48,808 research outputs found

    Distributed Simulation of Heterogeneous and Real-time Systems

    Get PDF
    This work describes a framework for distributed simulation of cyber-physical systems (CPS). Modern CPS comprise large numbers of heterogeneous components, typically designed in very different tools and languages that are not or not easily composeable. Evaluating such large systems requires tools that integrate all components in a systematic, well-defined manner. This work leverages existing frameworks to facilitate the integration offers validation by simulation. A framework for distributed simulation is the IEEE High-Level Architecture (HLA) compliant tool CERTI, which provides the infrastructure for co-simulation of models in various simulation environments as well as hardware components. We use CERTI in combination with Ptolemy II, an environment for modeling and simulating heterogeneous systems. In particular, we focus on models of a CPS, including the physical dynamics of a plant, the software that controls the plant, and the network that enables the communication between controllers. We describe the Ptolemy extensions for the interaction with HLA and demonstrate the approach on a flight control system simulation

    Modeling biological systems with delays in Bio-PEPA

    Full text link
    Delays in biological systems may be used to model events for which the underlying dynamics cannot be precisely observed, or to provide abstraction of some behavior of the system resulting more compact models. In this paper we enrich the stochastic process algebra Bio-PEPA, with the possibility of assigning delays to actions, yielding a new non-Markovian process algebra: Bio-PEPAd. This is a conservative extension meaning that the original syntax of Bio-PEPA is retained and the delay specification which can now be associated with actions may be added to existing Bio-PEPA models. The semantics of the firing of the actions with delays is the delay-as-duration approach, earlier presented in papers on the stochastic simulation of biological systems with delays. These semantics of the algebra are given in the Starting-Terminating style, meaning that the state and the completion of an action are observed as two separate events, as required by delays. Furthermore we outline how to perform stochastic simulation of Bio-PEPAd systems and how to automatically translate a Bio-PEPAd system into a set of Delay Differential Equations, the deterministic framework for modeling of biological systems with delays. We end the paper with two example models of biological systems with delays to illustrate the approach.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005

    Feature refinement

    Get PDF
    Development by formal stepwise refinement offers a guarantee that an implementation satisfies a specification. But refinement is frequently defined in such a restrictive way as to disallow some useful development steps. Here we de- fine feature refinement to overcome some limitations of re- finement and show its usefulness by applying it to examples taken from the literature. Using partial relations as a canonical state-based semantics and labelled transition systems as a canonical event-based semantics, we degine functions formally linking the state- and event-based operational semantics. We can then use this link to move notions of refinement between the event- and state-based worlds. An advantage of this abstract approach is that it is not restricted to a specific syntax or even a specific interpretation of the operational semantic

    Bridging the Gap between Programming Languages and Hardware Weak Memory Models

    Full text link
    We develop a new intermediate weak memory model, IMM, as a way of modularizing the proofs of correctness of compilation from concurrent programming languages with weak memory consistency semantics to mainstream multi-core architectures, such as POWER and ARM. We use IMM to prove the correctness of compilation from the promising semantics of Kang et al. to POWER (thereby correcting and improving their result) and ARMv7, as well as to the recently revised ARMv8 model. Our results are mechanized in Coq, and to the best of our knowledge, these are the first machine-verified compilation correctness results for models that are weaker than x86-TSO

    Generalized Strong Preservation by Abstract Interpretation

    Full text link
    Standard abstract model checking relies on abstract Kripke structures which approximate concrete models by gluing together indistinguishable states, namely by a partition of the concrete state space. Strong preservation for a specification language L encodes the equivalence of concrete and abstract model checking of formulas in L. We show how abstract interpretation can be used to design abstract models that are more general than abstract Kripke structures. Accordingly, strong preservation is generalized to abstract interpretation-based models and precisely related to the concept of completeness in abstract interpretation. The problem of minimally refining an abstract model in order to make it strongly preserving for some language L can be formulated as a minimal domain refinement in abstract interpretation in order to get completeness w.r.t. the logical/temporal operators of L. It turns out that this refined strongly preserving abstract model always exists and can be characterized as a greatest fixed point. As a consequence, some well-known behavioural equivalences, like bisimulation, simulation and stuttering, and their corresponding partition refinement algorithms can be elegantly characterized in abstract interpretation as completeness properties and refinements

    Discrete Simulation of Behavioural Hybrid Process Calculus

    Get PDF
    Hybrid systems combine continuous-time and discrete behaviours. Simulation is one of the tools to obtain insight in dynamical systems behaviour. Simulation results provide information on performance of system and are helpful in detecting potential weaknesses and errors. Moreover, the results are handy in choosing adequate control strategies and parameters. In our contribution we report a work in progress, a technique for simulation of Behavioural Hybrid Process Calculus, an extension of process algebra that is suitable for the modelling and analysis of hybrid systems

    Aiming for Cognitive Equivalence – Mental Models as a Tertium Comparationis for Translation and Empirical Semantics

    Get PDF
    This paper introduces my concept of cognitive equivalence (cf. Mandelblit, 1997), an attempt to reconcile elements of Nida’s dynamic equivalence with recent innovations in cognitive linguistics and cognitive psychology, and building on the current focus on translators’ mental processes in translation studies (see e.g. Göpferich et al., 2009, Lewandowska-Tomaszczyk, 2010; Halverson, 2014). My approach shares its general impetus with Lewandowska-Tomaszczyk’s concept of re-conceptualization, but is independently derived from findings in cognitive linguistics and simulation theory (see e.g. Langacker, 2008; Feldman, 2006; Barsalou, 1999; Zwaan, 2004). Against this background, I propose a model of translation processing focused on the internal simulation of reader reception and the calibration of these simulations to achieve similarity between ST and TT impact. The concept of cognitive equivalence is exemplarily tested by exploring a conceptual / lexical field (MALE BALDNESS) through the way that English, German and Japanese lexical items in this field are linked to matching visual-conceptual representations by native speaker informants. The visual data gathered via this empirical method can be used to effectively triangulate the linguistic items involved, enabling an extra-linguistic comparison across languages. Results show that there is a reassuring level of interinformant agreement within languages, but that the conceptual domain for BALDNESS is linguistically structured in systematically different ways across languages. The findings are interpreted as strengthening the call for a cognition-focused, embodied approach to translation

    A general conservative extension theorem in process algebras with inequalities

    Get PDF
    We prove a general conservative extension theorem for transition system based process theories with easy-to-check and reasonable conditions. The core of this result is another general theorem which gives sufficient conditions for a system of operational rules and an extension of it in order to ensure conservativity, that is, provable transitions from an original term in the extension are the same as in the original system. As a simple corollary of the conservative extension theorem we prove a completeness theorem. We also prove a general theorem giving sufficient conditions to reduce the question of ground confluence modulo some equations for a large term rewriting system associated with an equational process theory to a small term rewriting system under the condition that the large system is a conservative extension of the small one. We provide many applications to show that our results are useful. The applications include (but are not limited to) various real and discrete time settings in ACP, ATP, and CCS and the notions projection, renaming, stage operator, priority, recursion, the silent step, autonomous actions, the empty process, divergence, etc

    Petri nets for systems and synthetic biology

    Get PDF
    We give a description of a Petri net-based framework for modelling and analysing biochemical pathways, which uni¯es the qualita- tive, stochastic and continuous paradigms. Each perspective adds its con- tribution to the understanding of the system, thus the three approaches do not compete, but complement each other. We illustrate our approach by applying it to an extended model of the three stage cascade, which forms the core of the ERK signal transduction pathway. Consequently our focus is on transient behaviour analysis. We demonstrate how quali- tative descriptions are abstractions over stochastic or continuous descrip- tions, and show that the stochastic and continuous models approximate each other. Although our framework is based on Petri nets, it can be applied more widely to other formalisms which are used to model and analyse biochemical networks
    corecore