augmented incremental recognition
method for online handwritten mathematical expressions.
By updating segmentations and recognitions in the CYK
table after receiving every new stroke, augmented incremen-
tal recognition method not only achieves a recognition rate
as high as the batch recognition method, but also reduces
the average waiting time to the same degree as the pure
incremental recognition method. This has been confirmed
by the experiments made on the Hands-Math dataset and
the CROHME datasets. The control variable of segmentation
threshold should be set according to the application environ-
ment.

This augmented incremental recognition method is a
stroke order-dependent method so that it is still limited to
presumed order of strokes. In order to extend this approach,
we are developing a stroke order-free method based on the
augmented incremental recognition approach.

Appendix

See Tables 7, 8 and Fig. 13.

Table 7 Geometric features for symbol segmentation

Feature Definition Feature Definition

F1 nbx (Sp, Ss)/h F12 w_U (Bp, Bs)/h(Bs)

F2 nby(Sp, Ss)/h F13 w_O(Bp, Bs) ×
h_O(Bp, Bs)

F3 Dx (Bp, Bs)/h F14 (yc(Bp) −
yc(Bs))/h_O(Bp, Bs)

F4 Dy(Bp, Bs)/h F15 h(Bp)/h(Bs)

F5 xm(Bp, Bs)/h F16 (xl (Ss) − xl (Sp))/w(Bp)

F6 ym(Bp, Bs)/h F17 (xr (Ss) − xr (Sp))/w(Bs)

F7 dx (Ss)/h F18 w(Bp)/w_U (Bp, Bs)

F8 dy(Ss)/h F19 w(Bs)/w_U (Bp, Bs)

F9 w_O(Bp, Bs)/w(Bp) F20 h(Bp)/h_U (Bp, Bs)

F10 w_U (Bp, Bs)/h(Bp) F21 h(Bs)/h_U (Bp, Bs)

F11 w_O(Bp, Bs)/w(Bs)
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Table 8 Terms for features Symbol Definition

h Average height of all input strokes

Sp Immediate preceding stroke

Ss Immediate succeeding stroke

Bp Bounding box of Sp with 4 positions (yt (Sp), yb(Sp), xr (Sp) and xl (Sp))

Bs Bounding box of Ss with 4 positions (yt (Ss), yb(Ss), xr (Ss) and xl (Ss))

nBx (Bp, Bs) Projection of the nearest bridge between Sp and Ss to x-axis

nBy(Bp, Bs) Projection of the nearest bridge between Sp and Ss to y-axis

Dx (Bp, Bs) Absolute distance between Bp and Bs on x-axis

Dy(Bp, Bs) Absolute distance between Bp and Bs on y-axis

xm(Bp, Bs) Midpoint between centers of Bp and Bs on x-axis

ym(Bp, Bs) Midpoint between centers of Bp and Bs on y-axis

dx (Ss) Distance between the first point and the last point of Ss on x-axis

dy(Ss) Distance between the first point and the last point of Ss on y-axis

w_O(Bp, Bs) Width of overlap of Bp and Bs : min(xr (Sp), xr (Ss)) − max(xl (Sp), xl (Ss))

w_U (Bp, Bs) Width of union of Bp and Bs : max(xr (Sp), xr (Ss)) − min(xl (Sp), xl (Ss))

h_O(Bp, Bs) Height of overlap of Bp and Bs : min(yb(Sp), yb(Ss)) − max(yt (Sp), yt (Ss))

h_U (Bp, Bs) Height of union of Bp and Bs : max(yb(Sp), yb(Ss)) − min(yt (Sp), yt (Ss))

yc(Bp) Center of Bp on y-axis

yc(Bs) Center of Bs on y-axis

w(Bp) Width of Bp

h(Bp) Height of Bp

w(Bs) Width of Bs

h(Bs) Height of Bs

Fig. 13 Extracted features listed in Table 8
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