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1 Introduction 
 

Air pollution is associated with anthropogenic emissions especially since Los Angeles 

photochemical smog in 1944 and London sulphurous smog in 1952. The term smog is derived from 

the words smoke and fog (Finlayson-Pitts and Pitts, 1986, p. 5). The assessment of air quality 

standards in EU countries includes the statistically defined limit values for compounds and less 

obligatory guideline values. Environmental authorities control the air quality standards using 

monitoring networks, which produce temporally and locally fixed information of the 

concentrations. The geometry of emission sources or the network of several sources as well as 

nearby obstacles affect strong gradients in the spatial concentrations of pollutants. Then the 

measured concentrations are locally restricted especially in case of short averaging periods when 

the generalization of the concentration level based on an individual monitor becomes easily 

misleading. 

 

The dependencies between the atmospheric turbulence and dispersion in the atmospheric boundary 

layer, revealed during the 20th century, and rapidly increased computational capacity has enabled 

the air quality modelling. It describes the physics, chemistry and meteorology of pollutants using 

mathematical and statistical methods. In addition to the air quality control, modelling enables the 

prediction and testing of future scenarios in environmental planning. This is an implication of 

computational models combined with large time-series of real meteorological conditions: hourly 

time-series long enough (e.g. three years) include the meteorological cases of the near future with a 

great probability. Due to the partly different ranges of application, modelling and monitoring are 

complementary methods in air quality control and research. 

 

In general, the most realistic models are nonlinear, dynamic and stochastic in nature (Kapur, 1988, 

p. 9). However, regulatory air quality models are usually static during a certain time interval e.g. 

one hour and deterministic i.e. non-stochastic. This study deals with regulatory air quality 

dispersion models of the local scale, which are further classified according to the type of the 

pollutant source. The evaluation of models and also their validation against good-quality databases, 

a basic principle of modelling (e.g. Kukkonen, 2000), is emphasized through this study. 

 

Statistical models include a large collection of methods of which those based on simple and 

multiple linear regressions are commonly applied to the regulatory use. Statistical regulatory 

models in air quality studies are always locally limited and frequently called empirical or semi-
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empirical depending on the type of the analysed data or need to emphasize some features of the 

model. Receptor models, a branch of statistical models applying more sophisticated statistics and 

the chemical analysis to the monitored data, estimate quantitatively the contribution of different 

sources at the receptor point. Statistical models in this thesis are used in connection with particulate 

matter (PMx), in which the lower index represents the upper limit of the particle aerodynamic 

diameter (µm) in the fraction, concentrations. Instead, chemical reactions on particle surface (e.g. 

Pohjola et al., 2002) as well as the number concentrations are outside the scope of this study.  

 

 

2 Aims of the study 
 

The aims of the thesis are 

 

• to illustrate the special features involved in the dispersion of  pollutants from traffic 

emissions 

•  to describe a finite line source model CAR-FMI emphasizing the properties of the refined 

version 

• to present the results of the comparisons between the measured and the predicted values and 

to show the results of intercomparison of a Gaussian model (CAR-FMI) and a Lagrangian 

model GRAL  

• to present the results and interpretation of the sensitivity analysis of CAR-FMI  

• to present a semi-empirical model for computation of the mass concentration of thoracic 

particle (PM10) concentrations 

• to present a statistical method applicable  for computation of the long-range transported 

(LRT) background concentration for fine particulate (PM2.5) matter 

• to present a statistical application of field measurements, CAR-FMI and the statistically 

determined PM2.5 background concentration to estimate an emission factor for non-exhaust 

emissions from a main road in summertime conditions 
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3 Previous work 
 

An overall description of the road meteorology is presented on the www-pages of Swedish National 

Road Administration (SNRA), while Moussiopoulos et al. (1996) presents a review of air pollution 

models. The inventory of regulatory models and their practical properties includes short description 

of models and general information on contact persons and references (Schazmann et al., 1997). The 

list of typical features of some regulatory line source models in use (1) is updated in Table 1 

including more information on particulate matter. It should be noted that exhaust particles 

(aerodynamic diameter < 1 µm) behave practically like gases, but in case of greater particles and 

increasing distances from the source the role of dry deposition becomes more significant. 

 

Due to their simplicity and direct applicability for estimates on a local scale, various versions of the 

Gaussian line source model have been used for dispersion evaluations from a road. Such models 

include HIWAY-2 (Petersen, 1980), CALINE-4 (Benson, 1984 and 1992), GM (Chock, 1978), 

GFLSM (Luhar and Patil, 1989) and OMG (Kono and Ito, 1990). The ROADWAY (Eskridge and 

Catalano, 1987) and MGO (Berlyand et al., 1990) models are based on a K-theory (Eulerian) 

approach. An obvious advantage of the K-theory models is that they can readily include the 

interaction of diffusion processes and chemical transformation.  

 

In the HIWAY-2 and CALINE-4 (California line source model) models, the concentrations 

predicted by a Gaussian line source equation for an arbitrary wind direction are solved by a 

numerical procedure. This procedure divides the road into a series of elements, from which 

incremental concentrations are then computed and summed up. Both models allow for a finite 

mixing height in the computations. 

 

Csanady (1972) presented an analytic solution of the Gaussian equation for a finite line source, for 

the special case of the wind perpendicular to the road. In the GFLSM (General Finite Line Source 

Model) model this solution has been extended to allow for any wind direction with respect to the 

road. The analytic solution in the GFLSM model was originally derived from Gaussian formulae 

similar to, for instance, the HIWAY-2 and CALINE-4 models, except that the mixing height was 

assumed to be infinite. The analytical solution is computationally much more economic than the 

above-mentioned numerical solutions. 
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The basic dispersion equations of the CAR-FMI model (1; Härkönen et al. 1996) are based on the 

Gaussian finite line source model by Luhar and Patil (1989), while the dispersion equation with dry 

deposition is based on the analytical solution by Lin and Hildemann (1997). The dispersion 

parameters in the CAR-FMI are modelled as function of the Obukhov length, the friction velocity 

and the mixing height. 

 
Table 1. Some features of regulatory models for atmospheric dispersion from a road. The models 
can be broadly classified as Gaussian numerical and analytic, or K-theory models. 
 
 
   
Model    Dispersion Plume Chemical Dispersion  Dry deposit. References 
 parameters rise transform. of particles of particles 
        
 
HIWAY-2 traffic no no no no  Petersen, 1980 
Gaussian induced     Rao et al., 1980 
numerical and ambient 

 turbulence  
 
CALINE-4 traffic no discrete yes no Benson, 1984 
Gaussian induced  parcel PM  Benson, 1992 
numerical and ambient  method  

 turbulence 
 
OMG eddy yes no no no Kono and Ito, 
Gaussian diffusion     1990 
numerical coefficients, 

 volume source 
 
GM traffic yes no no no Chock, 1978 
Gaussian induced     Luhar and Patil,  
analytic and ambient     1989 

 turbulence     Rao. et al., 1980 
 
GFLSM traffic yes no yes no Luhar and Patil, 
Gaussian induced   PM  1989 
analytic and ambient 
 turbulence 
 
CAR-FMI traffic no discrete yes yes papers 1 and 4, 
Gaussian induced  parcel PM  Härkönen et al., 
partly and ambient  method   1996, 2001 
analytic turbulence     
 
ROADWAY eddy no interactive no no Eskridge and 
K-theory diffusion  with   Catalano, 1987 

 coefficients  diffusion   Eskridge and  
       Rao, 1986 

 
MGO eddy no interactive no no Berlyand et al., 
K-theory diffusion  with   1990 
 coefficients  diffusion 
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Lagrangian dispersion models have become increasingly more feasible, due to the advances in 

computer technology (e.g., Janicke et al., 1994; Oettl et al. 2001a).  Both Eulerian and Lagrangian 

models are less limited by topographical and meteorological conditions compared to Gaussian 

plume models, e.g. Oettl et al. (2001b). 

 

 

4 Transportation of pollutants in the atmospheric boundary layer  
 

The released pollutants mix within the atmospheric boundary layer (ABL), where the flows are 

under the influence of the ground surface. Because of the different mixing properties, the lowest 

and upper parts of ABL are divided into the surface layer (about 10 % of the ABL depth) and the 

convective mixed layer or the stable outer layer depending on the atmospheric stability (Kaimal and 

Finnigan, 1994, p. 21-25). Consequently, the height of the emission source and the horizontal scale 

are crucial factors in the pollutant dispersion with weak initial plume rise. In case of traffic 

emissions the plume rise is negligible and the source locates within the first few meters from the 

ground surface. Moreover, the pollutant concentrations are determined at distances less than ten 

kilometers from the source in local scale dispersion models indicating the importance of the surface 

layer.  

 

The surface layer depth in subarctic latitudes changes typically between some tens of meters (> 10 

m) and one hundred meters (< 150 m) in stable and unstable atmosphere, respectively. The practical 

lower and upper limits (in parenthesis) are associated with episodic (inversion) and convective 

conditions. Surface layer has three important properties: 

 

• Vertical shearing stress is approximately constant. 

• The flow is insensitive to the earth’s rotation. 

• The wind structure is determined primarily by surface friction and the vertical gradient of 

temperature. 

 

These properties are combined into one parameter called Obukov length (L) having a characteristic 

value that depends on the vertical mixing in the surface layer. It has been shown that various 

atmospheric parameters and statistics, when normalized by appropriate powers of scaling velocity 
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(friction velocity) and scaling temperature, are universal functions of z/L, where z is height from the 

ground surface.  

 

The similarity theory was initially presented by Monin-Obukhov (M-O) in 1954. It enables the 

computation of wind speed and stability, the most important factors affecting dispersion of 

pollutants in the surface layer, at the height of interest in modern regulatory dispersion models. 

However, according to recent studies M-O similarity fails in the surface layer in case of weak wind 

speed (e.g. Oettl et al. 2001a). In case of traffic emissions, the road may also cause a significant 

local perturbation to the vertical stability reaching some tens of meters from the road, because the 

physical properties of the road differ from the nearby terrain as suggested by Chen et al. (1999). 

 

 

5 Description of the refined modelling system CAR-FMI 
 

Road is treated as a straight line of finite length. The traffic volume of the road during one hour is 

assumed constant and thus the traffic emissions can be interpreted as a finite line source.  CAR-FMI 

is a Gaussian finite line source dispersion model i.e. a plume model for an open road network (1). 

The model computes an hourly time-series of the pollutant dispersion for CO, NO, NO2, NOx and 

exhaust PM2.5 concentrations with input information from 

 

• the number and locations of the line sources 

• the hourly traffic volumes of the roads 

• compounds to be computed and details of statistical interests of the output 

• hourly time-series of the meteorology and the background concentration   

 

The meteorological time-series is computed by the meteorological pre-processing model (MPP-

FMI), developed at the FMI (Karppinen et al., 1997). The background concentrations of gaseous 

compounds are interpolated from the measurements of the monitoring network of FMI, while the 

background concentrations of fine particulate matter can be estimated (6), if local measurements are 

not available. The technical structure of the refined CAR-FMI model (Härkönen et al., 2001) is 

presented in Figure 1 including several improvements compared to the version 1.0 (1; Härkönen, et 

al., 1996).  
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The functions of the Graphical User Interface (GUI) CAR-FMI are to allow the user  

• to enter the input information  

• to save/retrieve input data 

• to launch the dispersion model 

• to prepare MIF file(s), which are used by MapInfo to display spatial distribution of various 

variables from the solution of the dispersion equation  

 

 

Figure 1. Technical structure of the CAR-FMI model, in which dry deposition is associated with 
PM2.5 concentrations. 
 

After feeding the input information the grid is created and the computation begins by the reading of 

the hourly meteorological and background concentration time-series and temporal distributions of 

the traffic volume intensities. The user may change the files in the block “Data files”. The emission 

coefficients associate with the fitting of the emission factor against the average vehicle travel 

velocity. The computation continues by coordinate transformations, which depend on wind 

direction and locations of roads and receptor points.  

GUI MapInfo
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The computation of dispersion parameters σy and σz and the friction velocity u* is similar to the 

version 1.0. Also the dispersion equation for gaseous compounds and the chemical conversion of 

nitrogen oxides are unchanged. On the other hand, the emission model and dispersion equation for 

particulate matter with dry deposition are new features of the model. The final results of statistically 

analysed hourly concentrations are available in tabular form or presented graphically utilizing the 

GIS (Geographic Information System) MapInfo. 

 

 

5.1 Dispersion parameters and the transportation velocity of the plume 

 

The determination of the dispersion parameters in the surface layer is based on Taylor’s frozen 

turbulence hypothesis (Kaimal and Finnigan, 1994, p. 61): the turbulence field is frozen in time and 

transported horizontally past the observer enabling the conversion of temporal measurements to 

spatial patterns. The total diffusion is divided into initial diffusion affected by the traffic and the 

diffusion caused by ambient meteorological conditions according to Figure 2. There are interactions 

(illustrated by arrows) between the ambient wind speed, exhaust velocities of the tailpipe emissions 

(Chan et al, 2001) and the traffic wake-induced turbulence (Rao, 2001). The simulated turbulence 

caused by exhaust velocity is clearly greater during acceleration than in deceleration cycle (Chan et 

al, 2001). It is meaningful only in stagnant conditions, because otherwise the atmospheric 

turbulence dominates the process. 

 

 
Figure 2. A block diagram of the primary diffusion processes in the plume originated from traffic 
emissions. The lines with arrows describe the interactions between the blocks. 
 

Total turbulence is a superposition of mechanically and thermally generated eddies, while 

meandering (e.g. Seinfeld, p. 546) is associated with the size distribution of eddies. The driving 

Traffic wake
induced

Exhaust velocity
induced

Initial diffusion
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induced
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induced
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induced

Atmospheric diffusion

Total diffusion
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force of the dispersion is the total turbulence associated with the mean wind speed. The lateral and 

vertical dispersion parameters are defined by 

 

222
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σσσ

+=

+=
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The symbols σy and σz mean total lateral and vertical dispersion parameters and the subscripts “a” 

and “o” refer to atmospheric and traffic-originated turbulences, while x is the distance of the 

receptor point from the road in wind direction. The lateral dispersion parameter σya (standard 

deviation of the concentration perpendicular to the flow) and meandering (e.g. Seinfeld, p. 546) are 

both proportional to the horizontal wind speed fluctuations (Oettl et al., 2001a). In addition, 

because meandering is inversely proportional to mean wind speed, the lateral dispersion parameter 

increases with increasing meandering. If meandering is not accounted for, an underprediction of σya 

is expected. 

 

The solution for the influence of traffic wake on the initial dispersion parameter requires 3D 

numerical model. The fitted solutions based on field experiments are generally used in Gaussian 

models. The flow pattern near the road is not homogenous (as assumed in Gaussian models), which 

has been shown in several field experiments e.g. Chock (1977 and 1980) and Rao and Sedefian 

(1979), and in wind tunnel simulations by Eskridge and Rao (1986) and Rao (2001). If the travel 

velocity is smooth, as in the GM-experiment (e.g. Petersen et al., 1980), the fitting is valid in a 

limited travel speed range. However, according to the equation (1) the relative effect of the 

erroneous initial dispersion parameters on the total dispersion decreases rapidly with the distance 

from the road. 

 

The determination of initial dispersion parameters (eq. 1) of CAR-FMI is based on fitted results of 

GM-field experiment in which the traffic wake induced dispersion dominates the initial dispersion 

processes (Petersen et al., 1980). The main equations are presented in paper (1). The influence of 

meandering is not included in the lateral dispersion parameter. 

 

The modeling of meteorological dispersion parameters (Gryning et al., 1987) is based on M-O 

similarity. The vertical wind speed profiles applied in CAR-FMI are in accord with the paper of van 

Ulden and Holtslag (1985), in which the mean wind speed as a function of height is presented using 
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Obukhov length L, friction velocity u* and the influence function of momentum flux ψm. The plume 

is transported with the wind speed at the emission height. 

 

 

5.2 Emission modelling  

 

The structure of emission model is independent of emitted compounds. The refined emission model 

(Härkönen et al., 2001) includes motor emissions of gaseous compounds CO and NOx, and fine 

particulate matter (PM2.5). The block diagram of PM2.5 emissions is presented in Figure 3. The 

computed emission factors in the model depend on the vehicle category and travel velocity. The 

model classifies light-duty vehicles (LDV) in three separate categories: (i) gasoline-powered cars 

and vans equipped with catalytic converter, (ii) gasoline-powered cars and vans without a catalytic 

converter, and (iii) and diesel-powered cars and vans. Similarly, the heavy-duty vehicles (HDV) are 

classified in three categories: (i) diesel-fuelled trucks with a trailer, (ii) diesel-fuelled trucks without 

a trailer and diesel-fuelled buses, and (iii) natural gas fuelled buses.  

 

 

Figure 3. The categories of exhaust PM2.5 emissions from traffic. Non-exhaust emissions include 
emissions from brakes, tyres and resuspension from road surface. 
 

Exhaust emission as a function of the average vehicle travel velocity is fitted separately for each of 

the above-mentioned six vehicle categories and compounds. The correlations between emissions 

and velocities are based on the nationally conducted laboratory measurements of vehicle emissions 

(Laurikko, 1998). The emission factors are polynomial or exponential fittings over the velocity 
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range 1-120 km/h. The emission rate Q (µg m-1 s-1) of the line source is the product of number of 

vehicles per hour nj and emission factor qj (g km-1) summed over the emission categories 

 

∑=
j

jj qn
Q

6.3
      (2) 

  

Emission rates are linearly interpolated for the years between 1995 and 2020. The current 

knowledge of non-exhaust emission factors of fine particulates (including emission from brakes, 

tyres and road surface) is rather poor. The regression study by Tiitta et al. (2002) suggests that the 

contribution of non-exhaust emissions is roughly one quarter of the measured PM2.5 concentration 

in the vicinity of the road in summertime conditions. The topic is further discussed in Ch. 7.2. 

 

 

5.3 Dispersion of the gaseous compounds 

 

CAR-FMI uses the general analytical solution of Luhar anf Patil (1989) for the dispersion of 

gaseous compounds. The general solution is an extension of the special solution of wind 

perpendicular to the line source (Csanady, 1972). The line source is rotated perpendicular to the 

wind direction by coordinate transformations i.e. computations are performed in the wind 

coordinate system as illustrated in Figure 4.  

 

The subscripts “ls” and “w” represent the line source and wind coordinates, respectively. The 

concentration is computed at the receptor point R(xls,yls) and the physical length of the line source is 

L. The half-length pls of the upwind line source depends on the wind direction to the line source and 

is defined for the receptor points locating in the lee side. The center point O moves to O’ depending 

on the location of receptor point R and wind direction θ. The displacement of O to O’ causes 

trigonometric corrections to the xw and yw coordinates as well as to the half-length pls. Finally, the 

physical half-length pls and the physical emission rate Qls are transformed to the wind coordinate 

system, in which the real line source is called virtual.  
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Figure 4. The geometrical orientation of line source L and wind coordinates with subscripts “ls” and 
“w”, respectively. The wind vector u is parallel to the wind coordinate axis Xw, while other symbols 
are defined in the text. 
 

Monin-Obukhov similarity based dispersion parameters σy and σz (Gryning et al., 1987) depend on 

the effective distance d, which is the distance of the line source from the receptor point in wind 

direction and is defined by 

 

( )θsin,min lsw yxd =  , in which |sinθ| > 0.0876    (4) 

 

The minimum value of the effective distance is 10 m, which is also the minimum perpendicular 

distance of the receptor points from the centreline of the road. The concept of the effective distance 

emphasizes the meaning of straight upwind part of the line source with respect to the receptor point. 

The definition is consistent in case of perpendicular winds and still reasonably good for moderate 

values of θ, but deteriorates in case of nearly parallel wind directions.  

 

The final result of the concentration at receptor point R is a straightforward result of integration of 

differential line source elements i.e. Gaussian point source equation in wind coordinate system from 

– pw to + pw. The solution has singularities in case of parallel wind direction to the road and wind 

speed equal to zero, which are avoided by the constraints 

 

• wind direction |sinθ| > 0.08716 
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• wind speed u ≥ 0.5 m/s 

 

Furthermore, the above formulation of the wind direction in the denominator (sinθ-term) is 

associated with the emission ratio Qw and the half-length pw according to equation (4) and not with 

the wind speed u being always perpendicular to the virtual line source in wind coordinate system. In 

addition to the coordinate system, this is the main conceptual difference between the Gaussian 

general dispersion equation of virtual and real line sources, in which the wind parameters of the 

denominator are associated as the crosswind speed (u sinθ) being responsible for the dilution.  

 

 

5.3.1 Chemically reactive compounds 

 

The chemistry of nitrogen oxides is closely related to the mixing conditions, because nitrogen 

monoxide (NO) reacts mainly with ozone (O3), but in inefficient mixing conditions also with 

oxygen (O2). As a conclusion of the simulations by Galmarini et al. (1995) and recently Chan et al. 

(2001) the latter reaction is rather usual in the initial mixing zone representing emissions in crossing 

areas during stagnant conditions. The corresponding reaction is also suggested on the basis the 

analysis of the urban nitrogen oxide concentrations associated normally with episodic conditions 

(Harrison et al, 1996).  

 

CAR-FMI uses the cycle NO-O3-NO2, which is solved analytically by Benson (1984). An overview 

of the processes associated with the expanding Gaussian plume and NOx-chemistry is presented by 

Hanrahan (1999). The influence of plume dilution is accounted according to the receptor oriented 

discrete parcel method (Härkönen et al., 1996), which is a modified version of the original discrete 

parcel method by Benson (1984).  

 

The principal assumptions concerning the chemistry of Gaussian plumes are 

• the plume is fully mixed  

• there is no interaction between the plumes  

The first assumption is partially satisfied due to the contribution from traffic-originated turbulence. 

However, the assumption becomes questionable in stagnant conditions. A simple approximation of 

the influence of the overlapping plumes is present in the supercomputer version of the model 

(Karppinen et al, 2000a), where the input concentrations are accounted for by sorting the 
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computation order from upwind to the downwind direction, though the interactions of separate 

plumes are treated as chemically independent. The approximation becomes significant in cases of 

ozone depletion, which is associated with high traffic emissions in urban areas.  

 

The vertical mixing conditions influence the initial concentrations in the chemical reactions of 

nitrogen oxides. The influence of tailpipe NO2/NOx fraction and meteorological conditions on the 

computed NO2 and O3 concentrations is studied in paper (3). The spatial range of pollution is 

expected to increase in weak mixing conditions, which is typical in sub-arctic regions.  

 

 

5.4 Dispersion of particulate matter with dry deposition 

 

The refined CAR-FMI includes the computation of PM2.5 concentration and dry deposition. The 

size distribution of exhaust particles is determined according to the work of Kerminen et al. (1997) 

and dry deposition velocity is determined according the work of Nikmo et al. (1997) for three 

particle size regimes (90 nm, 200 nm and 1000 nm) with weights 0.45, 0.45 and 0.1, respectively. 

The addition of particles from non-exhaust emissions requires a new regime near to 2000 nm. The 

influence of relative humidity (RH) on the particle size is accounted for by the semi-empirical 

formula (Swietlicki et al., 2000), in which the growth factor of particles is an exponential function 

of RH. The exhaust and non-exhaust emissions by traffic (fig. 3) are combined to line source 

dispersion model with dry deposition. 

 

Three-dimensional diffusion equation including dry deposition can be separated into a pair of two-

dimensional equations (Lin and Hildemann, 1997) as follows 

 

C(x,y,z) = Qw Gy(xw,yw) Cu(xw,zw) ,      (5) 

in which 

C(x,y,z) = concentration from a finite line source emissions 

Qw = emission rate of the line source with arbitrary wind direction (µg m-1 s-1) 

Q = emission rate of the line source with perpendicular wind direction (µg m-1 s-1) 

Gy(xw, yw) = crosswind dispersion factor for finite line source with arbitrary wind direction 

Cu(xw,zw) = ambient concentration of contaminant from infinite line source of unit strength with  

                   arbitrary wind direction (m-2 s). 

 



 21

In case of arbitrary wind direction θ the emission rate is, according to equation (3), Qw = Q/sinθ and 

the crosswind dispersion factor is 
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The constant eddy diffusivity Kz at the effective plume height heff is 

 

( )ξφ
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in which κ is von Karman’s constant, u* is friction velocity and φh(ξ) is the stability function for the 

heat transfer.  

 

The solution of Cu(xw,zw) for a gaussian plume with arbitrary wind direction is 
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π

  (8) 

 

in which vd is the dry deposition velocity including the gravitational settling velocity of particles. 

The emission height is equal to the effective height of the plume heff. It can be shown by 

dimensional analysis, that in case of Gaussian line source diffusion equation with dry deposition, 

the relation between diffusivity Kz and dispersion parameter σz(xw) is 

 

( )
u

xKx wz
wz

2
=σ       (9) 
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Accordingly with the earlier practice, the wind coordinate xw is replaced by the effective distance d, 

so that the dispersion equation becomes a physically reasonable approximation of the Gaussian 

finite line source dispersion equation. The equation of gaseous dispersion in paper (1) is a straight 

consequence of equations (5, 6, 8, 9) when dry deposition is disregarded i.e. vd = 0 and thus the 

second term in equation (8) represents the correction by dry deposition. 

 

The deposition velocity and particle concentration are solved separately for each size class of 

particles and the computed concentrations are finally summed up. As a result we can estimate the 

hourly PM2.5 concentration emitted by traffic from the road network.  

 

 

5.5 Statistical analysis of the computed hourly concentrations 

 

Statistical analysis is performed to the computed hourly time-series of CO, NO, NO2, NOx, O3 and 

PM2.5 concentrations at each receptor point. In addition to the statistical parameters used in EU air 

quality directives, some further analysis is optional in the model. The model computes the highest 

hourly concentration and the highest daily and monthly means. Also averages of 8-hour, 2nd-highest 

daily and yearly concentrations are computed. In addition, the user may select percentiles (1-10 at a 

time) to be computed (Härkönen et al., 2001). Ozone concentrations in the plume can be computed 

at the conditions where NO2 has the corresponding statistical parameter, i.e. 99th percentile of O3 

meaning ozone concentration at conditions with 99th percentile of NO2. Also the possibility of the 

traditional O3 statistics, in which the background O3 concentration in the time-series becomes 

emphasized, is available for the user. 

 

The output is written out in micrograms per cubic meter at the temperature of 293.1 K in tabular 

form and in graphical presentation at receptor points in the computing area defined by the user. The 

results can be analysed and presented utilizing the GIS (Geographic Information System) MapInfo. 

 

 

6 Comparison between predicted and measured concentrations 
 

Predicted and measured gaseous concentrations (NO, NO2, NOx and O3) in the vicinity of the road 

were compared in two separate field experiments (2; 4). The hourly means of concentrations in the 
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latter measurement campaign in Elimäki (1995) were monitored simultaneously at three locations at 

different sides of the road, at three heights (3.5, 6 and 10 m) from the ground surface. The data of 

traffic volumes (LDV and HDV) as well as on meteorological parameters was based on the on-site 

measurements. However, the atmospheric stability was determined by the meteorological pre-

processing model MPP-FMI (Karppinen, 1997). 

 

The measured and predicted hourly NOx, NO2 and O3 concentrations were analysed statistically 

using index of agreement (IA), normalized mean square error (NMSE), Pearson’s correlation 

coefficient (COR), fractional bias (FB) and factor of two (F2) at each monitoring level of the 

monitor locating 34 m from the road. The perfect agreement between measured and predicted 

concentrations would result in an IA value of 1.0, while, according to Karppinen et al. (2000b), the 

agreement is perfectly random in case IA is 0.41 ± 0.01.  

 

Computed IA values from monitors at distances of 17 and 34 m from the road (N = 587) were 0.83 

and 0.82 for NO2 and NOx, respectively, which indicates rather good agreement between 

measurements and predicted concentrations. The reason for the best agreement (IA = 0.89) between 

measured and predicted O3 concentrations is due to the emphasizing role of the O3 background 

concentration in the plume because of low traffic volumes during the measurement campaign. The 

values of fractional bias of NOx, NO2 and O3 were + 13, - 2 and + 8 %, respectively. The results 

also suggest that underprediction is greatest at the lowest monitoring level in case of NOx and NO2. 

 

Sensitivity analysis for the most important parameters was also performed. The contribution of 

traffic volume to the agreement was insignificant, while the model was sensitive to wind conditions. 

A detailed study of the influence of wind speed and direction on the computed results by CAR-FMI 

and a Lagrangian dispersion model GRAL (Oettl et al., 2001a) compared to the Elimäki data is 

presented by Oettl et al. (2001b). It was observed that CAR-FMI is more sensitive to weak wind 

speeds and small angles between wind direction and the road than CRAL (fig. 5). This can be 

expected as the Gaussian finite line source equation indicates the deterioration of robustness of 

Gaussian models during weak wind speed nearly parallel to the road (1). On the other hand, CAR-

FMI predicts better than GRAL in case of nearly perpendicular or moderate angles between the 

road and wind vector. The performance of the CAR-FMI and UDM-FMI modeling system has been 

evaluated in urban environment by Karppinen et al. (2000b) and Kousa et al. (2001). 

 

 



 24

 

 

 

Figure 5. The dependence of the ratio of predicted to observed concentrations (right column) on 
wind speed and direction for CAR-FMI (top) and GRAL (bottom) models at the measurement site 
of Elimäki, at the distance of 34 m from the road (After Oettl et al., 2001b).  
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The meandering may turn the line source temporarily from the upwind to the downwind side with 

respect to the monitor. Because the Gaussian model assumes a steady state wind direction during 

one hour, meandering will decrease the monitored concentration compared to predicted values. It is 

not possible to determine quantitatively the effect of meandering on the performance of the model 

without fast-response measurements. However, the maximum error can be estimated 

computationally, if we assume that the lateral wind direction is normally distributed over the hourly 

mean direction θ with standard deviation σθ and the monitor is located in the lee in case of mean 

wind direction. 

 

The probability that temporal wind direction ϕ is within the range [a, b] is P[a ≤ ϕ ≤ b] = F(b) – 

F(a), in which F is cumulative normal distribution function. Defining a = max(0; θ - k σθ) and b = 

min(180; θ + k σθ) in I and II squares of line source coordinate system (see fig. 4), while a = 

max(180; θ - k σθ) and b = min(360; θ + k σθ) in III and IV squares, respectively. When the value 

of the parameter k > 2.54, the expected wind direction locates within the range [a, b] with 

probability greater than 99.9 %. The probability plots in I and II squares as a function of mean wind 

direction θ with standard deviations 5, 10, 20 and 30 deg are plotted in Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Probability for the downwind location of the monitor in I and II squares, when the lateral 
wind direction is normally distributed with mean wind direction θ and the standard deviation σθ. 
The 99.9 % confidence intervals are defined in the text. 
 

Standard deviation of lateral wind direction increases with decreasing wind speed and is typically 

about 25 ± 10 deg in weak wind conditions (< 2 m/s) near the ground surface (e.g. Benson et al., 

1986). The probability decreases rapidly in case wind direction turns nearly parallel to the road (0 
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or 180 deg). Because maximal overprediction becomes proportional to the inverse of probability P, 

the estimated maximum error is consistent with the results of figure 5 as observed also by Benson et 

al. (1986). Predicted concentration may be two times higher than measured concentration when 

wind direction is parallel to the road. As a conclusion, meandering explains substantially the 

overestimations by CAR-FMI in weak wind conditions with wind vector nearly parallel to the road. 

 

 

7 Studies on particulate matter concentrations 
 

Statistical models are always temporally and spatially limited, which also restricts their use as a 

predicting tool. Statistical models are used in combination with measurements. The performance of 

models increases with the averaging time as seen in case of PM10 concentration predictions (5). The 

agreement of measured and predicted yearly mean concentrations at the monitoring sites of Helsinki 

Metropolitan Area Council (YTV) is reasonably good, but deteriorates rapidly towards shorter time 

averages. This is an indication of the concept of linear regression, in which the best linear fit of NOx 

and PM10 concentrations (Weingartner et al, 1997) is solved at the expense of individual cases 

reflecting varying meteorological conditions.  

 

It turned out that addition of meteorological parameters as linear functions to the model (multiple 

linear regression), does not significantly improve the performance of PM10 model.  Obviously, most 

individual processes affecting PM10 concentration are nonlinear and independent of current 

meteorological conditions and traffic. The contribution of traffic to PM10 emissions is due to brakes, 

tyres and abrasion of road surface, but when a threshold wind speed is exceeded, coarse particles 

(2.5 – 10 µm) are resuspended from all dry surfaces to the air (e.g. Harrison et al., 2001). This is 

obviously partly the origin of outliers observed when the averaging time is decreased. The 

contribution of wind speed to resuspension of thoracic particles increases with increasing particle 

size because of aerodynamics and adhesion between surfaces (e.g. Giess et. al., 1994). As a result, 

the resuspended fraction of PM10 particulates includes mainly coarse particles (PM10-2.5).  
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7.1 Estimation of the long-range transported PM2.5 concentration 

 

The long-range transported (LRT) background concentration is always needed in local scale 

evaluations. In case of fine particulates, monitored time-series large enough for modelling purposes 

are seldom available. A statistical method for estimation of the LRT background concentration of 

PM2.5 is presented in paper (6). The method utilizes EMEP (Co-operative programme for 

monitoring and evaluating of the long-range transmission of air pollutants in Europe) monitoring 

network and the measured sulfate (SO4
2-), sum of nitrate (NO3

- and nitric acid (HNO3), and the sum 

of ammonium (NH4
+) and ammonia (NH3) concentrations. The total weighted sum is called the ion 

sum. 

 

The ion sum (daily mean) is interpolated by inverse distance method from the EMEP stations to the 

location of PM2.5 measurement site. The measured urban (or rural) PM2.5 concentrations can be 

correlated with the ion sum values using linear regression, in which the constant term illustrates the 

average contribution of all local sources. Consequently, the constant term is expected to change 

spatially within the same town, while the variation in the slope of ion sum should be small. 

 

The statistical method is tested against time-series (1998-2000) at two monitoring sites of YTV in 

Helsinki. The first one (Vallila) represents a typical traffic environment located 14 m from a street 

with average daily traffic volume of 13000 vehicles per day, while the station of Kallio is located 60 

m from the nearest street with traffic volume of 7000 vehicles per day, representing an urban 

background station. The statistical analyses show that the constant term at Vallila representing local 

sources (like traffic) is clearly greater than at Kallio, while the slopes are the same within 95 % 

confidence limits.  

 

The modelled long-range transported PM2.5 concentrations were compared with the chemically 

analysed particles at Luukki located 20 km to the NW of Helsinki (Pakkanen et al., 2001). Applying 

the source apportionment method (Ojanen et al., 1998) the deviation between measured and 

predicted LRT concentrations were less than 10 %. The measured contributions of LRT component 

to the total PM2.5 concentration at the station of Vallila varies from 60-63 % (Pakkanen et al., 2001), 

while the corresponding modelled contribution was 64 and 76 % at Vallila and Kallio, respectively 

(6). 
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The above results indicate that most of the PM2.5 concentration even in an urban area is originated 

by LRT, which is significant in planning of future cost-effective air quality strategies. The method 

is also important for regulatory model computations, which can utilize the EMEP monitoring 

network for the background computations of LRT fine particulates in most European countries. 

 

 

7.2 Determining an emission factor for non-exhaust PM2.5 emissions 

 

The deterministic regulatory dispersion models require that all emission factors are available. 

However, it is difficult to obtain those for non-exhaust emissions (including emissions from brakes, 

tyres and road surface) in case of fine particles. An application of road side measurements, 

concentrations from exhaust PM2.5 emissions by CAR-FMI and the use the statistical models (5; 6) 

enables the estimation of separate contributions affecting observed PM2.5 concentrations by the road 

side using multiple linear regression (Tiitta et al., 2002). The method includes also a possibility of 

estimating the non-primary emission factor, which is approximated for a paved road in the 

summertime conditions. 

 

An estimate for the average non-exhaust emission factor EFne (g VKT-1) in fine particulate region 

becomes EFne = (k - 1) EFe, where EFe is a weighted average exhaust emission factor of vehicles, k 

is the coefficient in multiple regression equation describing the contribution from the traffic caused 

total emissions and VKT is “vehicle per kilometer travelled”. Correspondingly, the non-primary 

emission rate is ERne = (k - 1) ERe, where ERe is the emission rate of tailpipe emissions. Because 

the emission rate (µg m-1 s-1) is defined as the product of emission factor and traffic volume 

(vehicles h-1) i.e. ER = EF x TV / 3.6, emission rate of non-exhaust emissions becomes sensitive to 

the regression coefficient k, primary emission factor and traffic volume. 

 

The monitoring site and measurements and computation of daily average of PM2.5 concentrations is 

described in detail by Tiitta et al. (2002). An overview of the area is also seen in Figure 6, showing 

the spatial distributions of PM2.5 concentrations computed with exhaust emissions factor and the 

combined emission factor including components from exhaust and non-exhaust emissions in 

summertime conditions. The monitors used are labeled as A, B, C and D. The abbreviations for the 

roads are NT (Neulaniementie), ST (Savilahdentie), IT (Iloharjuntie) and VT5 (Valtatie 5 locating 

about 500 m to the East from the monitors), with mean daily traffic volumes of 2300, 16400, 2400 

and 22300, respectively. Savilahdentie contributes about 80 % of the traffic influence on the 
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average PM2.5 concentration at the two nearest monitoring points, but increasing distance decreases 

its weight and increases the relative influence of VT5 from 15 % to 25 % at the most distant site. 

This is partly a consequence of higher fraction of heavy-duty traffic (15 %) and speed limit 100 

km/h on VT5 in spite of greater distance (500 m) compared to Savilahdentie with light controlled 

travel speed changing from 0 to 50 km/h. Contributions from Neulaniementie and Ilolahdentie are 

fairly insignificant at the monitoring site with the loads below 5 %. 

 

A weekday average (16 h) of non-exhaust emission factor in summertime conditions is estimated  

using the two nearest monitors on the downwind side of Savilahdentie (paved two lane road). The 

average traffic flow of ST was 836 vehicles per hour and the computed average for the emission 

rate (ERne) and emission factor (EFne) of PM2.5 from the road were 26 µg m-1 s-1 and 0.1 g VKT-1, 

respectively. The reported non-exhaust emission factors for PM10 are 3.2-9.3 g VKT-1 (Claiborn et 

al., 1995) and 0.2-3 g VKT-1 depending on road type (Venkatram et al., 1999), while the 

measurements of PM2.5 in a road tunnel  (Weingartner et al., 1997) suggest that our estimated EFne 

for fine particulates would be overestimated by an order of magnitude. The result is expected, 

because our EFne includes also emissions from tyres and brakes, which may be a significant 

contributor near the crossing area.  

 

Figure 6. The daily average (16 h) of PM2.5 concentrations (µg/m3) by exhaust emissions (left) and 
by the sum of exhaust and non-exhaust emissions (right) of traffic at the measurement site. The 
monitors A, B, C and D locate on the line perpendicular to the road (ST) at distances 12, 25, 52 and 
87 m from the centreline of the road at 1.8 m height from the ground surface. 
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8 Discussion 
 

The basic principles of the dispersion equations for a finite line source are well documented in 

connection with several line source models. There are a variety of deterministic model types, which 

can be used in different environments. Open road dispersion models are based on Lagrangian, 

Eulerian or Gaussian concepts of atmospheric diffusion and produce reasonably good results in 

normal terrain for the regulatory use. However, the Gaussian plume model cannot be used in 

mountainous regions. As a result of the current project, in which CAR-FMI is combined with the 

street canyon model OSPM (e.g. Hertel and Berkowicz, 1989), a significant improvement in the 

predictions of downtown areas is expected. 

 

An ideal regulatory open road dispersion model is applicable at the same time to roads and in 

suburban environment with light controlled crossing areas. The observed deviations in emissions 

are mainly influenced by driving behavior (De Vlieger et al., 2000), driving cycles (Joumard et al., 

2000) and cold start (Laurikko, 1998). However, the statistical uncertainties of modelled emissions 

in urban areas are within reasonable limits (35 % for NOx) as shown by Kühlwein and Friedrich 

(2000), while in case of HDV expected deviations are clearly larger (Clark et al., 2002). CAR-FMI 

applies the widely used method of fitting emissions against the average traveling speed based on 

laboratory measurements. The procedure excludes the influence of load and obviously under-

estimates emissions in suburban environment. The emission factors also depend on the properties of 

the fuel used (e.g. Clark et al., 2002) and their estimated influence is bound to the year the model 

run describes, as well as to the average age of the vehicle fleet. 

 

The recent tests, based on the comparison of emissions computed by a traffic simulation model 

HUTSIM-EMCA (e.g. Höglund and Niittymäki, 1999), suggest that the conditions at the light-

controlled crossing can be accounted for in the fitting of traveling speed within reasonable accuracy 

if the stopping percent is given. Kapur (1988, p.141-4) presents simple solutions for differential 

equations concerning traveling speed as a function of traffic volume and an empirical parameter, 

which might be applied to the Gaussian dispersion equation. The information needed for the traffic 

volume and the unknown parameter is possible to determine by a traffic simulation model.  

 

Open road dispersion models confront further problems when non-exhaust emissions of particulate 

matter including emissions from brakes, tyres and road surface are to be accounted for. Non-exhaust 
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sources can be analysed separately and fitted against travel speed, or the emissions can be estimated 

according to the road. However, the monitoring methods used for determination of emission factors 

in case of resuspension, have not been generally accepted (see e.g. Venkatram, 2000). We proposed 

an indirect method of estimating non-exhaust component of fine particulate matter from a road 

network, which is based on the use of modeled traffic contribution (CAR-FMI) and modeled 

background PM2.5 concentration (6) and road side measurements (Tiitta et al., 2002).  

 

The basic principles of ambient dispersion have been practically unchanged since M-O scaled 

dispersion parameters were taken in use. More interest is paid to the influence of traffic on ambient 

flows i.e. to the initial dispersion parameters as reported in several field experiments (e.g. Chock, 

1977; Rao and Sedefian, 1979) and in wind tunnel studies (e.g. Eskridge and Rao, 1986; Rao 2001). 

According to the works of Postgård and Lindquist (2001) and Borgen et al. (2001) changing 

weather conditions cause large temperature differences between the road surface and ambient air in 

Nordic latitudes (58o N) in the layer of lowest few meters from the road surface. Because the 

physical properties of the road differ from the nearby terrain, the road may cause a significant local 

perturbation to the vertical stability (Chen et al., 1999) reaching some tens of meters from the road. 

The duration of perturbation is several hours and so it is a potential explanation of some outliers 

observed in connection of the model evaluation in the vicinity of the road (4).  

 

 

9 Conclusions  
 

This thesis deals with the regulatory modeling of the traffic-originated pollution of inert and 

reactive gaseous compounds as well as particulate matter. The basic principles of a Gaussian finite 

line source dispersion model CAR-FMI for dispersion of pollutants from a open road network is 

described. Also the properties of the refined version of the model are presented, which includes 

several extensions including the computation of fine particulate matter concentrations with dry 

deposition. Semi-empirical and statistical models are also presented for thoracic particles (PM10) 

and long-range transported fine particular matter (PM2.5), respectively. The CAR-FMI model is 

applied to study the influence of emission ratio NO/NO2 on ambient air NO2 concentrations.  

 

As an overview of the papers included, the following comments can be made. 
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• Paper 1 presents the basic structure of the first version (only for gaseous compounds) of the 

finite line source dispersion model CAR-FMI, while the refined version is described in Ch. 

5. The current version of the model includes the prediction of carbon monoxide (CO), 

nitrogen monoxide (NO), nitrogen dioxide (NO2), nitrogen oxides (NOx), ozone (O3) and 

fine particulate matter (PM2.5) concentrations. 

• Papers 2 and 4 describe the evaluation of the model with field measurements. The analysis 

of the results is continued in Ch. 7.  

• Paper 3 is an application of the model and shows the influence of the emission ratio 

(NO/NO2) on the NO-O3-NO2 chemistry in different meteorological conditions. The results 

suggest that the effect of the emission ratio on NO2 concentration depends in addition to the 

ambient temperature also on stability and O3 background concentration.  

• Paper 5 describes a semi-empirical model for the computation of yearly average of the PM10 

concentration. It includes the basic equations applied in the estimation of the PM10 

concentration, description of the model and evaluation against experimental data. 

• Paper 6 presents a statistical method for computation of the daily mean of the long-range 

transported PM2.5 concentration. The statistical model in combination with the CAR-FMI 

model can be used for the estimation of the urban air concentrations of fine particulate 

matter.  

 

In summary, the paper 1 presents the mathematical structure of the CAR-FMI model, the papers 2 

and 4 its evaluation against experimental field data and the paper 3 an application of the model. The 

papers from 1 to 4 address gaseous pollutants, and papers 5 and 6 particulate matter. Papers 5 and 6 

present methods that can be used in combination with the results obtained using the CAR-FMI 

model. 

 

The new user interface allows the use of own meteorological and background concentration time-

series as well as diurnal, daily and seasonal distribution of traffic volumes and emission factors of 

the vehicle categories. The current emission model is classified according to the vehicle types and 

the emissions are fitted against the travel velocity. In addition, the statistical treatment of the results 

is extended so that the user can select any percentile of the concentration. The refined version of the 

model also includes an option of plume chemistry of the nitrogen oxides for different research 

purposes. The results are available in the tabular or graphical mode, in which the user interface 

utilizes 3-D graphics and the Geographic Information System (GIS) MapInfo. 
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The evaluation of the CAR-FMI model against field experiments is performed at two measurement 

campaigns. The statistically analyzed results show a considerably good consistency between the 

measured and predicted concentrations. Also an inter-comparison between CAR-FMI and a 

Lagrangian model GRAL was performed, which revealed that CAR-FMI is sensitive to weak wind 

speeds and wind directions nearly parallel to the road. The later is substantially influenced by the 

meandering effect and can be computationally corrected. The performance of the CAR-FMI and 

UDM-FMI modeling systems have recently evaluated also in urban environment by Karppinen et 

al. (2000b) and Kousa et al. (2001). 

 

The first one of the presented statistical models is based on the correlation between NOx and PM10 

concentrations. The second statistical method can be used in determining the background 

concentration of PM2.5 in most European countries; it is based on the measured ion concentrations 

at the EMEP monitoring stations (Co-operative programme for monitoring and evaluating of the 

long-range transmission of air pollutants in Europe). The combination of roadside measurements, a 

deterministic line source model CAR-FMI, and the earlier mentioned statistical models (see also 

Tiitta et al., 2002) is used in connection with an estimation of the emission factor for the non-

primary sources of fine particles. However, larger monitored time-series of PM concentrations in 

different meteorological conditions are needed before the non-exhausted emission factors computed 

by this indirect method can be reliably applied to the operative use.  
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