36,927 research outputs found

    Adaptive image retrieval using a graph model for semantic feature integration

    Get PDF
    The variety of features available to represent multimedia data constitutes a rich pool of information. However, the plethora of data poses a challenge in terms of feature selection and integration for effective retrieval. Moreover, to further improve effectiveness, the retrieval model should ideally incorporate context-dependent feature representations to allow for retrieval on a higher semantic level. In this paper we present a retrieval model and learning framework for the purpose of interactive information retrieval. We describe how semantic relations between multimedia objects based on user interaction can be learnt and then integrated with visual and textual features into a unified framework. The framework models both feature similarities and semantic relations in a single graph. Querying in this model is implemented using the theory of random walks. In addition, we present ideas to implement short-term learning from relevance feedback. Systematic experimental results validate the effectiveness of the proposed approach for image retrieval. However, the model is not restricted to the image domain and could easily be employed for retrieving multimedia data (and even a combination of different domains, eg images, audio and text documents)

    Semantics-based selection of everyday concepts in visual lifelogging

    Get PDF
    Concept-based indexing, based on identifying various semantic concepts appearing in multimedia, is an attractive option for multimedia retrieval and much research tries to bridge the semantic gap between the media’s low-level features and high-level semantics. Research into concept-based multimedia retrieval has generally focused on detecting concepts from high quality media such as broadcast TV or movies, but it is not well addressed in other domains like lifelogging where the original data is captured with poorer quality. We argue that in noisy domains such as lifelogging, the management of data needs to include semantic reasoning in order to deduce a set of concepts to represent lifelog content for applications like searching, browsing or summarisation. Using semantic concepts to manage lifelog data relies on the fusion of automatically-detected concepts to provide a better understanding of the lifelog data. In this paper, we investigate the selection of semantic concepts for lifelogging which includes reasoning on semantic networks using a density-based approach. In a series of experiments we compare different semantic reasoning approaches and the experimental evaluations we report on lifelog data show the efficacy of our approach

    An affect-based video retrieval system with open vocabulary querying

    Get PDF
    Content-based video retrieval systems (CBVR) are creating new search and browse capabilities using metadata describing significant features of the data. An often overlooked aspect of human interpretation of multimedia data is the affective dimension. Incorporating affective information into multimedia metadata can potentially enable search using this alternative interpretation of multimedia content. Recent work has described methods to automatically assign affective labels to multimedia data using various approaches. However, the subjective and imprecise nature of affective labels makes it difficult to bridge the semantic gap between system-detected labels and user expression of information requirements in multimedia retrieval. We present a novel affect-based video retrieval system incorporating an open-vocabulary query stage based on WordNet enabling search using an unrestricted query vocabulary. The system performs automatic annotation of video data with labels of well defined affective terms. In retrieval annotated documents are ranked using the standard Okapi retrieval model based on open-vocabulary text queries. We present experimental results examining the behaviour of the system for retrieval of a collection of automatically annotated feature films of different genres. Our results indicate that affective annotation can potentially provide useful augmentation to more traditional objective content description in multimedia retrieval

    An Efficient Approach for Geo-Multimedia Cross-Modal Retrieval

    Get PDF
    Due to the rapid development of mobile Internet techniques, such as online social networking and location-based services, massive amount of multimedia data with geographical information is generated and uploaded to the Internet. In this paper, we propose a novel type of cross-modal multimedia retrieval, called geo-multimedia cross-modal retrieval, which aims to find a set of geo-multimedia objects according to geographical distance proximity and semantic concept similarity. Previous studies for cross-modal retrieval and spatial keyword search cannot address this problem effectively because they do not consider multimedia data with geo-tags (geo-multimedia). Firstly, we present the definition of k NN geo-multimedia cross-modal query and introduce relevant concepts such as spatial distance and semantic similarity measurement. As the key notion of this work, cross-modal semantic representation space is formulated at the first time. A novel framework for geo-multimedia cross-modal retrieval is proposed, which includes multi-modal feature extraction, cross-modal semantic space mapping, geo-multimedia spatial index and cross-modal semantic similarity measurement. To bridge the semantic gap between different modalities, we also propose a method named cross-modal semantic matching (CoSMat for shot) which contains two important components, i.e., CorrProj and LogsTran, which aims to build a common semantic representation space for cross-modal semantic similarity measurement. In addition, to implement semantic similarity measurement, we employ deep learning based method to learn multi-modal features that contains more high level semantic information. Moreover, a novel hybrid index, GMR-Tree is carefully designed, which combines signatures of semantic representations and R-Tree. An efficient GMR-Tree based k NN search algorithm called k GMCMS is developed. Comprehensive experimental evaluations on real and synthetic datasets clearly demonstrate that our approach outperforms the-state-of-the-art methods

    Semantic multimedia modelling & interpretation for search & retrieval

    Get PDF
    With the axiomatic revolutionary in the multimedia equip devices, culminated in the proverbial proliferation of the image and video data. Owing to this omnipresence and progression, these data become the part of our daily life. This devastating data production rate accompanies with a predicament of surpassing our potentials for acquiring this data. Perhaps one of the utmost prevailing problems of this digital era is an information plethora. Until now, progressions in image and video retrieval research reached restrained success owed to its interpretation of an image and video in terms of primitive features. Humans generally access multimedia assets in terms of semantic concepts. The retrieval of digital images and videos is impeded by the semantic gap. The semantic gap is the discrepancy between a user’s high-level interpretation of an image and the information that can be extracted from an image’s physical properties. Content- based image and video retrieval systems are explicitly assailable to the semantic gap due to their dependence on low-level visual features for describing image and content. The semantic gap can be narrowed by including high-level features. High-level descriptions of images and videos are more proficient of apprehending the semantic meaning of image and video content. It is generally understood that the problem of image and video retrieval is still far from being solved. This thesis proposes an approach for intelligent multimedia semantic extraction for search and retrieval. This thesis intends to bridge the gap between the visual features and semantics. This thesis proposes a Semantic query Interpreter for the images and the videos. The proposed Semantic Query Interpreter will select the pertinent terms from the user query and analyse it lexically and semantically. The proposed SQI reduces the semantic as well as the vocabulary gap between the users and the machine. This thesis also explored a novel ranking strategy for image search and retrieval. SemRank is the novel system that will incorporate the Semantic Intensity (SI) in exploring the semantic relevancy between the user query and the available data. The novel Semantic Intensity captures the concept dominancy factor of an image. As we are aware of the fact that the image is the combination of various concepts and among the list of concepts some of them are more dominant then the other. The SemRank will rank the retrieved images on the basis of Semantic Intensity. The investigations are made on the LabelMe image and LabelMe video dataset. Experiments show that the proposed approach is successful in bridging the semantic gap. The experiments reveal that our proposed system outperforms the traditional image retrieval systems

    Context-based multimedia semantics modelling and representation

    Get PDF
    The evolution of the World Wide Web, increase in processing power, and more network bandwidth have contributed to the proliferation of digital multimedia data. Since multimedia data has become a critical resource in many organisations, there is an increasing need to gain efficient access to data, in order to share, extract knowledge, and ultimately use the knowledge to inform business decisions. Existing methods for multimedia semantic understanding are limited to the computable low-level features; which raises the question of how to identify and represent the high-level semantic knowledge in multimedia resources.In order to bridge the semantic gap between multimedia low-level features and high-level human perception, this thesis seeks to identify the possible contextual dimensions in multimedia resources to help in semantic understanding and organisation. This thesis investigates the use of contextual knowledge to organise and represent the semantics of multimedia data aimed at efficient and effective multimedia content-based semantic retrieval.A mixed methods research approach incorporating both Design Science Research and Formal Methods for investigation and evaluation was adopted. A critical review of current approaches for multimedia semantic retrieval was undertaken and various shortcomings identified. The objectives for a solution were defined which led to the design, development, and formalisation of a context-based model for multimedia semantic understanding and organisation. The model relies on the identification of different contextual dimensions in multimedia resources to aggregate meaning and facilitate semantic representation, knowledge sharing and reuse. A prototype system for multimedia annotation, CONMAN was built to demonstrate aspects of the model and validate the research hypothesis, H₁.Towards providing richer and clearer semantic representation of multimedia content, the original contributions of this thesis to Information Science include: (a) a novel framework and formalised model for organising and representing the semantics of heterogeneous visual data; and (b) a novel S-Space model that is aimed at visual information semantic organisation and discovery, and forms the foundations for automatic video semantic understanding

    Fusion of Text and Image in Multimedia Information Retrieval System

    Get PDF
    Multimedia Information Retrieval is very useful for any application in our daily work. Most of the applications consist of Multimedia data that are images, text, audio and video. Multimedia information retrieval system is used to search an image. There are same meanings for different data which is also known as semantic gap. This problem is solved by fusion of text based image retrieval and content based image retrieval. Weighted Mean, OWA and WOWA are aggregation operators used in this system for the fusion of text and image numeric values. The Scale invariant feature transforms and speeded up robust feature are two algorithms for feature extraction. To increase the speed of system, the speeded up robust feature algorithm is used. Bag of Words and Bag of Visual Word approaches are used in this system for retrieving images. DOI: 10.17762/ijritcc2321-8169.15066
    corecore