4 research outputs found

    Semantic Models for Machine Learning

    No full text
    In this thesis we present approaches to the creation and usage of semantic models by the analysis of the data spread in the feature space. We aim to introduce the general notion of using feature selection techniques in machine learning applications. The applied approaches obtain new feature directions on data, such that machine learning applications would show an increase in performance. We review three principle methods that are used throughout the thesis. Firstly Canonical Correlation Analysis (CCA), which is a method of correlating linear relationships between two multidimensional variables. CCA can be seen as using complex labels as a way of guiding feature selection towards the underlying semantics. CCA makes use of two views of the same semantic object to extract a representation of the semantics. Secondly Partial Least Squares (PLS), a method similar to CCA. It selects feature directions that are useful for the task at hand, though PLS only uses one view of an object and the label as the corresponding pair. PLS could be thought of as a method that looks for directions that are good for distinguishing the different labels. The third method is the Fisher kernel. A method that aims to extract more information of a generative model than simply by their output probabilities. The aim is to analyse how the Fisher score depends on the model and which aspects of the model are important in determining the Fisher score. We focus our theoretical investigation primarily on CCA and its kernel variant. Providing a theoretical analysis of the method's stability using Rademacher complexity, hence deriving the error bound for new data. We conclude the thesis by applying the described approaches to problems in the various fields of image, text, music application and medical analysis, describing several novel applications on relevant real-world data. The aim of the thesis is to provide a theoretical understanding of semantic models, while also providing a good application foundation on how these models can be practically used

    Semantic models for machine learning

    Get PDF
    In this thesis we present approaches to the creation and usage of semantic models by the analysis of the data spread in the feature space. We aim to introduce the general notion of using feature selection techniques in machine learning applications. The applied approaches obtain new feature directions on data, such that machine learning applications would show an increase in performance. We review three principle methods that are used throughout the thesis. Firstly Canonical Correlation Analysis (CCA), which is a method of correlating linear relationships between two multidimensional variables. CCA can be seen as using complex labels as a way of guiding feature selection towards the underlying semantics. CCA makes use of two views of the same semantic object to extract a representation of the semantics. Secondly Partial Least Squares (PLS), a method similar to CCA. It selects feature directions that are useful for the task at hand, though PLS only uses one view of an object and the label as the corresponding pair. PLS could be thought of as a method that looks for directions that are good for distinguishing the different labels. The third method is the Fisher kernel. A method that aims to extract more information of a generative model than simply by their output probabilities. The aim is to analyse how the Fisher score depends on the model and which aspects of the model are important in determining the Fisher score. We focus our theoretical investigation primarily on CCA and its kernel variant. Providing a theoretical analysis of the method's stability using Rademacher complexity, hence deriving the error bound for new data. We conclude the thesis by applying the described approaches to problems in the various fields of image, text, music application and medical analysis, describing several novel applications on relevant real-world data. The aim of the thesis is to provide a theoretical understanding of semantic models, while also providing a good application foundation on how these models can be practically used.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Eigenvector-based Dimensionality Reduction for Human Activity Recognition and Data Classification

    Get PDF
    In the context of appearance-based human motion compression, representation, and recognition, we have proposed a robust framework based on the eigenspace technique. First, the new appearance-based template matching approach which we named Motion Intensity Image for compressing a human motion video into a simple and concise, yet very expressive representation. Second, a learning strategy based on the eigenspace technique is employed for dimensionality reduction using each of PCA and FDA, while providing maximum data variance and maximum class separability, respectively. Third, a new compound eigenspace is introduced for multiple directed motion recognition that takes care also of the possible changes in scale. This method extracts two more features that are used to control the recognition process. A similarity measure, based on Euclidean distance, has been employed for matching dimensionally-reduced testing templates against a projected set of known motions templates. In the stream of nonlinear classification, we have introduced a new eigenvector-based recognition model, built upon the idea of the kernel technique. A practical study on the use of the kernel technique with 18 different functions has been carried out. We have shown in this study how crucial choosing the right kernel function is, for the success of the subsequent linear discrimination in the feature space for a particular problem. Second, building upon the theory of reproducing kernels, we have proposed a new robust nonparametric discriminant analysis approach with kernels. Our proposed technique can efficiently find a nonparametric kernel representation where linear discriminants can perform better. Data classification is achieved by integrating the linear version of the NDA with the kernel mapping. Based on the kernel trick, we have provided a new formulation for Fisher\u27s criterion, defined in terms of the Gram matrix only

    UNIVERSITY OF SOUTHAMPTON Semantic Models for Machine Learning

    No full text
    In this thesis we present approaches to the creation and usage of semantic models by the analysis of the data spread in the feature space. We aim to introduce the general notion of using feature selection techniques in machine learning applications. The applied ap-proaches obtain new feature directions on data, such that machine learning applications would show an increase in performance. We review three principle methods that are used throughout the thesis. Firstly Canon-ical Correlation Analysis (CCA), which is a method of correlating linear relationships between two multidimensional variables. CCA can be seen as using complex labels as a way of guiding feature selection towards the underlying semantics. CCA makes use of two views of the same semantic object to extract a representation of the semantics. Sec-ondly Partial Least Squares (PLS), a method similar to CCA. It selects feature directions that are useful for the task at hand, though PLS only uses one view of an object and the label as the corresponding pair. PLS could be thought of as a method that looks for directions that are good for distinguishing the different labels. The third method is the Fisher kernel. A method that aims to extract more information of a generative mode
    corecore