1,009 research outputs found

    Plasma Edge Kinetic-MHD Modeling in Tokamaks Using Kepler Workflow for Code Coupling, Data Management and Visualization

    Get PDF
    A new predictive computer simulation tool targeting the development of the H-mode pedestal at the plasma edge in tokamaks and the triggering and dynamics of edge localized modes (ELMs) is presented in this report. This tool brings together, in a coordinated and effective manner, several first-principles physics simulation codes, stability analysis packages, and data processing and visualization tools. A Kepler workflow is used in order to carry out an edge plasma simulation that loosely couples the kinetic code, XGC0, with an ideal MHD linear stability analysis code, ELITE, and an extended MHD initial value code such as M3D or NIMROD. XGC0 includes the neoclassical ion-electron-neutral dynamics needed to simulate pedestal growth near the separatrix. The Kepler workflow processes the XGC0 simulation results into simple images that can be selected and displayed via the Dashboard, a monitoring tool implemented in AJAX allowing the scientist to track computational resources, examine running and archived jobs, and view key physics data, all within a standard Web browser. The XGC0 simulation is monitored for the conditions needed to trigger an ELM crash by periodically assessing the edge plasma pressure and current density profiles using the ELITE code. If an ELM crash is triggered, the Kepler workflow launches the M3D code on a moderate-size Opteron cluster to simulate the nonlinear ELM crash and to compute the relaxation of plasma profiles after the crash. This process is monitored through periodic outputs of plasma fluid quantities that are automatically visualized with AVS/Express and may be displayed on the Dashboard. Finally, the Kepler workflow archives all data outputs and processed images using HPSS, as well as provenance information about the software and hardware used to create the simulation. The complete process of preparing, executing and monitoring a coupled-code simulation of the edge pressure pedestal buildup and the ELM cycle using the Kepler scientific workflow system is described in this paper

    Design, control and management of renewable energy plants and technologies

    Get PDF
    Nowadays, and even more in the next decades, the availability and easy-access to energy sources represent a crucial asset for the world development and the progress of people and nations. At the same time, the depletion of natural resources, together with the increase of the anthropic activity impact on the Earth ecosystem and climate, force communities and institutions, at all levels, to discuss and actuate different approaches to achieve the social and economic growth, based on the so-called sustainable development pattern. In such a scenario, renewable energy sources, i.e. solar, wind, hydro, biomass, geothermal, etc., certainly play a key role to join progress and attention to the environmental issues. The present Ph.D. dissertation focuses on such topics investigating strategies, methods and innovative approaches for the effective design, control and management of renewable energy plants and technologies. Specifically, the energy scenario is investigated from a global point of view proposing studies and optimization models highlighting the relevance and the potential impact of the major energy sources, both renewable and conventional. Such sources represent the elements of a big puzzle, i.e. the energy mix, in which their economic and environmental strengths should be emphasized minimizing the associated negative impacts and weaknesses. Among renewable sources, solar energy is of primary importance for availability, diffusion and potential impact. The present Ph.D. dissertation particularly investigates such a source presenting models, methods and prototypes to increase its relevance in the energy mix. The fundamentals of solar energy, together with innovative approaches to estimate the solar radiation components, are provided. Furthermore, the pioneering concentrating solar sector is deeply focused presenting the design, development and preliminary field-test of a bi-axial Fresnel solar photovoltaic/thermal (PV/T) concentrating prototype. Possible solar tracking strategies and control algorithms are, then, investigated describing a customized semi-automatic motion control platform, developed in LabViewTM programming environment. Finally, the last section, proposes an effective approach for the design of a solar simulator, the most frequently adopted device in solar optic laboratory tests. In conclusion, the present Ph.D. dissertation describes effective strategies for the renewable energy spread, considering their performances and their potential impact to achieve the ambitious challenge of a sustainable living planet

    Analysis of impact of non-uniformities on thin-film solar cells and modules with 2-D simulations

    Get PDF
    Department Head: Hans D. Hochheimer.2010 Spring.Includes bibliographical references (pages 148-150).Clean and environmentally friendly photovoltaic (PV) technologies are now generally recognized as an alternative solution to many global-scale problems such as energy demand, pollution, and environment safety. The cost ($/kWh) is the primary challenge for all PV technologies. In that respect, thin-film polycrystalline PV technology (CdTe, Cu(In,Ga)Se2, etc), due to its fast production line, large area panels and low material usage, is one of the most promising low-cost technologies. Due to their granular structure, thin-film solar cells are inherently non-uniform. Also, inevitable fluctuations during the multistep deposition process of large area thin-film solar panels and specific manufacturing procedures such as scribing result in non-uniformities. Furthermore, non-uniformities can occur, become more severe, or increase in size during the solar-panel's life cycle due to various environmental conditions (i.e. temperature variation, shading, hail impact, etc). Non-uniformities generally reduce the overall efficiency of solar cells and modules, and their effects therefore need to be well understood. This thesis focuses on the analysis of the effect of non-uniformities on small size solar cells and modules with the help of numerical simulations. Even though the 2-D model developed here can analyze the effect of non-uniformities of any nature, only two specific types of microscopic non-uniformities were addressed here: shunts and weak-diodes. One type of macroscopic non-uniformity, partial shading, was also addressed. The circuit model developed here is a network of diodes, current-sources, and transparent-conductive-oxide (TCO) resistors. An analytic relation between the TCO-resistor, which is the primary model parameter, and TCO sheet resistance ρS, which is the corresponding physical parameter, was derived. Based on the model several useful general results regarding a uniform cell were deduced. In particular, a global parameter δ which determines the performance of a uniform solar cell depending on sheet resistance ρS, cell length L, and other basic parameters, was found. The expression for the lumped series resistance in terms of physical parameters was also derived. Primary power loss mechanisms in the uniform case and their dependence on ρS, L, and light generated current JL were determined. Similarly, power losses in a small-area solar cell with either a shunt or a weak-microdiode were identified and their dependence on ρS, JL, and location of the non-uniformity with respect to the current collecting contact was studied. The impact of multiple identical non-uniformities (shunts or weak-diodes) on the performance of a module was analyzed and estimates of efficiency loss were presented. It was found that the efficiency of the module strongly depends not only on the severity and fractional area of non-uniformities but also on their distribution pattern. A numerical parameter characterizing distribution pattern of non-uniformities was introduced. The most and least favorable distribution patterns of shunts and weak-diodes over the module area were determined. Experimentally, non-uniformities may be detected with the help of spatially resolved measurements such as electroluminescence (EL). The 2-D circuit model was also used to develop the general framework to extract useful information from experimental EL data. In particular, a protocol that can help distinguish a shunt from a weak-diode and estimate the severity of the non-uniformity based on the EL data was developed. Parts of these simulation results were verified with experimental EL data obtained by other authors. The thesis also discusses the effect of partial shading (a macroscopic non-uniformity) on the operation and safety of thin-film solar panels. A detailed analysis of the current-voltage characteristics of partially shaded module was performed. Conditions that result in a shaded cell experiencing high reverse voltage were shown. A mathematical formalism was developed to distinguish two extremes: when reverse-bias shunting or breakdown dominates. It was shown that in the shunt-dominated case in extreme situations the voltage across the shaded cell can be quite large (~ 20V). High voltage across the shaded cell results in both high power dissipation and elevated temperature. Depending on the light generated current, the temperature above ambient of the shaded cell can be as high as ~100-300°C, implying potential safety issues. The analysis covered all basic rectangular shade configurations

    Real-time Modelling, Diagnostics and Optimised MPPT for Residential PV Systems

    Get PDF
    The work documented in the thesis has been focused into two main sections. The first part is centred around Maximum Power Point Tracking (MPPT) techniques for photovoltaic arrays, optimised for fast-changing environmental conditions, and is described in Chapter 2. The second part is dedicated to diagnostic functions as an additional tool to maximise the energy yield of photovoltaic arrays (Chapter 4). Furthermore, mathematical models of PV panels and arrays have been developed and built (detailed in Chapter 3) for testing MPPT algorithms, and for diagnostic purposes.In Chapter 2 an overview of the today’s most popular MPPT algorithms is given, and, considering their difficulty in tracking under variable conditions, a simple technique is proposed to overcome this drawback. The method separates the MPPT perturbation effects from environmental changes and provides correct information to the tracker, which is therefore not affected by the environmental fluctuations. The method has been implemented based on the Perturb and Observe (P&O), and the experimental results demonstrate that it preserves the advantages of the existing tracker in being highly efficient during stable conditions, having a simple and generic nature, and has the benefit of also being efficient in fast-changing conditions. Furthermore, the algorithm has been successfully implemented on a commercial PV inverter, currently on the market. In Chapter 3, an overview of the existing mathematical models used to describe the electrical behaviour of PV panels is given, followed by the parameter determination for the five-parameter single-exponential model based on datasheet values, which has been used for the implementation of a PV simulator taking in account the shape, size ant intensity of partial shadow in respect to bypass diodes.In order to eliminate the iterative calculations for parameter determinations, a simplified three-parameter model is used throughout Chapter 4, dedicated to diagnostic functions of PV panels. Simple analytic expressions for the model important parameters, which could reflect deviations from the normal (e.g. from datasheet or reference measurement) I −V characteristic, is proposed.A considerable part of the thesis is dedicated to the diagnostic functions of crystalline photovoltaic panels, aimed to detect failures related to increased series resistance and partial shadowing, the two major factors responsible for yield-reduction of residential photovoltaic systems.Combining the model calculations with measurements, a method to detect changes in the panels’ series resistance based on the slope of the I − V curve in the vicinity of open-circuit conditions and scaled to Standard Test Conditions (STC) , is proposed. The results confirm the benefits of the proposed method in terms of robustness to irradiance changes and to partial shadows.In order to detect partial shadows on PV panels, a method based on equivalent thermal voltage (Vt) monitoring is proposed. Vt is calculated using the simplified three-parameter model, based on experimental curve. The main advantages of the method are the simple expression for Vt, high sensitivity to even a relatively small area of partial shadow and very good robustness against changes in series resistance.Finally, in order to quantify power losses due to different failures, e.g. partial shadows or increased series resistance, a model based approach has been proposed to estimate the panel rated power (in STC). Although it is known that the single-exponential model has low approximation precision at low irradiation conditions, using the previously determined parameters it was possible to achieve relatively good accuracy. The main advantage of the method is that it relies on already determined parameters (Rsm, Vt) based on measurements, therefore reducing the errors introduced by the limitation of the single-exponential model especially at low irradiation conditions

    Decomposed Phase Analysis using Convex Inner Approximations: a Methodology for DER Hosting Capacity in Distribution Systems

    Full text link
    This paper uses convex inner approximations (CIA) of the AC power flow to tackle the optimization problem of quantifying a three-phase distribution feeder's capacity to host distributed energy resources (DERs). This is often connoted hosting capacity (HC), but herein we consider separative bounds for each node on positive and negative DER injections, which ensures that injections within these nodal limits satisfy feeder voltage and current limits and across nodes sum up to the feeder HC. The methodology decomposes a three-phase feeder into separate phases and applies CIA-based techniques to each phase. An analysis is developed to determine the technical condition under which this per-phase approach can still guarantee three-phase constraints. New approaches are then presented that modify the per-phase optimization problems to overcome conservativeness inherent to CIA methods and increase HC, including selectively modifying the per-phase impedances and iteratively relaxing per-phase voltage bounds. Discussion is included on trade-offs and feasibility. To validate the methodology simulation-based analysis is conducted with the IEEE 37-node test feeder and a real 534-node unbalanced radial distribution feeder.Comment: 9 pages, submitted to PSCC 2024 conferenc

    Regulatory dispersion modelling of traffic-originated pollution

    Get PDF
    Regulatory dispersion modelling of traffic-originated pollution This thesis describes the national finite line source model (CAR-FMI) for the dispersion of traffic-originated pollution from an open road network. CAR-FMI computes the concentrations of carbon monoxide (CO), nitrogen monoxide (NO), nitrogen dioxide (NO2), total of nitrogen oxides (NOx), ozone (O3) and exhaust fine particulate matter (PM2.5) in local scale using the Gaussian plume dispersion with dry deposition associated with PM2.5. The computed results of statistically analysed hourly concentrations are available in tabular form or presented graphically utilizing the GIS (Geographic Information System) MapInfo. The modelled NOx concentrations are compared with the field measurements as well as with the computed results of a Lagrangian model (GRAL). The comparisons show a good agreement between modelled and measured concentrations except in case of weak wind speed conditions when CAR-FMI substantially overestimates the concentrations. The overestimation was the result of the meandering effect, which is not taken into account in the first version of the model. A numerical method for the correction of the influence by meandering is suggested in this work

    NASA high performance computing and communications program

    Get PDF
    The National Aeronautics and Space Administration's HPCC program is part of a new Presidential initiative aimed at producing a 1000-fold increase in supercomputing speed and a 100-fold improvement in available communications capability by 1997. As more advanced technologies are developed under the HPCC program, they will be used to solve NASA's 'Grand Challenge' problems, which include improving the design and simulation of advanced aerospace vehicles, allowing people at remote locations to communicate more effectively and share information, increasing scientist's abilities to model the Earth's climate and forecast global environmental trends, and improving the development of advanced spacecraft. NASA's HPCC program is organized into three projects which are unique to the agency's mission: the Computational Aerosciences (CAS) project, the Earth and Space Sciences (ESS) project, and the Remote Exploration and Experimentation (REE) project. An additional project, the Basic Research and Human Resources (BRHR) project exists to promote long term research in computer science and engineering and to increase the pool of trained personnel in a variety of scientific disciplines. This document presents an overview of the objectives and organization of these projects as well as summaries of individual research and development programs within each project
    corecore