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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by David Roi Hardoon

In this thesis we present approaches to the creation and usage of semantic models by the
analysis of the data spread in the feature space. We aim to introduce the general notion
of using feature selection techniques in machine learning applications. The applied ap-
proaches obtain new feature directions on data, such that machine learning applications
would show an increase in performance.

We review three principle methods that are used throughout the thesis. Firstly Canon-
ical Correlation Analysis (CCA), which is a method of correlating linear relationships
between two multidimensional variables. CCA can be seen as using complex labels as a
way of guiding feature selection towards the underlying semantics. CCA makes use of
two views of the same semantic object to extract a representation of the semantics. Sec-
ondly Partial Least Squares (PLS), a method similar to CCA. It selects feature directions
that are useful for the task at hand, though PLS only uses one view of an object and
the label as the corresponding pair. PLS could be thought of as a method that looks for
directions that are good for distinguishing the different labels. The third method is the
Fisher kernel. A method that aims to extract more information of a generative model
than simply by their output probabilities. The aim is to analyse how the Fisher score
depends on the model and which aspects of the model are important in determining the
Fisher score. We focus our theoretical investigation primarily on CCA and its kernel
variant. Providing a theoretical analysis of the method’s stability using Rademacher
complexity, hence deriving the error bound for new data.

We conclude the thesis by applying the described approaches to problems in the various
fields of image, text, music application and medical analysis, describing several novel
applications on relevant real-world data. The aim of the thesis is to provide a theoretical
understanding of semantic models, while also providing a good application foundation
on how these models can be practically used.
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Chapter 1

Introduction

“I do not fear computers. I fear the lack of them.” - Isaac Asimov

1.1 Learning

Learning could be considered as the acquisition of some true belief or skill through
experience. In the field of machine learning this is focused on the process of learning
through experience, in order to do better next time. There are two main aims in machine
learning that are focused upon; The first is to be able to create tools able to learn through
some computational models. These are to help humans in various activities and tasks
in life. The other is psychological, to help understand the process of the mind in human
and animal by modelling mental structures and processes.

We would like to have machines able to learn for several reasons; Within large amounts
of data, hidden relationships and correlations may exist that could be extracted, a field
known as data mining. Scenarios such as changing environments from those originally
programmed to work in, give reason for the need of machines which would be able to
learn how to cope with modifying surroundings. Computer learning algorithms that
are not produced by detailed human design but by automatic evolution, such that they
accommodate a constant stream of new data and information related to a task.

There are two major types of learning, supervised learning, where we know the labels
of the training samples. In this case we look for a hypothesis that best agrees with
the function of the relation between the samples and labels. The other is unsupervised
learning, where we simply have the training samples without their label values. Here we
typically try and cluster the data into subsets. Throughout the thesis we only address
problem of supervised learning category.

1



2 Chapter 1 Introduction

1.2 The Usage of Features

Features is the term used to describe the input variables for each sample. In previous
years the issue of feature selection was not of high relevance, as few learning domains
expanded to the use of more than 40 features per sample. Only during recent years,
the number of features used has escalated to hundreds and thousands of features. This
introduced the question of how to efficiently use these features to represent the data.
Some of the features may be irrelevant or redundant to the problem we are trying to
learn, therefore methods of eliminating these redundant features are necessary. For
example; we may have few data samples, such as in gene selection problem, where
we have few patients with the number of features ranging from thousands to tens of
thousands. In this case we need to reduce the number of features to the ones which
highlight the function needed to be learnt and also for computational efficiency.

Feature selection, can be instigated for various reasons. From reducing computational
complexity due to a high number of features, to noisy data which needs to be managed.
An interesting survey of feature selection approaches in machine learning is given by
Guyon and Elisseeff (2003).

During recent years there have been advances in data learning using kernel methods.
Kernel representation offers an alternative learning to non-linear functions by projecting
the data into a high dimensional feature space in order to increase the power of linear
learning machines. As in kernel methods one does not represent the features vectors
explicitly. The number of operations required for the computation is not necessarily
proportional to the number of features. Although kernel methods provide a solution to
the computational complexity that may arise from a large number of features in input
space this does not guarantee that the presented features in feature space are relevant or
useful. We are still faced with how best to choose the features, or equivalently the kernel
function, in ways that will improve performance. In the thesis we review several different
approaches of how one could apply feature selection in order to create a semantic feature
space and hence best represent the data in new semantic models.

1.3 Thesis Contributions & Outline

The outline of the thesis is given in two main parts. Part I provides a theoretical foun-
dation and in Part II various applications utilising the discussed theory are presented.
The main contribution of the thesis is the investigation of the spread of the data in
feature space as a means of creating and using semantic models. We elaborate on the
contribution of the author to each of the chapters and the publications that the thesis
has contributed in part or full.

The thesis is laid out as follows; Part I
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• Chapter 2 gives an introductory review of enabling technologies needed for back-
ground understanding.

• Chapter 3 describes the background to several semantic model representations that
are used and investigated throughout the thesis.

• Chapter 4 is the main chapter investigating CCA and KCCA. The work has been
jointly conducted with the supervisor and Sandor Szdemak. The contributed per-
centage of work is 70%. Associated publications to chapter - (Hardoon et al.,
2004b).

Part II

• Chapter 5 gives a review of image and text based applications. Section 5.2 reviews
the application of SVM with KCCA for generic object recognition. The work has
been jointly done with the supervisor, Hongying Meng and Sandor Szdemak. The
contributed percentage of work is 30%. In Section 5.2.1 we review the problem
of generating documents to image queries that are related to the latter by con-
tent. The work has been jointly done with Sandor Szdemak. Thomas Kolenda
has provided the data. The contributed percentage of work is 80%. Associated
publications to chapter - Meng et al. (2005).

• In Chapter 6 two musical applications of performance and musical scores are given.
Section 6.1 investigates the problem of identifying performers from their playing
style using string kernels. The work has been jointly conducted with the supervi-
sors and Gerhard Widmer who has provided the data. The contributed percentage
of work is 20%. In Section 6.2 we further our investigation to the identification of
composers from their sheet music using a probabilistic approach. The work has
been jointly conducted with the supervisors. The contributed percentage of work
is 65%. Associated publications to chapter - Saunders et al. (2004).

• Chapter 7 concludes the application part of the thesis with the application of
machine learning in the field of medical analysis. We begin by presenting work
centred on identifying and analysing brain patterns, from fMRI scans, that are
related to given tasks. The work has been jointly conducted with the supervisor
and Ola Friman who has also provided the data. The contributed percentage of
work is 80%. In the remainder of the chapter we divert our attention onto learning
the cognitive state of a brain using one-class and two-class learning methods. The
work has been jointly conducted with Larry Manevitz and Rafael Malach who has
provided the data (as well as data previously provided by Ola Friman). The con-
tributed percentage of work is 70%. Associated publications to chapter - Hardoon
et al. (2004a); Hardoon and Manevitz (2005a,b).

In Chapter 8 we discuss and conclude the matter presented throughout the thesis.
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Chapter 2

Enabling Technologies

“One of the best things to come out of the home computer revolution could be the
general and widespread understanding of how severely limited logic really is.”

- Frank Herbert

In the following sections we give an introductionary review of the baseline technologies
and methods that will be used throughout the thesis.

2.1 Kernel Methods

One of the most predominant problems in the field of machine learning is the application
of various methods to real world data, which is highly non linear i.e. we are unable to dis-
criminate the classes of the data in a linear fashion. Kernel methodology is an approach
to first embed non linearly separable data into a suitable feature space where it becomes
solvable in a linear fashion. Although kernel methods provide a solution for this type of
data, we find that the feature embedding may become too computationally expensive to
perform. This can be overcome by the application of what is commonly known as the
kernel trick. The process of implicitly embedding the data into an appropriate feature
space where the dot product between the data samples is performed.

2.1.1 Limitations of Linear Learning

The easiest method to discriminate between two separable objects is to place a line be-
tween them. The theory of linear discriminates was developed by Fisher in 1936. Given
a set of data attributes we are able to construct hypotheses in regard to their desired
output label by a linear combination of the input attributes. We are looking for a lin-
ear relationship amongst the data’s attributes that would allow us to learn the desired

7
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output. Such linear discrimination approaches have been developed in traditional statis-
tics and neural networks. We define a real-valued linear binary classification function
f : X ⊆ Rn → R, where f(x) ≥ 0 suggests that the input x = (x1, . . . , xn) is assigned
to the positive class and f(x) < 0 would suggest the negative class. Consider f(x) to
be a linear function of x ∈ X , which could be written as

f(x) = 〈w,x〉+ b

=
n∑

i=1

wixi + b

w and b are the parameters that control f(x) and the decision function sgn(f(x)). The
vector w defines a direction perpendicular to the hyperplane and b determines the offset
of the hyperplane from the origin. Using terms common in neural networks literature we
refer to w as the weight vector and b as the bias. Figure 2.1 shows the possible separation
of two sets of objects x and o. It is visible that there exists a w and b that defines a
hyperplane 〈w,x〉 + b = 0 which separates the space into two half spaces. These two
half spaces correspond respectively to the data inputs of the two distinct classes.

Figure 2.1: A separating hyperplane (w, b) for a two dimensional data set

Definition 2.1. (Hyperplane) A Hyperplane is an affine subspace of dimension n−1,
where n is the dimension of the data (number of attributes), which divides the space
into half spaces.

Frank Rosenblatt had proposed the first iterative algorithm for learning linear classifi-
cation named the Perceptron, an online mistake driven algorithm. The algorithm starts
from an initial weight vector w0 and adapts the weight each time a training point is
misclassified. We will refer to this algorithm, which updates the weight and bias directly
as the primal form. The Perceptron algorithm, shown in Algorithm 1, is guaranteed to
converge if there exists a hyperplane to separate the problem correctly, otherwise the
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problem is said to be non-separable. Let ` be the number of training samples, η be the
learning rate (i.e. step size) and R a scaling of the hyperplanes.

Algorithm 1 The Perceptron Algorithm in primal form
Input: Given a linearly separable training set S & learning rate η ∈ R+

w0 = 0; b0 = 0; k = 0;
R = max1≤i≤` ‖xi‖;
while flag = 1 do

flag = 0;
for i=1:` do

if yi(〈wk,xi〉+ bk) ≤ 0) then
wk+1 = wk + ηyixi;
bk+1 = bk + ηyiR

2;
k = k + 1;
flag = 1;

end if
end for

end while
Output: wk, bk where k is the number of mistakes.

There are a large number of possible hyperplanes that could separate the samples be-
tween the two classes. We seek a hyperplane such that small perturbations1 of any
point, which would not introduce misclassification errors is minimised. Therefore we
intuitively look for the hyperplane which is furthest away from both classes.

Assume that there exists a hyperplane w and b that separates the classes such that
yi(〈w,xi〉 + b) > 0 for all xi. We rescale w and b such that the closest points to the
rescaled hyperplanes satisfies

| 〈w,xi〉+ b| = 1 (2.1)

giving us a canonical form of the hyperplane, shown as the parallel lines to the hyper-
plane in Figure 2.2, which satisfies yi(〈w,xi〉+ b) ≥ 1. To find the plane furthest from
the two classes, we maximise the distance between the supporting hyperplanes to the
hyperplane. Using the perpendicular Euclidean distance from a point xi to the hyper-
plane 〈w,xi〉+b

‖w‖ in conjunction with equation (2.1) we find that the distance from the
supporting hyperplanes to the hyperplane is 1

‖w‖ . As we are looking for a hyperplane
that is furthest apart we maximise the margin 1

‖w‖ or minimise ‖w‖. Since we can rep-
resent ‖w‖ as a monotonic function (see Figure 2.3) we are able to minimise a function
of ‖w‖ for mathematical simplicity

min
‖w‖

f(‖w‖) =
1
2
‖w‖2 s.t. yi(〈w,xi〉+ b) ≥ 1, i = 1, . . . , `

1A deviation of a system, moving object, or process from its regular or normal state of path, caused
by an outside influence.



10 Chapter 2 Enabling Technologies

Figure 2.2: Maximising the distance between the two supporting hyperplanes.

Figure 2.3: Minimising f(‖w‖) will minimise ‖w‖.

The Lagrangian is

L(w,α, b) =
1
2
‖w‖2 −

∑̀
i=1

αi (yi(〈w,xi〉+ b)− 1)

where αi are the Lagrangian multipliers. Taking the derivatives in respect to the pa-
rameters and setting them equal to zero gives

∂L
∂w

= w −
∑̀
i=1

αiyixi = 0

∂L
∂b

=
∑̀
i=1

αiyi = 0.

We observe that the primal variable w can be expressed using the dual variable α as
w =

∑`
i=1 αiyixi and subject to

∑`
i=1 αiyi = 0. Substituting the dual representation of

the weight as shown into the primal formulation of the decision function sgn(〈w,x〉+ b)
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gives us the dual decision function

h(x) , sgn

(〈∑̀
i=1

αiyixi,x

〉
+ b

)

= sgn

(∑̀
i=1

αiyi 〈xi,x〉+ b

)
.

We are able to observe that the hypothesis function is now expressed as a linear com-
bination of the inner products of the training samples. Therefore the decision function
can now be evaluated by only computing the inner product between the test sample and
the training samples.

Linear methods are severely limited as they can only be applied to data that is linearly
separable while real world applications usually require a more expressive hypothesis than
those that can be expressed by a linear combinations of the input attributes. These
limitations were highlighted by Minsky and Papert (1969). In the following section we
aim to address these limitations.

2.1.2 Learning in Feature Space

The biggest drawback of linear functions is that real world applications require a richer
representation of the attributes space than the actual attributes of the data. This sug-
gests that if linear functions are to be powerful enough for the discrimination task more
abstract attributes of the data are needed. We are able to exploit the number of at-
tributes, both real and abstract, by manipulating the dimension in which the data is
represented. The common pre-processing in machine learning is to change the represen-
tation of the data

x = (x1, . . . , xn)→ φ(x) = (φ(x)1, . . . , φ(x)N ) (N > n)

This step is equal to the mapping of the input space X ∈ Rn into the new space
F = {φ(x)|x ∈ X}. The introduced attributes from the projection of the data are
usually referred to as features, while F ⊆ RN is called the feature space.

In Figure 2.4 we are able to observe the mapping from a two dimensional input space,
where the data is non-discriminate using a linear function, into a two dimensional feature
space where the data is now separable.

Substituting the projected data φ(x) into our decision function, gives the decision func-
tion for the separating hyperplane in feature space

h(x) = sgn

(∑̀
i=1

αiyi 〈φ(xi), φ(x)〉+ b

)
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Figure 2.4: Data separable in feature space

we find that even with the feature projection we still only need to compute the dot
product between the two projected points.

A problem with the explicit feature projection is that very quickly the projection will
become computationally infeasible. For example consider the possible projection into
the form of monomials2 of degree up to d = 2

(x1, x2)→ φ(x1, x2) = (x2
1, x

2
2,
√

2x1x2)

this gives us a feature space of (n+d−1)!
d!(n−1)! dimensions. Hence it is obvious that for real

world data, where the number of attributes can be considerably larger, for any number
of monomial degrees the explicit computation of the feature mapping quickly becomes
unfeasible.

2.1.3 The Kernel Function

The explicit computation of the feature mapping is a complicated step which can quickly
become infeasible. An important consequence of the dual representation is that the di-
mension of the feature space need not affect the computation. As one does not represent
the features vectors explicitly, the number of operations required to compute the inner
product by evaluating the kernel function is not necessarily proportional to the number
of features. This computation is possible using what is commonly known as the kernel
trick, which allows us to compute the value of the dot product in the feature space F

without computing the mapping φ.

Definition 2.2. A kernel is a function κ, such that for all x, z ∈ X

κ(x, z) = 〈φ(x), φ(z)〉

where φ is a mapping from X to a feature space F

φ : X → F.

2A function with ‘one term’.
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Giving an example for input dimension n = 2 and monomial degree d = 2. We first
project the data into the feature space

φ(x) : (x1, x2)→ (x2
1, x

2
2,
√

2x1x2)

the dot project in the projected feature space is equivalent to square of the dot product
in the input space

〈φ(x),φ(z)〉 = x2
1z

2
1 + x2

2z
2
2 + 2x1x2z1z2

=
n∑

i,j=1

(xixj)(zizj) =
n∑

i=1

n∑
j=1

xixjzizj

=

(
n∑

i=1

xizi

) n∑
j=1

xjzj

 =

(
n∑

i=1

xizi

)2

= 〈x, z〉2 .

This will work for arbitrary n, d ∈ N .

This kernel includes the distinct features of the monomials of degree d, if we wish to
have all the monomials up to and including degree d we are able to do so by adding a
control parameter c, which controls the relative weights between different degrees and
also the strength of degree 0

κ 〈x, z〉 = (〈x, z〉+ c)d.

We also have the freedom to modify the mapping φ so as to change the representation of
the input data into one that is more suitable for a given problem and learning algorithm.
Kernels offer a great deal of flexibility, as they can be generated from other kernels. When
using kernels, the data only appears through entries in the kernel matrix, therefore this
approach gives a further advantage as the number of tuneable parameters and updating
time does not depend on the dimension of the feature space.

The process of kernel selection is not a simple one, as ideally we would select a kernel
based on our prior knowledge of the problem domain. It may be the case that we have
limited knowledge of our domain problem and therefore are unable to choose a kernel a
priori. We overcome this by restricting ourselves to a domain of kernels that encapsulate
our prior expectations of the domain problem.

2.1.3.1 Properties of Kernels

In the previous sections we have shown that all the information used about the samples
are their inner products in the feature space F . This involves their entry in the kernel
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matrix, Kij = 〈φ(xi), φ(xj)〉, which we use in order to avoid large computation of the
explicit features. We give several important properties of kernel matrices.

Definition 2.3. (Gram Matrix) Given a kernel function κ and patterns x1, . . . , x` ∈
X , the `× ` matrix

Gij = Kij = κ(xi,xj) for i, j = 1, . . . , `

is called the Gram matrix, G, (or kernel matrix, K) of κ with respect to x1, . . . ,x`.

Throughout the thesis we use the term kernel matrix and the respective notation K.

Proposition 2.4. [Quoted from Shawe-Taylor and Cristianini (2004)] Kernel matrices
are positive semi-definite matrices.

Proof. Taking into account the general case of a kernel we have

Kij = κ(xi,xj) = 〈φ(xi), φ(xj)〉 , for i, j = 1, . . . , `.

For any vector α

α′Kα =
∑̀
i,j=1

αiαjKij =
∑̀
i,j=1

αiαj 〈φ(xi), φ(xj)〉

=

〈∑̀
i=1

αiφ(xi),
∑̀
j=1

αjφ(xj)

〉

= ‖
∑̀
i=1

αiφ(xi)‖2 ≥ 0.

since α is arbitrary this shows that the eigenvalues of K are all non-negative and hence
α′Kα ≥ 0 for α 6= 0.

In the following section we further analyse the properties of a positive semi-definite
matrix A = B′B for some real matrix B. Let V be a matrix of eigenvectors AV = V Λ

be the eigen-decomposition of A and B =
√

ΛV ′ where
√

Λ is the diagonal matrix
with entries

√
λi. We are able to show that the matrix exists since the eigenvalues are

non-negative.
B′B = V

√
Λ
√

ΛV′ = VΛV′ = AVV′ = A.

Here the choice of matrix B is not unique. We show that by computing an orthonomal
basis we are able to compute a unique matrix R such that A = R′R where R is an
upper triangular matrix with a non negative matrix.
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2.2 Dual Partial Gram-Schmidt Orthonormalisation

As shown in following chapters we are faced with need to invert the kernel matrix. While
it is reasonable to assume that the kernel matrix is invertible, it may be the case that it
is not. In the following section we explore an approach known as the dual Gram-Schmidt
orthonomalisation to compute an orthonomal basis from a matrix X. This procedure
will be utilised later in the thesis in order to create a new matrix from a kernel matrix
that is guaranteed to be invertible. The Gram-Schmidt procedure, given a sequence of
linearly independent vectors, produces a basis by orthogonalising each vector to all the
other earlier vectors. This process will be utilised in Chapter 4.

Given a set of vectors x1, . . . ,x`, we choose the first basis vector to be q1 = x1
‖x1‖ . The

following ith basis vectors are computed by subtracting the projection onto the previous
basis vectors from the corresponding xi vector. This is to ensure that the basis vectors
are orthogonal to each other

qi =
(I −Qi−1Q

′
i−1)xi

‖(I −Qi−1Q′
i−1)xi‖

. (2.2)

Where Q is the matrix whose columns are the basis vectors q, and Qi is the matrix
whose i columns are the first i basis vectors. The matrix (I −Qi−1Q

′
i−1) is a projection

matrix onto the orthogonal complement of the space spanned by the first i basis vectors.

We are able to express xi as

xi = Q

 Q′
i−1xi

‖(I −Qi−1Q
′
i−1)xi‖

0`−i

 ,

for full derivation see Appendix B.1.3. Let ri =

 Q′
i−1xi

‖(I −Qi−1Q
′
i−1)xi‖

0`−i

 we are able

to decompose the matrix X containing the data vectors as rows, as

X = QR. (2.3)

In feature space, let X be the matrix containing the feature projected data vectors φ(x).
The decomposition of the kernel matrix is

K = X ′X

= R′Q′QR

= R′R



16 Chapter 2 Enabling Technologies

This kernel decomposition of a positive semi-definite matrix into a lower and upper
triangular matrix is known as the Cholesky decomposition. We describe the process of
performing the decomposition directly on the kernel matrix. The computation of Rij

corresponds to evaluating the inner product between φ(xi) with the basis vector qj

for i > j. Let νi = ‖(I − Qi−1Q
′
i−1)φ(xi)‖, as observed in equation (2.3) we are able

to decompose φ(xi) into a component lying in the subspace of which vector space is
spanned by the basis vectors up to the previous component for which we have already
computed the inner products and the perpendicular complement. As described in the
following computation for j = 1, . . . , `

νj 〈qj ,φ(xi)〉 = νj

〈
ν−1

j (I −Qi−jQ
′
i−j)φ(xj),φ(xi)

〉
= 〈φ(xj),φ(xi)〉 −

j−1∑
t=1

〈qt,φ(xj)〉 〈qt,φ(xi)〉

= Kji −
j−1∑
t=1

RtjRti. (2.4)

Using equations (2.3) and (2.4) we are able to show that the lower triangle matrix can
be decomposed as

Rji = ν−1
j

(
Kji −

j−1∑
t=1

RtjRti

)
.

We compute νj by keeping track of the residual of the norm squared of the vectors in
the orthogonal complement. This is initialised to di = Kii and then updated at each
step to di ← di−R2

ji. Hence the value of the residual norm of the next vector is νj =
√

dj .

We are able to view the new representation as a new projection function into a lower
dimensional subspace, as the new representation of the data in the columns of matrix
R, ri, which gives the exact same kernel matrix.

φ̂ : φ(xi)→ ri.

It is important to observe that if example i is not linearly independent its corresponding
residual norm will be equal to zero causing the subspace to be spanned by the previous
examples. This will result in R being a matrix of size m× ` where m is the rank of the
matrix X.

The new projection φ̂ maps into the coordinate system determined by the orthogo-
nal basis. Therefore for a new example we need to evaluate the projections onto the
basis vectors in the feature space. Given a new example with vector of inner products
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k we can compute the additional basis vectors as

rj = ν−1
j

(
kj −

j−1∑
t=1

Rtjrt

)
, j = 1, . . . , ` (2.5)

Since the process of performing the Cholesky decomposition is unique it is a dual im-
plementation of Gram-Schmidt orthonomalisation in the feature space. Hence we can
view the Cholesky decomposition as a dual Gram-Schmidt orthonomalisation.

The residual norm indicates how independent the next example is from the examples
processed so far. Therefore we reorder the processing of the examples, by always choos-
ing the point with the largest residual norm. Hence we are also able to ignore the points
which have small residual norms by using some residual cut-off threshold η. This leads
to an approximation of the kernel matrix K ≈ R′R.

Pseudocode for the incomplete Cholesky decomposition or partial dual Gram-Schmidt
orthonormalisation is given in Algorithm 2 and the pseudocode for the evaluation of a

Algorithm 2 Pseudocode for partial dual Gram-Schmidt Orthonormalisation
Input: Kernel K of size `× ` and residual cut-off threshold η

j = 1;
I = 1 : `;
ν = zeros(`, 1);
index = zeros(`, 1);
R = zeros(`);
norm2 = diag(K);

while (
∑`

k=1norm2(k) > η & j! = ` + 1) do
i = arg max(norm2);
index(j) = i;
ν(j) =

√
norm2(i);

R(I, j) = K(I,i)−R(I,1:j−1)∗R(i,1:j−1)′

ν(j) ;
norm2(I) = norm2(I)−R(I, j).ˆ 2;
j = j + 1

end while

T = j − 1;
R = R(I, 1 : T );

Output:
R, T, index, ν

new sample as in equation (2.5) is given in Algorithm 3.
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Algorithm 3 Pseudocode to compute the new features for a new example.
Input: A new example with vector of inner products k of size `× 1, T and R, index and
ν as outputted from Algorithm 2

I = 1 : `;
r = zeros(T, 1);
for j = 1 :T do

r(j) = k(index(j))−r′∗R(I,index(j))

ν(j)
end for

Output: r

2.3 Eigen Analysis

We now further elaborate on eigenvalues, which are a special set of scalars associated
with a linear system of equations that are sometimes also known as characteristic roots,
proper values, or latent roots. Eigenvalues and eigenvectors of a matrix contain the
distances or similarities between the data points. They provide information on the
principal directions of the data and therefore provide a means of understanding the
spread of the data. We are able to observe in Figure ?? the explanation of the data
directions of a 100 multidimensional point Gaussian, using the first two eigenvectors
(which are the first two principle directions).
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Figure 2.5: Principle directions on a Gaussian.

Given a matrix A, we have the real number λ and the vector x that are a corresponding
eigenvalue and eigenvector of A iff

Ax = λx.

The matrix A only changes the length of x and not its direction (Figure 2.6).



Chapter 2 Enabling Technologies 19

Figure 2.6: The vector’s length is simply scaled by λ and A.

The eigenvalue and eigenvector obey the quotient known as the Rayleigh quotient (al-
though this is also true for any vector)

x′Ax
x′x

= λ
x′x
x′x

= λ.

We consider the optimisation problem

max
x

x′Ax
x′x

. (2.6)

As it is invariant to rescaling of x we are able to maximise the denominator with the
imposed constraint x′x = 1. Solving the Lagrangian we obtain the following

L(x, λ) = x′Ax− λ(x′x− 1)

and taking derivatives with respect to x gives

∂L

∂x
= Ax− λx

setting equal to zero gives Ax = λx. We assume that the eigenvectors are normalised.
Therefore the eigenvector corresponding to the largest eigenvalue gives the solution of
the maximisation optimisation in equation (2.6). We are guaranteed a solution for the
optimisation problem as we seek the maximisation, and similarly with minimisation
since x is non zeros and finite.

For symmetric matrices the eigenvectors corresponding to distinct eigenvalues are or-
thogonal, as if µ, z are a second eigenvalue and eigenvector pair Az = µz with µ 6= λ,
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we have that

λ 〈x, z〉 = 〈Ax, z〉

= (Ax)′z

= x′A′z

= x′Az

= µ 〈x, z〉

implying that 〈x, z〉 = 0. This means that if A is a `× ` symmetric matrix, it can have
at most ` distinct eigenvalues. The transformation, given a normalised x, Ã = A−λxx′

is known as deflation, this leaves x as an eigenvector but reduces the corresponding
eigenvalue to zero as Ãx = Ax − λxx′x = 0. Since the eigenvectors corresponding to
distinct eigenvalues are orthogonal, the remaining eigenvalues of A stay unchanged. We
are able to find ` orthonormal eigenvectors by computing the eigenvector for the largest
positive eigenvalue and then deflating.

Eigen-decomposition of a symmetric matrix A is the process of forming a matrix V with
the orthonormal eigenvectors as columns and a diagonal matrix with the corresponding
eigenvalues Λ where Λii = λi, i = 1, . . . , `. This gives us V V ′ = V ′V = I and AV = V Λ.
The computed eigenvalues are known as A’s eigenspectrum. Where we usually assume
that the eigenvalues are in decreasing order λ1 ≥ λ2 ≥ . . . ≥ λ`.

2.4 Support Vector Machines

We briefly describe a method known as Support Vector Machines, which will be en-
countered in the application part of the thesis. This method attempts to create a
computationally efficient way of learning the separating hyperplanes, for a classification
problem, in a high dimensional feature space.

Recall the Lagrangian of the hyperplane optimisation problem in Section 2.1.1

L(w,α, b) =
1
2
‖w‖2 −

∑̀
i=1

αiyi(〈w,xi〉+ b)− 1 (2.7)

with derivatives

w =
∑̀
i=1

αiyixi (2.8)

∑̀
i=1

αiyi = 0. (2.9)
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The Karush-Kuhn-Tucker complementary conditions from optimisation theory (see Ap-
pendix A.4) give information about the structure of the solution. These conditions show
that the optimal solution must satisfy

αi[yi(〈xi,w〉+ b)− 1] = 0, i = 1, . . . , `.

Therefore the weight vector only involves the non-zero αi, which are called Support
Vectors, that correspond to the data points that lie on the supporting hyperplanes. i.e.
their functional margin is one. The remaining samples are irrelevant as the hyperplane
is entirely determined by the examples closest to it.

Substituting equations (2.8) and (2.9) into equation (2.7) gives us the dual optimisation
problem of which we maximise in respect to the dual variables αi (see Appendix B.1.1
for full derivation), we obtain

max
α

W (α) =
∑̀
i=1

αi −
1
2

∑̀
i,j=1

αiαjyiyjκ(xi,xj)

subject to
∑`

i=1 αiyi = 0 and αi ≥ 0 i = 1, . . . , `.

The decision function in feature space is therefore

h(x) = sgn

(∑̀
i=1

yiαi 〈φ(xi),φ(x)〉+ b

)

= sgn

(∑̀
i=1

yiαiκ(xi,x) + b

)
.

Although in practice it may be the case that a separating hyperplane might not exist
due to overlapping of classes. We introduce a slack variable into our notation to allow
for some sample violation of the margin conditions

ξi ≥ 0 i = 1, . . . , ` (2.10)

and relax the constraint to

yi(〈xi,w〉+ b) ≥ 1− ξi, i = 1, . . . , `. (2.11)

Therefore our new relaxed optimisation where we control both the classifier capacity
and the sum of the slacks is

min
‖w‖

f(‖w‖) =
1
2
‖w‖2 +

1
2
C
∑̀
i=1

ξ2
i s.t. ξi ≥ 0, C > 0
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and subject to constraints (2.10) and (2.11). The constant C controls the trade-off
between minimising the number of errors and maximising the margin. The Lagrangian
for the new optimisation problem is

L(w,α, b, ξ) =
1
2
‖w‖2 +

1
2
C
∑̀
i=1

ξ2
i −

∑̀
i=1

αi (yi (〈w,xi〉+ b)− 1 + ξi)

where the only difference is that now we need to take the partial derivative in respect
to the slack variables ξ

∂L

∂ξ
= Cξ −α = 0.

Resubstituting the relations obtained into the primal formulations obtains the following
dual objective function to maximise (Appendix B.1.2 for full derivation)

max
α

W (α) =
∑̀
i=1

αi −
1
2

∑̀
i,j=1

yiyjαiαj

(
κ(xi,xj) +

1
C

δij

)
(2.12)

subject to
∑`

i=1 αiyi = 0, i = 1, . . . , ` and 0 ≤ αi ≤ C.

2.5 Summary

In this chapter we review kernel methodology and its motivation for learning non linearly
separable data, also showing that by applying the kernel trick we are able to overcome
the explicit embedding of the data into feature space. A process that becomes rapidly too
computationally expensive to perform. We show how partial Gram-Schmidt orthonor-
malisation can be used in order to create a matrix composed of linearly independent
vectors. This process will later be utilised to create an invertible matrix from a kernel
matrix. We present eigen analysis, which can be used as a means of understanding the
spread of the data. The chapter is concluded with describing a commonly used method,
Support Vector Machines, for learning the most efficient separating hyperplanes for a
classification problem.



Chapter 3

Semantic Models

“I have always wished for a computer that would be as easy to use as my telephone. My
wish came true. I no longer know how to use my telephone.” - Bjarne Stroustrup

Semantics1 is the study of meaning and the change of meaning. This chapter will intro-
duce several methods for creating semantic models from data. This process would enable
use to both examine the ability of dimension reduction and the extraction of relevant
features of the data, hopefully leading to an improvement when used in conjunction with
a learning algorithm. We present two genres of semantic representation, starting with
several methods based on eigenanalysis and conclude with a different approach based
on probability.

3.1 Semantic Representation by Linear Regression

We will consider in the following how feature spaces derived from solving the eigenvalue
problem could be used to enhance regression accuracy. Least squares is the procedure
of finding the best fitting curve to data, such that the error of the sum of the squares
of the points offsets from the curve is minimised. In the process of the optimisation of
least squares regression we seek a vector w such that it solves

min
w
‖Xw − y‖2

where X contains as rows the feature vectors of the samples and y contains the outputs.
We are able to consider a more general multivariate regression by taking w and y to be
matrices and the norm to be the Frobenius norm

min
W
‖XW −Y‖2F .

1From the Greek word semantikos, or ‘significant meaning’.

23
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Principal Component Analysis (PCA) is the process of examining the direction of max-
imum variance within the data. We seek linear combinations of the data that preserves
the characteristics of the data while finding directions with maximum variance. The
PCA can be solved by the following optimisation problem

maxw w′X′Xw,

subject to ‖w‖ = 1

where ‖w‖ is the first eigenvector and X is centred (i.e. the origin is moved to the centre
of the mass of X). We consider the usage of the features returned from PCA. Using the
first k eigenvectors of X′X as our features and leaving the outputs Y unchanged. This
translates into two stages; performing PCA and regressing in the feature space given by
the first k principal directions and then minimising the least square error between the
projected data and the response. This is also known as Principal Component Regression
(PCR). Let X = VΣ′U′ be the Singular Value Decomposition (SVD)2 of X, therefore
the data matrix is now represented as XUk where Uk contains the first k columns of
U. We describe the least squares solution, which will be used in the next sections. In
the following we obtain the least squares regression problem

min
B
‖XUkB−Y‖2F = min

B
‖VΣ′U′UkB−Y‖2F

where we are able to multiply by an orthogonal matrix V′ as this does not effect the
norm, giving

min
B
‖V′VΣ′U′UkB−V′Y‖2F = min

B
‖Σ′

kB−V′Y‖2F

Σk is the matrix containing the first k columns of Σ and similarly let Vk contain the
first k columns of V. We find that

Σ′
kB = V′Y

B = Σ̄−1
k V′

kY.

Where Σ̄−1
k is the symmetric square matrix containing the first k columns inverse of Σk.

Following the singular value decomposition of X we find that Vk = XUkΣ̄−1′

k , allowing
us to express B as

B = Σ̄−2
k U′

kX
′Y.

Showing that the components are computed as an inner product between the features
and the data matrix weighted by the inverse of the eigenvalues. The critical measure of
the different coordinates is their covariance with the data matrix X′Y suggesting that

2The Singular Value Decomposition is a widely used technique to decompose a matrix into several
component matrices, exposing properties of the original matrix. Using the SVD, we can determine the
rank of matrix, quantify the sensitivity of a linear system to numerical error, or obtain an optimal
lower-rank approximation to the matrix.
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Algorithm 4 The PLS feature extraction algorithm
input: Data matrix X ∈ R`×N , dimension k and target vectors Y ∈
R`×m.

X1 = X
for j = 1, . . . , k do

let uj , σj be the first singular vector/value of X′
jY,

Xj+1 = Xj

(
I− uju

′
jX

′
jXj

u′jX
′
jXjuj

)
end for

Output: Feature directions uj , j = 1, . . . , k.

rather than seeking directions that give maximum variance we should seek direction that
maximise the covariance. In the following section we will investigate an approach for
seeking directions that give maximum covariance.

3.1.1 Partial Least Squares

Partial Least Squares (PLS) was developed by Herman Wold during the 1960’s in the
field of econometrics3. It offers an effective approach to solving problems with training
data that has few points but high dimensionality, by first projecting the data into a
lower-dimensional space and then utilising a least squares regression model. This prob-
lem is common in the field of Chemometrics4 where PLS is regularly used. PLS is a
flexible algorithm that was designed for regression problems, though it can be used for
classification by treating the labels {+1,−1} as real outputs. Alternatively it can also
be stopped after constructing the low-dimensional projection. The resulting features
can then be used in a different classification or regression algorithm. The procedure for
PLS feature extraction is shown in Algorithm 4. The algorithmic procedure iteratively
takes the first singular vector ui of the matrix X′

iY, and then deflates the matrix Xi

to obtain Xi+1. The deflation is done by projecting the columns of Xi into the space
orthogonal to Xiui

Xi+1 =
(
I− Xiuiu′

iX
′
i

u′
iX

′
iXiui

)
Xi = Xi

(
I− uiu′

iX
′
iXi

u′
iX

′
iXiui

)
.

Since u is a singular vector of matrix X′Y which gives the recursive step for u

u = X′
jYjY′

jXju.

3Econometrics is the application of statistical and mathematical methods in the field of economics
to test and quantify economic theories and the solutions to economic problems.

4Chemometrics is the application of statistics to the analysis of chemical data (from organic, analytical
or medicinal chemistry) and design of chemical experiments and simulations.
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We can deflate Y to its residual but since this does not affect the correlations found as
the deflation removes components in the space spanned by X′

ju, to which Xj+1 is now
orthogonal to. Therefore the recursive step renders the deflation of Y with no affect on
the outputs.

The difficulty with this simple description is that the feature directions uj are defined
relative to the deflated matrix, hence we would need the deflated matrices in order to
get the final feature vectors. We would like to be able to compute the PLS features
directly from the original feature vector such that we would be able to apply the feature
directions to a test set.

If we now consider a test point with feature vector φ (x) the transformations that we
perform at each step should also be applied to φ1 (x) = φ (x) to create a series of feature
vectors

φj+1 (x)′ = φj (x)′
(
I− ujp′

j

)
,

where

pj =
X′

jXjuj

u′
jX

′
jXjuj

.

This is the same operation that is performed on the rows of Xj in Algorithm 4. We can
now write

φ (x)′ = φk+1 (x)′ +
k∑

j=1

φj (x)′ ujp′
j .

The feature vector that is needed for the regression φ̂ (x) has components

φ̂ (x) =
(
φj (x)′ uj

)k
j=1

,

since these are the projections of the residual vector at stage j onto the next feature
vector uj . Rather than computing φj (x)′ iteratively, consider we use the inner products
between the original φ (x)′ and the feature vectors uj stored as the columns of the matrix
U:

φ (x)′ U = φk+1 (x)′ U +
k∑

j=1

φj (x)′ ujp′
jU

= φk+1 (x)′ U + φ̂ (x)′ P′U,

where P is the matrix whose columns are pj , j = 1, . . . , k. Finally, it can be verified
that

u′
ipj = δij for i ≤ j.

Hence, for s > j, (I− usp′
s)uj = uj , while

(
I− ujp′

j

)
uj = 0, so we can write

φk+1 (x)′ uj = φj (x)′
k∏

i=j

(
I− uip′

i

)
uj = 0, for j = 1, . . . , k.
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It follows that the new feature vector can be expressed as

φ̂ (x)′ = φ (x)′ U
(
P′U

)−1 .

These feature vectors can now be used in conjunction with a learning algorithm. We
can compute the regression coefficients as:

W = U
(
P′U

)−1 C′,

where C is the matrix with columns

cj =
Y′Xjuj

u′
jX

′
jXjuj

.

3.1.2 Kernel Partial Least Squares

In this section we set out the kernel PLS algorithm and describe its feature extraction
stage. The kernel PLS is the process of applying the dual PLS procedure in kernel feature
space, which is given in Algorithm 5. The vector βi is a rescaled dual representation of

Algorithm 5 Pseudocode for kernel-PLS
Input: Data S = x1, . . . , xl dimension k target outputs Y ∈ Rl×m

Kij = κ (xi, xj)
K1 = K
Ŷ = Y

for i = 1, . . . , k do
βi = first column of Ŷ
normalise βi

repeat
βi = Y Y ′Kiβi

normalise βi

until convergence (of eigenvectors)
τi = Kiβi

ci = Ŷ ′ τi
‖τi‖2

Ŷ = Ŷ − τic
′
i

Ki+1 =
(
I − τiτ

′
i

‖τi‖2

)
Ki

(
I − τiτ

′
i

‖τi‖2

)
end for

B = [βi, . . . , βk]
T = [τi, . . . , τk]
α = B(TKB)−1T ′Y
Output: Dual regression coefficients α

the primal vectors ui:
aiui = X′

iβi, (3.1)
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the rescaling arises because of the different point at which the renormalising is performed
in the dual. Let τj = ajXjUj be the rescaled dual representation of the output vector
cj . Therefore pj can be written as

pj =
X′

jXjuj

u′
jX

′
jXjuj

=
ajX′

jτj

τ ′jτj
.

As in the dual setting we compute β in the recursive step β = YjY′
jXjX′

jβ, we are no
longer multiplying by the next Xj+1 and therefore not removing the orthogonal elements
from the deflation of Y. Hence the deflation of Y in the dual is necessary as this would
change the overall output.

Since τjτi = ajaiU′
jX

′
jXiUi = 0 for j > i, τ are orthogonal, this furthermore means(

I − τiτ
′
i

τ ′iτi

)
τj = τj

implying X′
jτj = X′τj .

We can now express the primal matrix P′U in terms of the dual variables as

P′U = diag (a) diag
(
τ ′iτi

)−1 T′XX′Bdiag (a)−1

= diag (a) diag
(
τ ′iτi

)−1 T′KBdiag (a)−1 .

Here diag (τ ′iτi) is the diagonal matrix with entries diag (τ ′iτi)ii = τ ′iτi, where τi = Kiβi.
Finally, again using the orthogonality of Xjuj to τi, for i < j, we obtain

cj =
Y′

jXjuj

u′
jX

′
jXjuj

=
Y′Xjuj

u′
jX

′
jXjuj

= aj
Y′τj

τ ′jτj
,

making
C = Y′Tdiag

(
τ ′iτi

)−1 diag (a) .

Putting the pieces together we can compute the dual regression variables as

α = B
(
T′KB

)−1 T′Y.

It is tempting to assume like Rosipal et al. (2003) that a dual representation of the PLS
features is then given by

B
(
T′KB

)−1 ,

but in fact

U
(
P′U

)−1 = X′Bdiag (a)−1
(
diag (a) diag

(
τ ′iτi

)−1 T′KBdiag (a)−1
)−1
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so that the dual representation is

B
(
T′KB

)−1 diag (a)−1 diag
(
τ ′iτi

)
= B

(
T′KB

)−1 diag
(
τ ′iτi

)
diag (a)−1 .

PLS could be thought of as a method which looks for directions that are good at dis-
tinguishing the different labels, as it selects feature directions that are useful for the
task at hand using one view of the object with the label as the corresponding pair. In
the following section we introduce canonical correlation analysis which is similar to PLS
though selects the feature directions that are useful for the task using two views of an
object.

3.2 Introduction to Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) (Hotelling, 1936) can be seen as the problem of
finding basis vectors for two sets of variables such that the correlation of the projec-
tions of the variables onto these basis vectors are mutually maximised. While ordinary
correlation analysis is dependent on the coordinate system in which the variables are
described, CCA is invariant with respect to an affine transformation5 of the variables.

CCA is a method of identifying linear relationships between two multidimensional vari-
ables. CCA can be also seen as using complex labels as a way of guiding feature selection
towards the underlying semantics. CCA makes use of two views of the same semantic
object to extract a representation of the semantics.

We seek a linear combination x = w′
xx and y = w′

yy, where wx and wy are some linear
transformation, such that the correlation between the projection of the variables onto
the basis vectors is maximised. CCA will be discussed in more detail in the following
chapter.

3.2.1 Example

We give an example to show where ordinary correlation can fail to identify the correlation
in a given system, justifying the canonical correlation approach. Consider two normally
distributed two-dimensional variables x and y with unit variance. Let z = x1 + x2 =
y1 + y2, as plotted in Figure 3.1. Let u, v be scalars such that we are able to express x

and y as

(x1, x2) =
(z

2
− u,

z

2
+ u
)

(y1, y2) =
(z

2
+ v,

z

2
− v
)

.

5An affine transformation is any transformation that preserves collinearity and ratios of distances.
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Figure 3.1: Two normally distributed two-dimesional variables.

Assume that u, v and z are linearly independent and that their expectation is

E(z) = E(u) = E(v) = 0,

and assume that var(z) = 2.

We first compute the ordinary correlation between x1 and y1.

corr(x1, y1) =
cov(x1, y1)√

var(x1)var(y1)
= E(x1y1)− E(x1)E(y1)

= E
((z

2
− u
)(z

2
+ v
))

= E
(

z2

4
− uv − uz

2
+

vz

2

)
= E

(
z2

4

)
− E(u)E(v)− 1

2
E(u)E(z) +

1
2

E(v)E(z)

= E
(

z2

4

)
=

1
4

E(z2).

Computing the expectancy of E
(
z2
)

as

E(z2) = var(z)− E(z)2 = 2− 0 = 2

which gives

corr(x1, y2) =
1
2
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and similarly for the remaining correlation, obtaining us the weak correlation in Table
3.1.

Table 3.1: Ordinary Correlation Values

x1 x2

y1 0.5 0.5
y2 0.5 0.5

CCA however is able to find the coordinate system that is optimal for the correlation
analysis, we are able to find a linear combination such that perfect linear relationship
exists. Therefore x1 = y1 and x2 = y2, and assume that var(u) = var(v) = 1

2 .

We first compute the ordinary correlation between x1 and y1.

corr(x1, y1) =
cov(x1, y1)√

var(x1)var(y1)

= E(x2
1)− E(x1)E(x1)

= E
((z

2
− u
)(z

2
− u
))

= E
(

z2

4
+ u2 − 2

uz

2

)
= E

(
z2

4

)
+ E(u2) =

=
1
2

+
1
2

= 1.

We compute the ordinary correlation between x1 and y2.

corr(x1, y1) =
cov(x1, y2)√

var(x1)var(y2)
= E(x1y2)− E(x1)E(y2)

= E
((z

2
− u
)(z

2
+ u
))

= E
(

z2

4
− u2 − uz

2
+

uz

2

)
= E

(
z2

4

)
− E(u2)

=
1
2
− 1

2
= 0.

Giving us the correlation values in Table 3.2.



32 Chapter 3 Semantic Models

Table 3.2: Canonical Correlation Values

x1 x2

y1 1 0
y2 0 1

3.3 Probabilistic Approach to Semantic Representation

The idea of generating a feature representation and associated kernel from a probabilis-
tic model of our data is very appealing. It suggests a practical way of incorporating
domain knowledge while still allowing us to use powerful non-parametric methods such
as support vector machines. In this sense we can hope to get the best of both worlds:
use the probabilistic models to create a feature representation that captures our prior
knowledge of the domain, while leaving open the actual analysis methods to be used.

The most popular method of deriving a feature vector from a probabilistic model is
known as the Fisher score or Fisher kernel. This method creates a feature vector from
a smoothly parametrised probabilistic model by computing the gradients of the log-
likelihood of a data item around the chosen parameter setting. This can be seen as
estimating the direction the model would be deformed if we were to incorporate the
data item into the parameter estimation.

We now give formal definitions of these concepts.

Definition 3.1. [Fisher score and Fisher information matrix] The log-likelihood of a
data item x with respect to the model m(θ0) for a given setting of the parameters θ0 is
defined to be

logLθ0(x),

where for a given setting of the parameters θ0 the likelihood is given by

L0
θ(x) = P (x|θ0) = P 0

θ (x) .

Consider the vector gradient of the log-likelihood

g (θ, x) =
(

∂ logLθ(x)
∂θi

)N

i=1

.

The Fisher score of a data item x with respect to the model m(θ0) for a given setting
of the parameters θ0 is

g
(
θ0, x

)
.
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The Fisher information matrix with respect to the model m(θ0) for a given setting of
the parameters θ0 is given by

IM = E
[
g
(
θ0, x

)
g
(
θ0, x

)′] , (3.2)

where the expectation is over the generation of the data point x according to the data
generating distribution.

The Fisher score gives us an embedding into the feature space RN and hence immedi-
ately suggests a possible kernel. The matrix IM can be used to define a weighted inner
product in that feature space.

Definition 3.2. [Fisher kernel] The invariant6 Fisher kernel with respect to the model
m(θ0) for a given setting of the parameters θ0 is defined as

κ(x, z) = g
(
θ0, x

)′ I−1
M g

(
θ0, z

)
.

The expectation in equation (3.2) is not computable except for simple models. Therefore
it is common practice to replace I−1

M with the identity matrix. This is referred to as the
practical Fisher kernel, which is defined as

κ(x, z) = g
(
θ0, x

)′ g (θ0, z
)
.

We will follow the standard route of restricting ourselves to the practical Fisher kernel.
Notice that this kernel may give a small norm to very typical points, while atypical points
may have large derivatives and so a correspondingly large norm. There is, therefore, a
danger that the inner product between two typical points can become very small, despite
their being similar in the model. This effect can be overcome by normalising the kernel.
Another way to use the Fisher score that does not suffer from the problem described
above is to use the Gaussian kernel based on distance in the Fisher score space

κ(x, z) = exp

(
−
‖g
(
θ0, x

)
− g

(
θ0, z

)
‖2

2σ2

)
.

In Algorithm7 6 we quote from Shawe-Taylor and Cristianini (2004) the derived Fisher
kernel for Hidden Markov Model (HMM), where the pseudocode is given for evaluating
the Fisher scores for the emission probabilities.

6The Fisher kernel is invariant in respect to the length of gradient vector. i.e. we can multiply the
gradient vector by any positive scalar and this will not change the kernel.

7 ~A Creates a row vector out of the entries of matrix A by concatenating its rows.
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Definition 3.3. [Hidden Markov model] A hidden Markov model (HMM) M comprises
a finite set of states A with an initial state aI , a final state aF , a probabilistic transition
function PM (a|b) giving the probability of moving to state a given that the current state
is b, and a probability distribution P (σ|a) over symbols σ ∈ Σ∪{ε} for each state a ∈ A.

Algorithm 6 Pseudocode to compute the Fisher scores for the fixed length Markov
model Fisher kernel.
Input: Symbol string s, state transition probability matrix PM (a|b), initial state proba-
bilities PM (a) = PM (a|a0) and conditional probabilities P (σ|a) of symbols given states.
Assume p states, 0, 1, . . . , p.

score (:, :) = 0;
forw (:, 0) = 0;
back (:, n) = 1;
forw (0, 0) = 1; Prob = 0;

for i = 1 : n do
for a = 1 : p do

forw (a, i) = 0;
for b = 0 : p do

forw (a, i) = forw (a, i) + PM (a|b) forw (b, i− 1) ;
end for
forw (a, i) = forw (a, i) P (si|a) ;

end for
end for

for a = 1 : p do
Prob = Prob + forw (a, n) ;

end for

for i = n− 1 : 1 do
for a = 1 : p do

back (a, i) = 0;
for b = 1 : p do

back (a, i) = back (a, i) + PM (b|a) P (si+1|b) back (b, i + 1) ;
end for
score (a, si) = score(a,si)+back(a,i)forw(a,i)

P (si|a)Prob ;
for σ ∈ Σ do

score (a, σ) = score (a, σ)− back(a,i)forw(a,i)
Prob ;

end for
end for

end for
Output:
Fisher score = ~score
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3.4 Summary

In this chapter we review how semantic models can be created by analysing the spread
of the data or its affect on a system. Having introduced several approaches for creating
semantic models, we return to the method introduced in Section 3.2 for creating a
semantic model using two views of an object. The following chapter analyses the main
investigated technique of canonical correlation analysis and its kernel variant.





Chapter 4

Canonical Correlation Analysis;

A Detailed Review

“Computers are useless. They can only give you answers.” - Pablo Picasso

4.1 Canonical Correlation Analysis

Proposed by Hotelling in 1936, Canonical Correlation Analysis (CCA) is a technique
for finding pairs of basis vectors that maximise the correlation between the projections
of paired variables onto their corresponding basis vectors. Correlation is dependent on
the chosen coordinate system, therefore even if there is a very strong linear relationship
between two sets of multidimensional variables this relationship may not be visible as a
correlation (see example in Section 3.2.1). CCA seeks a pair of linear transformations
one for each of the paired variables such that when the variables are transformed the
corresponding coordinates are maximally correlated.

Consider a pair of multivariate random vectors of the form (x,y) with zero mean. Sup-
pose we are given a sample of ` instances S = ((x1,y1), . . . , (x`,y`)) of (x,y), let Sx

denote (x1, . . . ,x`) and similarly Sy to denote (y1, . . . ,y`). We can consider defining a
new coordinate for x by choosing a direction wx and project x onto that direction

x→ 〈wx,x〉 .

If we do the same for y by choosing a direction wy, we obtain a sample of the new x

coordinate, let
Sx,wx = (〈wx,x1〉 , . . . , 〈wx,x`〉)

with the corresponding values of the new y coordinate being

Sy,wy = (〈wy,y1〉 , . . . , 〈wy,y`〉).

37
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We choose wx and wy such that the correlation between the two vectors is maximised.
Hence

max
wx,wy

ρ = corr(Sx,wx , Sy,wy)

=

〈
Sx,wx , Sy,wy

〉√
‖Sx,wx‖‖Sy,wy‖

.

We are able to rewrite the canonical correlation expression as

max
wx,wy

ρ =
Ê[〈wx,x〉 〈wy,y〉]√

Ê[〈wx,x〉2]Ê[〈wy,y〉2]

=
Ê[w′

xxy′wy]√
Ê[w′

xxx′wx]Ê[w′
yyy′wy]

=
w′

xÊ[xy′]wy√
w′

xÊ[xx′]wxw′
yÊ[yy′]wy

. (4.1)

Observe that the empirical covariance matrix of (x,y) is equal to its empirical expecta-
tion

Ê

[(
x

y

)(
x

y

)′]
= Ê

[
xx′ xy′

yx′ yy′

]
= Ê

[
Cxx Cxy

Cyx Cyy

]
= C. (4.2)

The total covariance matrix C is a block matrix with the within-sets covariance matrices
Cxx, Cyy and the between-sets covariance matrices Cxy = C ′

yx. Hence, we are able to
rewrite equation (4.1) as

max
wx,wy

ρ =
w′

xCxywy√
w′

xCxxwxw′
yCyywy

. (4.3)

Observe that equation (4.3) is not affected by the re-scaling of wx or wy either together
or independently. For example, replacing wx by αwx will give the quotient

αw′
xCxywy√

α2w′
xCxxwxw′

yCyywy

=
w′

xCxywy√
w′

xCxxwxw′
yCyywy

.

As the choice of re-scaling is arbitrary, the CCA optimisation problem in equation (4.3)
is equivalent to maximising the numerator subject to

w′
xCxxwx = 1

w′
yCyywy = 1.
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The corresponding Lagrangian to the optimisation problem is

L(λx, λy,wx,wy) = w′
xCxywy −

λx

2
(w′

xCxxwx − 1)− λy

2
(w′

yCyywy − 1).

Taking derivatives in respect to wx and wy we obtain equations

∂L
∂wx

= Cxywy − λxCxxwx

∂L
∂wy

= Cyxwx − λyCyywy.

Subtracting w′
y times the second equation from w′

x times the first gives

w′
xCxywy −w′

xλxCxxwx −w′
yCyxwx + w′

yλyCyywy = 0

λxw′
xCxxwx − λyw′

yCyywy = 0

which together with the constraints implies that λy−λx = 0. Let λ , λx = λy, therefore

Cxywy − λCxxwx = 0 (4.4)

Cyxwx − λCyywy = 0

following the proof in Appendix B.2.1 we show that ρ = λ. Assuming C is invertible we
have

wy =
C−1

yy Cyxwx

λ
(4.5)

and so substituting in equation (4.4) gives

CxyC−1
yy Cyxwx = λ2Cxxwx. (4.6)

This leaves us with a generalised eigenproblem of the form Ax = λBx, where A and
B are symmetric matrices. We can now find the coordinate system that optimises the
correlation between corresponding coordinates by first solving for the generalised eigen-
vectors of equation (4.6) to obtain the sequence of wx’s and then using equation (4.5)
to find the corresponding wy’s (Borga, 1998). As we have assumed C to be invertible
we are able to rewrite equation (4.6) as a standard eigenproblem of the form Ax = λx.
In order to ensure that A is symmetric we first decompose the covariance matrices, as
they are symmetric positive definite, using Cholesky decomposition

Cxx = R′
xxRxx
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where Rxx is an upper triangular matrix. Let ux = Rxxwx we can rewrite equation
(4.6) as

CxyC−1
yy CyxR−1

xxux = λ2R′
xxux

R−1′
xx CxyC−1

yy CyxR−1
xxux = λ2ux

which ensures a symmetric standard eigenproblem. Since the computed eigenvalues lie
in the interval of [−1,+1] we discard half of the spectrum as they are paired

λ

[
u
v

]
↔ −λ

[
u
-v

]

we are only interested in half of the spectrum where the eigenvectors correspond to the
largest eigenvalues which in turn identify the strongest correlations.

4.2 Kernel Canonical Correlation Analysis

We may find that due to its linearity, canonical correlation analysis may not extract
useful descriptors from the data, since the correlation will exist in some non linear
relationship. The kernelising of CCA offers an alternate solution by first projecting the
data into a higher dimensional feature space

φ : x = (x1, . . . , xn)→ φ(x) = (φ1(x), . . . ,φN (x)) (N ≥ n)

before performing CCA in the new feature space. The data appears as inner products
between the samples in the kernel, therefore giving a further advantage as the number
of tuneable parameters and updating time does not depend on the number of attributes
being used. Let φa be the projection for x and φb the projection for y

φa : x→ φa(x)

φb : y→ φb(y).

Hence let κa and κb be the corresponding kernel function for the two feature projections.

As we wish to solve the problem in the dual formulation we create a matrix X whose rows
are the vectors φa(xi), i = 1, . . . , ` and similarly a matrix Y with rows φb(yi). Using
the covariance matrix in equation (4.2) we are able to define the covariance matrix of
the projected data points as

Cxx = X′X

Cxy = X′Y
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and similarly with Cyy and Cyx. The covariance matrix will be identical to the covariance
matrix in equation (4.2) only if a linear mapping will be used, hence N = n. The weights
wx and wy can be expressed as a linear combination of the training examples

wx = X′α

wy = Y′β.

Substituting into equation (4.3) gives

max
α,β

ρ =
α′XX′YY′β√

(α′XX′XX′α)(β′YY′YY′β)
. (4.7)

Given the kernel functions κa and κb let Ka and Kb be the kernel matrices corresponding
to the two representations of the data. Substituting into equation (4.7)

max
α,β

ρ =
α′KaKbβ√

α′K2
aαβ′K2

bβ
. (4.8)

The CCA optimisation problem in equation (4.8) is now represented in the dual form.
Observe that as with the primal form in equation (4.3), equation (4.8) is not affected
by the rescaling of α and β either together or independently. Hence the Kernel CCA
optimisation problem is equivalent to maximising the numerator subject to

α′K2
aα = 1

β′K2
bβ = 1.

The corresponding Lagrangian is

L(λa, λb,α,β) = α′KaKbβ − λa

2
(α′K2

aα− 1)− λb

2
(β′K2

bβ − 1)

taking derivatives in respect to α and β we obtain

∂L
∂α

= KaKbβ − λaK
2
aα = 0 (4.9)

∂L
∂β

= KbKaα− λbK2
bβ = 0. (4.10)

Subtracting β′ times the second equation from α′ time the first gives

α′KaKbβ −α′λaK
2
aα− β′KbKaα + β′λbK2

bβ = 0

λaα
′K2

aα− λbβ′K2
bβ = 0

which together with the constraints implies that λa − λb = 0. Let λ , λa = λb, and by
following the proof for primal CCA in Appendix B.2.1 it is easy to show that ρ = λ for
the dual case. Considering the case where the kernel matrices Ka and Kb are invertible,
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we have

β =
K−1

b K−1
b KbKaα

λ

=
K−1

b Kaα

λ

substituting in equation (4.10) gives

KaKbK−1
b Kaα− λ2KaKaα = 0.

Hence
KaKaα− λ2KaKaα = 0

or
Iα = λ2α. (4.11)

We are left with a standard eigenproblem of the form Ax = λx. We can deduce from
equation (4.11) that λ = ±1 for every vector α, hence we can choose the projections
α to be unit vectors ji i = 1, . . . , l while β are the columns of K−1

b Ka. This is an
interesting and somewhat surprising result as it shows that when we assume the kernel
matrices Kb or Ka to be invertible, perfect correlations can be formed. This stats that
we are able to find perfect correction in the kernel representation. Since kernel methods
provide high dimensional representations such independence is not uncommon. It is
therefore clear that a naive application of CCA in kernel defined feature space will not
provide useful results.

4.3 Statistical Analysis of Canonical Correlation Analysis

As observed in the previous section, naive application of CCA in kernel space will be
likely to produce perfect correlations between the two views. These correlations can
therefore fail to distinguish between spurious features and those that capture the un-
derlying semantics. Here we follow the outline given in (Shawe-Taylor and Cristianini,
2004) and provide a theoretical analysis of Kernel CCA in order to provide a better
understanding of the technique’s stability. For this we use Rademacher complexity (Ap-
pendix A.6) to obtain an error bound for a new data sample. The theoretical analysis
justifies kernel CCA regularisation proposed by (Bach and Jordan, 2002) but indicates
that a different normalisation of the features should be used. The use of regularisation
aims to remove the spurious correlations mentioned above.

Consider two multivariate projections φa(x) and φb(x) of a random object x. Given the
projection direction wa and wb we would like to capture the notion that the features
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from one view are almost identical to the features from the second view. The function1

gwa,wb
(x) = ‖w′

aφa(x)−w′
bφb(x)‖2,

subject to Ê[‖w′
aφa(x)‖2] = 1 and Ê[‖w′

bφb(x)‖2] = 1 measures this property. If
gwa,wb

(x) ≈ 0 we are able to deduce that the feature that can be obtained from the
first view is almost identical to feature obtained from the second. Such pairs of features
are able to capture the underlying semantic properties of the data that are present in
both views of the object.

We obtain a stability analysis of the function by viewing gwa,wb
(x) as a regression

function with special structure, attempting to learn the constant zero function. In order
to apply the Rademacher generalisation bound, we must first compute the empirical
expected value of gwa,wb

(x)

Ê[‖w′
aφa(x)−w′

bφb(x)‖2] = Ê[‖w′
aφa(x)‖2] + Ê[‖w′

bφb(x)‖2]

−2Ê[
〈
w′

aφa(x),w′
bφb(x)

〉
]

= 2(1−w′
aCabwb)

where

Cst =
1
n

n∑
i=1

φs(xi)φt(xi)′, for s, t ∈ {a, b}.

We represent gwa,wb
(x) as a linear function f̂(x) in an appropriately defined feature

space F . Let φ̂ be the mapping into the feature space F given by

φ̂(x) = [ ~φa(x)φa(x)′, ~φb(x)φb(x)′,
√

2 ~φa(x)φb(x)′],

and the weight vector
ŵ = [ ~waw′

a,
~wbw′

b,−
√

2 ~waw′
b]

see Appendix B.2.2 for proof. It can be verified that ŵ realises the function gwa,wb
(x)

in the feature space defined by φ̂(x)〈
ŵ, φ̂(x)

〉
= (w′

aφa(x))2 + (w′
bφb(x))2 − 2w′

aφa(x)w′
bφb(x)

= ‖w′
aφa(x)−w′

bφb(x)‖2.

It is interesting to observe that the norm of ŵ can be computed (see Appendix B.2.3)
as

‖ŵ‖ = ‖wa‖2 + ‖wb‖2,

showing that the combined norm is just the summation of the square of the individual
norms. The kernel κ̂ corresponding to the feature mapping φ̂ is therefore given by (see

1We use the ‖ · ‖ representation as in the following section we will be working with matrices.
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Appendix B.2.4)
κ̂(x, z) = (κa(x, z) + κb(x, z))2.

4.3.1 k-dimensional Analysis

The analysis considered so far only concerns projections into a 1-dimensional space. In
practice we will project into a k-dimensional space using the orthogonal eigenvectors
corresponding to the top k correlation directions as our projection vectors. In order
to handle this case we introduce the matrix Wa whose columns are the first k vectors
w1

a, . . . ,w
k
a, and Wb with the corresponding w1

b , . . . ,w
k
b . We denote ga,b(x) , gWa,Wb

(x)
where

gWa,Wb
(x) =

k∑
i=1

gwi
a,wi

b
(x)

= ‖Waφa(x)−Wbφb(x)‖2

Theorem 4.1. Fix A and B in R+. If we obtain features given by (wa)i, (wb)i i =
1, . . . , k with ‖wi

a‖ ≤ A and ‖wi
b‖ ≤ B with correlations ρi on a paired training set S of

size n in the feature space defined by the kernels κa and κb, then with probability greater
than 1− δ over the generation of S, the expected value of ga,b(x) on new data is bounded
by

ED[ga,b(x)] ≤
k∑

i=1

2(1− ρi) +
4(A2 + B2)k

`

√√√√∑̀
i=1

(κa(xi, xi) + κb(xi, xi))2

+3R(A2 + B2)

√
ln(2

δ )
2`

where
R = max

x∈supp(D)
(κa(x, x) + κb(x, x)).

See Appendix B.2.5 for proof.

4.4 Regularised Kernel Canonical Correlation Analysis

The theoretical analysis in the previous section suggests to regularise kernel CCA as it
shows that the quality of the generalisation of the associated pattern function is con-
trolled by the sum of the squares of the weight vectors norms. Hence to force non-trivial
learning on the correlation we introduce a control on the flexibility of the projection
mappings. In the following subsections we show two approaches for the application of
regularisation.
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4.4.1 Regularisation via Optimisation Function

We use the pattern function as formulated in Section 4.3 to represent the kernel CCA
as a minimisation optimisation problem rather then a maximisation one

min
α,β
‖Kaα−Kbβ‖2F

subject to

α′K2
aα = 1 (4.12)

β′K2
bβ = 1. (4.13)

Instead of using two regularisation parameters for each of the weights. Let τa be the
regularisation parameter for the first view and τb for the second. We use a single regu-
larisation parameter τ = τα = τβ . Reformulating the optimisation problem as

min
α,β

(1− τ)‖Kaα−Kbβ‖2F + τ(‖wx‖2 + ‖wy‖2)

equal to
min
α,β

(1− τ)‖Kaα−Kbβ‖2F + τ(α′Kaα + β′Kbβ)

and subject to equation (4.12) and (4.13). We bound the regularisation parameter to
0 ≤ τ ≤ 1 by multiplying the left parameter by (1− τ).

The corresponding Lagrangian is

L(λa, λb,α,β) = (1− τ)2(1−α′KaKbβ) + τ(α′Kaα + β′Kbβ)

+λa(α′K2
aα− 1) + λb(β′K2

bβ − 1)

taking derivatives in respect to α and β we obtain

∂L
∂α

= −2(1− τ)KaKbβ + 2τKaα + 2λaK
2
aα = 0 (4.14)

∂L
∂β

= −2(1− τ)KbKaα + 2τKbβ + 2λbK2
bβ = 0. (4.15)

Subtracting β′ times the second equation from α′ time the first gives

τα′Kaα + λa = τβ′Kbβ + λb.

Observe that we are no longer able to represent the Lagrangian multipliers in a concise
form and therefore unable to solve the eigenproblem for only a single view. We proceed
to solve the eigenproblem for both views combined. Assuming that the kernel matrices
are invertible, we multiply equation (4.14) by K−1

a
2 and equation (4.15) by K−1

b
2 which
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gives

(1− τ)Kbβ − τα = λaKaα

(1− τ)Kaα− τβ = λbKbβ

this can be written as a general eigenproblem in the matrix form[
−τ

(1− τ)Ka

(1− τ)Kb

−τ

][
α

β

]
=

[
λa 0
0 λb

][
Ka 0
0 Kb

][
α

β

]
. (4.16)

Prior to computing the correlation values we need to enforce the constraints in equations
(4.12) and (4.13) as the eigenproblem in equation (4.16) will find similar solutions for
rescaled α and β. Let

α̂ =
α√

αK2
aα

β̂ =
β√

βK2
bβ

such that α̂′K2
aα̂ = 1 and β̂′K2

bβ̂ = 1 hold.

4.4.2 Regularisation via Optimisation Constraint

In the previous section the solution to the regularisation of the kernel CCA optimisation
problem resulted in a non symmetric generalised eigenvalue problem. We are interested
in finding a standard symmetric eigenproblem for a single direction, reducing the com-
putation cost as well as reducing the size of the found solutions. in the following section
we provide an alternative solution to the regularisation of the kernel CCA optimisation
problem, as the resulting generalised eigenvalue problem of the previous section will be
twice the size of the training set. Due to the fact that we compute the eigenproblem
for both views combined. We regularise kernel CCA by adding the weight term to the
constraint of the optimisation problem such that maxα,β ρ̃ = α′KaKbβ is now subject
to

(1− τ)α′K2
aα + τ‖wx‖2 = (1− τ)α′K2

aα + τα′Kaα = 1

(1− τ)β′K2
bβ + τ‖wy‖2 = (1− τ)β′K2

bβ + τβ′Kbβ = 1.

Similarly to the previous section we bound τ by multiplying the left term by (1 − τ).
Observe that when maximum regularisation τ = 1 is used we are left with the kernel
PLS optimisation problem for the first direction, see Appendix B.2.6.
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The corresponding Lagrangian is

L(λa, λb,α,β) = α′KaKbβ

−λa

2
(
(1− τ)α′K2

aα + τα′Kaα− 1
)

−λb

2
(
(1− τ)β′K2

bβ + τβ′Kbβ − 1
)

Taking derivatives in respect to α and β we obtain

∂L
∂α

= KaKbβ − λa((1− τ)K2
aα + τKaα)

= KaKbβ − λaKa((1− τ)Ka + τI)α = 0 (4.17)
∂L
∂β

= KbKaα− λb((1− τ)K2
bβ + τKbβ)

= KbKaα− λbKb((1− τ)Kb + τI)β = 0. (4.18)

Following the same procedure as in Section 4.2 we are able to find that λa = λb, let
λ , λa = λb.

Consider the case where the kernel matrices are invertible, we have

β =
((1− τ)Kb + τI)−1K−1

b KbKaα

λ

=
((1− τ)Kb + τI)−1Kaα

λ

substituting into equation (4.17) gives

KaKb((1− τ)Kb + τI)−1Kaα = λ2Ka((1− τ)Ka + τI)α

multiplying both sides of the equation by K−1
a gives

Kb((1− τ)Kb + τI)−1Kaα = λ2((1− τ)Ka + τI)α.

Observe that the left component of the generalised eigenproblem is non symmetric,
resulting in non orthogonal eigenvectors. In the following section we explore using partial
Gram-Shmidt orthonormalisation in order to obtain an eigenproblem with symmetric
matrices.

4.5 Regularised Kernel CCA with Matrix Decomposition

So far we have considered the kernel matrices as invertible, although in practice this may
not be the case. The usage of large training sets may lead to computational problems
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and degeneracy. We use partial Gram-Schmidt orthonormalisation to create a lower-
dimensional approximation to the feature representation of the data. Let Ra and Rb

be the decomposed upper triangle matrix from Ka and Kb so Ka ≈ R′
aRa and Kb ≈

R′
bRb. Substituting the new representation into equations (4.17) and (4.18) gives

R′
aRaR

′
bRbβ − λR′

aRa

(
(1− τ)R′

aRa + τI
)
α = 0

R′
bRbR′

aRaα− λR′
bRb

(
(1− τ)R′

bRb + τI
)
β = 0.

Multiplying the first equation with Ra and the second equation with Rb, and let α̃ =
Raα and β̃ = Rbβ, we are able to view our problem as a primal CCA with the feature
vectors given by the columns of Ra and Rb

RaR
′
aRaR

′
bβ̃ − λRaR

′
a

(
(1− τ)RaR

′
a + τI

)
α̃ = 0

RbR′
bRbR′

aα̃− λRbR′
b

(
(1− τ)RbR′

b + τI
)
β̃ = 0.

Due to the Gram-Shmidt orthonormalisation procedure we are assured that RaR
′
a and

RbR′
b are invertible. Therefore multiplying the first equation with (RaR

′
a)

−1 and the
second with (RbR′

b)−1 gives

β̃ =
((1− τ)RbR′

b + τI)−1RbR′
aα̃

λ

substituting into equation (4.19) we obtain

RaR
′
b((1− τ)RbR′

b + τI)−1RbR′
aα̃ = λ2((1− τ)RaR

′
a + τI)α̃.

In order to obtain a symmetric standard eigenproblem we apply a complete Cholesky
decomposition to the right hand component, such that (1− τ)RaR

′
a + τI = R̂′R̂ where

R̂ is an upper triangular matrix. Let α̂ = R̂α̃ we obtain

R̂′−1
RaR

′
b((1− τ)RbR′

b + τI)−1RbR′
aR̂

−1α̂ = λ2α̂. (4.19)

which is a standard symmetric eigenproblem of the form Ax = λx.

4.5.1 Selecting Regularisation Parameter τ

We propose an approach for selecting the regularisation value a priori. The value of τ

is computed by running KCCA with the association between the two views randomised.
Let λ(τ) be the spectrum without randomisation, as in the data with itself, and λR(τ)
be the spectrum with randomisation, the data with a randomised version of itself. By
spectrum we mean the vector whose entries are the eigenvalues. We would like to have
the non-random spectrum as distant as possible from the randomised spectrum, as if
the same correlation occurs for λ(τ) and λR(τ) then clearly over-fitting is taking place.
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Therefore we expect for no regularisation τ = 0 that we may have λ(τ) = λR(τ) = j,
since it is very possible that the examples are linearly independent.

We choose the value of τ , so that the difference between the spectrum of the randomised
set is maximally different from the true spectrum.

τ = arg max
τ
‖λR(τ)− λ(τ)‖.

4.6 Example on Toy Data

In the following section we view the affects of the regularisation parameter in conjunc-
tion with the feature projection selection on toy data. We have used the University of
Washington Ground Truth image database consisting of 697 public-domain images that
have been semantically marked-up with descriptive keywords (average of 5 keywords
per image). The post-processed data was kindly provided by Hare and Lewis (2005)
and consisted of Scale Invariant Feature Transform (SIFT) image features of 3000 visual
terms and an overall of 170 stemmed keywords for the images. We apply Frequency
Inverse Document Frequency (TFIDF) on to the keyword documents of the images 2.
We randomly split the data into two equal training and testing sets and use a linear
kernel, for both view, which we centre.

We learn the correlation between the SIFT image features to their relating TFIDF
keyword document features. We aim to find the testing image that is the corresponding
mate of the testing keyword document. The accuracy of the KCCA method is evaluated
in the following manner; We compute the 50 projected testing images with the highest
inner product to the projected testing keyword document and if the image originally
associated to the test keyword document is amongst the retrieved 50 we classify the
result as success.

We test the regularisation values from τ = 0, . . . , 1 over an increasing selection of eigen-
vectors for the feature projection. We incrementally add eigenvectors from the eigen-
vector which corresponds to the largest correlation to the eigenvector which corresponds
to the smallest. Figure 4.1 and Figure 4.2 display the number of correctly retrieved im-
ages as a function of the different eigenvector and regularisation value selection. Figure
4.3 gives the effect of the regularisation value on the performance for a selection of 91
eigenvectors.

We are able to observe the arch type curve in Figure 4.1 and Figure 4.3 over the selection
of the regularisation parameter, suggesting that an optimal regularisation is somewhere
in-between no regularisation (and hence over-fitting) to maximum regularisation (and
hence a possible under-fitting). This is more or less constant (although changing from

2Details of TFIDF and SIFT are given in the following Chapter.
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Figure 4.1: Affect of eigenvector and regularisation parameter selection on toy data.
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Figure 4.2: Affect of eigenvector and regularisation parameter selection on toy data
(side and upper view).
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Figure 4.3: Affect of regularisation parameter selection on toy data for a selection of
91 eigenvectors.

arch to a rigid surface with a peak still in the median) over the selection of eigenvectors
for feature projection.

We also observe in Figure 4.2 that the initial selection of eigenvectors for the feature
projection are sufficient for producing good results as they contain the eigenvectors
corresponding to the largest correlations. The performance drops as we further add
eigenvectors since we start to introduce noise to the semantic projection.

4.7 Summary

In this chapter we have described the CCA approach and demonstrate how the kernel
variant can be computed with a regularisation parameter such that we no longer produce
correlation that fail to distinguish between spurious features and those that capture the
underlying semantics. We also show how we are able to reduce the computed eigenvalues
and corresponding eigenvectors by half, by computing the eigenproblem for a single view
rather then the two combined.

This chapter concludes the first part of the thesis of the introductionary review of en-
abling technologies and the analysis of the main investigated method. The following
chapter will begin the next part of the thesis, describing various applications that utilise
the discussed methodologies.





Part II

Application

53





Chapter 5

Imagery & Text Taxonomy

“A computer will do what you tell it to do, but that may be much different from what
you had in mind.” - Joseph Weizenbaum

During recent years there has been a vast increase in the amount of multimedia content
available both off-line and online. However we are unable to access nor make use of this
information unless it is organised in such a way as to allow efficient browsing, searching,
retrieval and categorisation.

This chapter presents an approach for generic object recognition, a field crucial for
cognitive and autonomous visual systems, we show how the combination of KCCA and
SVM can reduce the overall system complexity while retaining a high classification rate.
We continue to propose a new methodology for learning the content association between
images and text as available on the web.

5.1 Generic Object Recognition

The ability to categorise objects is crucial for cognitive and autonomous visual systems.
This is in order to compartmentalise the vast number of objects dealt with into manage-
able categories. Recently the problem of generic object detection and recognition has
gained an increased interest in the field of computer vision (Agarwal and Roth, 2002;
Borenstein and Ullman, 2002; Fergus et al., 2003; Opelt et al., 2004). The outline of the
proposed systems are usually split into three main parts; Detection of image features
such as points and/or regions that are flexible enough to accommodate the wide range of
object categories. Pre-processing is applied to the features so as to be able to compare
or learn them using a suitable classifier or recognition algorithm. If more than one type
of features are computed from the image, they are usually handled separately in the
classification task, which is the third part of the system.

55
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Agarwal and Roth (2002) used a Winnows algorithm for recognising cars from side views.
Images were represented as binary feature vectors that included a sparse, part-based rep-
resentation of objects and spatial relations between them. These features were obtained
by moving a scale varying window within the whole image. The learning algorithm’s
complexity grows linearly with the number of relevant features and logarithmically with
the total number of features. Fergus et al. (2003) presented an approach of learning
and recognising object class models from unlabelled and unsegmented cluttered scenes
in a scale invariant manner. Objects were modelled as flexible constellations of parts. A
probabilistic model was used for the representation of the object within the image and
an Expectation Maximisation-type learning algorithm was used for the classification.
Agarwal and Roth (2002) and Fergus et al. (2003) describe methods that are based on
models of objects within an image. Model based approaches become difficult to estimate
when image data with a wide variation in object scale, view and texture are used.

More recently, Opelt et al. (2004) has provided a new model-free framework for generic
object recognition to allow for greater flexibility. In the system, the characteristic regions
are detected by an interest point and key point detectors. Originating from Harris corner
detector (Harris and Stephens, 1988), which are used to capture the characteristic corner
and edge points of an image, interest point detectors have been found successful in
detecting low-level features of an image. Based on the evaluation of interest points
(Schmid et al., 2000), interest point detectors have been extended to scale invariant
Harris-Laplace (Mikolajczyk and Schmid, 2001) and affine invariant (Mikolajczyk and
Schmid, 2002). For each of the detected interest points different local descriptors are
calculated to be used as feature vectors in the learning algorithm.

In Opelt et al. (2004) a boosting algorithm was used to combine several weak classifiers
based on arbitrary and inhomogeneous sets of image features to form a final strong
classifier. This was shown to perform well on relatively difficult databases. The standard
Adaboost algorithm requires that all the feature vectors of all samples to be of the same
length, while for each interest point different local descriptors are calculated as the
feature vectors. Therefore in preprocessing the distances between every feature and
every image are calculated, where the best weak learner amongst those computed is
chosen to be the weak hypothesis for each step in the Adaboost algorithm. A procedure
that quickly becomes computationally expensive.

5.1.1 Proposed System

The increase of multimedia data during the past years has raised the issue of having
efficient methods for analysing the data. Kolenda et al. (2002) had shown that by
combining different types of data representation higher accuracy can be achieved than
from each component individually. Following this motivation we modify the baseline
system proposed by Opelt et al. (2004) to use KCCA, as described in Chapter 4, in
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order to learn a combined semantic representation of the two distinct image features. A
diagram of the proposed system is illustrated in Figure 5.1.

Similarly to the baseline system we extract characteristic image patches using the Harris
corner detector and key point detector. For each image Ii there are Ni detected patches,
where i = 1, . . . , ` samples. For each patch p a feature vector fpi is constructed by some
local descriptors such as invariant moment1 (Mikolajczyk and Schmid, 2002) and Scale
Invariant Feature Transform (SIFT)2(Lowe, 1999). We use the K-means clustering to
cluster the image features into a uniform framework of fixed length that can be used in
the proposed system. The training patches are clustered into k classes with centres ok.
Then the feature vector xi = {xi,j , j = 1, . . . , k} of an image Ii is the minimal distance
between ok and all features fp

i in Ii. They are computed as follows

xi,j = min
p=1,··· ,Ni

d (fp
i ,oj)

where d(., .) is the Euclidean distance.

Let Kx and Ky be the respective kernels from the two distinct features. We project the
kernels into the KCCA learnt semantic feature space

φ̂(x) = Kxα

φ̂(y) = Kyβ

and compute the new combined projected feature as

φ̃(z) = σφ̂(x) + (1− σ)φ̂(y),

where σ is a combination factor satisfying σ ∈ [0, 1]. An SVM, as described in Section
2.4, was used with the new combined feature φ̃(z) to classify the object category against
no-object/negative category.

5.1.2 Database Description & Setup

Two datasets were used in the experiments. The first, a very complicated dataset3

used by Opelt et al. (2004), containing objects at arbitrary scales and poses with highly
textured background. The dataset has three categories of Persons, Bikes and those
which contain neither of the previous two. Example images from the dataset are given in
Figure 5.2. The second dataset4 is widely used in the field of generic object recognition.
It contains four categories of Motorbikes, Airplanes, Faces and Background, which is
used as the negative class.

1Program available at http://lear.inrialpes.fr/people/Mikolajczyk/ .
2Program available at http://www.cs.ubc.ca/∼lowe/keypoints/ .
3Available at http://www.emt.tugraz.at/∼pinz/data/ .
4Available at http://www.robots.ox.ac.uk/∼vgg/data/ .

http://lear.inrialpes.fr/people/Mikolajczyk/
http://www.cs.ubc.ca/~lowe/keypoints/
http://www.emt.tugraz.at/~pinz/data/
http://www.robots.ox.ac.uk/~vgg/data/
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Figure 5.1: The proposed generic object recognition system. Different original feature
vectors are constructed from the neighbour of extracted characteristic points in the
grayscales images. The uniform feature vector are created based on clustering on the
training set. KCCA is used to build a combined feature from distinct features. Finally,

SVM is used as the classifier.

Figure 5.2: Examples of the original images in dataset one. The first two rows
are categories Bikes and Persons respectively, while the third row is the background

No-Person-No-Bike category.
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In each of the datasets, we test the images containing the object against the images which
contain none of the objects. The performance was measured with the Receiver-Operating
Characteristic (ROC) corresponding error rates. Dividing the data into training set, with
100 positive and negative images, and testing set, containing 50 positive and negative
images (overall 300 images). For each image affine invariant interest points with moment
invariant descriptors are computed, as well as SIFT features from the key points detector.
The images had roughly between 10 to 3000 characteristic points, depending on the
image complexity. We cluster the feature vectors into an arbitrary k = 400 centres so
we would have two uniform feature vectors of the same length.

KCCA was used to compute a combined semantic feature projection, using a subset
of half the computed feature projections, this is due to the fact that we find that the
remainder has small correlation values and therefore would not contribute further useful
information to the semantic projection. The program SV M light(Version 5.0)3 was used
in the experiment. We use linear kernels throughout and an arbitrary combination
factor σ = 0.5 for the linear combination of the projected features. The regularisation
parameter was computed as depicted in Section 4.5.1.

5.1.3 Performance & Conclusions

In the following section we give the performance evaluation of our proposed system. To
show the advantage of computing a joint semantic feature we compare the KCCA ap-
proach to a combined feature by simply concatenating the two original features together.
This is referred to as Mixed in the following tables.

We present our results on the first image dataset in Table 5.1, we are able to observe
that the results using the KCCA approach outperform the baseline approach and are
comparable to the results quoted in Opelt et al. (2004). The main benefit of our system
is that it is far less computationally complex than the one suggested by Opelt et al.
(2004).

Table 5.1: Dataset one ROC Equal Error Rate comparison.

Dataset Individual Features Mixed KCCA
Moment SIFT

Bikes 74.10 76.01 75.94 84.86
Persons 75.84 72.83 73.91 81.30

In Table 5.2 we compare the results as produced from our system on the second dataset.
We are able to observe that our system outperforms that of the baselines, these are
again comparable to the results quoted in Fergus et al. (2003); Opelt et al. (2004).

3Available at http://svmlight.joachims.org/

http://svmlight.joachims.org/
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Table 5.2: Dataset two ROC Equal Error Rate comparison.

Dataset Individual Features Mixed KCCA
Moment SIFT

Motorbikes 95.32 94.96 95.09 96.71
Airplanes 92.39 97.00 97.25 97.37

Faces 97.95 96.47 98.51 98.47

From the presented results we are able to observe that combining SIFT with moment
invariant features is able to produce better results than with using an individual feature.
The feature mapping can efficiently combine two distinctive features into a semantic
feature space where significant improvement can be achieved using SVMs. As we have
expected the results in Table 5.2 are higher than those in Table 5.1 since the data used
in Table 5.1 is known for its complexity and hence difficulty in producing very good
results.

5.2 Generating Category-based Documents

Online images and their surrounding text present a particularly complex problem in
image annotation and association. The surrounding text may only contain partial in-
formation and would most likely relate to the image in the general context. Several
solutions have been proposed using keyword association to images and image segments
(Blei and Jordan, 2003; Jeon et al., 2003; Xing et al., 2005; Pan et al., 2004; Barnard
et al., 2003). We propose an approach to learn the content association between images
and their surrounding text to automatically generate category-based documents to new
image queries. The document generation is done without any image-word annotation
before or during the training.

In this work we look at a different type of problem than usually addressed, where the
text associated with the image is not keywords but a portion of text. For example a
news web site using pictures to illustrate a news report. We select this type of problem
as we believe it to be a good representation of the real image-text data available online,
which is usually not well captioned or has a portion of ‘general’ text referencing the
image. In fact we are no longer looking for keywords to a given image but an overall
document (i.e. text) that is of the same content category. We define the text associated
to an image as a document and a document to be comprised of words. We propose
using properties of KCCA (as described in Chapter 4) to generate new documents to
unseen query images.

Intuitively one could suggest learning the correlation between the documents and images
and then using an image query to retrieve the documents of the highest weightings
between the query and test documents in feature space. Although
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• One may not have documents that fit the query image, other than those in the
training-set.

• We would like to annotate an image query independently from the given set of
words within a specific document.

For this purpose we create a new document d∗ which contains the words that best fit
the query image. During the training stage we do not apply any word annotation to the
images other than using KCCA to find a common feature representation between the
documents, and hence words, to the images. The novelty of the approach is its ability
to create a new document corresponding to an image query without referring to the
documents training data nor using any pre-association of words to images.

5.2.1 Generating a New Document

We are faced with the problem of creating a new document d∗ that best matches our
image query. Based on the idea of CCA we are looking for a vector that has maximum
covariance to the query image with respect to the weight matrices α and β. Let f = Ki

xα,
where the vector Ki

x contains the kernelised inner products between the query image i

and the images occurring in the training set. We have

max
d∗

〈
f,W ′

yd
∗〉 ,

where Wy is the matrix containing the weight vectors as rows. The need to use the
weight vectors for the documents limits us to the use of linear kernels.

For simplicity we assume that the expected structure of the document is of a single word
that is the most relevant word for the query image. Let n be the number of known words
in the training dataset. We may say that the vector d∗ gives a convex combination of
the columns of the identity matrix (i.e. ‖d∗‖ = 1), thus it satisfies the constraints

n∑
i=1

d∗i = 1, d∗i ≥ 0 i = 1, . . . , n. (5.1)

The problem becomes
max

d∗
f ′W ′

yd
∗

under the same constraints. Let c = f ′W ′
y we have

max
d∗

cd∗.
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Due to the constraints in equation (5.1) the components of the optimum solution d∗ is
equal to

(d)∗i =

{
1 i = arg maxj cj ,

0 otherwise.
(5.2)

This generates a document containing a single word. We modify the original maximi-
sation problem to relax the optimum solution to include words above a threshold T .
The new relaxed formulation will generate a document with varying number of words,
depending on T . We are able to use the value of cj to rank the relevance of the selected
words. We do this by sorting the values of c and taking the words relating to the largest
values of c above threshold T .

5.2.2 Problem Setup

We address the problem of learning the semantics of multimedia content by combining
image and text data. The learnt semantics is then applied to generate documents related
by content category to query images. The aim is to allow the retrieval of words from an
image query without reference to any original text associated with the image. We use
a combined multimedia image-text web database5 that manifests the introduced prob-
lem. The data is divided into three classes: Sport, Aviation and Paintball, 400 records
each and consists of jpeg images retrieved from the Internet with attached text, with
an overall of 1200 samples. We randomly split each class into two halves, obtaining 600
samples for training and 600 for testing. The extracted features of the images were the
Hue Saturation Values (HSV) colour and the image Gabor texture. As discussed in the
introduction and visible in Figures 5.4-5.8, the words annotated to the images are not
of keyword association but are of a more general descriptive nature. Therefore our rep-
resentation of words is crucial, we compare two approaches of word representation; The
term frequency vector which is the number of occurrences of the word in the document,
and Term Frequency Inverse Document Frequency (TFIDF) (Salton and McGill, 1983)
which is

TFIDF(di, wj) = (number of wj in di)

× log
(

`

number of documents that contain wj

)
,

where ` is the number of documents, di is document i and wj is word j. The text was
stemmed and filtered prior to processing.

We compare the performance of our method with a retrieval technique based on the
Generalised Vector Space Model (GVSM)(Wong et al., 1985). This uses as a semantic
feature vector, the vector of inner products between either a query image and each
training image or test documents and each training document. For both KCCA and

5The database was kindly provided by Kolenda et al. (2002).
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A − Sports

219

447

86324

327

C − Paintball

850

B − Aviation

1269

Figure 5.3: We separate the dictionary into its categories with overlapping
regions.

Table 5.3: Example of words in categories:

Sports aa, aaron, abdominal, abdul, abdur,
ability, abroad, absence, accomplish,

accounted, achieve, achilles . . .
Aviation air, airborne, aircraft, airesearch,

airflow, airframe, airliner, airmotive,
airpark, areonautical, airline . . .

Paintball warriors, watch, weather, web, wing,
wednesday, white, wildcards,wildfire,
winning, wizard, wordogz, world . . .

GVSM the first view was obtained by a linear combination of a Gaussian kernel (with σ

as the minimum distance between the different images) on the HSV with a linear kernel
on the Gabor textures. The second view was obtained by a linear kernel on the term
frequencies or TFIDF features.

Let W be the set of all words in our database comprising a total of 3522 words and
let A,B, C ⊆ W such that A is the Sports category with a total of 2259 words, B the
Aviation category with a total of 1602 words and C the Paintball category with a total
of 956 words. Figure 5.3 shows that several of the words overlap categories, with 219
words that are common to all three. We assign the content of the words in W using the
following approach; for example, if word w is associated with an image that belongs to
category A, w will belong to A. Table 5.3 shows an example of the different possible
words in the categories, we are able to observe that some words category associations are
not intuitive, such as “accounted” in the Sports category. The word-image association
is limited to the contents of the website they have been extracted from.
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After generating a new document d∗ we try and evaluate the relevance of the words
within the document to the image query. The definition of a “relevant” word within a
document is not trivial. We attempt this definition by denoting three levels of relevance,
the first - level 1; If a word is in a category (including overlapping ones) that is the same
category as the image, it is considered a success with a weighting of 1 otherwise the
word will be considered a mistake and will be of weighting 0. In level 2 we follow the
weightings scheme of level 1 but commence penalising the words that are of the over-
lapping categories by −0.25 such that if a word belongs to either of the two overlapping
categories it will be given a weighting of 0.75 and a weighting of 0.5 if it belongs to all
three. In the last and final level, level 3, we further increase the penalty to −0.5 such
that if a word belongs to either of the two overlapping categories it will have a weighting
0.5 and if the word belongs to all three it will be considered a mistake (a weighting of
0). The choice of the penalty is arbitrary. The success of the category-based document
generation is computed as the sum of the weights of the words in the documents aver-
aged over the number of words in the documents. The different levels do not affect the
training process.

5.2.3 Generation Results

The experiments, in both methods, were repeated 10 times and averaged over all the
query test images. In each repeat we evenly and randomly split the testing and training
samples. For the KCCA eigenvectors selection for the semantic projection we search
within a limited subset of up to half the number of eigenvectors and pick the selection
that performed best. The selection is chosen within a subset of only up to half of
the overall eigenvectors due to the fact that the correlation values for the remaining
eigenvectors are relatively small and can be ignored. The regularisation parameter was
selected as described in Section 4.5.1.

We expect that for some of the image queries, the words within the generated documents
would overlap. Despite this we would like to show that our approach does not generate
trivial solutions (i.e. the same words within the documents for all queries). We suggest
showing this by computing a variance6 of each document generated. Let

variance =
overall number of different correct words found in the documents

overall all the correct words found in the documents
.

In our experimentation we generate documents with a single word and those with 10
words. In the case of 10 words within a document we are unable to avoid overlapping
words, therefore we normalise the computed variance by the maximum different words
possible, which amounts to - ( 3522

600×10).

6By variance we mean the difference between the words in each generated document.
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We expect that the generated documents will probably not show a keywords association
to the different segments of the images, but words that generate the documents of the
highest content relevance to the query images. Although this may seem counter-intuitive
we believe that this better represents the text-image data widely available online.

In Tables 5.4 and 5.6 we present the KCCA comparison between the document generation
of 1 and 10 words. Table 5.4 presents the results obtained by using term frequency, while
Table 5.6 presents those obtained by using TFIDF. The best success rates for the specific
task are highlighted in bold. We find that the TFIDF representation of the documents
outperforms that of the term frequency representation, except for level 1 where term
frequency obtains a higher level of retrieval with a lower level of variance.

In Tables 5.5 and 5.7 we present the baseline approach using term frequency and TFIDF.
We are able to observe that with GSVM using term frequency obtains a higher level of
success while TFIDF obtains a higher level of variance. Although a high success rate
in level 1 using term frequency representation we find that the variance of the words
are extremely low suggesting that GSVM generates documents with the same words
for most of the queries when used in conjunctions with TFIDF over the different levels
of relevance, it is not entirely clear why this occurs although we can hypothesis that
this is due to the fact that TFIDF increases the weighting of words that appear in
few documents but more frequently within a document. Clearly, KCCA is consistently
better than the baseline method in both approaches with relatively good results.

We provide further analysis of the KCCA results. Although the TFIDF features need
a larger number of eigenvectors for the feature projection it is able to produce a higher
success rate then that of the term frequency vector, except for level 1 where the low
variance implies that the retrieved words are very similar. We see that as we increase
the weight penalty TFIDF is able to generate documents with words that are more
singular to the topic and are of a higher variance. Observe that increasing the number
of eigenvectors for the feature selection will also increase the variance of the retrieved
keywords, as more semantic information is provided.

Figures 5.4 - 5.7 show examples of query images with their original non-stemmed text
and the generated documents with 10 words, using KCCA level 1 weighting scheme with
TFIDF. The words that belong to the same category as the image are in bold, while
those which are mistakes are italicised. Figure 5.8 shows an example of an image with
complicated text assigned to it, we are able to observe the mistakes in the generated
document. Several of the shown figures present the problem that the original text may
not be informative about the image, as these are texts extracted directly adjacent to
the image. This also illustrates why we do not assess the number of words in common
with the original text. We are not trying to recreate the original query image text but
generate a new most relevant one according to the learnt semantic space. The results
show promising results towards this proposed approach.
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Table 5.4: KCCA: Success results using term frequency.
Documents with 1 Word

Success Variance eigenvectors
Level 1 96.27% 0.77% 3
Level 2 73.17% 31.17% 270
Level 3 51.19% 37.2% 273

Documents with 10 words
Success Variance eigenvectors

Level 1 89.51% 1.65% 5
Level 2 71.77% 21% 283
Level 3 45.45% 2.81% 6

Table 5.5: GSVM: Success results using term frequency
Documents, 1 word Documents , 10 words
Success Variance Success Variance

Level 1 80.07% 0.41% 61.69% 0.58%
Level 2 52.43% 0.63% 44.55% 0.8%
Level 3 24.79% 0.68% 27.4% 1.03%

Table 5.6: KCCA: Success results using TFIDF features.
Documents with 1 word

Success Variance eigenvectors
Level 1 88.14% 32.55% 264
Level 2 75.69% 38.93% 278
Level 3 63.34% 41.75% 278

Documents with 10 words
Success Variance eigenvectors

Level 1 86.22% 20.02% 299
Level 2 72.75% 23.72% 299
Level 3 59.24% 25.74% 296

Table 5.7: GSVM: Success results using TFIDF
Documents, 1 word Documents, 10 words
Success Variance Success Variance

Level 1 35.62% 0.95% 54.33% 0.87%
Level 2 35.62% 0.95% 43.21% 1.1%
Level 3 35.62% 0.95% 32.09% 1.15%
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Figure 5.4: Aviation: Original text “is posed as if its nose gear has collapsed.
executive decision is to the right of center. the 747-200 that appeared in the
rookie appears at center. the convair 880 that was used in speed” generated
document with 10 words, from highest to lowest rank “convair, museum, cccp,

eagle, voyage, cv, protivophozharny, tower, pima, roll”.
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Figure 5.5: Aviation: Original text “ec-121k, 141309, c/n 4433 . air force mu-
seum’s page about ec-121d, 53-0555 ec-121k, 141309 at the mcclellan afb
museum on april 3, 1993. it was built as a navy wv-2, but it is displayed as
air force ec-121d, 53-0552. its lockheed construction number is 4433.” gen-
erated document with 10 words, from highest to lowest rank “museum, commando,

goodyear, pima, page, takes, link, air, afb, castle”.

5.2.4 Conclusions

The problem of retrieving information via content is a non-trivial one. We present
a relatively simple technique to generate documents for an image query with neither
reference to the training documents (i.e. after learning the semantic projection we no
longer make use of the training documents) nor the usage of keyword assignment to
the image or its various segments. The presented results are promising towards the
novel approach of learning the association between text and images to generate new
documents. We also show that we are able to generate similar content documents that
contain more words then the original associated text. Although the limited number of
categories we believe the presented results to be a proof of concept.
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Figure 5.6: Paintball: Original text “benini reffing” generated document with 10
words, from highest to lowest rank “fate, darkside, kc, strange, team, wildcards,

takeover, avljalde, hostile, check”.
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Figure 5.7: Paintball: Original text “all americans” generated document with 10
words, from highest to lowest rank “ref, farside, american, team, trauma, stay,

leader, flag, takeover, avljalde”.

It is important to state that we differ from the conventional image-word retrieval prob-
lem, which aims to associate a keyword that best describes the actual content of the
image. We are interested in associating a document to the content genre of an image (as
pre assigned by a website). This can then be used to generate documents (information)
to new image queries.

5.3 Summary

The analysis of image and text is not new to the field of machine learning, although
with developments in adjacent fields, new problems involving these are introduced. In
this chapter we have introduced a computationally efficient approach for generic object
categorisation, by reducing the possible combination of image features as we create a
uniformed feature using the K-means approach. A field crucial for the evolution of
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Figure 5.8: Sports: Original text “ap photo more photos february 18, 2002
toronto (ap) – sam cassell ’s injured toe didn’t hurt his effectiveness against
the toronto raptors . but he might be selective about future games he plays
in so he’s ready for the playoffs. “i’d rather take care of it now,” said
cassell, who missed two games with a sprained left big toe before scoring 20
points in the milwaukee bucks ’ 91-86 victory over the toronto raptors on
sunday. “this is not a joke,” he said. “this is probably the worst i’ve felt
as a professional basketball player. it’s painful every step you take. coach
says, ’you can take the pain!’ but not this kind of pain.” cassell, who scored
eight points in the fourth quarter, said he would need 20 days to heal. “we
have a game (monday) . . .” generated document with 10 words, from highest to

lowest rank “boyz, attitude, pt, hot, urban, quest ,rip, team,ap,matrix”.

cognitive and autonomous vision systems. We have introduced a method, that while
maintaining good results, is not computationally expensive as the leading approach. We
continue to introduce a new approach for viewing online image-text data. Suggesting
that rather then creating a keyword association, which would be beneficial for search
engines, to create a content based association. This could allow the retrieval and/or
generation of documents to image queries that are of the same content category. On
the whole, it has been demonstrated how semantic model’s can be used with learning
algorithms (or alone) to solve predominant problems in the field of image and text
taxonomy.





Chapter 6

Music

“A performer who had not heard any of my music questioned me about several aspects
of my work. On the topic of computer music, he had several technical questions and

asked about the general process I employ in realizing a piece. I stated that I believed the
specific technologies employed are unimportant but out of familiarity I generally write
algorithms in C to generate my pieces. The performer responded, ‘Well, I don’t know

what you’d use an algorithm for but I’m glad to hear it’s at least tonal.’ ”
- Jason Thomas

Music could probably be considered as a continuation of the human soul. From the dawn
of mankind to the current modern day there has been a primal need for rhythm, a need
largely unexplained. As with any form of art, music is an expression of style, emotion
and individualism. In this chapter we apply machine learning in order to test whether
music, and its elements, can be quantised, measured, analysed and even reproduced.
Hopefully, bringing us a step closer to the understanding of the true nature of music.

In this chapter, we address two main issues of learning music. We are able to realise that
musical signals are dynamic and exhibit long term temporal dependencies. This raises
fundamental issues in machine learning on how to develop methods for discovering and
representing these dependencies for musical analysis and generation.

6.1 Identifying Famous Performers From Their Playing

Style

In this section, we focus on the problem of identifying famous pianists using only min-
imal information obtained from audio recordings of their playing. We use a technique
called the performance worm, which plots a real-time trajectory in 2D space. The worm
is used to analyse changes in tempo and loudness at the beat level while extracting
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Table 6.1: Movements of Mozart piano sonatas selected for analysis.
Sonata Movement Key Time sig. Sonata Movement Key Time sig.
K.279 1st mvt. C major 4/4 K.281 1st mvt. Bb major 2/4
K.279 2nd mvt. C major 3/4 K.282 1st mvt. Eb major 4/4
K.279 3rd mvt. C major 2/4 K.282 2nd mvt. Eb major 3/4
K.280 1st mvt. F major 3/4 K.282 3rd mvt. Eb major 2/4
K.280 2nd mvt. F major 6/8 K.330 3rd mvt. C major 2/4
K.280 3rd mvt. F major 3/8 K.332 2nd mvt. F major 4/4

features for learning. Previous work on this data has compared a variety of machine
learning techniques while using as features statistical quantities obtained from the per-
formance worm. It is possible however to obtain a set of cluster prototypes from the
worm trajectory which capture certain characteristics over a small time frame, say of
two beats. These cluster prototypes form a ‘performance alphabet’ that capture some
aspects of individual playing style. For example a performer may consistently produce
loudness/tempo changes unique to themselves at specific points in a piece, e.g. at the
loudest sections of a piece. Once a performance alphabet is obtained, the prototypes can
each be assigned a symbol and the audio recordings can then be represented as strings
constructed from this alphabet.

The task addressed here is to learn to recognise pianists solely from characteristics
of their performance strings. The ability of kernel methods to operate over string-like
structures using kernels such as the n-gram kernel and the string kernel will be evaluated
on this task. In addition, to simply applying an SVM (as introduced in Section 2.4) to
the data however, we will also examine the ability of dimension reduction methods such
as Kernel PCA and Kernel Partial Least Squares (KPLS) (as introduced in Chapter 3)
to extract relevant features from the data before applying an SVM, which will hopefully
lead to improved classification performance.

6.1.1 Representing Music

The data1 was obtained from recordings of sonatas by Wolfgang Amadeus Mozart played
by six famous concert pianists. In total the performances of 6 pianists were analysed
across 12 different movements of Mozart sonatas. The movements represent a cross
section of playing keys, tempi and time signatures as shown in Table 6.1. In many cases
the only data available for different performances are standard audio recordings, which
poses particular difficulties for the extraction of relevant performance information. A
tool for analysing this type of data called the performance worm has been developed
by Dixon et al. (2002); Zanon and Widmer (2003); Widmer et al. (2003), where the
worm extracts data from audio recordings by examining tempo and general loudness

1Kindly provided by Gerhard Widmer (Zanon and Widmer, 2003).
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Figure 6.1: (a) The performance worm: A 2D representation of changes in beat-
level tempo and loudness can be plotted in realtime from an audio recording. (b)
The performance alphabet: A set of cluster prototypes extracted from the performance

worm.

when measured at the beat level. An interactive beat tracking program (Dixon, 2001)
is used to find the beat from which changes in beat-level tempo and beat-level loudness
can be calculated. These two types of changes can be integrated to form trajectories
over tempo-loudness space that show the joint development of tempo and dynamics over
time. As data is extracted from the audio, the 2D plot of the performance curve can be
constructed in real time to aid in visualisation of these dynamics. Figure 6.1(a) shows
a screenshot of the worm in progress. Note that this is the only information used in the
creation of the worm, more detailed information such as articulation, individual voicing
or timing details of that below the level of a beat is not available.

From the performance worm, patterns can be observed which can help characterise
the individual playing styles of some pianists. For example, in Widmer et al. (2003)
a set of tempo-loudness shapes typical of the performer Mitsuko Uchida were found.
These shapes represented a particular way of combining a crescendo-decrescendo with
a slowing down during a loudness maximum. These patterns were often repeated in
Mozart performances by Mitsuko Uchida, but were rarely found when analysing the
recordings of other performers.

In order to try and capture more of these types of characterisations a ‘Mozart Per-
formance Alphabet’ can be constructed in the following way. The trajectories of the
performance worm are cut into short segments of a fixed length (e.g. 2 beats) and clus-
tered into groups of similar patterns to form a series of prototypes as visualised in Figure
6.1(b). Recordings of a performance can then be transcribed in terms of this alphabet
which can then be compared using string matching techniques. The list of pianists and
the recordings used to obtain the data can be found in Table 6.2. More information on
the performance worm and constructing a performance alphabet of cluster prototypes
can be found in Zanon and Widmer (2003) and Widmer et al. (2003).
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Table 6.2: List of pianists and recordings used
ID Name Recording
DB Daniel Barenboim EMI Classics CDZ 7 67295 2, 1984
RB Roland Batik Gramola 98701-705, 1990
GG Glenn Gould Sony Classical SM4K 52627, 1967
MP Maria João Pires DGG 431 761-2, 1991
AS András Schiff ADD (Decca) 443 720-2, 1980
MU Mitsuko Uchida Philips Classics 464 856-2, 1987

6.1.2 String Kernels

The use of string kernels for analysing text documents was first studied by Lodhi et al.
(2002). We give an introductionary review to the string kernel approach for creating a
feature space and associated kernel.

The key idea behind the gap-weighted subsequences kernel is to compare strings by
means of the subsequences they contain (i.e. the more subsequences in common, the
more similar they are), rather than only considering contiguous n-grams, the degree of
contiguity of the subsequence in the input string s determines how much it will contribute
to the comparison. In order to deal with non-contiguous substrings, it is necessary to
introduce a decay factor λ ∈ (0, 1) that can be used to weight the presence of a certain
feature in a string. For an index sequence i = (i1, . . . , ik) identifying the occurrence of
a subsequence u = s (i) in a string s, we use l(i) = ik − i1 + 1 to denote the length
of the string in s. In the gap-weighted kernel, we weight the occurrence of u with the
exponentially decaying weight λl(i).

Definition 6.1 (Gap-weighted subsequences kernel (Lodhi et al., 2002)). The
feature space associated with the gap-weighted subsequences kernel of length p is indexed
by I = Σp (i.e. subsequences of length p from some alphabet Σ), with the embedding
given by

φp
u (s) =

∑
i : u=s(i)

λl(i), u ∈ Σp.

The associated kernel is defined as

κp (s, t) = 〈φp (s) , φp (t)〉 =
∑
u∈Σp

φp
u (s) φp

u (t) .
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Example 6.1. Consider the simple strings "cat", "car", "bat", and "bar". Fixing
p = 2, the words are mapped as follows:

φ ca ct at ba bt cr ar br

cat λ2 λ3 λ2 0 0 0 0 0

car λ2 0 0 0 0 λ3 λ2 0

bat 0 0 λ2 λ2 λ3 0 0 0

bar 0 0 0 λ2 0 0 λ2 λ3

So the unnormalised kernel between "cat" and "car" is κ("cat","car") = λ4, while the
normalised version is obtained using

κ("cat", "cat") = κ("car", "car") = 2λ4 + λ6

as κ̂("cat","car") = λ4/(2λ4 + λ6) = (2 + λ2)−1.

Efficient dynamic programming algorithms for computing the string kernel are described
in Lodhi et al. (2002).

6.1.3 Experiments

In our experiments we followed the setup given in Zanon and Widmer (2003). For each
pair of performers a leave-one-out procedure was followed where on each iteration one
movement played by each of a pair of performers was used for testing and the rest of
the data was used for training. For a given pair of performers, say Mitsuko Uchida and
Daniel Barenboim (MU-DB), a total of 12 runs of an algorithm were performed (there
are 12 movements and each time one movement by both performers was left out of the
training set and tested upon). This was repeated for each of the possible 15 pairings
of performers. Note that in all results the number reported is the number of correct
classifications made by the algorithm. The total number of correct classification per
pair is 24, as we have 12 movements per performer.

Previous results on the data (Zanon and Widmer, 2003) used a feature-based represen-
tation and considered a range of machine learning techniques by using the well-known
Waikato Environment for Knowledge Analysis (WEKA) software package (Witten and
Frank, 1999) to compare bayesian, rule-based, tree-based and nearest-neighbour meth-
ods. The best results previously obtained were for a classification via regression meta-
learner. These are reported as FB (feature-based) in the results table. The feature-based
representation used in the experiments included the raw measures of tempo and loudness
along with various statistics regarding the variance and standard deviation of these and
additional information extracted from the worm such as the correlation of tempo and
loudness values.
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Table 6.3: Total number of correct predictions across all splits against number of
feature directions used (T ) for both the feature projection method described in this
paper (REW) and that in previous work (ORIG). The parameters used in this were

those optimal for the KP-SV combination (k = 5,λ = 0.9).
Method/T 1 2 3 4 5 6 7 8 9 10
ORIG 287 265 248 251 253 250 256 252 246 238
REW 287 295 293 293 296 296 295 295 295 295

Experiments were conducted using both the standard string kernel and the n-gram kernel
and several algorithms. In both cases experiments were conducted using a standard
SVM on the relevant kernel matrix. Kernel Partial Least Squares and Kernel Principal
Component Regression were also used for comparison. Finally, an SVM was used in
conjunction with the projected features obtained from the iterative KPLS deflation
steps. For these features there were two options, either to use the features as described
in Rosipal et al. (2003) or to include the extra reweighting factors diag (τ ′iτi) described
in Section 3.1.1. In these experiments we have not included the diagonal matrix diag(a),
as we initially found the quantities ai difficult to assess. It is now visible that we are
capable of computing these quantities from equation (3.1), Section 3.1.2, as

aiui = X′βi

ai =
√

β′
iKβi,

where we assume ‖ui‖ = 1. Though these should not vary significantly over adjacent
features since they will be related to the corresponding singular values.

We first performed a comparison of these two options by counting the total number of
correct predictions across all splits for different feature dimensions (T ) for the original
weighting (ORIG) and the reweighted (REW) features. Table 6.3 shows the obtained
overall result summed for all pairs of performers (maximum of 336). There is a clear
advantage shown for the reweighting scheme and so we adopted this method for the
remaining experiments.

In the remaining experiments we choose one pair of composers (RB–DB) for parameter
tuning. These include the number of characters used by the string kernel, the decay pa-
rameter and the number of PLS features extracted where appropriate. Substring lengths
of k = 1, . . . , 10 were tried for both the n-gram and string kernels, λ = {0.2, 0.5, 0.9}
decay parameters were used for the string kernel and for both KPLS and KPCR meth-
ods the number of feature directions (T ) ranged from 1 to 10. All kernel matrices were
normalised and whenever an SVM was used, the parameter C was set to one. In each
case the parameters that delivered the best performance on the RB–DB data were cho-
sen. Once selected the settings of these parameters were fixed for the remaining test
experiments for all of the results reported in Table 6.4. The best results for the string
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Table 6.4: Comparison of algorithms across each pairwise coupling of performers.
Note that in all case the figures given are the number of movements correctly identified
out of a maximum of 24. FB represents the previous best results using a feature-based
representation rather than the ‘performance alphabet’ used for the other approaches.

String Kernel n-gram Kernel
Pairing FB KPLS SVM KP-SV KPCR KPLS-n SVM-n KP-SV-n KPCR-n
RB - DB – – – – – – – – –
GG - DB 15 19 21 22 21 18 18 22 14
GG - RB 17 24 22 23 24 21 21 20 11
MP - DB 17 18 18 20 17 16 16 18 17
MP - RB 21 22 22 23 19 18 15 17 12
MP - GG 17 23 23 23 23 20 20 22 18
AS - DB 15 19 19 19 18 15 16 16 10
AS - RB 16 23 23 21 16 17 17 20 14
AS - GG 17 17 18 18 17 18 15 18 13
AS - MP 20 23 23 22 22 20 17 22 14
MU - DB 17 15 15 15 13 13 13 14 12
MU - RB 16 17 17 14 11 18 16 17 12
MU - GG 16 19 19 19 20 16 16 20 14
MU - MP 15 18 19 17 17 17 17 21 16
MU - AS 17 16 16 18 16 16 15 16 17
Total 236 273 275 274 254 243 232 263 194
Average (%) 70.2 81.3 81.9 81.6 75.6 72.3 69.5 78.2 57.7

and n-gram kernel are highlighted in bold – note that the RB–DB row is deliberately
left blank to emphasise this.

The results obtained from using these methods and kernels show an improvement over
the previous best results using statistical features extracted from the performance worm.
We use the following shorthand to refer to the relevant algorithm/kernel combina-
tions; FB: Previous best method using statistical features, KPLS: Kernel Partial Least
Squares, SVM: Support Vector Machine, KP-SV: SVM using KPLS features, KPCR:
Kernel Principal Components regression. If an n-gram kernel is used rather than a string
kernel we append ‘-n’ to the method name.

The usage of the methods in conjunction with the n-gram kernel offer a clear performance
advantage over the feature-based approach. Interestingly, KPLS outperforms an SVM
when using this kernel. This may suggest that for this kernel, projecting into a lower
subspace is beneficial. The ability of KPLS to correlate the feature directions it selects
with the output variable, gives a clear advantage over KPCR. This is also expected
from previous results on other datasets used by Rosipal and Trejo (2001); Bennett and
Embrechts (2003), where a performance gain is achieved. When using the SVM in
conjunction with the features obtained from the KPLS deflation steps, the performance
improves further, which has also been the case on other data sets (Rosipal et al., 2003).
In all cases short substrings achieved the best performance with substring lengths of only
1 or 2 characters, which would perhaps indicate that complex features are not used. It
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is interesting to note that in the experiments KPCR requires more feature directions
to achieve good performance, whereas KPLS consistently requires fewer directions to
perform well.

6.1.4 Conclusions

The string kernel operating over the performance alphabet provides significantly better
classification performance than the feature-based method and in every case also outper-
forms the n-gram kernel. This would indicate that the ability of the string kernel to
allow gaps in matching subsequences is a key benefit for this data, and that complex
features are indeed needed to obtain good performance. This is in contrast to results
reported using the string kernel for text, where the classification rate of n-gram kernels
using contiguous sequences is equal to that of the string kernel if not superior (Lodhi
et al., 2002). For the string kernel however, the use of KPLS features did not improve
the performance of the support vector machine (in fact over all of the data it made 1
more misclassification). Therefore it is not clear in which situations the use of KPLS
features in conjunction with an SVM would better perform.

6.2 Identifying Famous Composers from Their Sheet Mu-

sic

In the last several years music information retrieval, generation and classification has
become a major topic of interest. Several Hidden Markov Models (HMM) (Rabiner,
1989) have been developed for different tasks, such as music segmentation (Ajmera et al.,
2002), classification (Batlle and Cano, 2000; Batlle et al., 2004) and retrieval systems
(Birmingham, 2003). Kohonen et al. (1991) gives an application of example-based music
generation using Markov Chains on notes. An interesting review of music generation
using statistical models is given by Conklin (2003). In the presented work we look at
the application of an HMM to a musical score rather than the musical representation of
that score. Furthermore we look at the computation of the Fisher scores from the HMM
probabilities.

In the previous section we have presented a novel application of string kernels to the
problem of recognising famous pianists from their style of playing. This was done us-
ing a measurement of the changes in beat-level tempo and beat-level loudness (Zanon
and Widmer, 2003) from audio recordings of the performers playing. We assume that
a performer may consistently produce loudness/tempo changes unique to themselves at
specific points in a piece. Here we further continue this prior assumption to the problem
of identifying famous composers using minimal information obtained from their sheet
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music. We assume that a composer may consistently write changes in note combina-
tion, tempo, and underlying harmony unique to their style. The problem of identifying
a personal style in the written score could be considered far more complex then the
identification of an individual style in an actual performance, as different composition
genres have specific rules that composers usually adhere to.

We propose a scale invariant HMM for sheet music where the model’s hidden state is the
underlying harmony. We aim to keep the model as simplistic as possible while still able
to extract the composer’s characteristics from the sheet music. We also use our model
for new sheet music generation and composer identification. Furthermore we make use
of the Fisher kernel, as described in Section 3.3, for the identification task. The Fisher
score measures the change a probabilistic model must make in order to accommodate a
new sequence. It can, therefore, extract more information from the model than given
by their output probabilities alone. In our experiments we compare the application of
the two approaches on limited data.

6.2.1 Hidden Markov Model for Sheet Music

We represent the musical score by breaking down the length of a bar into 16 segments
(i.e. notes), each is a 1

16th of a bar. The choice of 1
16 is arbitrary but we believe it

to be sufficient to capture the common changes that occur within a bar. In order to
handle notes of a longer tempo, we keep track of the number of times a note needs to
be repeated in order to “complete” its actual length.

The model consists of four nodes in total; L - the current Location in the bar, H - the
underlying Harmony of the played note, N - the played Note and D - the Duration of
the current note. As the score’s underlying harmony is unknown, H is defined to be a
hidden node consisting of 24 states, 12 for the major and 12 for the minor possibilities.
N is an observed node with 13 states, 12 states for each note in an octave and the 13’th
state representing a rest. We only have 12 possible notes in the model as we reduce all
octaves to a single one. L is an observed node with 16 states, one for each position in the
bar. D is an observed node of 16 states representing the duration of the current note,
a value of 1 represents a note being played for 1

16 of a bar and a value of 16 represents
a note being played for the duration of the whole bar (i.e. 16 ∗ 1

16 = 1). As we have
defined our model to have 16 notes per bar; a note n ∈ N played, for example, for 1

4th of
a bar in position one will in fact be the same note repeated four times with a reducing
duration as shown in Figure 6.2, or as defined in the model as follows;

D1 = 4, L1 = 1, N1 = n

D2 = 3, L2 = 2, N2 = n

D3 = 2, L3 = 3, N3 = n

D4 = 1, L4 = 4, N4 = n.
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Figure 6.2: Handling of a note of length 1
4 in the HMM.

We define a model that would be both generic so that it would be applicable to different
types of scores and yet still specific enough to be able to extract the changes along the
underlying harmony. Currently the model can only handle single note melodies. We
define the following model using the nodes described above. The model’s probabilities

Layer 1

L

H N D

L

H N D

Layer 2

Figure 6.3: Scale invariant HMM for sheet music.

are defined as follows

• The location of a note is only dependent on the previous location, as we can only
move from location 1 to location 2 and so forth until location 16, after which the
location sequence is repeated.

• The underlying hidden harmony is dependent on a combination of the current
location in the bar, the previous harmony, the previous note played and its actual
playing duration.

• The current note is dependent on the current harmony, the location in the bar and
the previous note played with its duration.

• The current duration of a played note is dependent on the current played note, its
location in the bar and the previous duration of the previous note.

In Figure 6.3 a graphical example of the dependencies between two layers of the model
are presented. The model could be considered as scale invariant as all octaves are reduced
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to a single one. We define the conditional probabilities as follows, where music is viewed
as Markov model

P (Li|Li−1)

P (Hi|Li, Di−1, Ni−1,Hi−1)

P (Ni|Hi, Li, Di−1, Ni−1)

P (Di|Ni, Li, Di−1)

where we use, for simplicity, the convention that for i = 1

P (L1|L0) = P (L1)

P (H1|L1, D0, N0,H0) = P (H1|L1)

P (N1|H1, L1, D0, N0) = P (N1|H1, L1)

P (D1|N1, L1, D0) = P (D1|N1, L1),

We are able to claim with absolute certainty that when Di > 1, Di+1 = Di−1, Ni+1 = Ni

and Hi+1 = Hi, as we represent longer notes by smaller ones, we need length (Duration),
to be present. Therefore we set the model’s probabilities to uphold this condition before
training the model.

We use Mup 5.0 software by Arkkra Enterprises2 to provide us with a machine readable
format of sheet music. Mup takes a text file as input and produces PostScript output
for printed music. It can handle both regular notation and tablature notation. Mup can
also produce MIDI output and by using a third party extension, midi2mup3, one can
convert MIDI files to Mup files.

We will be using fixed length hidden Markov models. For these the Fisher scores can be
computed as shown in Algorithm 6, Section 3.3. Note that we have only computed the
Fisher scores for the emission probabilities P (σ|a) for state a and symbol σ. By over-
looking the transition probabilities PM (b|a) we are not taking into account the changing
harmony structure of a piece. Therefore the Fisher scores that we use only contain part
of the information encoded by the HMM.

Note that in our application the state variable incorporates the information of the hidden
state as well as the bar position. This simple trick allows us to handle the apparently
more general situation of allowing different emission probabilities for different positions
in the sequence.

2Arkkra homepage - http://www.arkkra.com/
3Available from http://www.arkkra.com/doc/userpgms.html

http://www.arkkra.com/
http://www.arkkra.com/doc/userpgms.html
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6.2.2 Compositions Used & Setup

In our experiments we use the MIDI database from the school of music in the University
of Arizona4 for MIDI files of composition by Johann Sebastian Bach, Wolfgang Amadeus
Mozart, Ludwig van Beethoven and Georg Frideric Handel. We extracted the following
MIDI files for each composer:

Johann Sebastian Bach -
Brandenburg Concerto #2 in F (I)
Brandenburg Concerto #2 in F (II)
Brandenburg Concerto #2 in F (III)

Wolfgang Amadeus Mozart -
Sonata K. 545 (I)
Symphony #40 in G (III)

Ludwig van Beethoven -
Symphony #6 in F (I)

Georg Frideric Handel -
Air from Keyboard Suite V in E major

Although this data is limited in size, it is the only publicly available MIDI data we
were able to obtain and use in the Mup software. As several MIDI files could not be
converted to Mup files, probably due to artefacts in the MIDI that the midi2mup script
could not process. The MIDI files were converted into single note melodies of machine
readable sheet music using Mup. Then the scores for each composer were combined
and divided sequentially into separate samples, where each sample contained 7 bars.
Therefore we obtain 18 samples for Johann Sebastian Bach where 14 are used as train-
ing samples and 4 as testing samples. 14 samples for Wolfgang Amadeus Mozart where
10 are used as training samples and 4 as testing samples. 14 samples for Ludwig van
Beethoven where 10 are training samples and 4 are testing samples and 11 for Georg
Frideric Handel where 8 are used as training samples and 3 as testing samples. In order
to keep the methods comparable we use the same training-testing sample split across
the different approaches.

In the experiments section we compute, per method, the Receiver Operating Char-
acteristic (ROC) true-positive and false-positive values using Matlab5 code written by
Fawcett (2004). This allows us to compare results across the two different methods. We
also compute the area under the ROC using the same package. The HMM model was

4Available from http://www.arts.arizona.edu/midi/
5Mathworks homepage - http://www.mathworks.com/

http://www.arts.arizona.edu/midi/
http://www.mathworks.com/
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implemented in Matlab using the Bayes Net Toolbox written by Kevin Murphy6. We
have initialised the states with a multinominal conditional probability distribution and
trained using the expectation maximisation log-likelihood algorithm. Each composer
was trained to be a separate model.

We have also used the OSU-SVM 3.00 toolbox for Matlab7 implementation of support
vector machines. We use the set parameter settings, for the linear kernel penalty param-
eter C = 1 and for the Gaussian kernel penalty parameter C = 1 and Gaussian width
γ = 0.1. These fixed settings may not produce the best possible results, although due
to limited data we did not perform any parameter tuning.

6.2.3 Sheet Music Generation

Following the training process of the individual models per composer, we are able to gen-
erate sequences of “new” sheet music using the learnt probabilities within each model.
This is done for each composer by choosing initial random probabilities and then travers-
ing through the model. We perform the sheet music generation as a means of sanity
check, this is in order to insure that the model’s are indeed able to learn anything from
the musical context.

We generate and present new sheet music as follows; In Figure 6.4 for Wolfgang Amadeus
Mozart. In Figure 6.5 for Johann Sebastian Bach. In Figure 6.6 for Ludwig van
Beethoven and in Figure 6.7 for Georg Frideric Handel.

Figure 6.4: Mozart HMM generated sequence.

Figure 6.5: Bach HMM generated sequence.

Although there are several obvious harmonic errors in the generated scores in Figures
6Available from http://www.cs.ubc.ca/∼murphyk/Software/BNT/bnt.html
7Available from http://www.ece.osu.edu/∼maj/osu svm/

http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html
http://www.ece.osu.edu/~maj/osu_svm/
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Figure 6.6: Beethoven HMM generated sequence.

Figure 6.7: Handel HMM generated sequence.

6.4−6.7 we are able to observe a clear distinction between the individual generated
sequences. When listened, the sequences performed overall harmoniously, containing
obvious structure. We are able to observe that even with such limited data of single
note melodies we are able to capture some aspects of style, even if still far from the true
composer’s work. We believe that more data should give us better results, as it would
have more examples to train on.

6.2.4 Identification

For brevity we use the following shorthand across the tables in this section;

M represents Wolfgang Amadeus Mozart
Ba represents Johann Sebastian Bach
Be represents Ludwig van Beethoven
H represents Georg Frideric Handel.

In the following tables, X-Model refers to the HMM model trained on the training
samples of composer X. The results displayed under X-Model are for the testing samples
of composer X versus the testing samples of the remaining composers. We have four
models, one for each of the composers. We do a pair-wise comparison of the HMMs
where each HMM is trained on the positive information. This is then later used in the
Fisher kernel (Jaakkola and Haussler, 1999).

We test the classification rate of the Markov models, per composer, by computing the
log-likelihood of a testing sample being generated by that particular model. In Table
6.5 the area under the ROC values for the four HMM models are given. An area under
the ROC of 0.5 represents random (50%). We are able to observe that our proposed
HMM, excluding the model for Ludwig van Beethoven, is indeed able to learn from the
sheet music and identify the different composers.
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It is interesting to observe the lower than random identification result produced for the
Ludwig van Beethoven model versus Wolfgang Amadeus Mozart and Georg Frideric
Handel. When observing the generated music sequence in Figures 6.4−6.7 for each
composer model, we notice that the sequence generated for Georg Frideric Handel and
Wolfgang Amadeus Mozart are of a higher complexity than those generated for Ludwig
van Beethoven and Johann Sebastian Bach. This implies that the musical structure
learnt by these models are of a higher complexity then of the others. We therefore
suppose that the more complex models are able to generalise to the simpler ones and
not vice versa, explaining our results.

Table 6.5: Composer identification area under ROC using the HMM.

vs. M-Model Ba-Model Be-Model H-Model
M 0.88 0.25 1.00
Ba 1.00 0.94 1.00
Be 0.75 0.75 1.00
H 1.00 1.00 0.34

Following Section 3.3 we compute the Fisher scores, per model (i.e. composer), for the
training and testing samples. We also train an SVM on the same data using the Fisher
kernel previously described.

Table 6.6 shows the area under the ROC values for the linear kernel on the Fisher
score. It seems that the linear kernel of the Fisher score is unable to extract the relevant
information for the composer classification. This is not entirely surprising as we only
make use of part of the HMM probabilties. Using both the emission and transition
probabilities with further research into tuning the SVM penalty parameter C and further
experimentation with more data may yield a higher accuracy rate.

Table 6.6: Composer identification area under ROC using the Fisher linear kernel.

vs. M-Model Ba-Model Be-Model H-Model
M 0.44 0.63 0.67
Ba 0.88 0.63 0.42
Be 0.69 0.38 0.42
H 0.92 0.59 0.42

Table 6.7 shows the area under the ROC values for the Gaussian kernel on the Fisher
score. The Gaussian kernel over the Fisher score is able to yield a higher classification
rate then the linear kernel, although slightly lower than the HMM. Again, as with the
linear kernel, tuning the SVM penalty parameter C and Gaussian width parameter γ

per model may result in a higher accuracy rate then currently reported.
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Table 6.7: Composer identification area under ROC using the Fisher Gaussian kernel.

vs. M-Model Ba-Model Be-Model H-Model
M 0.57 0.82 1.00
Ba 0.82 0.63 0.84
Be 0.63 0.57 0.84
H 0.83 0.59 0.59

It is interesting to observe that even though the incomplete Fisher score it seems to
be able to generalise over the Be-Model for the discrimination between Mozart and
Handel, although due to the limited size of data used a clear conclusion can not be made.

We are able to observe that by using the HMM and the Gaussian kernel on the Fisher
score, we are indeed able to identify composers given their sheet music. The results of
the Gaussian kernel on the Fisher score suggest that with proper SVM parameter tuning
we may be able to outperform the HMM, as for example the Gaussian kernel is able
to extract more information from the Ludwig van Beethoven model, achieving a higher
area under the ROC value, than with the HMM alone. Again this is with only partial
information of the HMM probabilities.

It may seem a bit unreasonable to use only the Fisher kernel from the Beethoven model
when attempting to separate Beethoven from say Mozart. One would expect that both
models should be included in the kernel probably by simply adding the two kernels
together. We show results of combining the separate HMMs for the Ba-Model using the
Gaussian Fisher kernel. We have chosen this model as it has shown a worse performance
then the other models. Table 6.8 shows that incorporating the information from the
Ba-Model with the models of the other composers provides a much higher identification
rate for Johann Sebastian Bach versus Wolfgang Amadeus Mozart and Georg Frideric
Handel while achieving a slightly lower identification versus Ludwig van Beethoven.

Table 6.8: Composer identification area under ROC using the Fisher Gaussian kernel
for combined HMMs.

Result
Ba-Model + M-Model 1.00 (Ba Vs. M)
Ba-Model + Be-Model 0.42 (Ba Vs. Be)
Ba-Model + H-Model 0.80 (Ba Vs. H)

6.2.5 Conclusions

We have demonstrated an application of learning musical structure from the actual
sheet music rather than the more common methodology of learning the structure from
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a musical representation. We believe this to be an interesting and challenging problem,
which as of yet has not been explored in depth. The preliminary results of both using
the HMM and the Fisher score suggest that it is indeed conceivable to extract such
information regarding the musical writing style from the musical score without reference
to its performance. We emphasis that this is preliminary work, and therefore clear
conclusions can not be made.

6.3 Summary

In this chapter, two methods for learning the structure of music have been introduced.
One based on the performance of a piece and hence focused on the identification of the
individual performers according to their playing style. While the second method aims
to learn the structure of the music directly from the written score and hence identify the
various composers. The methods learn the underlying structure of music by extracting
relevant features from the data, both have demonstrated good results and that it is
indeed able to learn musical structure from performance and written composition.





Chapter 7

Medical Analysis

“The real danger is not that computers will begin to think like men, but that men will
begin to think like computers.” - Sidney J. Harris

In recent years there has been a vast increase in research towards Brain Computer
Interfaces (BCI). The futuristic ability of allowing a person to control a machine through
thought and hence having the machine able to analyse and “understand” the process of
the mind. Improving the accuracy in the functional analysis of the brain is a key issue
for neurological understanding. We show how semantic models can be utilised for both
analysis as well as classification of cognitive processes. The understanding of the human
brain functionality is vital for any possible cybernetic link between human and machine.

7.1 Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging or fMRI, is a relatively new imaging technique
with the goal of mapping different sensor, motor and cognitive functions to specific
regions in the brain. fMRI allows one to carry out specific non-invasive studies within

89
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a given subject while providing an important insight into the neural basis of mass of
brain processes. Neurones, which are the basic functional unit of the brain, consume
a higher level of oxygen when active. To achieve this, blood with a higher level of
oxygenation is supplied. fMRI makes an indirect use of this effect to detect areas of the
brain which have an elevated consumption of oxygen. The current methodology used to
identify such regions is to compare, using various mathematical techniques (McIntosh
et al., 1996; Aguirre et al., 1998), the elevation of oxygen consumption during a task
with the oxygen consumption during a resting state. Figure 7.11 gives an example of
the extracted slices from the brain. The convention with fMRI images is to view them
from foot to head and therefore in the right image of Figure 7.1, the left hemisphere is
in-fact the right side of the brain and the right hemisphere is the left side. The image
series extracted from the brain corresponds to the time-sequence of active and non-
active states, as shown in Figure 7.22. In order to keep the alternation between activity,
a reference time-sequence is needed, where the resting and active states are embedded.
A commonly used reference time-sequence is the square-wave time-sequence as plotted
in Figure 7.3.

Figure 7.1: Left image: Extracted slices from the brain. Right image is an individual
fMRI image displayed from ‘above’.

The BOLD3 response evoked by a stimulus varies between different brain areas and
between different test subjects (Aguirre et al., 1998; Glover, 1999). A common approach
to the BOLD response is the usage of a square-wave signal, although in order to maximise
detection sensitivity, such variations must be accounted for. For example, there is a delay
between stimulus presentation and the onset of the BOLD response which lie in a range
of several seconds (Saad et al., 2001). A computationally and theoretically tractable
approach is to capture the BOLD response variations in a linear subspace spanned by a
set of temporal basis functions. An example of such a subspace is the truncated Fourier
subspace, which is spanned by a set of sine and cosine functions. A commonly used

1Figure kindly provided by Ola Friman.
2Figure kindly provided by Ola Friman.
3Blood Oxygenation Level Dependent.
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Figure 7.2: The time-sequence as a fMRI image sequence across time, with an example
of a location in the brain that correlates to the activity and non activity paradigms and

a location that does not correlate.
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Figure 7.3: The commonly used square-wave reference time-sequence.

Fourier subspace is

yt =


sin(kwt)
cos(kwt)
...

w =
π

T
, t = 1 . . . ` (7.1)

where T is the period of time-sequence reference4, ` is the number of observations for
each fMRI slice, and k = 1, . . . , 4. These basis functions are especially useful when a
blocked experimental design is utilised (i.e active/not active experimental structure).

4The length of the active and non active duration



92 Chapter 7 Medical Analysis

7.2 fMRI Activity Analysis

In fMRI analysis, we are interested in examining and extracting the voxels5 that are
related to the task at hand. There are several techniques for the analysis of fMRI
activation, such as those described in McIntosh et al. (1996); Friston et al. (1995) and
Lange et al. (1999). The most frequently used approach is Ordinary Correlation Analysis
(OCA), which is also known as Pearson’s correlation. In this approach we compute the
correlation between the intensity change of a voxel to the given time-sequence. Let y be
the defined time-sequence of length ` and xt the vectorised fMRI image for t = 1, . . . , `.
We compute the correlation of voxel i to the time-sequence as

ρi =
∑`

t=1 xt
iyt√∑`

t=1(x
t
i)2
∑`

t=1 y2
t

.

Applying the computation to all the voxels results in a correlation map identifying the
corresponding active and non-active voxels in the brain. The OCA approach is limited
to modelling a single BOLD response and is also unable to take into account the possible
effects neighbouring voxels may have on each other.

Performed tasks are usually associated with regions in the cortex, which may imply
that neighbouring voxels affect each other’s activation intensity. Friman (2003) showed
that by introducing multidimensional variables it is possible to take into account these
neighbouring effects by analysing a region of voxels. The multidimensional variable
also allows us to take into consideration several basis functions in order to maximise
detection sensitivity by accounting for possible delays. The multidimensional variables
are represented as a linear combination of a 3× 3 pixel region intensity

〈wx, x̂t〉 =
〈
wx1 , x

t
1

〉
+ . . . +

〈
wx9 , x

t
9

〉
and by a linear combination of basis functions, as described in the previous section and
in equation (7.1)

〈wy, ŷt〉 =
〈
wy1 , y

t
1

〉
+ . . . +

〈
wy8 , y

t
8

〉
.

We create a correlation mask by computing the correlation values for an overlapping
3×3 region and assigning the largest correlation value to the centre pixel of that region.
Figure 7.4 visualise how CCA can be applied to fMRI scans.

We argue that distant voxels, and not only close proximity ones, may affect the intensity
of activation. Therefore we need to take into account all the voxels and their relative
effect on each other. This can be computed using CCA but in practice taking into

5In general voxels refers to the three dimensional equivalent of a pixel. A pixel is a “picture element,”
and a voxel is a “volume element”. Here we use it to refer to the pixel corresponding to the smallest
element depicted in a three-dimensional computed by the fMRI.
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Figure 7.4: Applying CCA between a set of fMRI time-sequences and a 3× 3 region
of pixels.

consideration all pixels will become too computationally expensive to perform. When
we use CCA we apply the 3 × 3 overlapping region as described above. We propose
to extend CCA into the kernel framework, allowing us to represent an entire three
dimensional brain as a single time point entry in the kernel. Therefore taking into
account the effect of all voxels on each other. Since the correlation values will correspond
to a given time point rather then a voxel. We compute the associate voxel weight values
using the learnt semantic projection, by “stepping back” to the primal representation.
The need to compute the primal weights limits us to the use of linear kernels. The
advantage gained by using KCCA for the fMRI analysis application is computational
only.

7.2.1 Simulated Data

6 The use of real fMRI scans imposes a problem of statistically assessing a given ap-
proach, as the true labels of activation are only presumed but not known. We aim to
give a level of method assessment by using simulated data. This is still not the best way
to validate an approach, as the synthetic activation does not contain any delays, that
may occur in real fMRI.

We embed synthetic activity, as plotted in Figure 7.5, into null-data7. The paradigm
of the applied activity is 10 images rest, 10 images activity and so forth, resulting in
` = 200 time points. We use a square-wave representation of activity 1 and rest −1 as
there are no delays that need to be accounted for. The fMRI image is a 100×100 pixels.

In Figure 7.68 the OCA computed correlation are shown, we are able to visually estimate
that all the synthetic activation has been located. The correlation values computed
using CCA are displayed in Figure 7.7. We are able to observe that as we are using a

6Brain activity figures of higher resolutions will be available online at
http://homepage.mac.com/davidrh/

7Null-data means that all the brain images are taken from the same time point.
8In the figures presented, blue represents the negative correlation while red represents the positive.
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Figure 7.5: The embedded synthetic activity into the fMRI null-data scan.
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Figure 7.6: The computed OCA correlation values on the fMRI null-data.
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regional window sliding over the brain, the located activated regions have a tendency
of overflowing to nearby pixels. We visualise in Figure 7.8 the weights computed using
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Figure 7.7: The computed CCA correlation value on the fMRI null-data.

KCCA. We find it visually identical to the OCR correlation’s in Figure 7.6.
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Figure 7.8: The computed KCCA weight values on the fMRI null-data.

The usage of correlation for the baseline methods and weights for the KCCA approach
may imply that we are unable to compare them directly. We therefore provide further
statistics by computing the true-positive voxels, the pixels which are found and really
are active. The false-positive voxels, the pixels which are found to be active but in fact
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are not. We compute the true-positive/false-positive threshold values by taking all the
pixel values in increasing order.
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Figure 7.9: OCA found true/false-positives.
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Figure 7.10: CCA found true/false-positives.
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Figure 7.11: KCCA found true/false-positives.

In Figure 7.9 we plot the true/false-positive as found by OCA, in Figure 7.10 the values
as computed by CCA and in Figure 7.11 the found true-positive and false-positive pixels
using KCCA. The right-hand figure in Figures 7.9 - 7.11 is a zoomed version of the left-
hand figure when the true/false-positive pixel plot nears the Threshold axis. We are
able to observe that OCA and KCCA are again very similar to each other and when
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using a certain threshold the number of false-positive pixels drops below that of the
true-positive. This does not happen with CCA where the number of false-positive pixels
is always greater than true-positive.

Finally, we plot a recall vs. precision of the positive pixels extracted by the different
approaches over the different threshold values. Here we look at the true-positive pixel
ratio and expect CCA to be more successful than the other methods as the ‘overflowing’
effect seen in Figure 7.7 will assure that most, if not all, of the true-positive pixels
will be located. Although, as observed in Figure 7.10 this does not assure us that the
false-positive will be also low. We compute the recall and precision as follows

recall =
true− positive

all − positive

precision =
true− positive

(true− positive) + (false− positive)
.

We observe in Figure 7.12 OCA and KCCA share the same pattern of behaviour where
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Figure 7.12: Recall vs. Precision for simulated fMRI.

OCA is able to find a little more true-positive pixels then KCCA. CCA presents an
interesting behaviour pattern which could be interpreted as a sharp drop in true-positive
pixels to false-positive pixel followed with a steady line of true-positive found pixels while
the false-positive pixels drop. This reaches a crossing point with OCA and KCCA, which
also passes the other two methods. This informs us that the overall number of true-
positive pixels found from this point are greater then those found in OCA and CCA,
although as previously stated this does not indicate the number of false-positive pixels
found.

From the various comparisons performed we are able to find that CCA is more able to
emboss the active regions. Though this comes at the price of covering voxels that may
not be active. We find that OCA and KCCA are similar in performance to each other,
although KCCA provides a more powerful computational tool as it is able to compute
the activity analysis for all voxels in the brain simultaneously.
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7.2.2 Finger Flexing

In the following two real data experiments we only present the visual results, as the true
labels are unknown9. It is important to emphasise that a direct comparison between
the methods may not be adequate as KCCA uses weights while CCA and OCA use the
actual correlation values. Despite this, we feel that it is adequate to present the results
as the weights represent information given in the correlation. As we are using real fMRI
data in the experiments, delays will be present in the activation of the tasks. Therefore
we use for the KCCA and CCA methods, the time-sequence as a set of basis functions
as described in Section 7.1.

The fRMI scans are of a volunteer flexing their index finger on the right hand inside a
MR-scanner while 12 image slices of the brain were obtained from a T2∗-weighted MR
scanner. The time-sequence reference of the flexing is built from the subject performing
a sequence of 20 total actions and rests consisting of rest, flex, rest, . . . flex. Two hundred
fMRI scans are taken over this sequence; ten for each action and rest. The individual
fMRI images are dicom10 format of size 128× 128.

We anticipate the motor cortex located in the middle-lower right region to be highlighted,
as the subject is moving their right index finger. Figure 7.13 presents the correlation
values found using OCA. We are able to observe that although the expected active
regions for the finger flexing task are highlighted, there are many regions highlighted
as well, making distinguishing the active and non-active difficult. In Figure 7.14 the
correlation image using CCA is presented where the image is clearer than that of OCA.
The active region is highlighted in contrast to those that are not, making the separation
clear. In Figure 7.15 the weighted image displayed is computed by KCCA. We view
that the expected active region is also found with more information than that displayed
in Figure 7.14 though clearer than that displayed in Figure 7.13.

7.2.3 Mental Calculation

In the second experiment, the task given to the volunteer was to compute the sum of two
numbers that were projected onto a wall in the scanner room while 12 image slices of the
brain were obtained from a T2∗-weighted MR scanner. The time-sequence reference of
the flexing is built from the subject performing a sequence of 30 total actions and rests
consisting of rest, flex, rest, . . . flex. One hundred and eighty fMRI scans are taken over
this sequence; fifteen for each action and rest. The individual fMRI images are dicom
format of size 128× 128.

Figure 7.16 presents the results obtained by OCA, we are able to observe that no useful
information regarding the activation process can be extracted from the computed image.

9Due to space limitation all the fMRI images displayed are of slice 12.
10For information regarding dicom see http://medical.nema.org/

http://medical.nema.org/
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Figure 7.13: Finger flexing activity detection using OCA.
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Figure 7.14: Finger flexing activity detection using CCA.
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Figure 7.15: Finger flexing activity detection using KCCA.

In Figure 7.17 we can view the CCA correlation mask for the mental calculation task,
we find that in this image a clear separation between active and non-active regions are
found. In these types of experiments neurological interpretation is hard to obtain.
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Figure 7.16: Mental task activity detection using OCA.

In Figure 7.18 we observe the active regions as produced from KCCA. We find that the
active regions located are similar to those located in Figure 7.17 although 3− 4 regions
are deep blue suggesting negative correlation. The negative correlation, or de-activation
are due to a higher activity during the rest periods than during the active periods. We
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Figure 7.17: Mental task activity detection using CCA.
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Figure 7.18: Mental task activity detection using KCCA.
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believe that this is not located in CCA due to the small world view, analysing a section
at a time, while in KCCA the procedure is applied to the entire brain.

7.3 Signal Reconstruction

In the following section we present an approach for statistically reconstructing a signal
from fMRI scans. This reconstruction approach will allow us to determine the validity
of our prior analysis, for if we have learnt the appropriate function we will be able to
reconstruct it. We create a matrix X whose rows contain the fMRI training samples
and X̃ the matrix containing the fMRI testing samples. Similarly a matrix Y with rows
containing the training activity time sequence and Ỹ the testing activity signal we want
to reconstruct. Let

gwx,wy = ‖Xwx − Y wy‖2 (7.2)

where gwx,wy ≈ 0 as we want the feature Xwx from one view of the data to be identical
to the feature Y wy obtained from the second view of the data, this will be true on the
training data if there is a high correlation between the two views. Therefore we can
rewrite equation (7.2) as

‖Xwx − Y wy‖2 ≈ 0

Xwx ≈ Y wy (7.3)

Let K̃x = X̃X ′ be the fMRI testing kernel and K̃y = Ỹ Y ′ be the time sequence testing
kernel. As shown in Section 4.3 this equivalence can be held true also for the testing
data using efficient regularisation. Hence we justify the use of equation (7.3) to define

X̃wx ≈ Ỹ wy

K̃xα ≈ Ỹ Y ′β.

We rearrange the equation to express the testing-set unknown activity time sequence to
be

Ỹ ≈ (K̃xα(Y ′β)−1). (7.4)

Since we are no longer interested in the weights but in the reconstruction of the signal,
we are no longer limited to the use of linear kernels. In the following experiment we
compare the success rate between the linear kernel as used, and the Gaussian kernel
defined as

K(xi, xj) = exp
(
−‖xi − xj‖2

2σ2

)
,
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using σ as the minimum distance between the different labelled images.

We test our approach using the square-wave time sequence of 1 representing activity and
−1 representing rest for both the simulated and real data experiments. The real data is
comprised of mental calculation, the adding of two numbers, and right hand index finger
flexing as previously described. For the simulated data and mental calculation we use
the first 160 scans for training and the remaining 20 for testing, while with the finger
flexing we use the first 180 for training and the remaining 20 for testing. We randomise
the example sequence prior to the training and testing separation. Once we obtain the
reconstructed Yt we threshold it

Ŷ ,

{
1 if Ỹ ≥ 0
0 otherwise.

Table 7.1 shows the average overall results of successfully reconstructing the activity time
sequence for the testing fMRI data over 10 repeats using both a linear and Gaussian
kernels. We are able to see that the linear kernel performs better than the Gaussian.

Table 7.1: Success rate in reconstructing the test activity time sequence

Data-Set Linear Gaussian
Average Standard Deviation Average Standard Deviation

Simulated data 96% 5.16% 93.5% 8.18%
Finger flexing 70.5% 10.12% 63.5% 8.83%

Mental calculation 51% 9.36% 44.5% 7.24%

We attempt to learn the relationship between the mental process prior to the finger
flexing by setting the square-wave sequence such that the three images before the actual
finger flexing are considered as active and all the remaining images are considered as
inactive (see Figure 7.19). Separating the data and training as before using only a linear
kernel, we attempt to reconstruct the new square-wave sequence. Repeating the process
over an average of 10 random runs we find that we can successfully reconstruct the signal
with a success average of 68.5%± 9.14%. Implying that the mental process prior to the
actual motor process is sufficient to capture the functionality in the brain.

7.4 Classifying Cognitive States

Here we are interested in the inverse problem than addressed in Section 7.2 - given the
entire fMRI data, to classify the cognitive task the subject was engaging in. This is a
challenging task since, amongst other things, the subject may be engaged in a variety of
tasks; the dimension of data is enormous; and without more information, the signal to



104 Chapter 7 Medical Analysis

0 10 20 30 40 50 60

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A
ct

iv
ity

Time

Mental activity
Motor activity

Figure 7.19: Activity plot of the mental process prior to the motor one.

noise ratio may be quite poor. One can think of this as a standard classification problem;
and in this context one can use either clustering, one-class or two-class techniques.

From the standard two-class perspective, Mitchell et al. (2004) applied machine learning
techniques to this problem, when considering the classification of the cognitive state of a
human subject. Thus, in order to determine the elevation of oxygen consumption during
a task, images acquired during a resting state are required for the second class.

We also consider the problem of identifying fMRI scans that have only been acquired
during the active state, i.e. scans acquired during the time when the human subject has
performed the given task. In machine learning terminology, this is called “one-class”
classification, because the learning method is trained solely with positive information.
One expects that, if available, two-class classification should perform better; although
not always (Japkowicz, 1999). However, as is the case under consideration here, often
we have some reasonable sampling of the positive examples, i.e. the distribution of
positive examples can be estimated while the negative examples are either non-existent
or episodic (i.e. not necessarily representative).

Obtaining good results under this assumption is known to be quite challenging (Manevitz
and Yousef, 2001; Jo and Japkowicz, 2004; Yousef, 2000; Schwenk and Milgram, 1995),
nonetheless it is often the most realistic assumption. For the fMRI classification de-
scribed above, this problem is particularly non-trivial as we expect the data to be of
very high dimension and extremely noisy, as the brain concurrently works on many given
tasks. It is also quite natural to assume that there is only representative data of the
task of interest; and not necessarily representative data of the negation of this task thus
making the one-class learning techniques appropriate.
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The general linear model used for fMRI analysis works by assuming the effect of a state
is a convulsion that can be represented by basis functions. The total state is a linear
combination of these basis functions. Since these are functions of time, the evolution of
the response is interpolated. The NN and SVM methods use a static pattern recognition
idea. The variance over time works because one gives examples over all the time period.
Thus one can identify a static state of the brain without following its time course.

In this section, we investigated both one-class and two-class learning regarding data
involving both motor tasks (where we imagine important features to be in the motor
cortex) and visual tasks (where we imagine important features to be in the visual cortex).

7.4.1 Applied Learning Techniques

We used two major one-class learning techniques - “bottleneck” or compression neural
networks (Manevitz and Yousef, 2001) and a common version of the one-class SVM
(Scholkopf et al., 1999) on brain slice data obtained from fMRI obtained while a subject
is doing a simple motor (“finger lifting”) task. We point out that we use the entire brain
slice, with no pre-filtering - i.e. the data is the entire slice, labeled with the task. 11 In
addition, since we use data where there was, in fact, two-class labeling, we use this to
illustrate the difference in the two methodologies, and how much classification ability is
lost.

We use two techniques for the one-class approach. The first one is the compression
neural network method (Cottrell et al., 1988; Japkowicz et al., 1995; Manevitz and
Yousef, 2001). We apply a design of a feed-forward neural network where in order to
accommodate the usage of only positive examples we use a “bottleneck”. A bottleneck
feed-forward network has the assumption that the images are represented in a m di-
mensional space where we choose a three level network with m inputs, m outputs and k

neurons on the hidden level, where m > k. Figure 7.20 gives a graphical example of the
bottleneck network. This network is then trained using the standard back-propagation
to learn the identity function on the sample (Manevitz and Yousef, 2001). Thus the
architecture of the bottleneck neural network used, is that of a feed-forward one with
three layers, an input, hidden and output layer. All the neurons used were standard
sigmoids and initial weights were chosen as small random values. We have used the
standard back-propagation in the Neural Networks Toolbox in Matlab, where we have
trained for 20 epochs which we observed avoids overfitting.

11 In early simulations because of computational limitations, we manually reduced the brain to one
quadrant, where the motor cortex is known to lie. This reduction increased the efficacy of the methods
presented here, for example, lifting the classification of the compression neural network for the motor
data.
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Figure 7.20: Bottleneck NN Architecture

One of the problematic issues with NN is the choice of threshold for classification. Jap-
kowicz et al. (1995) has suggested a heuristic approach to the threshold selection using
only the positive information. This is done by training the network for some predeter-
mined number of epochs and to relax the maximal error obtained by some percentage.
Manevitz and Yousef (2001) have tested this approach with poor results, and have sug-
gested an opposite approach. Instead of relaxing the maximal error obtained during
training, they tighten the threshold by an amount heuristically related to the percent-
age of examples with near zero error in the training set. We suggest a different approach.
Experimentally we repeatedly found that the error during training exhibits a behaviour
of having two spikes of high error, whereas following the second spike the error reduces
to near zero. We thus take the threshold as the value of the error following the second
spike. In Figure 7.21 the error during training and average error on testing is plotted.
We are able to observe that the average error on testing is roughly the same as the value
following the second spike.

The second method used is the one-class Support Vector Machine (SVM) as proposed by
Scholkopf et al. (1999). Under this method, instead of separating positive and negative
samples in the kernel feature space, as in standard (two-class) SVM, the origin is the
only negative sample and therefore the method separates the positive samples from
the origin. To separate the data from the origin we solved the following (quoted from
Scholkopf et al. (1999))

minw∈F,ξ∈R,ρ∈R
1
2‖w‖

2 + 1
ν`

∑`
i ξi − ρ

subject to 〈w, φ(xi)〉 ≥ ρ− ξi, ξi ≥ 0
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Figure 7.21: Error during training and average testing error.

where ν ∈ [0, 1] is the trade off parameters between having the norm of the weight small
and having the decision function f(x) = sgn(〈w, φ(x)〉 − ρ) positive for most samples in
the training set.

We use the OSU-SVM 3.00 package12 for Matlab for the SVM experiments.

7.4.2 Motor Tasks

The fMRI scans are the same as used in Section 7.2.2 where each image is labelled as
either 1 (active) or −1 (inactive). The labelling was done manually at the time of the
scans. Thus, in our data we have 100 positive and 100 negative images for each of the
12 slices. For the bottleneck neural network 80 positive samples were chosen randomly
and presented for training and 40 samples, consisting of the remaining 20 positive and
20 random negative samples, were used for testing. This experiment was redone with
ten independent random runs. The limitation to 20 negative samples out of a possible
100 were chosen to keep the testing fair between the positive and negative classes.

The compression percentage arising from the bottleneck was chosen by experimenting
with different possible values. Table 7.2 shows some typical results. A uniform com-
pression of about 60% gave the best results. The irrelevant (non-brain) image data was
cropped for each slice resulting in a slightly different input/output size for the network
for each slice.

Table 7.2: Bottleneck compression comparison results in accuracy of classification

Method Result on slices Compression
BN - NN 56.19%± 1.26% 60%
BN - NN 56.02%± 0.89% 70%
BN - NN 54.79%± 0.90% 80%

12OSU SVMs Toolbox http://www.ece.osu.edu/∼maj/osu svm/

http://www.ece.osu.edu/~maj/osu_svm/
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Thus a typical network had an architecture of about 8, 300 (input level) × about 2, 500
(compression level) × 8, 300 (output level). The network was trained to the identity
using 20 epochs on the above chosen data. Following training the network was used as a
classification filter, with an input value being classified as positive if the error level was
lower or equal to a threshold as defined in the previous section and classified as negative
otherwise. We used the same protocol in the one-class SVM.

Additionally, we used the two-class SVM where we randomly selected 160 training images
and the remaining 40 for testing. This was also repeated 10 times. We performed this
experiment twice; by running another fMRI session on the same individual performing
the same task. We report the results of each session separately.

The obtained results are an average over all the slices. Both SVM classifiers were used
in their default setting as set by the OSU-SVM 3.00 package with a linear kernel with
C = 1 and a radial based (RBF) kernel with γ = 1, the one-class SVM was used with
ν = 0.5. In addition, the two-class SVM was used with the unnormalised data as we have
experimentally found that when the data was normalised, as with the other methods,
the two-class SVM the overall results were significantly worse.

7.4.2.1 First Session

The one-class SVM is constructed around the RBF kernel, therefore we give in Table 7.3
a result comparison of the classification accuracy for the linear and RBF kernel. We are
able to observe that while the one-class SVM performs better with the RBF kernel, the
two-class SVM performs better with the linear kernel. The performance is as expected
as we are able to observe that in previous experiments shown in Table 7.1 (Section 7.3),
that the application of Gaussian kernel directly to the fMRI data does not perform as
well.

Table 7.3: SVM Results - accuracy of classification.

Method Linear kernel RBF kernel
One-class SVM 49.12%± 0.86% 59.18%± 1.47%
Two-class SVM 68.06%± 2.10% 44.70%± 1.12%

In Table 7.4 we compare the one-class to two-class techniques for the motor task. As
initially expected we are able to observe that the two-class approach outperforms those
of the one-class. The one-class SVM is slightly better then the bottleneck compression
NN. We further analyse the statistics of the methods i.e. the separation of the classified
samples to their true classes. In Table 7.5, we compute and show the statistics of
the fMRI images of the positive samples that were classified as positive, denoted as
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Table 7.4: Methods success results.

Method Result on slices
BN - NN 56.19%± 1.26%

One-class SVM 59.18%± 1.47%
Two-class SVM 68.06%± 2.10%

true-positive, and the positive samples that were classified as negative, denoted as false-
negative. While in Table 7.6 the statistics of the negative fMRI images samples that were
classified as negative, denoted as true-negative, and those that were classified as positive,
denoted as false-positive, are presented. We observe in Table 7.5 that the compression
NN is able to find a higher rate of true-positive fMRI images then the one-class SVM
and the two-class methods even though they have obtained a higher overall success rate.
In Table 7.6 we observe that the two-class methods perform better than the one-class.
This is expected as the one-class methods make no use of the negative samples and so
will have a lower ability in classifying it.

Table 7.5: Methods Statistics - Positive testing samples

Method True-Positive False-Negative Standard Deviation
BN - NN 78.96% 21.04% ±3.15%

One-class SVM 72.83% 27.17% ±1.98%
Two-class SVM 71.55% 28.45% ±3.21%

Table 7.6: Methods Statistics - Negative testing samples

Method True-Negative False-Positive Standard Deviation
BN - NN 33.42% 66.58% ±3.45%

One-class SVM 39.25% 60.75% ±3.25%
Two-class SVM 65.64% 54.46% ±3.02%

7.4.2.2 Second Session

We corroborate our previous results by running the same experiments on a second fMRI
session. The second session was obtained similarly as the first from the same individual.
The experiments have been run with the same configurations of the compression NN and
one/two-class SVM. Table 7.7 shows the success rate in correctly classifying the fMRI
scan of the second session. We find that the compression NN is slightly better than the
one-class SVM by≈ 4%. Tables 7.8 and 7.9 give the statistics of the positive and negative
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testing samples, as in the distribution of correctly found positive and negative samples.
We are able to observe that even though the one-class SVM is able to correctly classify
the positive scans with a higher success rate, its ability to distinguish the negative from
the positive is much lower than the compression NN.

Table 7.7: Methods success results on second session.

Method Result on slices
BN - NN 58.92%± 2.03%

One-class SVM 54.81%± 1.18%
Two-class SVM 69.56%± 4.12%

Table 7.8: Methods Statistics (second session) - Positive testing samples

Method True-Positive False-Negative Standard Deviation
BN - NN 72.96% 27.04% ±4.06%

One-class SVM 84.96% 15.04% ±2.04%
Two-class SVM 72.49% 27.51% ±3.59%

Table 7.9: Methods Statistics (second session) - Negative testing samples

Method True-Negative False-Positive Standard Deviation
BN - NN 44.88% 55.12% ±3.82%

One-class SVM 24.67% 75.33% ±3.24%
Two-class SVM 67.51% 32.49% ±2.17%

7.4.3 Visual Tasks

In this section we present work done on a more complicated visual task where fMRI
scans of 4 volunteers13 watching five different categories of images while 58 slices of their
brain were taken in the MRI machine. The categories are of; Faces, Houses, Patterns,
Objects and Blank. The different category images were displayed in alternating order,
7 repetitions for 3 time points each. Altogether 21 time points (images) per slice. The
blank scene was shown to the volunteer in the start of the experiment for 6 time points
and in-between repetitions and alternations of the main categories for 2 time points
(a total of 56 time points). The overall time point length of fMRI scans is 147. The
individual fMRI images are dicom format of size 40×46. Unlike the motor task described
in section 7.4.2, we used all of the slices together as one data point. Thus the dimension

13Provided by Rafael Malekh (Levy et al., 2001; Hasson et al., 2003)
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of a data point is in principle about 106, 000 although in actual fact, on the data supplied,
part of the brain was not scanned, so the actual dimension used was about 53, 000.

We did two separate analyses of the data; once training between a specific category
and blank for a specific subject; and once combining all three subjects into one data
set and training between the specific categories and blank as well as category versus
category. We used one subject, “A”, for parameter tuning of C = [0.5, . . . , 2.5] with a
linear kernel. For the one-class SVM we also tuned over ν = [0.1, . . . , 1.5]. We then used
the parameters for the other subjects and did not use the data of “A” again.

For the first analysis case. Category vs. blank; we had 21 positive labels and 63 negative
ones for each subject, 14 positive and 42 negative samples were used for training and
the remainder for testing. While for the category vs. category we used 14 samples for
both positive and negative for training and testing. In the second case we combine all
individuals to amount to 63 positive labels and 189 negative ones. Category vs. blank;
we have 38 positive and 114 negative samples used for training and the remainder for
testing. For the category vs. category we used 38 samples from each label for training
and 25 from each label for testing.

Each analysis was rerun 10 times with a random permutation of the training-testing
split. The results for the first analysis can be seen in Table 7.10 while the results for the
second analysis can be seen in Table 7.11. The first row is the cateory vs. blank while
the following rows are the category vs. category.

Table 7.10: Separate Individuals - SVM Parameters Set by Subject A

Face Pattern House Object
Subject B 83.21% ± 7.53% 87.49% ± 4.20% 81.78% ± 5.17% 79.28% ± 5.78%

Face 63.56% ± 13.23% 65.71% ± 14.98% 59.28% ±10.12%
Pattern 64.99% ± 10.35% 60.71% ±13.57%
House 59.28%±15.81%

Subject C 86.78% ± 5.06% 92.13% ± 4.39% 91.06% ± 3.46% 89.99% ± 6.89%
Face 81.42% ± 9.64% 66.42% ± 15.81% 59.28% ±8.93%

Pattern 68.56% ± 13.12% 72.13% ±12.34%
House 67.13%±10.21%

Subject D 97.13% ± 2.82% 93.92% ± 4.77% 94.63% ± 5.39% 97.13% ± 2.82%
Face 81.42% ± 12.23% 86.42% ± 7.1% 69.99% ±9.4%

Pattern 84.99% ± 8.55% 81.42% ±11.76%
House 77.13% ±13.8%

The results show for the category vs. blank a success rate of about 90% for each category
trained for separate individuals and close to the same rate for the combined analysis.
Showing that with relatively high accuracy we are able to distinguish ‘what’ the brain
is looking at from blank label by looking at the brain. It is interesting to observe that
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Table 7.11: Combined Individuals - SVM Parameters Set by Subject A

Face Pattern House Object
B & C & D 86.00% ± 2.05% 89.50% ± 2.50% 88.40% ± 2.83% 89.30% ± 2.90%

Face 75.77% ± 6.02% 77.3% ± 7.35% 67.69% ±8.91%
Pattern 75% ± 7.95% 67.69% ±8.34%
House 71.54%±8.73%

the method’s performance degrades with the category vs. category experiments. This
may be a combination of reduced number of training samples as well as a need of a
more elaborate labelling (i.e. labelling which would take into account BOLD delays).
Applying some method for feature selection prior to the application of the learning
method may yield a higher accuracy as it would eliminate noisy features (It is known
that brain is extremely noisy).

We compare using one class approaches for the combined set of individuals. Due to
computational limitations we are unable to represent the entire 53, 000 input and output
“bottleneck” network, therefore we take every 5th slice from the overall 58 slices rending
a network of 13, 800 input and output nodes. Similar to previous experiments we use a
60% compression using 38 positive for training and 25 positive and 75 negative samples
for testing repeated for 10 random runs. Table 7.12 shows the success rate for category
vs. blank for the NN approach while Table 7.13 shows for one class SVM. We are able
to observe that the NN outperforms the on class SVM. It may be the case that the SVM
is unable to extract useful information due to high ratio of noise existing in fMRI scans,
and therefore would need more samples then currently provided to be trained on.

Table 7.12: Combined Individuals - Bottleneck NN with 60% compression

Face Pattern House Object
B & C & D 56.6% ± 3.78% 58% ± 3.67% 56.2% ± 3.11% 58.4% ± 3.13%

Table 7.13: Combined Individuals - One-class SVM Parameters Set by Subject A

Face Pattern House Object
B & C & D 51.4% ± 2.55% 52.20% ± 3.49% 53.7% ± 3.77% 52.4% ± 2.9%
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7.5 Summary

In this chapter we have presented medical based applications, showing how one could
use semantic based models to analyse fMRI scans in order to detect active regions within
the brain to a given task. We continue to show how this can be statically verified by
examining the learnt semantics and reconstruct an activity signal from the fMRI scan
that is of a similar activity process. It is demonstrated how the reverse problem of
learning the cognitive state using SVM and NN can be accomplished. We consider the
problem of identifying fMRI scans that have only been acquired during active states,
as it may be the case that the negative samples are not representative or non existent.
fMRI analysis is a relatively new field for machine learning and we believe that the
results presented are promising, encouraging further research.

This chapter concludes the application part of the thesis where the following chapter
provides an open discussion and possible future extensions to the work presented.





Chapter 8

Conclusions

“The computer is the most extraordinary of man’s technological clothing; it’s an
extension of our central nervous system. Beside it, the wheel is a mere hula-hoop.”

- Marshall McLuhan

8.1 Open Discussion

The predominant problems in the field of machine learning are the application of various
methods to the highly non-linear real world data. This thesis provides a review to kernel
methods, a process of first embedding non linear data into a suitable feature space
where it becomes solvable in a linear fashion. We address the computational problem
that arises from the high dimensional embedding, by introducing the kernel trick. A
process of implicitly embedding the data into an appropriate feature space where the
dot product between the data samples is performed. We investigate various elements of
the kernel methodology such as showing how we are able to compute a unique matrix
from the kernel matrix such that its components are linearly independent.

We continue to consider semantic models, by analysing the data and observing how
feature spaces derived from solving the eigenvalue problem could be used to enhance
regression accuracy. We present two genres of semantic representation, the first based on
eigenanalysis such as the method of Partial Least Squares (PLS). An effective method
for solving problems with training data that has few points but high dimensionality.
Kernel PLS has shown how it can be successfully used to generate new features which
can then be used in conjunction with learning methods such as Support Vector Machine
(SVM). The second genre is based on extracting semantics from a probabilistic model.
We give the idea of generating a feature representation and associated kernel from a
probabilistic model known as the Fisher score.

115
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The main method of the thesis is Canonical Correlation Analysis (CCA), a powerful
tool for extracting semantic information using two views of a single object. We show
how kernel Canonical Correlation Analysis (KCCA) can be a powerful tool for extracting
patterns between two complex views of data, although these patterns may be too flexible
without proper regularisation. This thesis provides a detailed review of CCA with a
statistical stability analysis, showing that the error bound on a new example indicates
that the empirical value of the pattern function will be close to its expectation, provided
that the norms of the two direction vectors are controlled. We also show how we are
able to reduce the computed eigenvalues and corresponding eigenvectors by computing
the eigenproblem for a single view rather then the two views combined.

As discussed above, this thesis provides a theoretical background of semantic models.
We aim to complete such a discussion by providing an applicationary review of these
methods to several real world problems. We begin this with an image based application,
where we are able to observe that by combining the interest point and key point features
into a semantic feature space we can achieve improvements in the field of generic object
recognition. This can be regarded as a general data fusion method of combining two
or more sources for increasing the classification accuracy from a single source. When
thinking of images, one automatically conjures associative descriptions, from keywords
to context. The problem of retrieving information via content is a non trivial one.
We have presented a relatively simple technique utilising the properties of KCCA to
learn an association between the documents and images and find a common semantic
representation to both views. This is then used to generate new documents to image
queries. We find that despite the simplicity of the approach, our results are promising
and better than those obtained by the baseline method.

The application review continues into the field of music. In the opinion of the author,
a field most closely related to human emotion. Music, as with any form of art, is
an expression of style and individualism. We explore how the application of machine
learning can explore the structure of music and its elements. We have presented a novel
application of the string kernel to classify pianists by examining their playing style.
This is an extremely complex task and has previously been attempted by analysing
statistical features obtained from audio recordings. The string kernel operating over the
performance alphabet provides significantly better classification than the feature-based
method and in every case also outperforms the n-gram kernel. Although we find from
our presented results using KPLS features did not improve the performance of the SVM.
We further present an application of the HMM to the problem of learning to identify
famous composers from their sheet music. We present a novel application of Fisher
kernels for the same problem. It is visible that the proposed HMM although relatively
simplistic, considering the complexity of the task, is able to extract an element of the
composer’s characteristics from their sheet music as there may be simpler features buried
underneath.
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Brain computer interfaces has gained increasing research during the last years. It is the
futuristic ability of linking brain and computer. The final reviewed application examines
the analysis of fMRI scans using the kernel variant of CCA. We show that kernel CCA
is able to handle the entire three dimensional brain and hence has a computational
advantage over CCA and OCA. The presented results show that OCA was not successful
with analysing real fMRI while kernel CCA was able to distinguish between active and
non active regions clearly. We propose to use the properties of CCA to reconstruct an
activity signal from a fMRI scan that is of a similar activity process, and hence give a
means for statically verifying the learnt semantics. The reverse problem, then previously
described, where we aim to learn the cognitive state using SVM and NN is explored.
In the cognitive state classification results trained with either the bottleneck Neural
Network or the one class SVM are on the one hand, substantially above random, and
thus show that these methods can indeed be trained to find the information for these
tasks, though on the other hand, the results (about 60% accuracy) are not yet sufficient
for practical application.

8.2 Future Research

There are many aspects of possible extensions to the work that could be investigated.
Theoretically wise it would be of particular interest to be able to extend the kernel CCA
into a generalised framework, while still being able to solve the eigenvalue problem for a
single view rather then a combined M view eigenproblem. This will reduce the compu-
tational complexity of multiple CCA and its kernel variant. It would also be intriguing
to explore further formulations of the CCA problem other than the eigenproblem for-
mulation, such as the least squares regression. Further research into efficient usage of
KPLS features in conjunction with the support vector machine classifier such that we
would produce high classification rates.

We give in the following possible aspects of future work in each of the thesis’s application
categories

• In the field of document-image retrieval, several issues remain, such as; how can
one define a better “relevance” test for the retrieved keywords? As we may also
have image queries that do not have their associated words in the training cor-
pus. It may also be relevant to devise a probabilistic scheme for the word penalty
rather than using an arbitrary one. In the current status it would be worthwhile
investigating alternative methods of creating the new document d∗ as well as using
better image features. With these open issues we believe that image and text asso-
ciation represents an interesting problem that is addressed from an unconventional
perspective. We only rely on the given information and attempt to infer from it.
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Further to that, we have used a difficult database which we believe manifests the
real-world scenario that is encountered daily on the Internet.

• The presented work on musical worms leaves currently open the problem of how to
determine in what circumstances using kernel PLS in conjunction with SVM will
obtain features that will result in an improvement in generalisation performance.
Also, currently the number of dimensions has to be chosen via cross-validation or
a similar method. An automatic selection method for this parameter would be
beneficial.

In the identification of composers directly from their sheet music, we would like to
consider an extension to our model beyond single-note melodies. We believe that
such an extension to handle chords from our proposed model is relatively simple.
Although the actual choice of the representation of the chord is needed and hence
will require further work. A predominant question arises from the work, and is
currently not addressed - Can we learn harmony meta-structures?. As it clearly
seems that with limited data the Fisher kernels do not perform very well. It would
be beneficial to reproduce the work on much larger scale data. Finally the use
of the transition probabilities in the computation of the Fisher scores could be
incorporated to take into account the changing harmony structure of a piece.

• For the medical analysis, we would like to try more elaborate time basis functions
and to experiment on different data types (emotional and other mental and mo-
tor fMRI data) using tailored kernels for better extracting the active regions in
the brain. A further interesting avenue would be to observe the performance of
applying our kernel CCA approach to other techniques of brain analysis and also
to more complex tasks. We speculate that kernel CCA would be able to handle a
multiple task fMRI scenario (i.e. a scan with a few tasks at once) where baseline
methods, such as CCA, require scans of individual tasks and can not handle a
multiple task situation.

As in the cognitive state classification we are limited in the learning algorithms to
a binary label, we have reverted to using the square-wave time-sequence that is
known not to incorporate various effects and delays in the brain. Therefore using an
SVM or kernel which is able to handle Fourier series could increase the classification
accuracy both in the two and one class learning methods. A comparison of the
same individual across different session would show whether we are able to learn a
unique pattern of the brain functionality to the individual performing it. Finally we
would like to apply lower dimensional projection methods such as kernel principle
component analysis prior to the SVM procedure, as we may find that it would
increase the performance
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Appendix A

Definitions

A.1 Euclidean inner product

〈·, ·〉 denotes the Euclidean inner product of the vectors x,y and is equal to x′y. Where
we use A′ to denote the transpose of a vector or matrix A.

A.2 Matrix Trace

Definition A.1. The trace of an N ×N square matrix A is defined to be

Trace(A) =
N∑

i=1

aii

Lemma A.2. Let A and B be square matrices such that Trace(A) =
∑n

i aii then we
have Trace(AB) = Trace(BA)

Proof.

Trace(AB) =
n∑

i=1

(AB)ii

=
n∑

i,j=1

aijbji

=
n∑

j,i=1

bjiaij

=
n∑

j=1

(BA)jj

= Trace(BA)
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Lemma A.3. Let A be a symmetric matrix having eigenvalue decomposition equal to
A = V ′ΛV then Trace(Λ) = Trace(A) where Λ is the diagonal matrix of the eigenvalues.

Proof.

Trace(Λ) = Trace(V ′AV )

= Trace((V ′A)V )

= Trace(V (V ′A))

= Trace(V V ′A)

= Trace(A)

A.3 Empirical expectation

Ê[f(x,y)] denotes the empirical expectation of the function f(x,y) where Ê[f(x,y)] =
1
n

∑n
i=1 f(xi,yi). Where expectation E[f(x)] =

∫
f(x)P (x)dx where P (x) is the proba-

bility function.

A.4 Karush-Kuhn-Tucker Condition

Theorem A.4. (Kuhn-Tuker, Quoted from Cristianini and Shawe-Taylor (2000)) Given
an optimisation problem with convex domain Ω ⊆ Rn,

min f(w), w ∈ Ω

subject to gi(w) ≤ 0, i = 1, . . . , k,

hi(w) = 0 , i = 1, . . . ,m,

with f ∈ C1 convex and gi, hi affine necessary and sufficient conditions for a normal
point w∗ to be an optimum are the existence of α∗,β∗ such that

∂L(w∗,α∗,β∗)
∂w

= 0,

∂L(w∗,α∗,β∗)
∂β

= 0

α∗
i gi(w∗) = 0, i = 1, . . . , k,

gi(w∗) ≤ 0, i = 1, . . . , k,

α∗
i ≥ 0, i = 1, . . . , k.



Appendix A Definitions 123

The third relation is known as the Karush-Kuhn-Tuker complementarily condition. It
implies that for active constraints, α∗

i ≥ 0, whereas for inactive constraints α∗
i = 0.

A.5 Cholesky Decomposition

(Weisstein) Given a symmetric positive definite matrix A, the cholesky decomposition
is an upper triangular matrix U such that A = U ′U .

A.6 Rademacher Complexity

Quoted from (Shawe-Taylor and Cristianini, 2004). Assume an underlying distribu-
tion D generating random vectors on a set X. If D generates a random object x

and S = {x1, . . . , x`} is a sample generated i.i.d according to D, we denote with
E[f(x)] = ED[f(x)] the true expectation of the function f(x) and with Ê[f(x)] we
denote the empirical expectation of f(x). Similarly we will use Eσ to denote the expec-
tation w.r.t a random vector σ (which assume values −1 and +1 independently with
equal probability) and ES to denote expectation over the generation of xi from sample
S.

Definition A.5. For a sample S = {x1, . . . , x`} generated by a distribution D on a
set X and a real-valued function class F with domain X, the empirical Rademacher
complexity of F is the random variable

R̂`(F) = Eσ

[
sup
f∈F

2
`

∑̀
i=1

σif(xi)

 |x1, . . . , x`

]
,

where σ = (σ1, . . . , σ`) are independent uniform {±1}-valued (Rademacher) random
variables. The Rademacher complexity of F is

R`(F) = ES [R̂`(F)] = ESσ

[
sup
f∈F

∣∣∣∣∣2` ∑̀
i=1

σif(xi)

∣∣∣∣∣
]

The main application of Rademacher complexity is given in the following theorem
(Bartlett and Mendelson, 2002) quoted in the form given in (Shawe-Taylor and Cris-
tianini, 2004). We denote the input space Z in the theorem, so that in the case of
supervised learning we would have Z = X × Y .

Theorem A.6. Fix δ ∈ (0, 1) and let F be a class of functions mapping from Z to [0, 1].
Let (zi)`

i=1 be drawn independently according to a probability distribution D. Then with
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probability at least 1− δ over random draws of samples of size `, every f ∈ F satisfies

ED[f(z)] ≤ Ê[f(z)] + R`(F) +

√
ln(2

δ )
2`

≤ Ê[f(z)] + R̂`(F) + 3

√
ln(2

δ )
2`

.

The application of Rademacher complexity bounds to kernel defined function classes is
well documented (Bartlett and Mendelson, 2002). The function class considered is

FB = {x 7→ 〈w, φ(x)〉 : ‖w‖ ≤ B} .

We quote the relevant theorem.

Theorem A.7. (Bartlett and Mendelson, 2002) If κ : X ×X → R is a kernel, and S =
{x1, . . . , x`} is a sample of points from X, then the empirical Rademacher complexity of
the class FB satisfies

R̂`(FB) ≤ 2B

`

√√√√∑̀
i=1

κ(xi, xi) =
2B

`

√
tr(K),

where K is the kernel matrix of the sample S.

Finally, we will need the following result again given in (Bartlett and Mendelson, 2002),
see also (Ambroladze and Shawe-Taylor, 2004) for a direct proof.

Theorem A.8. Let A be a Lipschitz function with Lipschitz constant L mapping the
reals to the reals satisfying A(0) = 0. The Rademacher complexity of the class A ◦ F
satisfies

R̂`(A ◦ F) ≤ 2LR̂`(F).

Furthermore for any classes F & G

R̂`(F + G) ≤ R̂`(F) + R̂`(G).
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Proofs & Derivations

B.1 For Chapter 2

B.1.1 SVM Optimisation

In the following we derive the SVM optimisation as laid out in Chapter 2 (therefore it
should be read in reference to this chapter). Applying the derivatives w =

∑`
i=1 αiyixi

and
∑`

i=1 αiyi = 0 to the Lagrangian of the hyperplane optimisation problem

min
w,b

1
2
‖w‖2 −

∑̀
i=1

αi(yi 〈xi,w〉+ b)− 1) s.t. αi ≥ 0

gives the dual optimisation problem

max
α

W (α) =
∑̀
i=1

αi −
1
2

∑̀
i,j=1

αiαjyiyjκ(xi,xj) s.t. αi ≥ 0,
∑̀
i=1

αiyi = 0

which we maximise in respect to the dual variables.

The derivation is as follows,

1
2
‖
∑̀
i=1

αiyixi‖2 −
∑̀
i=1

αi

(
yi

(〈
xi,
∑̀
i=1

αiyixi

〉
+ b

)
− 1

)
=

1
2

∑̀
i,j=1

αiαjyiyj 〈xi,xj〉 −
∑̀
i=1

αiyi

〈
xi,
∑̀
i=1

αiyixi

〉
− b

∑̀
i=1

αiyi +
∑̀
i=1

αi =

1
2

∑̀
i,j=1

αiαjyiyj 〈xi,xj〉 −
∑̀
i,j=1

αiαjyiyj 〈xi,xj〉 − b
∑̀
i=1

αiyi +
∑̀
i=1

αi =

∑̀
i=1

αi −
1
2

∑̀
i,j=1

αiαjyiyjκ(xi,xj).
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B.1.2 SVM Optimisation with Penalty Parameter

As in the previous section we apply the derivatives w =
∑`

i=1 αiyixi,
∑`

i=1 αiyi = 0 and
Cξ = α to the Lagrangian of the SVM optimisation with penalty parameter C

L(w,α, b, ξ) =
1
2
‖w‖2 +

1
2
C
∑̀
i=1

ξ2
i −
∑̀
i=1

αi (yi (〈w,xi〉+ b)− 1 + ξi) s.t. αi ≥ 0, ξi ≥ 0

gives the dual optimisation problem

max
α

W (α) =
∑̀
i=1

αi−
1
2

∑̀
i,j=1

yiyjαiαj

(
κ(xi,xj) +

1
C

δij

)
s.t. 0 ≤ αi ≤ C, ξi ≥ 0,

∑̀
i=1

αiyi = 0

which we maximise in respect to the dual variables.

The derivation is as follows,

1
2
‖
∑̀
i=1

αiyixi‖2 +
1
2
C
∑̀
i=1

ξ2
i −

∑̀
i=1

αi

(
yi

(〈
xi,
∑̀
i=1

αiyixi

〉
+ b

)
− 1 + ξi

)
=

1
2

∑̀
i,j=1

αiαjyiyj 〈xi,xj〉+
1
2
C
∑̀
i=1

ξ2
i −

∑̀
i=1

αiyi

〈
xi,
∑̀
i=1

αiyixi

〉
−
∑̀
i=1

αiyib +
∑̀
i=1

αi −
∑̀
i=1

αiξi =

1
2

∑̀
i,j=1

αiαjyiyj 〈xi,xj〉+
1

2C
α′α−

∑̀
i,j=1

αiαjyiyj 〈xi,xj〉 −
∑̀
i=1

αiyib +
∑̀
i=1

αi −
1
C

α′α =

∑̀
i=1

αi −
1
2

∑̀
i,j=1

αiαjyiyj 〈xi,xj〉 −
1

2C
α′α =

∑̀
i=1

αi −
1
2

∑̀
i,j=1

αiαjyiyj

(
κ(xi,xj)−

1
C

δij

)
.

B.1.3 Gram-Schmidt Orthonormalisation

[From Section 2.2] We are able to show that xi = Q

 Q′
i−1xi

‖(I −Qi−1Q
′
i−1)xi‖

0`−i
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The derivation is a follows

xi = Qi−1Q
′
i−1xi + xi −Qi−1Q

′
i−1xi

= Qi−1Q
′
i−1xi +

(
I −Qi−1Q

′
i−1

)
xi

= Qi−1Q
′
i−1xi + ‖(I −Qi−1Q

′
i−1)xi‖qi

=

(
Qi−1

qi

)′(
Q′

i−1xi

‖(I −Qi−1Q
′
i−1)xi‖

)

= Qi

(
Q′

i−1xi

‖(I −Qi−1Q
′
i−1)xi‖

)

= Q

 Q′
i−1xi

‖(I −Qi−1Q
′
i−1)xi‖

0`−i

 .

B.2 Proofs for Chapter 4

B.2.1 Partial Derivatives of CCA

The correlation ρ is equal to the Lagrangian multiplier λ.

Proof.

max
wx,wy

ρ =
w′

xCxywy√
w′

xCxxwxw′
yCyywy

Taking partial derivatives of ρ with respect to wx

∂ρ

∂wx
=

Cxywy
√

w′
xCxxwxw′

yCyywy −
w′

xCxywyCxxwxw′
yCyywy√

w′
xCxxwxw′

yCyywy

w′
xCxxwxw′

yCyywy
= 0

Cxywy√
w′

xCxxwxw′
yCyywy

−
w′

xCxywyCxxwxw′
yCyywy√

w′
xCxxwxw′

yCyywyw′
xCxxwxw′

yCyywy
= 0

1√
w′

xCxxwxw′
yCyywy

(
Cxywy −

w′
xCxywyCxxwx

w′
xCxxwx

)
= 0.

Applying the constraints leaves us with

Cxywy −w′
xCxywyCxxwx = 0

which implies together with equation (4.4) that ρ = w′
xCxywy = λx = λ. Similarly

when taking partial derivative of ρ with respect to wy we find that ρ = w′
yCyxwx =

λy = λ.
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B.2.2 Feature Mapping and Weight Vector

Given the function gwa,wb
(x) = ‖w′

aφa(x)−w′
bφb(x)‖2 represented as a linear function

f̂(x) the feature space mapping into F is given by

φ̂(x) = [ ~φa(x)φa(x)′, ~φb(x)φb(x)′,
√

2 ~φa(x)φb(x)′],

and the weight vector as

ŵ = [ ~waw′
a,

~wbw′
b,−
√

2 ~waw′
b].

Proof.

f̂(x) = ‖gwa,wb
(x)‖2

= φ(x)′awaw′
aφ(x)a + φ(x)′bwbw′

bφ(x)b − 2φ(x)′awaw′
bφ(x)b

=
N∑

i,j=1

(waw′
a)ijφa(x)iφa(x)j +

N∑
i,j=1

(wbw′
b)ijφb(x)iφb(x)j

−2
N∑

i,j=1

(waw′
b)ijφa(x)iφb(x)j .

Therefore we are able to define the feature projection as

φ̂(x) = [ ~φa(x)φa(x)′, ~φb(x)φb(x)′,
√

2 ~φa(x)φb(x)′],

and
ŵ = [ ~waw′

a,
~wbw′

b,−
√

2 ~waw′
b]

as required.

B.2.3 Norm of the Weight Vector

The norm of ŵ can be computed

‖ŵ‖ = ‖wa‖2 + ‖wb‖2.

Proof. Taking the square of the norm to be

‖ŵ‖2 = ‖waw′
a‖2F + ‖wbw′

b‖2F + 2‖waw′
b‖2F

= trace(waw′
awaw′

a) + trace(wbw′
bwbw′

b) + 2trace(waw′
bwaw′

b)

= ‖wa‖4 + ‖wb‖4 + 2‖wa‖2‖wb‖2

= (‖wa‖2 + ‖wb‖2)2.
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B.2.4 Kernel Function

The kernel k̂ corresponding to the feature mapping φ̂ is given by

k̂(x, z) = (κa(x, z) + κb(x, z))2.

Proof. Let κ̂ be the kernel function associated with the feature mapping φ̂

κ̂(x, z) =
〈
φ̂(x), φ̂(z)

〉
=

N∑
i,j=1

φa(x)iφa(x)jφa(z)iφa(z)j +
N∑

i,j=1

φb(x)iφb(x)jφb(z)iφb(z)j

+2
N∑

i,j=1

φa(x)iφb(x)jφa(z)iφb(z)j

=
N∑

i,j=1

φa(x)iφa(z)iφa(x)jφa(z)j +
N∑

i,j=1

φb(x)iφb(z)iφb(x)jφβ(z)j

+2
N∑

i,j=1

φa(x)iφa(z)iφb(x)jφb(z)j

=

(
N∑

i=1

φa(x)iφa(z)i +
N∑

i=1

φb(x)iφb(z)i

)2

= (〈φa(x),φa(z)〉+ 〈φb(x),φb(z)〉)2 = (κa(x, z) + κb(x, z))2

B.2.5 k-dimensional Analysis

In the following Theorem and proof we make usage of the Theorems in Appendix A.6.

Theorem B.1. Fix A and B in R+. If we obtain features given by wi
a,w

i
b i = 1, . . . , k

with ‖wi
a‖ ≤ A and ‖wi

b‖ ≤ B with correlations ρi on a paired training set S of size n in
the feature space defined by the kernels κa and κb drawn i.i.d. according to a distribution
D, then with probability greater than 1− δ over the generation of S, the expected value
of ga,b(x) on new data is bounded by

ED[ga,b(x)] ≤
k∑

i=1

2(1− ρi) +
4(A2 + B2)k

`

√√√√∑̀
i=1

(κa(xi, xi) + κb(xi, xi))2

+3R(A2 + B2)

√
ln(2

δ )
2`
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where
R = max

x∈supp(D)
(κa(x, x) + κb(x, x)).

Proof. Let the kernel function from the two corresponding feature projections be κa =
〈φa(x),φa(x)〉 and κb = 〈φb(x),φb(x)〉. By the analysis in Section 4.3 we are able to
note that the function gwa,wb

lies in the function class

F(A2+B2) =
{

x→
〈
ŵ, φ̂(x)

〉
: ‖ŵ‖ ≤ A2 + B2

}
.

We apply Theorem A.6 to the loss class

F̂ =

{
f̂ : x 7→ A

(
k∑

i=1

fi(x)

)
|fi ∈ F(A2+B2)

}
⊆ A ◦ kF(A2+B2)

where A is the function

A(x) =


0 if x ≤ 0;

x
R(A2+B2)

if 0 ≤ x ≤ R(A2 + B2);

1 otherwise.

Note that this ensures that for points in the support of the distribution D the range of
the function class is [0, 1]. Applying Theorem A.6 to the pattern function

ĝa,b = A ◦ ga,b ∈ F̂

we can conclude that with probability 1− δ,

ED[ĝa,b(x)] ≤ Ê[ĝa,b(x)] + R̂`(F̂) + 3

√
ln(2

δ )
2`

. (B.1)

Using Theorems A.7 and A.8 gives

R̂`(F̂) ≤ 4(A2 + B2)k
`R(A2 + B2)

√√√√∑̀
i=1

(κa(xi, xi) + κb(xi, xi))2.

Multiplying equation (B.1) through with R(A2 + B2) and noting that the arguments in
the empirical expected value of the pattern function are positive, gives the result.

B.2.6 CCA Link to PLS

Consider the primal CCA with the regularisation parameter τ

max
wx,wy

ρ = wxCxywy
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subject to

(1− τ)wxCxxwx + τ‖wx‖ = 1

(1− τ)wyCyywy + τ‖wy‖ = 1.

Consider maximum regularisation for the CCA optimisation problem, τ = 1, we find
that our constraint is reduced to

‖wx‖ = 1

‖wy‖ = 1.

Hence we are now finding two directions of maximal data covariation, which is what
PLS gives, although as we do not deflate we only find the first direction. This procedure
is identical for Kernel CCA where we are left with KPLS for the first direction. Observe
that regularised versions of CCA and KCCA via the optimisation constraints are in fact
a hybrid between CCA and PLS depending on the amount of regularisation used.
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