12,711 research outputs found

    Flexible provisioning of Web service workflows

    No full text
    Web services promise to revolutionise the way computational resources and business processes are offered and invoked in open, distributed systems, such as the Internet. These services are described using machine-readable meta-data, which enables consumer applications to automatically discover and provision suitable services for their workflows at run-time. However, current approaches have typically assumed service descriptions are accurate and deterministic, and so have neglected to account for the fact that services in these open systems are inherently unreliable and uncertain. Specifically, network failures, software bugs and competition for services may regularly lead to execution delays or even service failures. To address this problem, the process of provisioning services needs to be performed in a more flexible manner than has so far been considered, in order to proactively deal with failures and to recover workflows that have partially failed. To this end, we devise and present a heuristic strategy that varies the provisioning of services according to their predicted performance. Using simulation, we then benchmark our algorithm and show that it leads to a 700% improvement in average utility, while successfully completing up to eight times as many workflows as approaches that do not consider service failures

    Introducing fuzzy trust for managing belief conflict over semantic web data

    Get PDF
    Interpreting Semantic Web Data by different human experts can end up in scenarios, where each expert comes up with different and conflicting ideas what a concept can mean and how they relate to other concepts. Software agents that operate on the Semantic Web have to deal with similar scenarios where the interpretation of Semantic Web data that describes the heterogeneous sources becomes contradicting. One such application area of the Semantic Web is ontology mapping where different similarities have to be combined into a more reliable and coherent view, which might easily become unreliable if the conflicting beliefs in similarities are not managed effectively between the different agents. In this paper we propose a solution for managing this conflict by introducing trust between the mapping agents based on the fuzzy voting model

    An Effective Strategy for the Flexible Provisioning of Service Workflows

    No full text
    Recent advances in service-oriented frameworks and semantic Web technologies have enabled software agents to discover and invoke resources over large distributed systems, in order to meet their high-level objectives. However, most work has failed to acknowledge that such systems are complex and dynamic multi-agent systems, where service providers act autonomously and follow their own decision-making procedures. Hence, the behaviour of these providers is inherently uncertain - services may fail or take uncertain amounts of time to complete. In this work, we address this uncertainty and take an agent-oriented approach to the problem of provisioning service providers for the constituent tasks of abstract workflows. Specifically, we describe an algorithm that uses redundancy to deal with unreliable providers, and we demonstrate that it achieves an 8-14% improvement in average utility over previous work, while performing up to 6 times as well as approaches that do not consider service uncertainty. We also show that our algorithm performs well in the presence of inaccurate service performance information

    Assessing Ambiguity of Context Data in Intelligent Environments: Towards a More Reliable Context Managing System

    Get PDF
    Modeling and managing correctly the user context in Smart Environments is important to achieve robust and reliable systems. When modeling reality we must take into account its ambiguous nature. Considering the uncertainty and vagueness in context data information it is possible to attain a more precise picture of the environment, thus leading to a more accurate inference process. To achieve these goals we present an ontology that models the ambiguity in intelligent environments and a data fusion and inference process that takes advantage of that extra information to provide better results. Our system can assess the certainty of the captured measurements, discarding the unreliable ones and combining the rest into a unified vision of the current user context. It also models the vagueness of the system, combining it with the uncertainty to obtain a richer inference process

    Multi-source heterogeneous intelligence fusion

    Get PDF
    corecore